TOSHIBA ## Latest MOSFET technology U-MOS VIII, IX-H and X are high-efficiency Low Voltage (LV) MOSFET series, specifically designed for use in the secondary side of AC-DC power supplies for adapters, servers etc. as well as DC-DC power supplies for communication equipment such as servers and data center. UMOS VIII, IX and UMOS X are also suitable for motor drives, UPS and machine tools. U-MOS X and selected UMOS IX are adopting a new cell structure that reduce the voltage spikes and ringing during switching which contributes for greater higher efficiency. Moreover the new SOP Advance (N) package in 5 x 6 mm dimension for improved compatibility is introduced . #### **Features** - Latest Gen-10 and Gen-9 trench MOS process, complementing Gen- 8 lineup - Increased Tj:175°C since Gen-9 - Improved energy efficiency categories - Highest performance in onresistance per die area (R_{ON-A}) - Wide range of V_{DSS} (30V-250V) and $R_{DS(ON)}$ values down to 0.6m Ω - Package option dual side cooling - Low spike solutions since Gen-9 #### **Advantages** - Wide product lineup is applicable in various power apps. - More thermal safety head room - Significantly better trade-offs between on-resistance (R_{DS(ON)}) and charge characteristics. - High avalanche ruggedness - Reduced electromagnetic radiation - Ideal for applications that require power density, smaller size etc. - Less EMI effects at low spike type #### **Applications** - Power supplies - Industry automation - Servers - Adapters - UPS - · Machine tools - Battery packs - Welding #### **Benefits** - · Attractive cost effects - Lower system costs due to fast switching & smaller form factor - Low service costs based on increased lifetime (cooler system) to reduce costs of operation failures - Flexible system costs by cost variations related to product construction (topology) - Improved end product quality - Increased demand and market share ### Low Spike Technology Toshiba offers high switching noise reduction by adopting improved snubber circuit for selected UMOS IX and all UMOS X series. With this new technology, Toshiba can offer low voltage spike and ringing for both resistance and inductance load. ### U-MOS VIII & U-MOS IX - Product line-up | U-MOS VIII & U-MOS IX – Product line-up | | | | | | | | | |---|------------------------------|---|--|---|---|---------------------------|--|---------------------------------------| | V _{DSS}
(V) | R _{DS(ON)}
In mΩ | TO-220SIS | TO-220 | SOP Advance
5x6mm | SOP Advance N
5x6mm | DSOP Advance
5x6mm | TSON Advance
3x3mm | DPAK | | | | | | Townson Line | | | | | | | 10-20 | 787 | -77 | TPH11003NL | | | TPN11003NL | | | | 5-10 | | | TPH8R903NL
TPH6R003NL | | | TPN8R903NL
TPN6R003NL
TPN6R303NC
TPN5R203PL* | | | 30 | 3-5 | | | TPH4R803PL*
TPH4R003N
TPH3R203NL | | | TPN4R203NC
TPN4R303NL | | | | 1-3 | | | TPH3R003PL*
TPH2R903PL*
TPH2R003PL* | TPH1R403NL
TPH1R403NL1 | | TPN2R203NC
TPN2R703NL
TPN2R903PL*
TPN1R603PL* | | | | <1 | | | TPHR9003NC | TPHR9003NL1
TPHR9203PL1*
TPHR6503PL1* | TPWR8503NL
TPWR6003PL* | | | | 40 | 5-10 | | | TPH7R204PL* | | | TPN7R504PL* | | | | 3-5 | TK3R1A04PL* | TK3R1E04PL* | TPH6R004PL* TPH3R704PL* | | | TPN3R704PL* | TK3R1P04PL* | | | <3 | | | TPH2R104PL*
TPH1R204PB** | TPH1R204PL*
TPH1R204PL1* | | TPN2R304PL* | | | | <1 | | | TPHR7404PU | TPHR8504PL1* | TPWR8004PL* | | | | 60 | 10-30 | TK30A06N1
TK40A06N1 | TK30E06N1
TK40E06N1 | TPH14006NH
TPH11006NL | | | TPN22006NH
TPN14006NH
TPN11006PL* | | | | 6-10 | TK58A06N1
TK8R2A06PL* | TK58E06N1
TK8R2E06PL* | TPH9R506PL*
TPH7R506NH
TPH7R006PL* | | | TPN7R506NH
TPN7R006PL* | TK6R7P06PL* | | | 3-6 | TK5R3A06PL*
TK4R3A06PL* | TK5R1E06PL*
TK4R3E06PL* | TPH5R906NH
TPH3R506PL* | | | TPN4R806PL* | TK4R4P06PL* | | | 1-3 | TK100A06N1
TK3R3A06PL* | TK3R2E06PL*
TK100E06N1 | TPH1R306P1** | TPH1R306PL1* TPH2R306NH1 TPH2R506PL* TPH2R306PL1* | TPW1R306PL* | | | | 75 | 1-3 | | | TPH2R608NH | | TPW2R508NH | TDNIGOGONILI | | | | 30-50
10-20 | TK35A08N1 | | TPH12008NH | | | TPN30008NH
TPN19008QM***
TPN12008QM*** | NEW | | 80 | 5-10
NEW | | | TPH8R008NH | | | TPN8R408QM*** | TK6R9P08QM***
TK5R1P08QM***
NEW | | | 2-5 | TK3R2A08QM***
TK100A08N1 | TK3R3E08QM***
TK100E08N1 | TPH2R408QM*** | TPH4R008NH1
TPH4R008QM*** | TPW4R008NH | | | | 100 | 30-50 | TK2R4A08QM*** | TK2R4A08QM*** | NEW NEW | NEW | | TPN3300ANH | | | | 10-30 | TK22A10N1
TK110A10PL* | TK22E10N1*
TK110E10PL* | TPH1400ANH | | | TPN1600ANH
TPN1200APL* | TK110P10PL* | | | 5-10 | TK34A10N1
TK40A10N1
TK7R4A10PL*
TK6R7A10PL* | TK34E10N1
TK40E10N1
TK7R2E10PL*
TK6R4E10PL* | TPH8R80ANH
TPH6R30ANL
TPH5R60APL* | | | | TK7R7P10PL* | | | 3-5 | TK65A10N1
TK4R1A10PL*
TK100A10N1
TK3R2A10PL* | TK65E10N1
TK3R9E10PL*
TK100E10N1 | TPH4R10ANL
TPH3R70APL* | TPH4R50ANH1
TPH3R70APL1* | TPW4R50ANH
TPW3R70APL* | | | | | <3 | | TK2R9E10PL* | | | | | | | 120 | 10-20 | TK32A12N1 | TK32E12N1 | | | | | | | | 5-10
3-5 | TK42A12N1
TK56A12N1
TK72A12N1 | TK42E12N1
TK56E12N1
TK72E12N1 | | | | | | | 150 | 50-100 | 111/2/11/11 | IIIIZLIZIVI | TPH5900CNH | | | TPN5900CNH | | | | 20-50 | | | TPH3300CNH | TDIMSOOCHUM | TDM4500CV | | | | | 5-20
100-200 | | | TPH1110ENH | TPH1500CNH1 | TPW1500CNH | TPN1110ENH | | | 200 | 50-100 | | | TPH6400ENH | | | II MITTOLINI | | | | 20-50 | | | TPH2900ENH | | TPW2900ENH | TD1: | | | 250 | 200-300
100-200 | | | TPH2010FNH
TPH1110FNH | | | TPN2010FNH | | | | 50-100 | | | TPH5200FNH | | TPW5200FNH | | | | 1 2021 Ta | achiha Electror | nic Devices & Storage Co. | rporation | * LL MOS IV tachna | Jame ** II MOSIV HIS too | hnology ***ILMOS X toc | hnology | 2021 | toshiba.semicon-storage.com