## Application Processor Lite ApP Lite

# **TZ1000 Series**

## **Reference Manual**

# **MCU Timer/Counter**

**Revision 1.3** 

2018-02

### **TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION**

## Table of Contents

| Preface                                                 | 6  |
|---------------------------------------------------------|----|
| Intended Audience                                       | 6  |
| Conventions in this document                            | 7  |
| Abbreviation                                            | 7  |
| 1. Overview                                             |    |
| 2. Block Diagram                                        | 9  |
| 3. Address Map                                          | 11 |
| 4. Input and Output Signals                             |    |
| 4.1. Function Signals and TMR signals                   | 12 |
| 5. Function                                             |    |
| 5.1. Clock Operation                                    | 13 |
| 5.1.1. Clock and clock enable operation                 | 13 |
| 5.1.2. Prescaler operation                              | 14 |
| 5.2. Base Counter Operation                             | 16 |
| 5.2.1. One-shot mode                                    |    |
| 5.2.2. Constant period timer wrapping mode              | 17 |
| 5.2.3. Free-run timer wrapping mode                     |    |
| 5.2.4. Load register change operation                   |    |
| 5.2.5. Background load register change operation        |    |
| 5.3. Interrupt Operation                                | 21 |
| 5.4. Power Management                                   | 23 |
| 5.5. Start-up and Stop Procedure                        | 24 |
| 5.5.1. Start-up procedure                               |    |
| 5.5.2. Stop procedure                                   |    |
| 5.6. Dynamic Clock Gating Setting Procedure             | 27 |
| 6. Precaution for Usage                                 |    |
| 6.1. Access Restriction Associated with Register Access |    |
| 6.2. Precaution for Dynamic Clock Gating                |    |
| 6.3. Using SIOSC4M as the source clock for timer clock  |    |
| 7. Details of Registers                                 |    |
| 7.1. TMR_TIMER0LOAD                                     | 29 |
| 7.2. TMR_TIMER0VALUE                                    | 29 |
| 7.3. TMR_TIMER0CONTROL                                  |    |
| 7.4. TMR_TIMER0INTCLR                                   |    |
| 7.5. TMR_TIMER0RIS                                      |    |
| 7.6. TMR_TIMER0MIS                                      | 31 |
| 7.7. TMR_TIMER0BGLOAD                                   | 31 |
| 7.8. TMR_TIMER1LOAD                                     | 31 |
| 7.9. TMR_TIMER1VALUE                                    |    |
| 7.10. TMR_TIMER1CONTROL                                 |    |
|                                                         |    |

## TOSHIBA

| 7.11. TMR_TIMER1INTCLR      |    |
|-----------------------------|----|
| 7.12. TMR_TIMER1RIS         |    |
| 7.13. TMR_TIMER1MIS         |    |
| 7.14. TMR_TIMER1BGLOAD      |    |
| 7.15. TMR_TIMERITCR         |    |
| 7.16. TMR_TIMERITOP         |    |
| 7.17. TMR_TIMERPERIPHID0    |    |
| 7.18. TMR_TIMERPERIPHID1    | 35 |
| 7.19. TMR_TIMERPERIPHID2    |    |
| 7.20. TMR_TIMERPERIPHID3    |    |
| 7.21. TMR_TIMERPCELLID0     |    |
| 7.22. TMR_TIMERPCELLID1     |    |
| 7.23. TMR_TIMERPCELLID2     |    |
| 7.24. TMR_TIMERPCELLID3     |    |
| 8. Revision History         |    |
| RESTRICTIONS ON PRODUCT USE |    |



## List of Figures

| Figure 2.1  | TMR internal block diagram                                               | 9  |
|-------------|--------------------------------------------------------------------------|----|
| Figure 2.2  | 1 channel block diagram of TMR                                           | 9  |
| Figure 5.1  | Case that PCLK and TIMCLK have the same frequency (TIMCLKEN = 1)         | 13 |
| Figure 5.2  | Case that PCLK and TIMCLK have the same frequency (TIMCLKEN is changing) | 13 |
| Figure 5.3  | Block diagram of Prescaler                                               | 14 |
| Figure 5.4  | Example of base counter operation with dividing frequency by Prescaler   | 14 |
| Figure 5.5  | One-shot mode operation                                                  | 16 |
| Figure 5.6  | Constant period wrapping mode                                            | 17 |
| Figure 5.7  | Free-run timer wrapping mode                                             | 18 |
| Figure 5.8  | Load register change operation                                           | 19 |
| Figure 5.9  | Background load register change operation                                | 20 |
| Figure 5.10 | Example of interrupt timing chart                                        | 21 |
| Figure 5.11 | Interrupt generator                                                      | 22 |
| Figure 6.1  | Bit allocation of register access                                        | 28 |

#### List of Tables

| Table 3.1 | MCU Timer/Counter Register Map                                                 | 11 |
|-----------|--------------------------------------------------------------------------------|----|
| Table 4.1 | Signal comparison                                                              | 12 |
| Table 5.1 | Interrupt generation interval setting (TIMCLK = 1 MHz, Prescaler ×1 and ×256)  | 15 |
| Table 5.2 | Interrupt generation interval setting (TIMCLK = 12 MHz, Prescaler x1 and x256) | 15 |
| Table 5.3 | Power mode and operation                                                       | 23 |
| Table 8.1 | Revision History                                                               | 38 |

\* Arm, AMBA, Cortex, and Thumb are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. CoreSight is a trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved.



\* All other company names, product names, and service names mentioned herein may be trademarks of their respective companies.

## TOSHIBA

#### Preface

This document provides the specification for the MCU Timer/Counter designed for the TZ1000 Series.

#### **Intended Audience**

This document is intended for the following users.

Driver software developers. System designers

## TOSHIBA

#### **Conventions in this document**

 The following notational conventions apply to numbers: Hexadecimal number: 0xABC
 Decimal number: 123 or 0d123 - Only when it should be explicitly indicated that the number is decimal.

Binary number:

0b111 - It is possible to omit the "0b" when the number of bit can be distinctly understood from a sentence.

- Low active signals are indicated with a name suffixed with "\_N."
- A signal is asserted when it goes to its active level while it is deasserted when it goes to its inactive level.
- A set of multiple signals may be referred to as [m:n]. Example: S[3:0] indicates four signals, S3, S2, S1 and S0, collectively.
- In the text, register names are enclosed in brackets []. Example: [ABCD]
- A set of multiple registers, fields or bits of the same type may be described collectively using "n." Example: *[XYZ1]*, *[XYZ2]*, and *[XYZ3]* to *[XYZn]*
- A range of register bits are referred to as [m:n]. Example: [3:0] indicates a range from bit 3 to bit 0.
- Values set in registers are indicated using either a hexadecimal or binary number.
- Example: *[ABCD]*.EFG = 0x01 (hexadecimal), *[XYZn]*.VW = 1 (binary)
- Words and bytes are defined as follows:

| Byte:       | 8 bits   |
|-------------|----------|
| Halfword:   | 16 bits  |
| Word:       | 32  bits |
| Doubleword: | 64 bits  |
| <b>T</b>    |          |

• Register bit attributes are defined as follows:

| register sit attris |                                                                               |
|---------------------|-------------------------------------------------------------------------------|
| R:                  | Read-only                                                                     |
| W:                  | Write-only                                                                    |
| W1C:                | Clear by write of 1 - A write of "1" clears the corresponding bit to 0.       |
| W1S:                | Set by write of 1 - A write of "1" sets the corresponding bit to 1.           |
| R/W:                | Read/Write                                                                    |
| R/W0C:              | Read/Clear by write of 0                                                      |
| R/W1C:              | Read/Clear by write of 1                                                      |
| R/W1S:              | Read/Set by write of 1                                                        |
| RS/WC:              | Set by read/Clear by write - Set after a read and cleared after a data write. |
|                     |                                                                               |

- Registers only support word access unless otherwise specified.
- Any registers defined as Reserved in the text must not be rewritten. Also, any values read from such registers should not be used.
- Any bits for which default values are defined as "—" would return undefined values if read.
- When a data is written to a register containing both writable and read-only (R) bit fields, its default values should be written to read-only (R) bit fields. For any bit fields with default values defined as "—," refer to the definitions of the relevant register.
- Default values should be written to any reserved bit fields in a write-only register. For any bit fields with default values defined as "—," refer to the definitions of the relevant register.

#### Abbreviation

These specifications introduce a part of the abbreviation which they used

- APB Arm<sup>®</sup> AMBA<sup>®</sup> Advanced Peripheral Bus
- RIS Raw Interrupt Status
- MIS Masked Interrupt Status
- PMU Power Management Unit

#### 1. Overview

This module is a 32-bit timer.

The feature is as follows.

- 2 timer channels. (Each channel has identical specification.)
- Compliant to the AMBA® (2.0) protocol. The APB slave.
- 32-bit down counter
- Changeable between 32-bit and 16-bit
- Operating clock, TIMCLK, synchronizes the APB clock, PCLK.
- Each channel can be controlled independently by each timer enable.
- 3 operation modes
  - -One shot timer mode
  - -Constant period timer mode
  - -Free run timer mode
- Prescaler to divide the TIMCLK frequency (the period:  $\times 1$ ,  $\times 16$ , and  $\times 256$ )
- An interrupt per channel and an interrupt of ORed output of ch0 and ch1
- Each interrupt is controlled by each channel interrupt enable bit.
- Setting value (Load Value) can be changed while the timer is operating by a background register.
- The timer interrupt output is controlled by a test register.

## TOSHIBA

## 2. Block Diagram

The internal blocks of this module is shown in the following figures.



Figure 2.1 TMR internal block diagram



Figure 2.2 1 channel block diagram of TMR

The outlines of the internal blocks of the TMR are as follows.

#### -AMBA® APB2 interfaces

This interface is the APB slave interface accessed by the CPU. It is used to access the registers in 4 KB address space.

-Test Regs

٠

The registers for the tests of the timer. These registers control the interrupt outputs.

#### -32-bit down counter

• The 32-bit counter which consists of the timer.

-Timer Regs

• The registers for the timer.

#### -Prescaler

• The prescaler which generates the clock to the 32-bit counter.

-Int

• Controls the interrupt signals.

## TOSHIBA

## 3. Address Map

| Register Name      | Туре | Width | Reset Value | Address Offset |
|--------------------|------|-------|-------------|----------------|
| TMR_TIMER0LOAD     | RW   | 32    | 0x0000 0000 | 0x0000 0000    |
| TMR_TIMER0VALUE    | RO   | 32    | 0xFFFF FFFF | 0x0000 0004    |
| TMR_TIMER0CONTROL  | RW   | 32    | 0x0000 0020 | 0x0000 0008    |
| TMR_TIMER0INTCLR   | RW   | 32    | -           | 0x0000 000C    |
| TMR_TIMER0RIS      | RO   | 32    | 0x0000 0000 | 0x0000 0010    |
| TMR_TIMER0MIS      | RO   | 32    | 0x0000 0000 | 0x0000 0014    |
| TMR_TIMER0BGLOAD   | RW   | 32    | 0x0000 0000 | 0x0000 0018    |
| TMR_TIMER1LOAD     | RW   | 32    | 0x0000 0000 | 0x0000 0020    |
| TMR_TIMER1VALUE    | RO   | 32    | 0xFFFF FFFF | 0x0000 0024    |
| TMR_TIMER1CONTROL  | RW   | 32    | 0x0000 0020 | 0x0000 0028    |
| TMR_TIMER1INTCLR   | RW   | 32    | -           | 0x0000 002C    |
| TMR_TIMER1RIS      | RO   | 32    | 0x0000 0000 | 0x0000 0030    |
| TMR_TIMER1MIS      | RO   | 32    | 0x0000 0000 | 0x0000 0034    |
| TMR_TIMER1BGLOAD   | RW   | 32    | 0x0000 0000 | 0x0000 0038    |
| TMR_TIMERITCR      | RW   | 32    | 0x0000 0000 | 0x0000 0F00    |
| TMR_TIMERITOP      | RW   | 32    | 0x0000 0000 | 0x0000 0F04    |
| TMR_TIMERPERIPHID0 | RO   | 32    | 0x0000 0004 | 0x0000 0FE0    |
| TMR_TIMERPERIPHID1 | RO   | 32    | 0x0000 0018 | 0x0000 0FE4    |
| TMR_TIMERPERIPHID2 | RO   | 32    | 0x0000 0024 | 0x0000 0FE8    |
| TMR_TIMERPERIPHID3 | RO   | 32    | 0x0000 0000 | 0x0000 0FEC    |
| TMR_TIMERPCELLID0  | RO   | 32    | 0x0000 000D | 0x0000 0FF0    |
| TMR_TIMERPCELLID1  | RO   | 32    | 0x0000 00F0 | 0x0000 0FF4    |
| TMR_TIMERPCELLID2  | RO   | 32    | 0x0000 0005 | 0x0000 0FF8    |
| TMR_TIMERPCELLID3  | RO   | 32    | 0x0000 00B1 | 0x0000 0FFC    |

#### Table 3.1 MCU Timer/Counter Register Map

## 4. Input and Output Signals

## 4.1. Function Signals and TMR signals

The function signals and the TMR signals are shown in the following table. The function signals are described in 5 Function.

| function<br>signal name | TMR<br>signal name | Description          |
|-------------------------|--------------------|----------------------|
|                         | PCCLK              | Common bus clock     |
| PCLK                    | P0CLK              | ch0 bus clock        |
|                         | P1CLK              | ch1 bus clock        |
| TIMCLK                  | TIMCLK0            | ch0 counter clock    |
| TIMOLK                  | TIMCLK1            | ch1 counter clock    |
|                         | TIMCLKEN0          | ch0 clock enable     |
| TIMUCLKEIN              | TIMCLKEN1          | ch1 clock enable     |
|                         | PCRESETn           | Common bus reset     |
|                         | PORESETn           | ch0 bus reset        |
| PRESETn                 | P1RESETn           | ch1 bus reset        |
|                         | TIM0RESETn         | ch0 counter reset    |
|                         | TIM1RESETn         | ch1 counter reset    |
| PADDR                   | PADDR              |                      |
| PENABLE                 | PENABLE            |                      |
| PSEL                    | PSEL               | ADD signals          |
| PWDATA                  | PWDATA             | AFD SIGNAIS          |
| PWRITE                  | PWRITE             |                      |
| PRDATA                  | PRDATA             |                      |
|                         | TIMINT0            | ch0 interrupt        |
| TIMINT                  | TIMINT1            | ch1 interrupt        |
|                         | TIMINTC            | Interrupt (combined) |

Table 4.1 Signal comparison

## 5. Function

The function signal names are used in this chapter. For the function signal names, refer to Table 4.1.

#### 5.1. Clock Operation

#### 5.1.1. Clock and clock enable operation

The relation among the **PCLK**, the **TIMCLK**, and the **TIMCLKEN** is shown in the following figure (Each channel has its own clock names, but the following uses the function names to represent the channel signal names.) The count shows the count number of the base counter.

The **TIMCLK** and the **TIMCLKEN** are synchronized with the **PCLK**. The corresponding clocks of each channel are also synchronized as the same manner.



Figure 5.1 Case that PCLK and TIMCLK have the same frequency (TIMCLKEN = 1)



Figure 5.2 Case that PCLK and TIMCLK have the same frequency (TIMCLKEN is changing)

#### 5.1.2. Prescaler operation

The block diagram of the Prescaler in the TMR is shown in the following figure. The prescaler enable output is used as the clock enable to the counter.







Figure 5.4 Example of base counter operation with dividing frequency by Prescaler

Interrupt generation interval is calculated with the following formula.

Interrupt generation interval = (TIMERnLOAD +1) × (TIMCLKn period: TIMCLKENn=1)

× (Prescaler setting value)

(**n** is a channel number: 0 or 1.)

| Interrupt | TIMERnLOA<br>(Presca | TIMERnLOAD Register<br>(Prescaler ×1) |            | TIMERnLOAD Register<br>(Prescaler ×256) |  |
|-----------|----------------------|---------------------------------------|------------|-----------------------------------------|--|
| interval  | Hex                  | Decimal                               | Hex        | Decimal                                 |  |
| 100 µs    | 0x00000063           | 99                                    | —          | —                                       |  |
| 500 µs    | 0x000001F3           | 499                                   | —          | —                                       |  |
| 1 ms      | 0x000003E7           | 999                                   | 0x0000003  | 3                                       |  |
| 5 ms      | 0x00001387           | 4999                                  | 0x00000013 | 19                                      |  |
| 100 ms    | 0x0001869F           | 99999                                 | 0x00000186 | 390                                     |  |
| 500 ms    | 0x0007A11F           | 499999                                | 0x000007A1 | 1953                                    |  |
| 1 s       | 0x000F423F           | 999999                                | 0x00000F42 | 3906                                    |  |
| 60 s      | 0x039386FF           | 59999999                              | 0x00039385 | 234373                                  |  |
| 300 s     | 0x11E1A2FF           | 2999999999                            | 0x0011E1A2 | 1171874                                 |  |

Table 5.1 Interrupt generation interval setting (TIMCLK = 1 MHz, Prescaler ×1 and ×256)

Note: "—" shows that the setting is not available.

The following is the maximum value of the interrupt generation interval for each setting. Prescaler ×1: 4294.967 s

Prescaler  $\times 256$ : 1099511 s

| Table 5.2 | Interrupt generation i | nterval setting (TIMCLK : | = 12 MHz, Prescaler x1 | and x256) |
|-----------|------------------------|---------------------------|------------------------|-----------|
|-----------|------------------------|---------------------------|------------------------|-----------|

| Interrupt | TIMERnLOAD Register<br>(Prescaler x1) |            | TIMERnLOAD Register<br>(Prescaler x256) |          |
|-----------|---------------------------------------|------------|-----------------------------------------|----------|
| Interval  | Hex                                   | Decimal    | Hex                                     | Decimal  |
| 50 µs     | 0x00000257                            | 599        |                                         |          |
| 100 µs    | 0x000004AF                            | 1199       | 0x0000003                               | 3        |
| 500 µs    | 0x0000176F                            | 5999       | 0x00000017                              | 23       |
| 1 ms      | 0x00002EDF                            | 11999      | 0x0000002E                              | 46       |
| 50 ms     | 0x000927BF                            | 599999     | 0x00000927                              | 2343     |
| 100 ms    | 0x00124F7F                            | 1199999    | 0x0000124E                              | 4686     |
| 500 ms    | 0x005B8D7F                            | 5999999    | 0x00005B8D                              | 23437    |
| 1 s       | 0x00B71AFF                            | 11999999   | 0x0000B71A                              | 46874    |
| 60 s      | 0x2AEA53FF                            | 719999999  | 0x002AEA53                              | 2812499  |
| 300 s     | 0xD693A3FF                            | 3599999999 | 0x00D693A3                              | 14062499 |

Note: "—" shows that the setting is not available.

The following is the maximum value of the interrupt generation interval for each setting. Prescaler x1: 357.9139 s

Prescaler x256: 91625.969 s

#### 5.2. Base Counter Operation

#### 5.2.1. One-shot mode

Evampla





In the one-shot mode, after the register is set and the timer enable is asserted, the counter starts to operate. The counter decrements from the value which is set to the load register

**[TMR\_TIMEROLOAD].** When the count value in the counter becomes 0x00000000 (the terminal count), the counter stops and the timer interrupt request is generated. After the interrupt process finishes in the CPU, the interrupt request is cleared by writing to the interrupt clear register **[TMR\_TIMEROINTCLR]**.

In the following example, the register setting and the operation represent the channel 0 in the TMR. (The other examples later are also the same.)

| Register      | Event        | Reg. Value | Comments                                                                  |
|---------------|--------------|------------|---------------------------------------------------------------------------|
| TIMEROCONTROL |              | 0x00000023 | 32-bit width, Timer disable, Interrupt disable<br>,Periodic, One-shot, x1 |
| TIMEROLOAD 03 |              | 0x00001234 | Set value :value(1)                                                       |
| TIMEROCONTRO  | )L           | 0x00000E3  | Timer enable, Interrupt enable                                            |
|               | count=0x0000 |            | terminal count occurs                                                     |
|               | TIMINT0=0b1  |            | Timer interrupt (terminal count) occurs                                   |
| TIMEROINTCLR  |              | any value  | Clear Timer Interrupt                                                     |
|               | TIMINT0=0b0  |            |                                                                           |

Note: When the one-shot operation finishes, the counter stops. The clock is, however, still supplied. Even though the dynamic clock gating is set (refer to 5.6), the clock does not stop. It is necessary to stop the clock that the timer should be disabled or the PMU register should be set to the clock stop.

#### 5.2.2. Constant period timer wrapping mode



Figure 5.6 Constant period wrapping mode

In the constant period timer wrapping mode, after the register is set and the timer enable is asserted, the counter starts frequent counts. The counter decrements from the value which is set to the load register *[TMR\_TIMEROLOAD]*. When the count value in the counter becomes 0x00000000 (the terminal count), the counter stops and the timer interrupt request is generated. After the interrupt process finishes in the CPU, the interrupt request is cleared by writing to the interrupt clear register *[TMR\_TIMEROINTCLR]*.

The counter is set again to the value in the load register **[TMR\_TIMEROLOAD]** and repeats the operation until the timer disable is asserted.

| Ехатріс       |              |            |                                                                         |
|---------------|--------------|------------|-------------------------------------------------------------------------|
| Register      | Event        | Reg. Value | Comments                                                                |
| TIMEROCONTROL |              | 0x00000020 | 32-bit width, Timer disable, Interrupt disable<br>,Periodic,Wrapping,x1 |
| TIMEROLOAD    |              | 0x1111AAAA | Set value :value(1)                                                     |
| TIMEROCONTRO  | )L           | 0x00000E2  | Timer enable, Interrupt enable                                          |
|               | count=0x0000 | _          | terminal count occurs                                                   |
| TIMINT0=0b1   |              | _          | Timer interrupt(terminal count) occurs                                  |
| TIMEROINTCLR  |              | any value  | Clear Timer Interrupt                                                   |
|               | TIMINT0=0b0  |            |                                                                         |
| :             | :            |            |                                                                         |
|               | count=0x0000 |            | terminal count occurs                                                   |
|               | TIMINT0=0b1  |            | Timer interrupt occurs                                                  |
| TIMEROINTCLR  |              | any value  | Clear Timer Interrupt                                                   |
|               | TIMINT0=0b0  |            |                                                                         |
| :             | :            |            |                                                                         |
|               | count=0x0000 |            | terminal count occurs                                                   |
|               | TIMINT0=0b1  |            | Timer interrupt occurs                                                  |

#### Example

#### 5.2.3. Free-run timer wrapping mode



Figure 5.7 Free-run timer wrapping mode

In the free-run timer wrapping mode, after the register is set and the timer enable is asserted, the counter starts frequent counts. The counter decrements from the value which is set to the load register *[TMR\_TIMEROLOAD]*. When the count value in the counter becomes 0x00000000 (the terminal count), the counter stops and the timer interrupt request is generated. After the interrupt process finishes in the CPU, the interrupt request is cleared by writing to the interrupt clear register *[TMR\_TIMEROINTCLR]*.

The counter is set to the maximum count value regardless of the value in the load register *[TMR\_TIMEROLOAD]* and repeats the operation until the timer disable is asserted.

| Register      | Event                | Reg. Value | Comments                                                                |  |
|---------------|----------------------|------------|-------------------------------------------------------------------------|--|
| TIMEROCONTROL |                      | 0x0002     | 32-bit width, Timer disable, Interrupt disable<br>,Free-run,Wrapping,x1 |  |
| TIMEROLOAD    |                      | 0x22224444 | Set value :value(1)                                                     |  |
| TIMEROCONTRO  | TIMEROCONTROL 0x00A2 |            | Timer enable, Interrupt enable                                          |  |
|               | count=0x0000         |            | terminal count occurs                                                   |  |
| TIMINT0=0b1   |                      |            | Timer interrupt(terminal count) occurs                                  |  |
| TIMEROINTCLR  |                      | any value  | Clear Timer Interrupt                                                   |  |
|               | TIMINT0=0b0          |            |                                                                         |  |
| :             | :                    |            |                                                                         |  |
|               | count=0x0000         |            | terminal count occurs                                                   |  |
| TIMINT0=0b1   |                      |            | Timer interrupt(terminal count) occurs                                  |  |
| TIMEROINTCLR  |                      | any value  | Clear Timer Interrupt                                                   |  |
|               | TIMINT0=0b0          |            |                                                                         |  |

#### 5.2.4. Load register change operation



Figure 5.8 Load register change operation

In the constant period timer wrapping mode, when the counter is operating and the load register **[TMR\_TIMEROLOAD]** is changed, the count value in the counter is set to the value immediately. This means that the counter value changes before the terminal count. To prevent this discontinuity, the setting of the load register **[TMR\_TIMEROLOAD]** should be done in the following state.

- When the counter stops. Or,
- When the count value is 0x00000000 (the terminal count).

#### Example

| Register              | Event        | Reg. Value | Comments                                                                |  |
|-----------------------|--------------|------------|-------------------------------------------------------------------------|--|
| TIMEROCONTROL         |              | 0x0022     | 32-bit width, Timer disable, Interrupt disable<br>,Periodic,Wrapping,x1 |  |
| TIMEROLOAD            |              | 0x11111111 | Set value :value(1)                                                     |  |
| TIMEROCONTRO          | L            | 0x00E2     | Timer enable, Interrupt enable                                          |  |
|                       | count=0x0000 |            | terminal count occurs                                                   |  |
| TIMINT0=0b1           |              |            | Timer interrupt(terminal count) occurs                                  |  |
| TIMEROLOAD 0x11112    |              | 0x11112222 | Set value :value(2)                                                     |  |
| TIMEROINTCLR          |              | any value  | Clear Timer Interrupt                                                   |  |
|                       | TIMINT0=0b0  |            |                                                                         |  |
| TIMEROLOAD 0x11110000 |              | 0x11110000 | Set value :value(3)                                                     |  |
|                       | count=0x0000 |            | terminal count occurs                                                   |  |
| TIMINTO=0b1           |              |            | Timer interrupt(terminal count) occurs                                  |  |
| TIMEROINTCLR an       |              | any value  | Clear Timer Interrupt                                                   |  |
|                       | TIMINT0=0b0  |            |                                                                         |  |

#### 5.2.5. Background load register change operation



Figure 5.9 Background load register change operation

When the background load register **[TMR\_TIMEROBGLOAD]** is used and the value is changed during the counter operation, the count value in the counter does not changed immediately. The **[TMR\_TIMEROBGLOAD]** value is set to the counter when the count becomes 0x00000000 (the terminal count). So the discontinuity in the count does not occur.

|                  |              | -          |                                                                         |  |
|------------------|--------------|------------|-------------------------------------------------------------------------|--|
| Register         | Event        | Reg. Value | Comments                                                                |  |
| TIMEROCONTROL    |              | 0x0022     | 32-bit width, Timer disable, Interrupt disable<br>,Periodic,Wrapping,x1 |  |
| TIMEROLOAD       |              | 0x11111111 | Set value :value(1)                                                     |  |
| TIMEROCONTROL 0> |              | 0x00E2     | Timer enable, Interrupt enable                                          |  |
|                  | count=0x0000 |            | terminal count occurs                                                   |  |
|                  | TIMINT0=0b1  |            | Timer interrupt(terminal count) occurs                                  |  |
| TIMEROLOAD       |              | 0x11112222 | Set value :value(2)                                                     |  |
| TIMEROINTCLR     |              | any value  | Clear Timer Interrupt                                                   |  |
| TIMINT0=0b0      |              |            |                                                                         |  |
| TIMEROBGLOAD     |              | 0x11110000 | Set value :value(3)                                                     |  |
|                  | count=0x0000 |            | terminal count occurs                                                   |  |
|                  | TIMINT0=0b1  |            | Timer interrupt(terminal count) occurs                                  |  |
| TIMEROINTCLR     |              | any value  | Clear Timer Interrupt                                                   |  |
|                  | TIMINT0=0b0  |            |                                                                         |  |
| :                | :            |            |                                                                         |  |
|                  | count=0x0000 |            | terminal count occurs                                                   |  |
|                  | TIMINT0=0b1  |            | Timer interrupt(terminal count) occurs                                  |  |

#### Example

#### 5.3. Interrupt Operation

The outline diagram of the interrupt generator is shown in Figure 5.11. The interrupt generation is controlled by a normal mode and a test mode. The mode selection is done by the Test\_Mode\_Enable bit in the test register *[TMR\_TIMERITCR]*. The normal mode is selected when the Test\_Mode\_Enable bit is set to 0.

In the normal mode, the Inerrupt\_Enable bit in the control register **[TMR\_TIMERnCONTROL]** (n is a channel number: 0 or 1.) is set to 1, and when the down counter becomes 0x000000000, the interrupt request is generated. The interrupt generation and its clear timings are shown in Figure 5.10.

The interrupt request **TIMINT** is asserted at the rising edge of the **TIMCLK** during **TIMCLKEN** = 1. The interrupt request **TIMINT** is deasserted at the rising edge of the **PCLK** when the interrupt clear register *[TMR\_TIMERNINTCLR]* is written, regardless of the **TIMCLKEN**. The internal interrupt cause is cleared at the rising edge of the **TIMCLK** during **TIMCLKEN**=1.

In the test mode, the TestTININT**n** in the test register **[TMR\_TIMERITOP]** controls the interrupt generation and its clear (**n** is a channel number: 0 or 1).



Figure 5.10 Example of interrupt timing chart



Figure 5.11 Interrupt generator

#### 5.4. Power Management

The power modes of the TZ1000 Series are shown in the following table.

| Power mode | State of TMR |
|------------|--------------|
| ACTIVE     | Run (Note)   |
| SLEEP0     | Run (Note)   |
| SLEEP1     | Run (Note)   |
| SLEEP2     | Clock gating |
| WAIT       | Clock gating |
| RETENTION  | Retention    |
| RTC        | Power Down   |
| STOP       | Power Down   |

|  | Table 5.3 | Power | mode and | operation |
|--|-----------|-------|----------|-----------|
|--|-----------|-------|----------|-----------|

Note: The clock can be started or stopped by software.

#### • ACTIVE/SLEEP0/SLEEP1:

Normal operation.

When the clock stop is set by software, the communication operation stops and every signal operation. To prevent that, the clock should be stopped after the interrupt disable is set. It is inhibited that the clock stops while a data frame is being transferred, because the restart of the transfer may not be done successfully. The clock should stop after it is confirmed that the SPIM transfer is in the stop state.

When the clock start is set, the transfer re-starts with the same state where the clock stopped.

#### • SLEEP2/WAIT/ RETENTION:

The **PCLK**, **TIMCLK0**, and **TIMCLK1** stop, so the counter also stops and every signal holds its own data. If the interrupt and others are asserted, they will not be able to be deasserted. It is necessary to set the disable to them before the clock stop. And, it is inhibited that those clocks stops while a data frame is being transferred.

When returning from this mode, every signal is restored to the data in the previous mode.

• RTC/STOP:

Before the transition to this mode, it should be checked that the appropriate settings are done to disable the corresponding function.

When returning from this mode, the registers are initialized. So, the operation should re-start after the configuration of the registers completes.

#### 5.5. Start-up and Stop Procedure

#### 5.5.1. Start-up procedure

The start-up procedure after power-on is as follows.

For detail of the PMU registers, refer to the PMU section.

The following setting is supposed that the main bus (the bus connected to the CPU) is supplied with clocks.

Each channel of the timer will be supplied with a clock by this setting.

(In the following, ch0 and ch1 indicate channel 0 and channel 1, respectively.)

(" $\ast$ " shows the signal which also controls another function. The setting should be done together with another setting.)

The order of the setting procedure is a frequency setting at first, then clock supply, and reset deassertion at last.

| PMU register | Bit name        | Description                                                                                                                                                                                                                                                                                                                                                           |
|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSM_MAIN     | CSMSEL_MAIN     | 0x000000u<br>u:<br>0x0: SiOSC4M,<br>0x1: OSC12M,<br>0x2: PLL,<br>0x3: ADPLL,<br>0x4: OSC32K/SIOSC32K<br>0x5 - 0x7: reserved                                                                                                                                                                                                                                           |
| PRESCAL_MAIN | PSSEL_CD_PPIER0 | 0x****u***<br>u:<br>0x0: not generate clock<br>0x1: divided by 1, 0x2: divided by 2,<br>0x3: divided by 3, 0x4: divided by 4,<br>0x5: divided by 5, 0x6: divided by 6,<br>0x7: divided by 7, 0x8: divided by 8,<br>0x9: divided by 9, 0xA: divided by 10,<br>0xB: divided by 12, 0xC: divided by 18,<br>0xD: divided by 24, 0xE: divided by 36,<br>0xF: divided by 48 |

• TMR clock frequency setting

Note: CSM\_MAIN sets the source of the clock. The PLL is set by another register and the frequency is changed by the setting. (For detail, refer to the PMU specification.)

Note: PRESCAL\_MAIN has a setting to another power domain.

Note: PSSEL\_CD\_PPIER0 setting specifies all circuits in the PPIER0 power domain.

Note: The clock frequency setting can be changed even if the counter is operating. In this case, note that the period count is also changed.

The start-up sequence of the TMR is as follows. Clock supply, and then, deassertion of the reset.

• TMR clock supply

| PMU register       | Bit name                | value      |
|--------------------|-------------------------|------------|
| CG_OFF_POWERDOMAIN | CG_PM                   | 0x00000001 |
|                    | CG_ppier0clk_tmr_pclk   |            |
| CG_OFF_PM_1        | CG_mpierclk_h2hp0_hclk  | 0x00080003 |
|                    | CG_ppier0clk_h2pp0_hclk |            |

Note: Bit 19 in the CG\_OFF\_PM\_1 register corresponds to the TMR bus clock.

Each channel can be supplied separately with a clock by the following setting. To supply all channels with clocks, the following values are written to the CG\_OFF\_PM\_1 register successively, or the ORed value of these values is written to the CG\_OFF\_PM\_1 Register.

• TMR ch1 count clock supply

| PMU register | Bit name                    | value      |
|--------------|-----------------------------|------------|
| CG_OFF_PM_1  | CG_ppier0clk_tmr_ch0_timclk | 0x00200000 |

Note: Bit 21 in the CG\_OFF\_PM\_1 register corresponds to the TMR ch0.

• TMR ch2 count clock supply

| PMU register | Bit name                    | value      |
|--------------|-----------------------------|------------|
| CG_OFF_PM_1  | CG_ppier0clk_tmr_ch1_timclk | 0x00800000 |

Note: Bit 23 in the CG\_OFF\_PM\_1 register corresponds to the TMR ch1.

• Reset deassertion of the TMR

| PMU register         | Bit name                  | value      |
|----------------------|---------------------------|------------|
| SRST_OFF_POWERDOMAIN | SRST_PM                   | 0x00000001 |
|                      | SRST_asyncrst_tmr_prstn   |            |
| SRST_OFF_PM_1        | SRST_asyncrst_h2pp0_hrstn | 0x00080003 |
|                      | SRST_asyncrst_h2hp0_hrstn |            |

Note: Bit 19 in the SRST\_OFF\_PM\_1 register corresponds to the TMR.

- Setting of the TMR and operation start
  - -When the reset is deasserted, the TMR is in the disable state.
  - -It starts to operate by writing to the following registers.

-Set the period count to the load register [TMR\_TIMERnLOAD].

- -Set the timer operation mode (the one shot, the constant period, and others) to the control register *[TMR\_TIMERnCONTROL]*.
- -Set Enable = 1 in the control register *[TMR\_TIMERnCONTROL]*. (**n** is a channel number: 0 or 1.)

#### 5.5.2. Stop procedure

- In the case of that the TMR is stopped.
  - The following two ways are used.
    - -The TMR is disabled.
      - : The Enable in the control register [TMR\_TIMERnCONTROL] is set to 0.
      - The operation of the counter stops.
    - -The period count is set to 0.
      - : The load register [TMR\_TIMERnLOAD] is set to 0x00000000.
      - The count operation stops.
- In the case that the TMR is not used (the whole block stops); The following two ways are used.
  - -No reset assertion
    - : Only the clock supply is stopped by the following PMU register setting.
  - -Reset assertion
    - : The reset assertion and the clock stop are set by the following PMU register.
- TMR reset

| PMU register | Bit name                | value      |
|--------------|-------------------------|------------|
| SRST_ON_PM_1 | SRST_asyncrst_tmr_prstn | 0x00080000 |

Note: Bit 19 in the SRST\_ON\_PM\_1 register corresponds to the TMR.

Note: The reset is asserted to all channels in the TMR. Each channel cannot be reset separately.

Each channel clock can be stopped separately by the following setting. To stop all channel clocks, the following values are written to the  $CG_OFF_PM_1$  register successively, or the ORed value of these values is written to the  $CG_OFF_PM_1$  Register.

• TMR ch1 counter clock supply stop

| PMU register | Bit name                    | value      |
|--------------|-----------------------------|------------|
| CG_ON_PM_1   | CG_ppier0clk_tmr_ch0_timclk | 0x00200000 |

Note: Bit 21 in the CG\_ON\_PM\_1 register corresponds to the TMR ch0.

• TMR ch2 counter clock supply stop

| PMU register | Bit name                    | value      |  |
|--------------|-----------------------------|------------|--|
| CG_ON_PM_1   | CG_ppier0clk_tmr_ch1_timclk | 0x00800000 |  |

Note: Bit 23 in the CG\_ON\_PM\_1 register corresponds to the TMR ch1.

• TMR bus clock supply stop

| PMU register | Bit name              | Value      |  |
|--------------|-----------------------|------------|--|
| CG_ON_PM_1   | CG_ppier0clk_tmr_pclk | 0x00080000 |  |

Note: Bit 19 in the CG\_ON\_PM\_1 register corresponds to the TMR bus clock.

#### 5.6. Dynamic Clock Gating Setting Procedure

The TZ1000 Series can be set to stop the clock supply unless the clock is necessary. When it is set, the following operation reduces the power dissipation.

(" $\ast$  " shows the signal which also controls another function. The setting should be done together with another setting.)

- Clock supply only when the bus access to the TMR.
- Clock supply stop for the counter when the TMR is disabled (Enable = 0 in the control register *[TMR\_TIMERnCONTROL]*).
- TMR dynamic clock gating setting

| PMU register    | Bit name                     | value      |
|-----------------|------------------------------|------------|
| DCG_POWERDOMAIN | DCG_PM                       | 0x*****1   |
| DCG_PM_0        | DCG_mpierclk_mpier_hclk      | 0x*****1   |
|                 | DCG_ppier0clk_tmr_ch1_timclk |            |
|                 | DCG_ppier0clk_tmr_ch0_timclk |            |
| DCG_PM_1        | DCG_ppier0clk_tmr_pclk       | 0x**A8***3 |
|                 | DCG_ppier0clk_h2pp0_hclk     |            |
|                 | DCG_mpierclk_h2hp0_hclk      |            |

The setting above is to set all channels in the TMR. For each channel setting, the assigned bit is set to 1 separately as follows.

| DCG_PM_1 register: bit23 | TMR ch1       |
|--------------------------|---------------|
| DCG_PM_1 register: bit21 | TMR ch0       |
| DCG_PM_1 register: bit19 | TMR bus clock |

The setting of the dynamic clock gating can be cleared by writing 0 to the corresponding bit.

• TMR dynamic clock gating deassertion (TMR only)

| PMU register | Bit name                     | value      |
|--------------|------------------------------|------------|
|              | DCG_ppier0clk_tmr_ch1_timclk |            |
| DCG_PM_1     | DCG_ppier0clk_tmr_ch0_timclk | 0x**00***3 |
|              | DCG_ppier0clk_tmr_pclk       |            |

## 6. Precaution for Usage

#### 6.1. Access Restriction Associated with Register Access

The registers in this module are assigned to a 4 KB space with 32-bit interval in the little endian format. The bit allocations are as follows.

This module is connected to the main data bus (the bus connected to the CPU) with 32-bit wide. When 8-bit or 16-bit data is accessed, the operation is in units of 32-bit only. This means that 8-bit or 16-bit access results in reading or writing the other bits than the content bits. So, 32-bit access is recommended. Otherwise, a read error or a write error may occur.

The write to a non-existing bit in a register is ignored. The read of the bit returns 0.



Figure 6.1 Bit allocation of register access

#### 6.2. Precaution for Dynamic Clock Gating

When the dynamic clock gating is set, the following should be noted. When the interrupt generation and the interrupt cause are cleared, the TMR counter clock (**TIMCLK**) is necessary. The clear can be done only when the operation is enabled (Enable = 1 in the control register [*TMR\_TIMERnCONTROL*] (**n** is a channel number: 0 or 1).

#### 6.3. Using SIOSC4M as the source clock for timer clock

Although SIOSC4M can be selected as the source of TIMCLK, frequency of SIOSC4M may have variation of 4M Hz  $\pm$  3.5% due to temperature and/or voltage change. Note that the frequency

variation is inherent in TIMCLK and affect timer operation such as interval time when SIOSC4M is used as the source of TIMCLK.

## 7. Details of Registers

## 7.1. TMR\_TIMER0LOAD

|                       | TMR_TIMER0LOAD |                      |                                                                                                                                                                                                                                                                            |                             |              |                |
|-----------------------|----------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|----------------|
| Descriptio            | on             | Timer0 Load Register |                                                                                                                                                                                                                                                                            |                             |              |                |
| Address R             | Region         | tmr                  | Type: F                                                                                                                                                                                                                                                                    | RW                          |              |                |
| Offset                |                | 0x0000 0000          |                                                                                                                                                                                                                                                                            |                             |              |                |
| Physical<br>address V | /iew0          | 0x4004 2000          |                                                                                                                                                                                                                                                                            |                             |              |                |
| Physical<br>address V | /iew1          | -                    |                                                                                                                                                                                                                                                                            |                             |              |                |
|                       |                |                      | Bitfield Details                                                                                                                                                                                                                                                           |                             |              |                |
| Bits I                | Name           |                      | Description                                                                                                                                                                                                                                                                |                             | Access       | Reset          |
| 31:0 I                | Load           |                      | Initial or reload value of the counte<br>(0x00000001 to 0xFFFFFFF setta<br>The 0x00000000 setting does not<br>operate the counter. Setting any<br>numeric value other than that enab<br>counting.<br>(Note) Writing to this register writes<br>same value to Timer0BGLoad. | r<br>able)<br>oles<br>s the | RW<br>modify | 0x0000<br>0000 |

## 7.2. TMR\_TIMER0VALUE

|                     | TMR_TIMER0VALUE |                      |                                                |    |        |                |  |
|---------------------|-----------------|----------------------|------------------------------------------------|----|--------|----------------|--|
| Descript            | ion             | Timer0 Current value | imer0 Current value Register                   |    |        |                |  |
| Address             | Region          | tmr                  | Type: R                                        | 20 |        |                |  |
| Offset              |                 | 0x0000 0004          |                                                |    |        |                |  |
| Physical<br>address | View0           | 0x4004 2004          |                                                |    |        |                |  |
| Physical<br>address | View1           | -                    |                                                |    |        |                |  |
| address             | TICHT           |                      | Bitfield Details                               |    |        |                |  |
| Bits                | Name            |                      | Description                                    | A  | Access | Reset          |  |
| 31:0                | value           |                      | Count value of the counter at the current time |    | RO     | 0xFFFF<br>FFFF |  |

#### 7.3. TMR\_TIMER0CONTROL

|                     | TMR_TIMER0CONTROL |                      |                                                                                                  |    |              |       |
|---------------------|-------------------|----------------------|--------------------------------------------------------------------------------------------------|----|--------------|-------|
| Descript            | ion               | Timer0 Control Regis | ter                                                                                              |    |              |       |
| Address             | Region            | tmr                  | Туре:                                                                                            | RW |              |       |
| Offset              |                   | 0x0000 0008          |                                                                                                  |    |              |       |
| Physical<br>address | View0             | 0x4004 2008          |                                                                                                  |    |              |       |
| Physical<br>address | View1             | -                    |                                                                                                  |    |              |       |
|                     |                   |                      | Bitfield Details                                                                                 |    |              |       |
| Bits                | Name              |                      | Description                                                                                      |    | Access       | Reset |
| 31:8                | Reserve           | ed                   | -                                                                                                |    | -            | -     |
| 7                   | Enable            |                      | Timer operation control<br>1: Enable<br>0: Disable                                               |    | RW<br>modify | 0     |
| 6                   | Periodic          | e_Mode               | Timer operation mode<br>1: Periodic Timer (periodic timer)<br>0: Free-run Timer (free-run timer) | )  | RW<br>modify | 0     |

| 5   | Interrupt_Enable | Interrupt control<br>1: Interrupt enable<br>0: Interrupt disable                                                                                                             | RW<br>modify | 1   |
|-----|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| 4   | Reserved         | -                                                                                                                                                                            | -            | -   |
| 3:2 | Clock_divid      | Prescaler (clock frequency division)<br>0x3: Reserved<br>0x2: 1/256 frequency division<br>0x1: 1/16 frequency division<br>0x0: No frequency division (same<br>magnification) | RW<br>modify | 0x0 |
| 1   | Timer_size       | Timer size selection<br>0x1: Operation as a 32-bit timer<br>0x0: Operation as a 16-bit timer<br>(high-order bits not used)                                                   | RW<br>modify | 0   |
| 0   | One_Shot_Count   | Timer wrapping/one-shot selection<br>1: One-shot (only one time)<br>0: Wrapping (repetition)                                                                                 | RW<br>modify | 0   |

## 7.4. TMR\_TIMER0INTCLR

|                    | TMR_TIMER0INTCLR |                        |                                                                                                                  |             |       |  |
|--------------------|------------------|------------------------|------------------------------------------------------------------------------------------------------------------|-------------|-------|--|
| Descript           | tion             | Timer0 Interrupt clear | r Register                                                                                                       |             |       |  |
| Address            | Region           | tmr                    | Type: RW                                                                                                         |             |       |  |
| Offset             |                  | 0x0000 000C            |                                                                                                                  |             |       |  |
| Physica<br>address | l<br>View0       | 0x4004 200C            |                                                                                                                  |             |       |  |
| Physica            | _                |                        |                                                                                                                  |             |       |  |
| address            | View1            | -                      |                                                                                                                  |             |       |  |
|                    |                  |                        | Bitfield Details                                                                                                 |             |       |  |
| Bits               | Name             |                        | Description                                                                                                      | Access      | Reset |  |
| 31:0               | IntClr           |                        | Interrupt clear<br>After the TIMINT0 interrupt occurs, it<br>can be cleared by write access to this<br>register. | RW<br>clear | -     |  |

### 7.5. TMR\_TIMER0RIS

|                    | TMR_TIMER0RIS |                      |                                                                                                                                                                                         |                |        |       |
|--------------------|---------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-------|
| Descript           | ion           | Timer0 Raw Interrupt | Status Register                                                                                                                                                                         |                |        |       |
| Address            | Region        | tmr                  | Туре:                                                                                                                                                                                   | RO             |        |       |
| Offset             |               | 0x0000 0010          |                                                                                                                                                                                         |                |        |       |
| Physica<br>address | l<br>View0    | 0x4004 2010          |                                                                                                                                                                                         |                |        |       |
| Physica<br>address | l<br>View1    | -                    |                                                                                                                                                                                         |                |        |       |
|                    |               |                      | Bitfield Details                                                                                                                                                                        |                |        |       |
| Bits               | Name          |                      | Description                                                                                                                                                                             |                | Access | Reset |
| 31:1               | Reserve       | ed                   | -                                                                                                                                                                                       |                | -      | -     |
| 0                  | RIS           |                      | A timer interrupt (TIMINT0) before<br>masking is occurring. (The interru<br>occurs when the counter become<br>0x00000000.)<br>1: Interrupt request available<br>0: No interrupt request | e<br>upt<br>es | RO     | 0     |

## 7.6. TMR\_TIMEROMIS

|                           |            |                      | TMR_TIMER0MIS                                                                                                           |    |        |       |
|---------------------------|------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|----|--------|-------|
| Descript                  | tion       | Timer0 Masked Interr | rupt Status Register                                                                                                    |    |        |       |
| Address                   | Region     | tmr                  | Type: F                                                                                                                 | 20 |        |       |
| Offset                    |            | 0x0000 0014          |                                                                                                                         |    |        |       |
| Physica<br>address        | l<br>View0 | 0x4004 2014          |                                                                                                                         |    |        |       |
| Physical<br>address View1 |            |                      |                                                                                                                         |    |        |       |
|                           |            |                      | Bitfield Details                                                                                                        |    |        |       |
| Bits                      | Name       |                      | Description                                                                                                             |    | Access | Reset |
| 31:1                      | Reserve    | ed                   | -                                                                                                                       |    | -      | -     |
| 0                         | MIS        |                      | A timer interrupt (TIMINT0) after<br>masking is occurring.<br>1: Interrupt request available<br>0: No interrupt request |    | RO     | 0     |

## 7.7. TMR\_TIMER0BGLOAD

|                     | TMR_TIMER0BGLOAD |                     |                                                                                                                                                                                                                                                                                        |                           |              |                |
|---------------------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|----------------|
| Descript            | ion              | Timer0 BackGround L | ₋oad Register                                                                                                                                                                                                                                                                          |                           |              |                |
| Address             | Region           | tmr                 | Туре:                                                                                                                                                                                                                                                                                  | RW                        |              |                |
| Offset              |                  | 0x0000 0018         |                                                                                                                                                                                                                                                                                        |                           |              |                |
| Physical<br>address | View0            | 0x4004 2018         |                                                                                                                                                                                                                                                                                        |                           |              |                |
| Physical<br>address | View1            | -                   |                                                                                                                                                                                                                                                                                        |                           |              |                |
|                     |                  |                     | Bitfield Details                                                                                                                                                                                                                                                                       |                           |              |                |
| Bits                | Name             |                     | Description                                                                                                                                                                                                                                                                            |                           | Access       | Reset          |
| 31:0                | BGLoad           |                     | Background Load register<br>A count value set in this register is<br>reloaded after the counter become<br>0x00000000 (terminal count).<br>The count value to be reloaded ca<br>changed safely during counting.<br>(Note) Writing to this register does<br>allow writing to Timer0Load. | s<br>es<br>an be<br>s not | RW<br>modify | 0x0000<br>0000 |

### 7.8. TMR\_TIMER1LOAD

|                    |            |                      | TMR_TIMER1LOAD                         |              |                |
|--------------------|------------|----------------------|----------------------------------------|--------------|----------------|
| Descript           | tion       | Timer1 Load Register |                                        |              |                |
| Address            | Region     | tmr                  | Type: R\                               | V            |                |
| Offset             |            | 0x0000 0020          |                                        |              |                |
| Physica<br>address | l<br>View0 | 0x4004 2020          |                                        |              |                |
| Physica<br>address | l<br>View1 | -                    |                                        |              |                |
|                    |            |                      | Bitfield Details                       |              |                |
| Bits               | Name       |                      | Description                            | Access       | Reset          |
| 31:0               | Load       |                      | Initial or reload value of the counter | RW<br>modify | 0x0000<br>0000 |

### 7.9. TMR\_TIMER1VALUE

|                    | TMR_TIMER1VALUE |                      |                                                   |    |        |                |
|--------------------|-----------------|----------------------|---------------------------------------------------|----|--------|----------------|
| Descript           | ion             | Timer1 Current value | Register                                          |    |        |                |
| Address            | Region          | tmr                  | Туре:                                             | RO |        |                |
| Offset             |                 | 0x0000 0024          |                                                   |    |        |                |
| Physica<br>address | l<br>View0      | 0x4004 2024          |                                                   |    |        |                |
| Physica<br>address | l<br>View1      | -                    |                                                   |    |        |                |
|                    |                 |                      | Bitfield Details                                  |    |        |                |
| Bits               | Name            |                      | Description                                       |    | Access | Reset          |
| 31:0               | value           |                      | Count value of the counter at the<br>current time |    | RO     | 0xFFFF<br>FFFF |

## 7.10. TMR\_TIMER1CONTROL

|                    | TMR_TIMER1CONTROL |                      |                                             |              |       |  |  |
|--------------------|-------------------|----------------------|---------------------------------------------|--------------|-------|--|--|
| Descript           | tion              | Timer1 Control Regis | ter                                         |              |       |  |  |
| Address            | Region            | tmr                  | Type: RW                                    |              |       |  |  |
| Offset             |                   | 0x0000 0028          |                                             |              |       |  |  |
| Physica<br>address | l<br>View0        | 0x4004 2028          |                                             |              |       |  |  |
| Physica<br>address | l<br>View1        | -                    |                                             |              |       |  |  |
|                    | T                 |                      | Bitfield Details                            |              |       |  |  |
| Bits               | Name              |                      | Description                                 | Access       | Reset |  |  |
| 31:8               | Reserve           | ed                   | -                                           | -            | -     |  |  |
| 7                  | Enable            |                      | Timer operation control                     | RW<br>modify | 0     |  |  |
| 6                  | Periodic          | c_Mode               | Timer operation mode                        | RW<br>modify | 0     |  |  |
| 5                  | Interrup          | t_Enable             | Interrupt control                           | RW<br>modify | 1     |  |  |
| 4                  | Reserve           | ed                   | -                                           | -            | -     |  |  |
| 3:2                | Clock_c           | livid                | Prescaler (clock frequency division)        | RW<br>modify | 0x0   |  |  |
| 1                  | Timer_s           | size                 | Timer size selection                        | RW<br>modify | 0     |  |  |
| 0                  | One_Sh            | not_Count            | Selection of timer wrapping and<br>one-shot | RW<br>modify | 0     |  |  |

### 7.11. TMR\_TIMER1INTCLR

|                    | TMR_TIMER1INTCLR |                        |                 |       |    |             |       |
|--------------------|------------------|------------------------|-----------------|-------|----|-------------|-------|
| Descript           | ion              | Timer1 Interrupt clear | r Register      |       |    |             |       |
| Address            | Region           | tmr                    |                 | Туре: | RW |             |       |
| Offset             |                  | 0x0000 002C            |                 |       |    |             |       |
| Physica<br>address | l<br>View0       | 0x4004 202C            |                 |       |    |             |       |
| Physica<br>address | l<br>View1       | -                      |                 |       |    |             |       |
|                    |                  |                        | Bitfield Det    | ails  |    |             |       |
| Bits               | Name             |                        | Description     |       |    | Access      | Reset |
| 31:0               | IntClr           |                        | Interrupt clear |       |    | RW<br>clear | -     |

### 7.12. TMR\_TIMER1RIS

|                    | TMR_TIMER1RIS |                      |                                                                                                                              |    |        |       |
|--------------------|---------------|----------------------|------------------------------------------------------------------------------------------------------------------------------|----|--------|-------|
| Descript           | tion          | Timer1 Raw Interrupt | Status Register                                                                                                              |    |        |       |
| Address            | Region        | tmr                  | Type: R                                                                                                                      | 20 |        |       |
| Offset             |               | 0x0000 0030          |                                                                                                                              |    |        |       |
| Physica<br>address | l<br>View0    | 0x4004 2030          |                                                                                                                              |    |        |       |
| Physica<br>address | l<br>View1    | -                    |                                                                                                                              |    |        |       |
|                    |               |                      | Bitfield Details                                                                                                             |    |        |       |
| Bits               | Name          |                      | Description                                                                                                                  |    | Access | Reset |
| 31:1               | Reserve       | ed                   | -                                                                                                                            |    | -      | -     |
| 0                  | RIS           |                      | A timer interrupt (TIMINT1) after<br>masking is occurring. (The interrupt<br>occurs when the counter becomes<br>0x00000000.) |    | RO     | 0     |

## 7.13. TMR\_TIMER1MIS

|                           | TMR_TIMER1MIS |                      |                                                         |    |        |       |
|---------------------------|---------------|----------------------|---------------------------------------------------------|----|--------|-------|
| Descript                  | ion           | Timer1 Masked Interr | upt Status Register                                     |    |        |       |
| Address                   | Region        | tmr                  | Туре:                                                   | RO |        |       |
| Offset                    |               | 0x0000 0034          |                                                         |    |        |       |
| Physical<br>address       | View0         | 0x4004 2034          |                                                         |    |        |       |
| Physical<br>address View1 |               |                      |                                                         |    |        |       |
|                           |               |                      | Bitfield Details                                        |    |        |       |
| Bits                      | Name          |                      | Description                                             |    | Access | Reset |
| 31:1                      | Reserve       | ed                   | -                                                       |    | -      | -     |
| 0                         | MIS           |                      | A timer interrupt (TIMINT1) after masking is occurring. |    | RO     | 0     |

## 7.14. TMR\_TIMER1BGLOAD

|                    | TMR_TIMER1BGLOAD |                     |                          |              |                |  |
|--------------------|------------------|---------------------|--------------------------|--------------|----------------|--|
| Descript           | tion             | Timer1 BackGround I | ₋oad Register            |              |                |  |
| Address            | Region           | tmr                 | Type: R'                 | N            |                |  |
| Offset             |                  | 0x0000 0038         |                          |              |                |  |
| Physica<br>address | l<br>View0       | 0x4004 2038         |                          |              |                |  |
| Physica<br>address | l<br>View1       | -                   |                          |              |                |  |
|                    |                  |                     | Bitfield Details         |              |                |  |
| Bits               | Name             |                     | Description              | Access       | Reset          |  |
| 31:0               | BGLoad           | 1                   | Background load register | RW<br>modify | 0x0000<br>0000 |  |

## 7.15. TMR\_TIMERITCR

|                    | TMR_TIMERITCR |                        |                                                                        |              |       |  |
|--------------------|---------------|------------------------|------------------------------------------------------------------------|--------------|-------|--|
| Descript           | ion           | Timer Integration test | t control Register                                                     |              |       |  |
| Address            | Region        | tmr                    | Type: RW                                                               |              |       |  |
| Offset             |               | 0x0000 0F00            |                                                                        |              |       |  |
| Physica<br>address | l<br>View0    | 0x4004 2F00            |                                                                        |              |       |  |
| Physical           |               |                        |                                                                        |              |       |  |
| address            | View1         | -                      |                                                                        |              |       |  |
|                    |               |                        | Bitfield Details                                                       |              |       |  |
| Bits               | Name          |                        | Description                                                            | Access       | Reset |  |
| 31:1               | Reserve       | ed                     | -                                                                      | -            | -     |  |
| 0                  | Test_M        | ode_Enable             | Test mode control<br>1: Test mode status<br>0: Normal operation status | RW<br>modify | 0     |  |

### 7.16. TMR\_TIMERITOP

|                    | TMR_TIMERITOP |                        |                                                                                                                                                                    |              |       |  |
|--------------------|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|--|
| Descript           | tion          | Timer Integration test | t output set Register                                                                                                                                              |              |       |  |
| Address            | Region        | tmr                    | Type: RW                                                                                                                                                           |              |       |  |
| Offset 0x0000 0F04 |               | 0x0000 0F04            |                                                                                                                                                                    |              |       |  |
| Physica<br>address | l<br>View0    | 0x4004 2F04            |                                                                                                                                                                    |              |       |  |
| Physica<br>address | l<br>View1    | -                      |                                                                                                                                                                    |              |       |  |
|                    |               |                        | Bitfield Details                                                                                                                                                   |              |       |  |
| Bits               | Name          |                        | Description                                                                                                                                                        | Access       | Reset |  |
| 31:2               | Reserve       | ed                     | -                                                                                                                                                                  | -            | -     |  |
| 1                  | TestTIM       | IINT1                  | Outputs the TIMINT1 signal (only in<br>test mode, write-only)<br>1: TIMINT1="1"<br>0: TIMINT1="0"<br>If this register is read, the<br>TMR_TIMERITCR value appears. | RW<br>modify | 0     |  |
| 0                  | TestTIM       | 1INTO                  | Outputs the TIMINTO signal (only in<br>test mode, write-only)<br>1: TIMINTO="1"<br>0: TIMINTO="0"<br>If this register is read, the<br>TMR_TIMERITCR value appears. | RW<br>modify | 0     |  |

#### 7.17. TMR\_TIMERPERIPHID0

|                     | TMR_TIMERPERIPHID0 |                      |                                       |        |       |
|---------------------|--------------------|----------------------|---------------------------------------|--------|-------|
| Descript            | ion                | Timer Peripheral ID0 | Register                              |        |       |
| Address             | Region             | tmr                  | Type: R                               | 0      |       |
| Offset              |                    | 0x0000 0FE0          |                                       |        |       |
| Physical<br>address | View0              | 0x4004 2FE0          |                                       |        |       |
| Physical<br>address | View1              | -                    |                                       |        |       |
|                     |                    |                      | Bitfield Details                      |        |       |
| Bits                | Name               |                      | Description                           | Access | Reset |
| 31:8                | Reserve            | ed                   | -                                     | -      | -     |
| 7:0                 | Partnum            | nber0                | Peripheral ID (this register stores a | RO     | 0x04  |



| value from a hardware viewpoint.) |  |
|-----------------------------------|--|
| Partnumber(Lower) 804=>04         |  |

### 7.18. TMR\_TIMERPERIPHID1

|                     | TMR_TIMERPERIPHID1                  |             |                                                                                                 |           |        |       |  |
|---------------------|-------------------------------------|-------------|-------------------------------------------------------------------------------------------------|-----------|--------|-------|--|
| Descript            | otion Timer Peripheral ID1 Register |             |                                                                                                 |           |        |       |  |
| Address             | Region                              | tmr         | Туре:                                                                                           | RO        |        |       |  |
| Offset              |                                     | 0x0000 0FE4 |                                                                                                 |           |        |       |  |
| Physical<br>address | l<br>View0                          | 0x4004 2FE4 |                                                                                                 |           |        |       |  |
| Physical<br>address | Physicaladdress View1               |             |                                                                                                 |           |        |       |  |
|                     | Bitfield Details                    |             |                                                                                                 |           |        |       |  |
| Bits                | Name                                |             | Description                                                                                     |           | Access | Reset |  |
| 31:8                | Reserve                             | ed          | -                                                                                               |           | -      | -     |  |
| 7:4                 | 7:4 Designer0                       |             | Peripheral ID (this register stores<br>value from a hardware viewpoint<br>Designer(Lower) 41=>1 | ; a<br>.) | RO     | 0x1   |  |
| 3:0                 | 3:0 Partnumber1                     |             | Peripheral ID (this register stores value from a hardware viewpoint Partnumber(Lower) 804=>8    | ; a<br>.) | RO     | 0x8   |  |

## 7.19. TMR\_TIMERPERIPHID2

| TMR_TIMERPERIPHID2 |                     |                               |                                                                                                 |           |        |       |
|--------------------|---------------------|-------------------------------|-------------------------------------------------------------------------------------------------|-----------|--------|-------|
| Descript           | ion                 | Timer Peripheral ID2 Register |                                                                                                 |           |        |       |
| Address            | Region              | tmr                           | Туре:                                                                                           | RO        |        |       |
| Offset             |                     | 0x0000 0FE8                   |                                                                                                 |           |        |       |
| Physica<br>address | View0               | 0x4004 2FE8                   |                                                                                                 |           |        |       |
| Physica<br>address | View1               | -                             |                                                                                                 |           |        |       |
|                    |                     |                               | Bitfield Details                                                                                |           |        |       |
| Bits               | Name                |                               | Description                                                                                     |           | Access | Reset |
| 31:8               | Reserve             | ed                            | -                                                                                               |           | -      | -     |
| 7:4                | 7:4 Revision_number |                               | Peripheral ID (this register stores value from a hardware viewpoint Revision: 1st=>1            | ; a<br>.) | RO     | 0x2   |
| 3:0                | 3:0 Designer1       |                               | Peripheral ID (this register stores<br>value from a hardware viewpoint<br>Designer(Upper) 41=>4 | ; a<br>.) | RO     | 0x4   |

### 7.20. TMR\_TIMERPERIPHID3

|                     | TMR_TIMERPERIPHID3 |                      |                                                                                              |        |       |  |  |
|---------------------|--------------------|----------------------|----------------------------------------------------------------------------------------------|--------|-------|--|--|
| Descript            | tion               | Timer Peripheral ID3 | Register                                                                                     |        |       |  |  |
| Address             | Region             | tmr                  | Type: RO                                                                                     |        |       |  |  |
| Offset              |                    | 0x0000 0FEC          |                                                                                              |        |       |  |  |
| Physical<br>address | l<br>View0         | 0x4004 2FEC          |                                                                                              |        |       |  |  |
| Physica             | l                  |                      |                                                                                              |        |       |  |  |
| address             | View1              | -                    |                                                                                              |        |       |  |  |
|                     |                    |                      | Bitfield Details                                                                             |        |       |  |  |
| Bits                | Name               |                      | Description                                                                                  | Access | Reset |  |  |
| 31:8                | Reserve            | ed                   | -                                                                                            | -      | -     |  |  |
| 7:0                 | 7:0 Configuration  |                      | Peripheral ID (this register stores a value from a hardware viewpoint.)<br>Configuration: 00 | RO     | 0x00  |  |  |

### 7.21. TMR\_TIMERPCELLID0

|                    | TMR_TIMERPCELLID0 |                     |                                                                         |        |       |  |  |
|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|--------|-------|--|--|
| Descript           | tion              | Timer PrimeCell ID0 | Timer PrimeCell ID0 Register                                            |        |       |  |  |
| Address            | Region            | tmr                 | Type: RC                                                                | )      |       |  |  |
| Offset             |                   | 0x0000 0FF0         |                                                                         |        |       |  |  |
| Physica<br>address | l<br>View0        | 0x4004 2FF0         |                                                                         |        |       |  |  |
| Physica<br>address | l<br>View1        | -                   |                                                                         |        |       |  |  |
|                    |                   |                     | Bitfield Details                                                        |        |       |  |  |
| Bits               | Name              |                     | Description                                                             | Access | Reset |  |  |
| 31:8               | Reserve           | ed                  | -                                                                       | -      | -     |  |  |
| 7:0                | 7:0 TimerPCellID0 |                     | Peripheral ID (this register stores a value from a hardware viewpoint.) | RO     | 0x0D  |  |  |

#### 7.22. TMR\_TIMERPCELLID1

|                    | TMR_TIMERPCELLID1 |                     |                                                                         |        |       |  |  |
|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|--------|-------|--|--|
| Descript           | tion              | Timer PrimeCell ID1 | Timer PrimeCell ID1 Register                                            |        |       |  |  |
| Address            | Region            | tmr                 | Type: RC                                                                | )      |       |  |  |
| Offset             |                   | 0x0000 0FF4         |                                                                         |        |       |  |  |
| Physica<br>address | l<br>View0        | 0x4004 2FF4         |                                                                         |        |       |  |  |
| Physica<br>address | l<br>View1        | -                   |                                                                         |        |       |  |  |
|                    | Bitfield Details  |                     |                                                                         |        |       |  |  |
| Bits               | Name              |                     | Description                                                             | Access | Reset |  |  |
| 31:8               | Reserved          |                     | -                                                                       | -      | -     |  |  |
| 7:0                | 7:0 TimerPCellID1 |                     | Peripheral ID (this register stores a value from a hardware viewpoint.) | RO     | 0xF0  |  |  |

### 7.23. TMR\_TIMERPCELLID2

| TMR_TIMERPCELLID2  |                  |                              |                                                                         |    |        |       |  |
|--------------------|------------------|------------------------------|-------------------------------------------------------------------------|----|--------|-------|--|
| Descript           | tion             | Timer PrimeCell ID2 Register |                                                                         |    |        |       |  |
| Address            | Region           | tmr                          | Type: R                                                                 | २० |        |       |  |
| Offset             |                  | 0x0000 0FF8                  |                                                                         |    |        |       |  |
| Physica<br>address | l<br>View0       | 0x4004 2FF8                  |                                                                         |    |        |       |  |
| Physica<br>address | l<br>View1       | -                            |                                                                         |    |        |       |  |
|                    | Bitfield Details |                              |                                                                         |    |        |       |  |
| Bits               | Name             |                              | Description                                                             |    | Access | Reset |  |
| 31:8               | Reserved         |                              | -                                                                       |    | -      | -     |  |
| 7:0 TimerPCellID2  |                  | CellID2                      | Peripheral ID (this register stores a value from a hardware viewpoint.) |    | RO     | 0x05  |  |

## 7.24. TMR\_TIMERPCELLID3

|                    | TMR_TIMERPCELLID3 |                     |                                                                         |        |       |  |  |
|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|--------|-------|--|--|
| Descript           | tion              | Timer PrimeCell ID3 | Register                                                                |        |       |  |  |
| Address            | Region            | tmr                 | Type: RC                                                                |        |       |  |  |
| Offset             |                   | 0x0000 0FFC         |                                                                         |        |       |  |  |
| Physica<br>address | l<br>View0        | 0x4004 2FFC         |                                                                         |        |       |  |  |
| Physica<br>address | l<br>View1        | -                   |                                                                         |        |       |  |  |
|                    | Bitfield Details  |                     |                                                                         |        |       |  |  |
| Bits               | Name              |                     | Description                                                             | Access | Reset |  |  |
| 31:8               | Reserved          |                     | -                                                                       | -      | -     |  |  |
| 7:0                | 7:0 TimerPCellID3 |                     | Peripheral ID (this register stores a value from a hardware viewpoint.) | RO     | 0xB1  |  |  |

## 8. Revision History

| Revision | Date       | Description                                                                                                                  |
|----------|------------|------------------------------------------------------------------------------------------------------------------------------|
| 0.1      | 2014-03-14 | Newly released                                                                                                               |
| 0.2      | 2014-03-17 | Modified copyright notation.                                                                                                 |
| 0.3      | 2014-10-20 | Modified naming convention for timer channels                                                                                |
| 0.4      | 2014-11-17 | Added the constraint about the clock frequency setting change.                                                               |
| 1.0      | 2015-01-22 | Official version                                                                                                             |
| 1.1      | 2015-02-18 | Section 5:<br>Revised Interrupt interval in Table 5.1 Interrupt generation interval setting.                                 |
| 1.2      | 2015-11-24 | Added Section 6.3                                                                                                            |
| 1.3      | 2018-02-05 | Changed header, footer and the last page.<br>Changed corporate name and descriptions.<br>Modified Arm logo and descriptions. |

Table 8.1 Revision History

#### **RESTRICTIONS ON PRODUCT USE**

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
  applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

#### **TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION**