
Data Selection and De-noising Based on Reliability for Long-Range and 

High-Pixel Resolution LiDAR 
Ken Tanabe, Hiroshi Kubota, Akihide Sai and Nobu Matsumoto 

Toshiba Electronic Devices & Storage Corporation 

580-1, Horikawa-Cho, Saiwai-ku, Kawasaki, Japan 

Tel +81-44-548-2522, kenn.tanabe@toshiba.co.jp 

Although the Smart Accumulation Technique (SAT) [1] is an optimal averaging algorithm for realizing a 

long-range and high-pixel-resolution LiDAR system, its maximum effect is guaranteed by de-noising which 

is quite challenging due to the “range-value-clustering” problem peculiar to SAT. We propose a new algorithm 

that performs de-noising based on “reliability” provided by accumulating luminous intensities within a cluster. 

The simulation and measurement results show that the algorithm eliminates the clustering influence, and 

improves the maximum measurable range by about 2x on 99% of de-noised results, compared with the 

conventional approach. The overhead of the hardware implementation is small, 1% or less, in regard to Si 

area and power consumption. (Keywords: LiDAR, de-noising, reliability, cluster, spatial relation, intensity 

information, background light information, and averaging) 

LiDAR systems uniting long-range distance measurement and high-pixel resolution are required to make 

possible safe and reliable self-driving. Although an averaging algorithm using multiple pixel data improves 

the S/N ratio equivalently and enables long-range measurement, it degrades pixel resolution when multiple 

objects exist within the averaging scope. SAT is a “smart accumulation” algorithm which recognizes and 

selectively averages only the target reflection data by using intensity and background light information. The 

measurement result demonstrates that SAT enables 200m-range imaging at high-resolution under low S/N 

conditions [1]. We have developed a power-efficient IC which contains 20ch of SAT circuits, TIAs, ADCs, 

and TDCs and whose power consumption is 1.7W or less (25℃, typ.). We then demonstrated measurement 

capability with a LiDAR system embedding the IC from the viewpoint of circuit implementation. 

In general, the averaging algorithm needs data selection and de-noising as post-processing because it 

generates multiple data returns including false data related to random noise, which can be observed when no 

object exists within measurable distance. However, SAT has a side effect of causing range-value clustering, 

which makes de-noising difficult without discarding true signals. Without averaging, false range results 

originating from random noise become isolated outlying data, as shown in Fig.1 (a). In that case, de-noise is 

possible simply by removing the outlying data (Fig.1 (b)). But when SAT is applied, clustering occurs owing 

to averaging with random noise, which prevents the random noise from appearing as outlying data, as shown 

in Fig.1 (c). If no de-noise solution for treating the clustering were available, SAT would not be applicable 

due to possible misrecognition caused by the false data. 

Among existing techniques for de-noising range images, thresholding low intensity (amplitude) values is 

well-known [2]. Discarding 1st-photon response [3] is a similar approach since it also considers intensity only. 

But de-noise methods based on intensity often remove true-signal data of low intensity. Using a tri-lateral 

filter which considers intensity, range, and spatial relation is also proposed [4] [5]. However, tri-lateral filters 

do not eliminate noise data and have a risk of creating non-existent data. This does not fit the automotive 

application of LiDAR in which reliability is primarily important. Many efforts have been made using flying 

pixels [6], but they have not taken the clustering problem into account. While attempts using DNN which 

inputs peak intensity as reliability have been reported [7], the area/power penalty of DNN should be too large 

if it is to serve de-noising purposes only. So far, no study has been published which addresses clustering 

problems and provides a solution that eliminates false data. 

In this paper, an algorithm suited for hardware implementation is proposed to select or reject a range value 

from multiple returns according to reliability provided by accumulating intensity within a cluster. The 

algorithm never creates non-existent data because it only performs selection or rejection. Furthermore, it can 

be adapted to real-time applications such as obstacle detection since it supports high-speed hardware 

implementation. 

The newly defined reliability, a key concept of the algorithm, is here presented using the case of a single 

return per pixel to simplify the explanation. Straightforward extension to multiple returns provides data 
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selection capability. A cluster of pixels i is defined as a set of neighboring pixels j whose range value is close 

to that of pixel i, as shown in Fig. 2.  Here, a neighbor means pixels within a scope of accumulation. Fig.3 

shows the relation of intensity L and cluster size N with various simulated range images, assuming the 

accumulation scope is sufficiently large. This figure has four thin lines corresponding to relations in cases 

where the success rates are 0%, 70%, 80%, and 90%. “Success rate 0%” means that no object is detected at 

the pixel level, as in the sky area.  Since lines move toward the upper right as the success rate increases, 

reliability should become higher with an increase of intensity or cluster size. The bold line indicates a line of 

𝐿2 × 𝑁 ≈const, whose tendency roughly represents simulated relations. Thus, considering √𝑐𝑜𝑛𝑠𝑡 as the first 

definition of reliability 𝑅1𝑖, in terms of intensity 𝐿𝑖 (average intensity / accumulation size) and range 𝐷𝑖 and 

accumulation scope 𝐴, 𝑅1𝑖 is given by 

 𝑅1𝑖 = 𝐿𝑖 ×√𝑁𝑖 , 𝑁𝑖 = ∑ 𝑝(𝑖, 𝑗)𝑗∈𝐴 , 𝑝(𝑖, 𝑗) = {
1, |𝐷𝑗 − 𝐷𝑖| ≤ 𝑘

0, |𝐷𝑗 − 𝐷𝑖| > 𝑘
   (1) 

The second definition 𝑅2𝑖 is given by accumulating  𝐿𝑖
2 with a cluster instead of  𝐿𝑖

2 ×𝑁𝑖 in (1) 

𝑅2𝑖 = [∑ 𝐿𝑗
2 × 𝑝(𝑖, 𝑗)𝑗∈𝐴 ]

1

2, 𝑝(𝑖, 𝑗) = {
1, |𝐷𝑗 − 𝐷𝑖| ≤ 𝑘

0, |𝐷𝑗 − 𝐷𝑖| > 𝑘
   (2) 

As a reference, we also consider the conventional reliability 𝑅0𝑖 = 𝐿𝑖 without averaging. 

 

The new reliability definition makes the threshold independent of strength of averaging, i.e., size of 

accumulation scope, as explained below.  Fig. 4 shows the relation of reliability and failure rates on de-noising 

in the sky area (0% success rate) with the changing size of accumulation scope. Here, black lines at the 1% 

failure rate indicate thresholds for the reliability of 99% de-noising. As shown in Fig.4, the threshold for R1 

and R2, unlike that of R0, is uniquely determined with no dependence on the size of accumulation scope. 

Note that R1 and R2, by definition, are equal to R0 when the size of accumulation scope is 1. This means that 

R1 and R2 incorporate the influence of clustering and represent certainty of range data under averaging. 

 
Fig.5 (a) shows success rate vs distance with 99% de-noised results based on optical and electric simulation. 

Assuming that 90% success rates are criteria for measurable distance, the measurable distance with the 

proposed reliability is approximately doubled compared to the conventional R0. Fig.5 (b) shows the success 

rate after 99% de-noising when there was 90% success rate before de-noising. As shown in Fig.5 (b), the 

success rate with R2 is better than with R1 by 10% or less and is much better than with R0. Furthermore, 

degradation owing to 99% de-noising can be almost completely suppressed by using the second return with a 

combination of R2.  In Fig.6 and Fig.7, (a) and (b) show the range images captured by the LiDAR with the 

conventional R0 and the proposed R2 de-noising, respectively. Compared to R0, the proposed method clearly 

detects an object like a surface of road and a car at a greater distance. A 20ch circuit realizing the algorithm 

has 113 K gates with power consumption of 15.8mW in 28nm CMOS, which is 1% or less of the AFE and 

SAT circuits. 
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Fig.6 Example of range image of a narrow road 

(a) Noise reduction result 

with R0 (conventional) 

(b) Noise reduction result with 

R2 (proposed method 2) 

Fig.1 Example of range image 

(a) Outputs without averaging (b) Noise reduction result of (a) (c) Output with SAT and clustering 

 

(d) Magnified view of (c)  

Cluster 

Fig.5 Success rate 

(a) vs. distance (accumulation 

scope=25) 

(b) vs. accumulation scope 

(Decrease due to 99% de-noising) 

Fig.2 Cluster 

Fig. 4. Relation of Reliability and Failure Rate on De-noising in the sky (success rate 0%) 

area 

(a) R0 (conventional) (b) R1 (proposed method 1) (c) R2 (proposed method 2) 

 

Fig.3. Relation of intensity and cluster 

size  

Fig.7 Example of range image of cars 

(b) Noise reduction result with 

R2 (proposed method 2) 
(a) Noise reduction result 

with R0 (conventional) 

A car at 200m 

distance 

A car at 60m distance 




