TOSHIBA

The information contained herein is subject to change without notice. 021023 D

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress.

It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications.

Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023 A

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).

These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023 B

The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106 Q

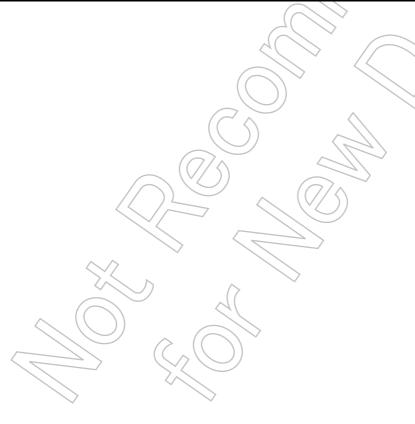
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. 070122_C

The products described in this document are subject to foreign exchange and foreign trade control laws. 060925 E

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619 S

Revision History

Date	Revision	
2006/2/9	Tentative 1	First Release
2006/3/6	Tentative 2	First Release
2006/4/13	1	First Release
2006/6/29	2	Periodical updating. No change in contents.
2006/9/28	3	Contents Revised
2007/7/23	4	Contents Revised
2008/8/29	5	Contents Revised


Caution in Setting the UART Noise Rejection Time

When UART is used, settings of RXDNC are limited depending on the transfer clock specified by BRG. The combination "O" is available but please do not select the combination "-".

The transfer clock generated by timer/counter interrupt is calculated by the following equation:

Transfer clock [Hz] = Timer/counter source clock [Hz] ÷ TTREG set value

		RXDNC setting				
BRG setting	Transfer clock [Hz]	00 (No noise rejection)	01 (Reject pulses shorter than 31/fc[s] as noise)	10 (Reject pulses shorter than 63/fc[s] as noise)	11 (Reject pulses shorter than 127/fc[s] as noise)	
000	fc/13	0	0	0	<u> </u>	
110	fc/8	0	(7/1	- 6	<u> </u>	
(When the transfer clock gen- erated by timer/counter inter-	fc/16	0	0	\$ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/	
rupt is the same as the right side column)	fc/32	0	0	0	_	
The setting except the	above	0			0	

Table of Contents

	//)×		
	MD06F520F6		
	MP86FS28FG		
	1.1 Features	 ≫	1 3 4 5
2.	Operational Description		
9	2.1 CPU Core Functions		5
	9.1.1 Memory Address Man	9	
	2.1.2 Program Memory (Flash)	9	
	2.1.2 Program Memory (Flash) 2.1.3 Data Memory (RAM)	9	
9	2.2 System Clock Controller		10
	2.2.1 Clock Generator	. 10	
	2.2.2 Timing Generator	. 12	
	2.2.2.1 Configuration of timing generator		
	2.2.2.2 Machine cycle	10	
	2.2.3 Operation Mode Control Circuit	. 13	
	2.2.3.2 Dual-clock mode		
	2.2.3.3 STOP mode		
	2.2.4 Operating Mode Control	. 18	
	2.2.4.1 STOP mode 2.2.4.2 IDLE1/2 mode and SLEEP1/2 mode		
	2.2.4.3 IDLE0 and SLEEP0 modes (IDLE0, SLEEP0)		
	2.2.4.4 SLOW mode		0.1
	2.3 Reset Circuit		31
	2.3.1 External Reset Input	. 31	
	2.3.2 Address trap reset	. 32	
	2.3.3 Watchdog timer reset		
	2.5.4 System Gook reset	. 54	
 3.	Interrupt Control Circuit		
0.	Thorapt Control Chount		
	2.1 Interrupt latabas (II 20 to II 2)		20
	3.1 Interrupt latches (IL29 to IL2)	• • • •	36
7	3.2 Interrupt enable register (EIR)		36
	3.2.1 Interrupt master enable flag (IMF)		
_	3.2.2 Individual interrupt enable flags (EF29 to EF4)	. 37	
Ν	Note 3:		38
;	3.3 Interrupt Sequence		38
	3.3.1 Interrupt acceptance processing is packaged as follows	. 39	
	3.3.2 Saving/restoring general-purpose registers	. 40	
	3.3.2.1 Using PUSH and POP instructions		
	3.3.2.2 Using data transfer instructions 3.3.3 Interrupt return	41	
	3.4 Software Interrupt (INTSW)		42
•	· · ·		42
	3.4.1 Address error detection		
	0.4.2 Debugging	. 44	

	3.5 3.6 3.7	Undefined Instruction Interrupt (INTUNDEF)	42 42 43
4.	Spe	cial Function Register (SFR)	
	4.1 4.2	SFR	45 47
5.	I/O	Ports	
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Port P0 (P00 to P02) Port P1 (P10 to P17) Port P2 (P20 to P22) Port P3 (P30 to P37) Port P4 (P40 to P47) Port P5 (P50 to P57) Port P6 (P60 to P67) Port P7 (P70 to P77) Port P8 (P80 to P87)	53 55 58 59 61 63 65 67
6.	Wat	chdog Timer (WDT)	
	6.3	Watchdog Timer Configuration Watchdog Timer Control 2.1 Malfunction Detection Methods Using the Watchdog Timer 2.2 Watchdog Timer Enable 2.3 Watchdog Timer Disable 2.4 Watchdog Timer Interrupt (INTWDT) 2.5 Watchdog Timer Reset 3.1 Selection of Address Trap in Internal RAM (ATAS) 3.2 Selection of Operation at Address Trap (ATOUT) 3.3 Address Trap Interrupt (INTATRAP)	71 72 76
		3.3 Address Trap Interrupt (INTATRAP)	
 7.	Tim	e Base Timer (TBT)	
<u></u>	7.1 7.1 7.1	Time Base Timer 79 .1 Configuration 79 .2 Control 79 .3 Function 80 Divider Output (DVO) 2.1 Configuration 81	79 81
8.	16-l	Bit TimerCounter (TC10,TC11)	
	8 1	16-Bit TimerCounter 10	83

8.1.1 Configuration 83 8.1.2 TimerCounter Control 84 8.1.3 Function 85	
8.1.3.1 Timer mode 8.1.3.2 External Trigger Timer Mode 8.1.3.3 Event Counter Mode 8.1.3.4 Window Mode 8.1.3.5 Pulse Width Measurement Mode 8.1.3.6 Programmable Pulse Generate (PPG) Output Mode 8.2 1 Configuration 97 8.2.2 TimerCounter Control 98 8.2.3 Function 97 8.2.3 Function 99 8.2.3.1 Timer mode 8.2.3.2 External Trigger Timer Mode 8.2.3.3 Event Counter Mode 8.2.3.4 Window Mode 8.2.3.5 Pulse Width Measurement Mode 8.2.3.6 Programmable Pulse Generate (PPG) Output Mode	. 97
9. 8-Bit TimerCounter (TC3, TC4)	
9.1 Configuration	. 112 . 117
10. 8-Bit TimerCounter (TC5, TC6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 132 . 137
11. Synchronous Serial Interface (SIO)	
11.1 Configuration	151

11.2 Control	
11.3.2.1 Leading edge 11.3.2.1 Leading edge 11.4 Number of bits to transfer 11.5 Number of words to transfer 11.6 Transfer Mode 11.6.1 4-bit and 8-bit transfer modes 11.6.2 4-bit and 8-bit receive modes 11.6.3 8-bit transfer / receive mode	155 155 156
12. Asynchronous Serial interface (UART1)	
12.1 Configuration 12.2 Control 12.3 Transfer Data Format	165 165 166 166 166
13. Asynchronous Serial interface (UART0)	
13.1 Configuration	$171 \\ 172$
13.3 Transfer Data Format	174
13.4 Transfer Rate	175 175
13.6 STOP Bit Length	176
13.7 Parity	$\frac{176}{176}$
13.8.1 Data Transmit Operation	110
13.8.2 Data Receive Operation	177
13.9.1 Parity Error	
13.9.3 Overrun Error	
13.9.4 Receive Data Buffer Full 178 13.9.5 Transmit Data Buffer Empty 178	
13.9.6 Transmit End Flag	

14. 10-bit AD Converter (ADC)	
14.2 Register configuration	181 182 185
14.4 STOP/SLOW Modes during AD Conversion	187 188 189
15. Key-on Wakeup (KWU)	
15.2 Control	191 191 191
16. LCD Driver	
	193 194
16.2.3.1 When using the booster circuit (LCDCR <bres>="1") 16.2.3.2 When using an external resistor divider (LCDCR<bres>="0") 16.3 LCD Display Operation</bres></bres>	199
	201
17. Flash Memory	
17.1 Flash Memory Control	210
	212
55	214 215

17.4.1 Flash Memory Control in the Serial PROM Mode	
18. Serial PROM Mode	
18.1 Outline	219
18.2 Memory Mapping	219
18.3 Serial PROM Mode Setting	220
18.3.1 Serial PROM Mode Control Pins	
18.3.2 Pin Function	
18.3.4 Activating the Serial PROM Mode	
18.4 Interface Specifications for UART	223
18.5 Operation Command	225
18.4 Interface Specifications for UART 18.5 Operation Command 18.6 Operation Mode 18.6.1 Flash Memory Erasing Mode (Operating command: F0H) 226	225
18.6.1 Flash Memory Erasing Mode (Operating command: F0H)	
18.6.2 Flash Memory Writing Mode (Operation command: 30H)	
18.6.3 Flash Memory SUM Output Mode (Operation Command: 90H)	
18.6.4 Product ID Code Output Mode (Operation Command: C0H)	
18.6.6. Flash Memory Read Protection Setting Mode (Operation Command: EAH)	
18.7 Error Code	237
18.8 Checksum (SUM)	237
18.8.1 Calculation Method	401
18.8.2 Calculation data 238	
18.7 Error Code	239
18.10 Passwords	239
18.10 Passwords	_00
18.10.2 Handling of Password Error	
18.10.3 Password Management during Program Development	
18.11 Product ID Code	241
18.12 Flash Memory Status Code	241
18.12 Flash Memory Status Code	243
18.14 Flowchart.	244
18.15 UART Timing	245
10.10	_ 10
19. Input/Output Circuitry	
19.1 Control Pins	247
19.2 Input/Output Ports	248
20. Electrical Characteristics	
20.1 Absolute Maximum Ratings	249
20.2 Operating Condition	250
20.2.1 MCU mode (Flash Programming or erasing)	
20.2.2 MCU mode (Except Flash Programming or erasing)	
20.2.3 Serial PROM mode	0.50
20.3 DC Characteristics	252
20.4 AD Conversion Characteristics	253
20.5 AC Characteristics	254
20.6 Flash Characteristics	254

	Recommended Oscillating Conditions	
21. Pad	ckage Dimensions	

This is a technical document that describes the operating functions and electrical specifications of the 8-bit microcontroller series TLCS-870/C (LSI).

CMOS 8-Bit Microcontroller

TMP86FS28FG

The TMP86FS28FG is a single-chip 8-bit high-speed and high-functionality microcomputer incorporating 61440 bytes of Flash Memory. It is pin-compatible with the TMP86CS28FG (Mask ROM version). The TMP86FS28FG can realize operations equivalent to those of the TMP86CS28FG by programming the on-chip Flash Memory.

Product No.	ROM (FLASH)	RAM	Package	MASK ROM MCU	Emulation Chip
TMP86FS28FG	61440 bytes	2048 bytes	QFP80-P-1420-0.80B	TMP86CS28FG	TMP86C989XB

1.1 **Features**

- 1. 8-bit single chip microcomputer TLCS-870/C series
 - Instruction execution time :

0.25 µs (at 16 MHz)

122 μs (at 32.768 kHz)

- 132 types & 731 basic instructions
- 2. 23interrupt sources (External: 6 Internal: 17
- 3. Input / Output ports (62 pins)
- 4. Watchdog Timer
- 5. Prescaler
 - Time base timer
 - Divider output function
- 6. 16-bit timer counter: 2 ch
 - Timer, External trigger, Window, Pulse width measurement,

Event counter, Programmable pulse generate (PPG) modes

- 7. 8-bit timer counter: 4 ch
 - Timer, Event counter, Programmable divider output (PDO),

Pulse width modulation (PWM) output,

Programmable pulse generation (PPG) modes

This product uses the Super Flash® technology under the licence of Silicon Storage Technology, Inc. Super Flash® is registered trademark of Silicon Storage Technology, Inc.

• The information contained herein is subject to change without notice. 021023_D
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices" or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A

- recent IOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B

 The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or
- sale are prohibited under any applicable laws and regulations. 060106_Q
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. 070122_C
- The products described in this document are subject to foreign exchange and foreign trade control laws. 060925_E
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619_S

1.1 Features

8. 8-bit UART/SIO: 1 ch

9. 8-bit UART: 1 ch

10. 10-bit successive approximation type AD converter

- Analog input: 8 ch

11. Key-on wakeup: 4 ch

12. LCD driver/controller

Built-in voltage booster for LCD driver With display memory LCD direct drive capability (MAX 40 seg × 4 com)

1/4,1/3,1/2duties or static drive are programmably selectable

13. Clock operation

Single clock mode

Dual clock mode

14. Low power consumption operation

STOP mode: Oscillation stops. (Battery/Capacitor back-up.)

SLOW1 mode: Low power consumption operation using low-frequency clock.(High-frequency clock stop.)

SLOW2 mode: Low power consumption operation using low-frequency clock.(High-frequency clock oscillate.)

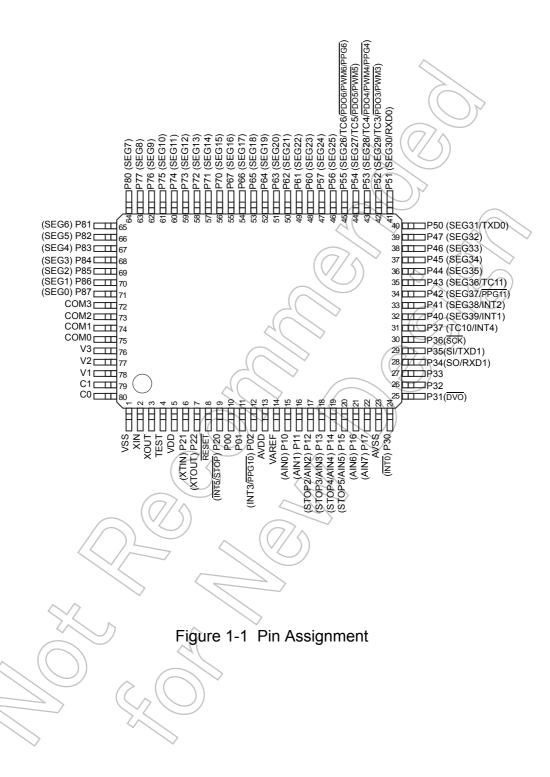
IDLE0 mode: CPU stops, and only the Time-Based-Timer(TBT) on peripherals operate using high frequency clock. Release by falling edge of the source clock which is set by TBTCR<TBTCK>.

IDLE1 mode: CPU stops and peripherals operate using high frequency clock. Release by interruputs(CPU restarts).

IDLE2 mode: CPU stops and peripherals operate using high and low frequency clock. Release by interruputs. (CPU restarts).

SLEEP0 mode: CPU stops, and only the Time-Based-Timer(TBT) on peripherals operate using low frequency clock. Release by falling edge of the source clock which is set by TBTCR<TBTCK>.

SLEEP1 mode: CPU stops, and peripherals operate using low frequency clock. Release by interruput.(CPU restarts).


SLEEP2 mode: CPU stops and peripherals operate using high and low frequency clock. Release by interruput.

15. Wide operation voltage:

2.7 V to 5.5 V at 8MHz /32.768 kHz

4.0 V to 5.5 V at 16 MHz /32.768 kHz

1.2 Pin Assignment

1.3 Block Diagram TMP86FS28FG

1.3 Block Diagram

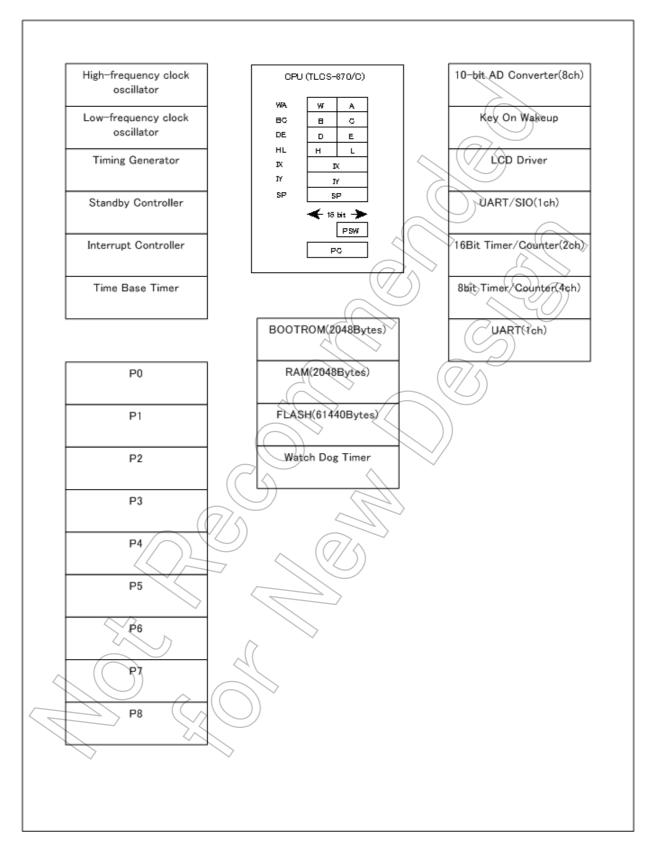


Figure 1-2 Block Diagram

1.4 Pin Names and Functions

The TMP86FS28FG has MCU mode, parallel PROM mode, and serial PROM mode. Table 1-1 shows the pin functions in MCU mode. The serial PROM mode is explained later in a separate chapter.

Table 1-1 Pin Names and Functions(1/4)

Pin Name	Pin Number	Input/Output	Functions
P02 PPG10 INT3	12	IO O I	PORT02 PPG10 output External interrupt 3 input
P01	11	IO	PORT01
P00	10	Ю	PORT00
P17 AIN7	22	10 1	PORT17 Analog Input7
P16 AIN6	21	IO I	PORT16 Analog Input6
P15 AIN5 STOP5	20	6-1	PORT15 Analog Input5 STOP5 input
P14 AIN4 STOP4	19	9	PORT14 Analog Input4 STOP4 input
P13 AIN3 STOP3	18	10	PORT13 Analog Input3 STOP3 input
P12 AIN2 STOP2	17	10	PORT12 Analog Input2 STOP2 input
P11 AIN1	16	10	PORT11 Analog Input1
P10 AIN0	15	0	PORT10 Analog Input0
P22 XTOUT	7	10	PORT22 Resonator connecting pins(32.768kHz) for inputting external clock
P21 XTIN	6 <	10	PORT21 Resonator connecting pins(32.768kHz) for inputting external clock
P20 STOP INT5	9	10	PORT20 STOP mode release signal input External interrupt 5 input
P37 TC10 INT4	31	10 1	PORT37 TC10 input External interrupt 4 input
P36 SCK	30	10 10	PORT36 Serial Clock I/O
P35 SI TXD1	29	IO I O	PORT35 Serial Data Input UART data output 1
P34 SO RXD1	28	10 0 1	PORT34 Serial Data Output UART data input 1

Table 1-1 Pin Names and Functions(2/4)

Pin Name	Pin Number	Input/Output	Functions
P33	27	IO	PORT33
P32	26	IO	PORT32
P31 DVO	25	IO O	PORT31 Divider Output
P30 INT0	24	IO I	PORT30 External interrupt 0 input
P47 SEG32	39	IO O	PORT47 LCD segment output 32
P46 SEG33	38	IO O	PORT46 LCD segment output 33
P45 SEG34	37	IO O	PORT45 LCD segment output 34
P44 SEG35	36	IO O	PORT44 LCD segment output 35
P43 SEG36 TC11	35	0,6	PORT43 LCD segment output 36 TC11 input
P42 SEG37 PPG11	34	0 0	PORT42 LCD segment output 37 PPG11 output
P41 SEG38 INT2	33	10 0	PORT41 LCD segment output 38 External interrupt 2 input
P40 SEG39 INT1	32	JIQ.	PORT40 LCD segment output 39 External interrupt 1 input
P57 SEG24	47) IO	PORT57 LCD segment output 24
P56 SEG25	46	10 0	PORT56 LCD segment output 25
P55 SEG26 TC6 PD06/PWM6/PPG6	45	0	PORT55 LCD segment output 26 TC6 input PDO6/PWM6/PPG6 output
P54 SEG27 TC5 PD05/PWM5	44	10 0 1	PORT54 LCD segment output 27 TC5 input PDO5/PWM5 output
P53 SEG28 TC4 PD04/PWM4/PPG4	43	IO O I O	PORT53 LCD segment output 28 TC4 input PDO4/PWM4/PPG4 output
P52 SEG29 TC3 PD03/PWM3	42	IO O I O	PORT52 LCD segment output 29 TC3 input
P51 SEG30 RXD0	41	IO O I	PORT51 LCD segment output 30 UART data input 0

Table 1-1 Pin Names and Functions(3/4)

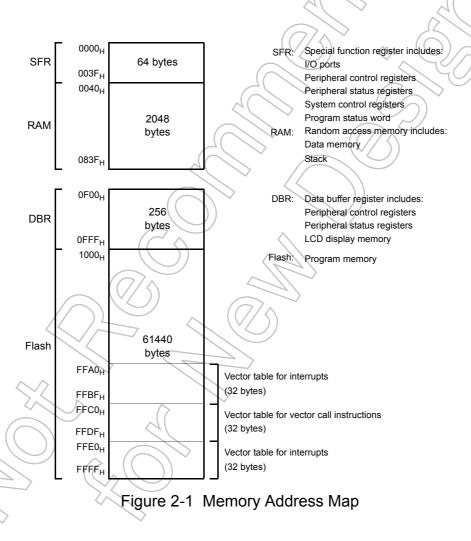
Pin Name	Pin Number	Input/Output	Functions
P50 SEG31 TXD0	40	IO O O	PORT50 LCD segment output 31 UART data output 0
P67 SEG16	55	IO O	PORT67 LCD segment output 16
P66 SEG17	54	IO O	PORT66 LCD segment output 17
P65 SEG18	53	IO O	PORT65 LCD segment output 18
P64 SEG19	52	IO O	PORT64 LCD segment output 19
P63 SEG20	51	IO O	PORT63 LCD segment output 20
P62 SEG21	50	10	PORT62 LCD segment output 21
P61 SEG22	49	0	PORT61 LCD segment output 22
P60 SEG23	48	10 0	PORT60 LCD segment output 23
P77 SEG8	63	10 0	PORT77 LCD segment output 8
P76 SEG9	62	10	PORT76 LCD segment output 9
P75 SEG10	61	10	PORT75 LCD segment output 10
P74 SEG11	60	10	PORT74 LCD segment output 11
P73 SEG12	59	10	PORT73 LCD segment output 12
P72 SEG13	58	10 0	PORT72 LCD segment output 13
P71 SEG14	57	0 0	PORT71 LCD segment output 14
P70 SEG15	56	10 0	PORT70 LCD segment output 15
P87 SEG0	71	IO O	PORT87 LCD segment output 0
P86 SEG1	70	10 0	PORT86 LCD segment output 1
P85 SEG2	69	IO O	PORT85 LCD segment output 2
P84 SEG3	68	IO O	PORT84 LCD segment output 3
P83 SEG4	67	IO O	PORT83 LCD segment output 4
P82 SEG5	66	IO O	PORT82 LCD segment output 5

1.4 Pin Names and Functions

Table 1-1 Pin Names and Functions(4/4)

Pin Name	Pin Number	Input/Output	Functions
P81 SEG6	65	IO O	PORT81 LCD segment output 6
P80 SEG7	64	IO O	PORT80 LCD segment output 7
COM3	72	0	LCD common output 3
COM2	73	0	LCD common output 2
COM1	74	0	LCD common output 1
СОМО	75	0	LCD common output 0
V3	76	1	LCD voltage booster pin
V2	77	I	LCD voltage booster pin
V1	78	1 (LCD voltage booster pin
C1	79		LCD voltage booster pin
C0	80		LCD voltage booster pin
XIN	2		Resonator connecting pins for high-frequency clock
XOUT	3	0	Resonator connecting pins for high-frequency clock
RESET	8		Reset signal
TEST	4		Test pin for out-going test. Normally, be fixed to low.
VAREF	14		Analog Base Voltage Input Pin for A/D Conversion
AVDD	13 ((Analog Power Supply
AVSS	23		Analog Power Supply
VDD	5		+5V
VSS			0(GND)

2. Operational Description


2.1 CPU Core Functions

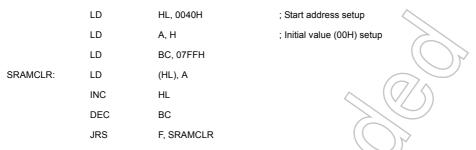
The CPU core consists of a CPU, a system clock controller, and an interrupt controller.

This section provides a description of the CPU core, the program memory, the data memory, and the reset circuit.

2.1.1 Memory Address Map

The TMP86FS28FG memory is composed Flash, RAM, DBR(Data buffer register) and SFR(Special function register). They are all mapped in 64-Kbyte address space. Figure 2-1 shows the TMP86FS28FG memory address map.

2.1.2 Program Memory (Flash)


The TMP86FS28FG has a 61440 bytes (Address 1000H to FFFFH) of program memory (Flash).

2.1.3 Data Memory (RAM)

The TMP86FS28FG has 2048 bytes (Address 0040H to 083FH) of internal RAM. The first 192 bytes (0040H to 00FFH) of the internal RAM are located in the direct area; instructions with shorten operations are available against such an area.

The data memory contents become unstable when the power supply is turned on; therefore, the data memory should be initialized by an initialization routine.

Example :Clears RAM to "00H". (TMP86FS28FG)

2.2 System Clock Controller

The system clock controller consists of a clock generator, a timing generator, and a standby controller.

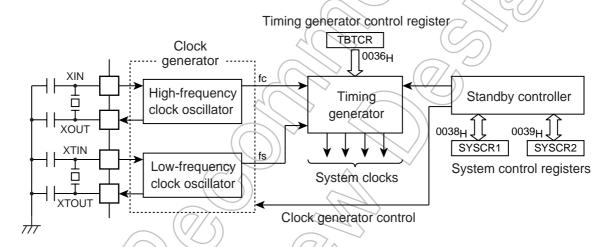


Figure 2-2 System Colck Control

2.2.1 Clock Generator

The clock generator generates the basic clock which provides the system clocks supplied to the CPU core and peripheral hardware. It contains two oscillation circuits: One for the high-frequency clock and one for the low-frequency clock. Power consumption can be reduced by switching of the standby controller to low-power operation based on the low-frequency clock.

The high-frequency (fc) clock and low-frequency (fs) clock can easily be obtained by connecting a resonator between the XIN/XOUT and XTIN/XTOUT pins respectively. Clock input from an external oscillator is also possible. In this case, external clock is applied to XIN/XTIN pin with XOUT/XTOUT pin not connected.

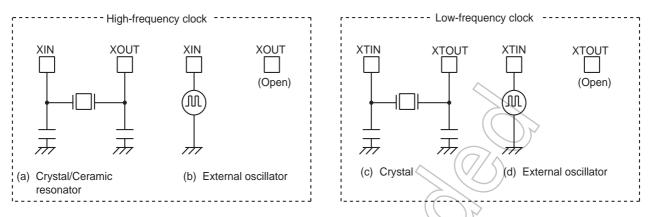


Figure 2-3 Examples of Resonator Connection

Note: The function to monitor the basic clock directly at external is not provided for hardware, however, with disabling all interrupts and watchdog timers, the oscillation frequency can be adjusted by monitoring the pulse which the fixed frequency is outputted to the port by the program.

The system to require the adjustment of the oscillation frequency should create the program for the adjustment in advance.

2.2.2 Timing Generator

The timing generator generates the various system clocks supplied to the CPU core and peripheral hardware from the basic clock (fc or fs). The timing generator provides the following functions.

- 1. Generation of main system clock
- 2. Generation of divider output (DVO) pulses
- 3. Generation of source clocks for time base timer
- 4. Generation of source clocks for watchdog timer
- 5. Generation of internal source clocks for timer/counters
- 6. Generation of warm-up clocks for releasing STOP mode
- 7. LCD

2.2.2.1 Configuration of timing generator

The timing generator consists of a 2-stage prescaler, a 21-stage divider, a main system clock generator, and machine cycle counters.

An input clock to the 7th stage of the divider depends on the operating mode, SYSCR2<SYSCK> and TBTCR<DV7CK>, that is shown in Figure 2-4. As reset and STOP mode started/canceled, the prescaler and the divider are cleared to "0".

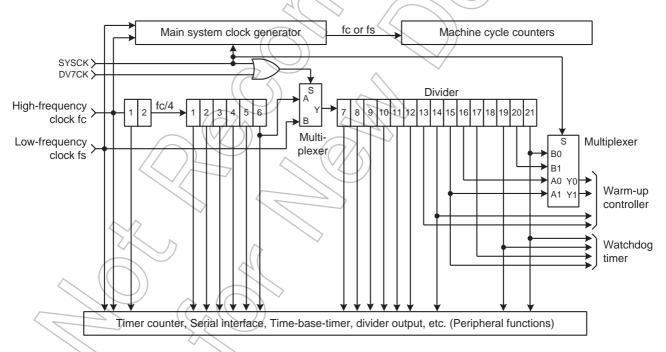
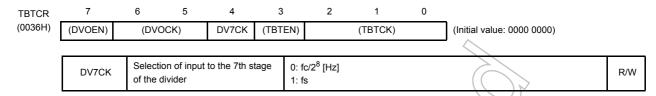



Figure 2-4 Configuration of Timing Generator

Timing Generator Control Register

- Note 1: In single clock mode, do not set DV7CK to "1".
- Note 2: Do not set "1" on DV7CK while the low-frequency clock is not operated stably.
- Note 3: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], *: Don't care
- Note 4: In SLOW1/2 and SLEEP1/2 modes, the DV7CK setting is ineffective, and fs is input to the 7th stage of the divider.
- Note 5: When STOP mode is entered from NORMAL1/2 mode, the DV7CK setting is ineffective during the warm-up period after release of STOP mode, and the 6th stage of the divider is input to the 7th stage during this period.

2.2.2.2 Machine cycle

Instruction execution and peripheral hardware operation are synchronized with the main system clock.

The minimum instruction execution unit is called an "machine cycle". There are a total of 10 different types of instructions for the TLCS-870/C Series: Ranging from 1-cycle instructions which require one machine cycle for execution to 10-cycle instructions which require 10 machine cycles for execution. A machine cycle consists of 4 states (S0 to S3), and each state consists of one main system clock.

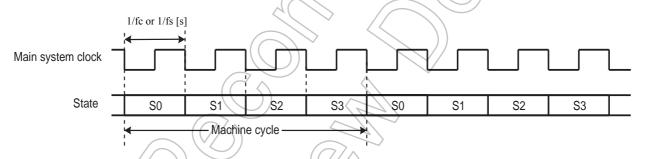


Figure 2-5 Machine Cycle

2.2.3 Operation Mode Control Circuit

The operation mode control circuit starts and stops the oscillation circuits for the high-frequency and low-frequency clocks, and switches the main system clock. There are three operating modes: Single clock mode, dual clock mode and STOP mode. These modes are controlled by the system control registers (SYSCR1 and SYSCR2). Figure 2-6 shows the operating mode transition diagram.

2.2.3.1 Single-clock mode

Only the oscillation circuit for the high-frequency clock is used, and P21 (XTIN) and P22 (XTOUT) pins are used as input/output ports. The main-system clock is obtained from the high-frequency clock. In the single-clock mode, the machine cycle time is 4/fc [s].

(1) NORMAL1 mode

In this mode, both the CPU core and on-chip peripherals operate using the high-frequency clock. The TMP86FS28FG is placed in this mode after reset.

(2) IDLE1 mode

In this mode, the internal oscillation circuit remains active. The CPU and the watchdog timer are halted; however on-chip peripherals remain active (Operate using the high-frequency clock).

IDLE1 mode is started by SYSCR2<IDLE> = "1", and IDLE1 mode is released to NORMAL1 mode by an interrupt request from the on-chip peripherals or external interrupt inputs. When the IMF (Interrupt master enable flag) is "1" (Interrupt enable), the execution will resume with the acceptance of the interrupt, and the operation will return to normal after the interrupt service is completed. When the IMF is "0" (Interrupt disable), the execution will resume with the instruction which follows the IDLE1 mode start instruction.

(3) IDLE0 mode

In this mode, all the circuit, except oscillator and the timer-base-timer, stops operation.

This mode is enabled by SYSCR2<TGHALT> = "1"

When IDLE0 mode starts, the CPU stops and the timing generator stops feeding the clock to the peripheral circuits other than TBT. Then, upon detecting the falling edge of the source clock selected with TBTCR<TBTCK>, the timing generator starts feeding the clock to all peripheral circuits.

When returned from IDLE0 mode, the CPU restarts operating, entering NORMAL1 mode back again. IDLE0 mode is entered and returned regardless of how TBTCR<TBTEN> is set. When IMF = "1", EF6 (TBT interrupt individual enable flag) = "1", and TBTCR<TBTEN> = "1", interrupt processing is performed. When IDLE0 mode is entered while TBTCR<TBTEN> = "1", the INTTBT interrupt latch is set after returning to NORMAL1 mode.

2.2.3.2 Dual-clock mode

Both the high-frequency and low-frequency oscillation circuits are used in this mode. P21 (XTIN) and P22 (XTOUT) pins cannot be used as input/output ports. The main system clock is obtained from the high-frequency clock in NORMAL2 and IDLE2 modes, and is obtained from the low-frequency clock in SLOW and SLEEP modes. The machine cycle time is 4/fc [s] in the NORMAL2 and IDLE2 modes, and 4/fs [s] (122 µs at fs = 32.768 kHz) in the SLOW and SLEEP modes.

The TLCS-870/C is placed in the signal-clock mode during reset. To use the dual-clock mode, the low-frequency oscillator should be turned on at the start of a program.

(1) NORMAL2 mode

In this mode, the CPU core operates with the high-frequency clock. On-chip peripherals operate using the high-frequency clock and/or low-frequency clock.

(2) SLOW2 mode

In this mode, the CPU core operates with the low-frequency clock, while both the high-frequency clock and the low-frequency clock are operated. As the SYSCR2<SYSCK> becomes "1", the hardware changes into SLOW2 mode. As the SYSCR2<SYSCK> becomes "0", the hardware changes into NORMAL2 mode. As the SYSCR2<XEN> becomes "0", the hardware changes into SLOW1 mode. Do not clear SYSCR2<XTEN> to "0" during SLOW2 mode.

(3) SLOW1 mode

This mode can be used to reduce power-consumption by turning off oscillation of the high-frequency clock. The CPU core and on-chip peripherals operate using the low-frequency clock.

Switching back and forth between SLOW1 and SLOW2 modes are performed by SYSCR2<XEN>. In SLOW1 and SLEEP modes, the input clock to the 1st stage of the divider is stopped; output from the 1st to 6th stages is also stopped.

(4) IDLE2 mode

In this mode, the internal oscillation circuit remain active. The CPU and the watchdog timer are halted; however, on-chip peripherals remain active (Operate using the high-frequency clock and/or the low-frequency clock). Starting and releasing of IDLE2 mode are the same as for IDLE1 mode, except that operation returns to NORMAL2 mode.

(5) SLEEP1 mode

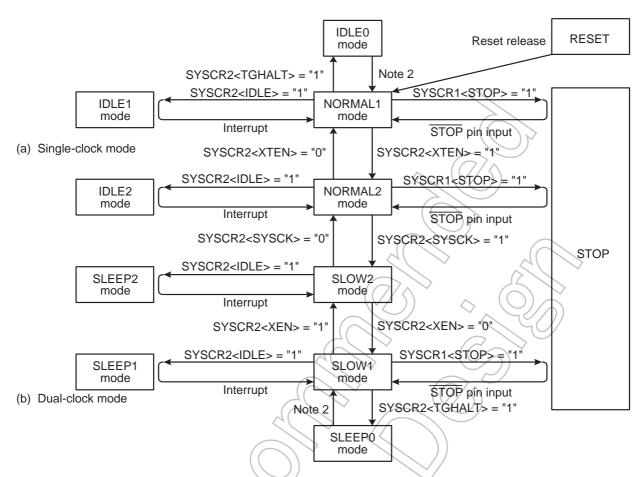
In this mode, the internal oscillation circuit of the low-frequency clock remains active. The CPU, the watchdog timer, and the internal oscillation circuit of the high-frequency clock are halted; however, on-chip peripherals remain active (Operate using the low-frequency clock). Starting and releasing of SLEEP mode are the same as for IDLE1 mode, except that operation returns to SLOW1 mode. In SLOW1 and SLEEP1 modes, the input clock to the 1st stage of the divider is stopped; output from the 1st to 6th stages is also stopped.

(6) SLEEP2 mode

The SLEEP2 mode is the idle mode corresponding to the SLOW2 mode. The status under the SLEEP2 mode is same as that under the SLEEP1 mode, except for the oscillation circuit of the high-frequency clock.

(7) SLEEP0 mode

In this mode, all the circuit, except oscillator and the timer-base-timer, stops operation. This mode is enabled by setting "1" on bit SYSCR2<TGHALT>.


When SLEEPO mode starts, the CPU stops and the timing generator stops feeding the clock to the peripheral circuits other than TBT. Then, upon detecting the falling edge of the source clock selected with TBTCR<TBTCK>, the timing generator starts feeding the clock to all peripheral circuits.

When returned from SLEEP0 mode, the CPU restarts operating, entering SLOW1 mode back again. SLEEP0 mode is entered and returned regardless of how TBTCR<TBTEN> is set. When IMF = "1", EF6 (TBT interrupt individual enable flag) = "1", and TBTCR<TBTEN> = "1", interrupt processing is performed. When SLEEP0 mode is entered while TBTCR<TBTEN> = "1", the INTTBT interrupt latch is set after returning to SLOW1 mode.

2.2.3.3 STOP mode

In this mode, the internal oscillation circuit is turned off, causing all system operations to be halted. The internal status immediately prior to the halt is held with a lowest power consumption during STOP mode.

STOP mode is started by the system control register 1 (SYSCR1), and STOP mode is released by a inputting (Either level-sensitive or edge-sensitive can be programmably selected) to the $\overline{\text{STOP}}$ pin. After the warm-up period is completed, the execution resumes with the instruction which follows the STOP mode start instruction.

Note 1: NORMAL1 and NORMAL2 modes are generically called NORMAL; SLOW1 and SLOW2 are called SLOW; IDLE0, IDLE1 and IDLE2 are called IDLE; SLEEP0, SLEEP1 and SLEEP2 are called SLEEP.

Note 2: The mode is released by falling edge of TBTCR<TBTCK> setting.

Figure 2-6 Operating Mode Transition Diagram

Table 2-1 Operating Mode and Conditions

		<u> </u>					
Opera	ating Mode	Osci High Frequency	Low Frequency	CPU Core	ТВТ	Other Peripherals	Machine Cycle Time
^ ((RESET		Stop	Reset	Reset	Reset	4/fc [s]
	NORMAL1			Operate		0 1	
Single clock	IDLE1	Oscillation			Operate	Operate	
	-IDLE0	Stop		Halt		Halt	
	STOP				Halt		-
	NORMAL2	Oscillation	n Oscillation	Operate with high frequency	Operate	Operate	4/fc [s]
	IDLE2			Halt			
	SLOW2			Operate with low frequency			4/fs [s]
Dual clock	SLEEP2			Halt			
	SLOW1			Operate with low frequency			
	SLEEP1	Stop		Halt			
	SLEEP0	1				Halt	
	STOP		Stop		Halt	riait	_

System Control Register 1

SYSCR1	7	6	5	4	3	2	1	0	
(0038H)	STOP	RELM	RETM	OUTEN	WU	JT			(Initial value: 0000 00**)

STOP	STOP mode start	CPU core and peripherals remain active CPU core and peripherals are halted (Start STOP mode)			R/W
RELM	Release method for STOP mode	0: Edge-sensitive release 1: Level-sensitive release 0: Return to NORMAL1/2 mode 1: Return to SLOW1 mode		77/^	R/W
RETM	Operating mode after STOP mode				R/W
OUTEN	Port output during STOP mode	0: High impedance 1: Output kept		>	R/W
			Return to NORMAL mode	Return to SLOW mode	
WUT	Warm-up time at releasing STOP mode	00 01 10 11	3 x 2 ¹⁶ /fc 2 ¹⁶ /fc 3 x 2 ¹⁴ /fc 2 ¹⁴ /fc	3 x 2 ¹³ /fs 2 ¹³ /fs 3 x 2 ⁶ /fs 2 ⁶ /fs	R/W

- Note 1: Always set RETM to "0" when transiting from NORMAL mode to STOP mode. Always set RETM to "1" when transiting from SLOW mode to STOP mode.
- Note 2: When STOP mode is released with RESET pin input, a return is made to NORMAL1 regardless of the RETM contents.
- Note 3: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], *; Don't care
- Note 4: Bits 1 and 0 in SYSCR1 are read as undefined data when a read instruction is executed.
- Note 5: As the hardware becomes STOP mode under OUTEN = "0", input value is fixed to "0"; therefore it may cause external interrupt request on account of falling edge.
- Note 6: When the key-on wakeup is used, RELM should be set to "1".
- Note 7: Port P20 is used as STOP pin. Therefore, when stop mode is started, OUTÉN does not affect to P20, and P20 becomes High-Z mode.
- Note 8: The warmig-up time should be set correctly for using oscillator.

System Control Register 2

 SYSCR2
 7
 6
 5
 4
 3
 2
 1
 0

 (0039H)
 XEN
 XTEN
 SYSCK
 IDLE
 TGHALT
 (Initial value: 1000 *0**)

	XEN	High-frequency oscillator control	0: Turn off oscillation 1: Turn on oscillation	
	XTEN Low-frequency oscillator control		0: Turn off oscillation 1: Turn on oscillation	
	SYSCK	Main system clock select (Write)/main system clock moni- tor (Read)	0: High-frequency clock (NORMAL1/NORMAL2/IDLE1/IDLE2) 1: Low-frequency clock (SLOW1/SLOW2/SLEEP1/SLEEP2)	
	IDLE	CPU and watchdog timer control (IDLE1/2 and SLEEP1/2 modes)	CPU and watchdog timer remain active CPU and watchdog timer are stopped (Start IDLE1/2 and SLEEP1/2 modes)	
//	TGHALT	TG control (IDLE0 and SLEEP0 modes)	Feeding clock to all peripherals from TG Stop feeding clock to peripherals except TBT from TG. (Start IDLE0 and SLEEP0 modes)	R/W

- Note 1: A reset is applied if both XEN and XTEN are cleared to "0", XEN is cleared to "0" when SYSCK = "0", or XTEN is cleared to "0" when SYSCK = "1".
- Note 2: *: Don't care, TG: Timing generator, *; Don't care
- Note 3: Bits 3, 1 and 0 in SYSCR2 are always read as undefined value.
- Note 4: Do not set IDLE and TGHALT to "1" simultaneously.
- Note 5: Because returning from IDLE0/SLEEP0 to NORMAL1/SLOW1 is executed by the asynchronous internal clock, the period of IDLE0/SLEEP0 mode might be shorter than the period setting by TBTCR<TBTCK>.
- Note 6: When IDLE1/2 or SLEEP1/2 mode is released, IDLE is automatically cleared to "0".
- Note 7: When IDLE0 or SLEEP0 mode is released, TGHALT is automatically cleared to "0".
- Note 8: Before setting TGHALT to "1", be sure to stop peripherals. If peripherals are not stopped, the interrupt latch of peripherals may be set after IDLE0 or SLEEP0 mode is released.

2.2.4 Operating Mode Control

2.2.4.1 STOP mode

STOP mode is controlled by the system control register 1, the STOP pin input and key-on wakeup input (STOP5 to STOP2) which is controlled by the STOP mode release control register (STOPCR). The STOP pin is also used both as a port P20 and an INT5 (external interrupt input 5) pin. STOP mode is started by setting SYSCR1<STOP> to "1". During STOP mode, the following status is maintained.

- 1. Oscillations are turned off, and all internal operations are halted.
- 2. The data memory, registers, the program status word and port output latches are all held in the status in effect before STOP mode was entered.
- 3. The prescaler and the divider of the timing generator are cleared to "0".
- 4. The program counter holds the address 2 ahead of the instruction (e.g., [SET (SYSCR1).7]) which started STOP mode.

STOP mode includes a level-sensitive mode and an edge-sensitive mode, either of which can be selected with the SYSCR1<RELM>. Do not use any key-on wakeup input (STOP5 to STOP2) for releasing STOP mode in edge-sensitive mode.

Note 1: The STOP mode can be released by either the STOP or key-on wakeup pin (STOP5 to STOP2). However, because the STOP pin is different from the key-on wakeup and can not inhibit the release input, the STOP pin must be used for releasing STOP mode.

Note 2: During STOP period (from start of STOP mode to end of warm up), due to changes in the external interrupt pin signal, interrupt latches may be set to "1" and interrupts may be accepted immediately after STOP mode is released. Before starting STOP mode, therefore, disable interrupts. Also, before enabling interrupts after STOP mode is released, clear unnecessary interrupt latches.

(1) Level-sensitive release mode (RELM = "1")

In this mode, STOP mode is released by setting the STOP pin high or setting the STOP5 to STOP2 pin input which is enabled by STOPCR. This mode is used for capacitor backup when the main power supply is cut off and long term battery backup.

Even if an instruction for starting STOP mode is executed while $\overline{\text{STOP}}$ pin input is high or STOP5 to STOP2 input is low, STOP mode does not start but instead the warm-up sequence starts immediately. Thus, to start STOP mode in the level-sensitive release mode, it is necessary for the program to first confirm that the $\overline{\text{STOP}}$ pin input is low or STOP5 to STOP2 input is high. The following two methods can be used for confirmation.

- 1. Testing a port.
- 2. Using an external interrupt input INT5 (INT5 is a falling edge-sensitive input).

Example 1 :Starting STOP mode from NORMAL mode by testing a port P20.

Example 2: Starting STOP mode from NORMAL mode with an INT5 interrupt.

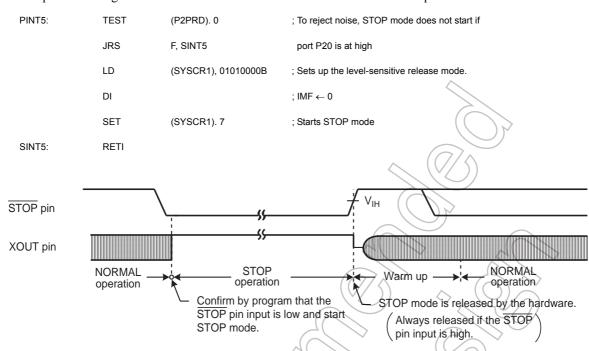


Figure 2-7 Level-sensitive Release Mode

Note 1: Even if the STOP pin input is low after warm-up start, the STOP mode is not restarted.

Note 2: In this case of changing to the level-sensitive mode from the edge-sensitive mode, the release mode is not switched until a rising edge of the STOP pin input is detected.

(2) Edge-sensitive release mode (RELM = "0")

Example: Starting STOP mode from NORMAL mode

In this mode, STOP mode is released by a rising edge of the $\overline{\text{STOP}}$ pin input. This is used in applications where a relatively short program is executed repeatedly at periodic intervals. This periodic signal (for example, a clock from a low-power consumption oscillator) is input to the $\overline{\text{STOP}}$ pin. In the edge-sensitive release mode, STOP mode is started even when the $\overline{\text{STOP}}$ pin input is high level. Do not use any STOP5 to STOP2 pin input for releasing STOP mode in edge-sensitive release mode.

(SYSCR1), 10010000B ; Starts after specified to the edge-sensitive release mode STOP pin XOUT pin NORMAL **STOP** STOP Warm up operation operation operation NORMAL operation STOP mode started by the program. STOP mode is released by the hardware at the rising

Figure 2-8 Edge-sensitive Release Mode

edge of STOP pin input.

STOP mode is released by the following sequence.

- In the dual-clock mode, when returning to NORMAL2, both the high-frequency and low-frequency clock oscillators are turned on; when returning to SLOW1 mode, only the low-frequency clock oscillator is turned on. In the single-clock mode, only the high-frequency clock oscillator is turned on.
- 2. A warm-up period is inserted to allow oscillation time to stabilize. During warm up, all internal operations remain halted. Four different warm-up times can be selected with the SYSCR1<WUT> in accordance with the resonator characteristics.
- 3. When the warm-up time has elapsed, normal operation resumes with the instruction following the STOP mode start instruction.
- Note 1: When the STOP mode is released, the start is made after the prescaler and the divider of the timing generator are cleared to "0".
- Note 2: STOP mode can also be released by inputting low level on the RESET pin, which immediately performs the normal reset operation.
- Note 3: When STOP mode is released with a low hold voltage, the following cautions must be observed. The power supply voltage must be at the operating voltage level before releasing STOP mode. The RESET pin input must also be "H" level, rising together with the power supply voltage. In this case, if an external time constant circuit has been connected, the RESET pin input voltage will increase at a slower pace than the power supply voltage. At this time, there is a danger that a reset may occur if input voltage level of the RESET pin drops below the non-inverting high-level input voltage (Hysteresis input).

Table 2-2 Warm-up Time Example (at fc = 16.0 MHz, fs = 32.768 kHz)

WUT	Warm-up	o Time [ms]
WOT	Return to NORMAL Mode	Return to SLOW Mode
00	12.288	750
01	4.096	250
10	3:072	5.85
11	1.024	1.95

Note 1: The warm-up time is obtained by dividing the basic clock by the divider. Therefore, the warm-up time may include a certain amount of error if there is any fluctuation of the oscillation frequency when STOP mode is released. Thus, the warm-up time must be considered as an approximate value.

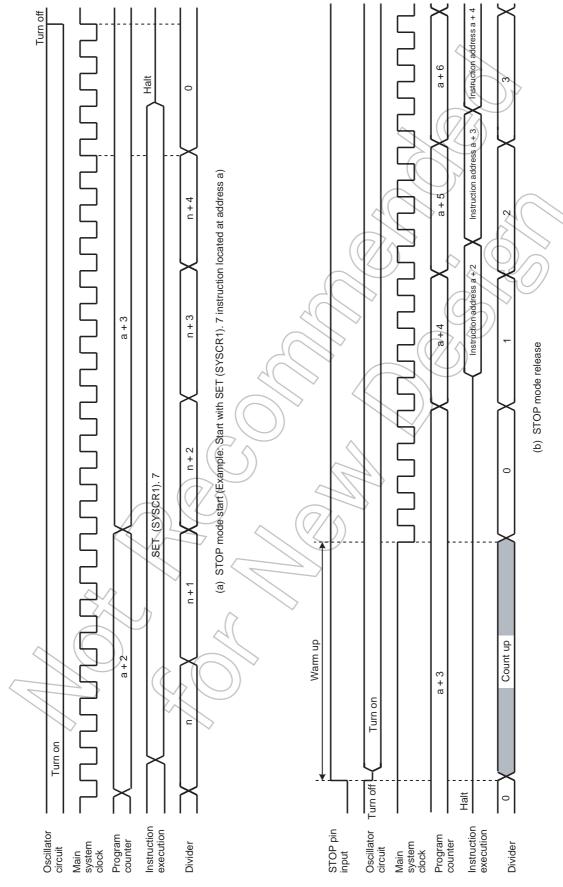


Figure 2-9 STOP Mode Start/Release

2.2.4.2 IDLE1/2 mode and SLEEP1/2 mode

IDLE1/2 and SLEEP1/2 modes are controlled by the system control register 2 (SYSCR2) and maskable interrupts. The following status is maintained during these modes.

- 1. Operation of the CPU and watchdog timer (WDT) is halted. On-chip peripherals continue to operate.
- 2. The data memory, CPU registers, program status word and port output latches are all held in the status in effect before these modes were entered.
- 3. The program counter holds the address 2 ahead of the instruction which starts these modes.

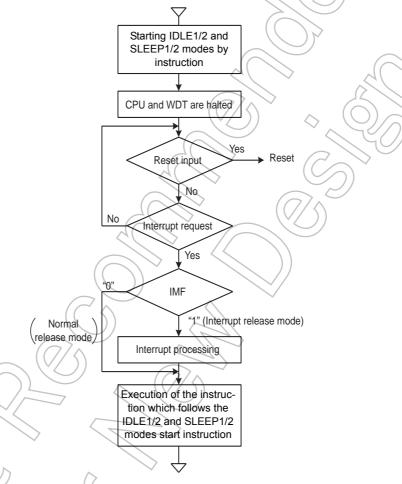


Figure 2-10 IDLE1/2 and SLEEP1/2 Modes

• Start the IDLE1/2 and SLEEP1/2 modes

After IMF is set to "0", set the individual interrupt enable flag (EF) which releases IDLE1/2 and SLEEP1/2 modes. To start IDLE1/2 and SLEEP1/2 modes, set SYSCR2<IDLE> to "1".

• Release the IDLE1/2 and SLEEP1/2 modes

IDLE1/2 and SLEEP1/2 modes include a normal release mode and an interrupt release mode. These modes are selected by interrupt master enable flag (IMF). After releasing IDLE1/2 and SLEEP1/2 modes, the SYSCR2<IDLE> is automatically cleared to "0" and the operation mode is returned to the mode preceding IDLE1/2 and SLEEP1/2 modes.

IDLE1/2 and SLEEP1/2 modes can also be released by inputting low level on the RESET pin. After releasing reset, the operation mode is started from NORMAL1 mode.

(1) Normal release mode (IMF = "0")

IDLE1/2 and SLEEP1/2 modes are released by any interrupt source enabled by the individual interrupt enable flag (EF). After the interrupt is generated, the program operation is resumed from the instruction following the IDLE1/2 and SLEEP1/2 modes start instruction. Normally, the interrupt latches (IL) of the interrupt source used for releasing must be cleared to "0" by load instructions.

(2) Interrupt release mode (IMF = "1"

IDLE1/2 and SLEEP1/2 modes are released by any interrupt source enabled with the individual interrupt enable flag (EF) and the interrupt processing is started. After the interrupt is processed, the program operation is resumed from the instruction following the instruction, which starts IDLE1/2 and SLEEP1/2 modes.

Note: When a watchdog timer interrupts is generated immediately before IDLE1/2 and SLEEP1/2 modes are started, the watchdog timer interrupt will be processed but IDLE1/2 and SLEEP1/2 modes will not be started.

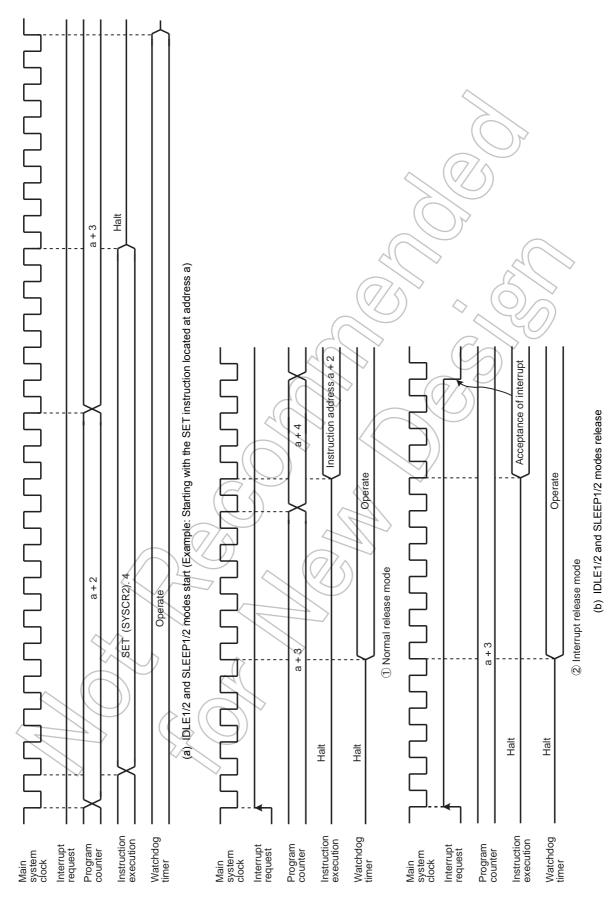


Figure 2-11 IDLE1/2 and SLEEP1/2 Modes Start/Release

2.2.4.3 IDLE0 and SLEEP0 modes (IDLE0, SLEEP0)

IDLE0 and SLEEP0 modes are controlled by the system control register 2 (SYSCR2) and the time base timer control register (TBTCR). The following status is maintained during IDLE0 and SLEEP0 modes.

- 1. Timing generator stops feeding clock to peripherals except TBT.
- 2. The data memory, CPU registers, program status word and port output latches are all held in the status in effect before IDLE0 and SLEEP0 modes were entered.
- 3. The program counter holds the address 2 ahead of the instruction which starts IDLE0 and SLEEP0 modes.

Note: Before starting IDLE0 or SLEEP0 mode, be sure to stop (Disable) peripherals.

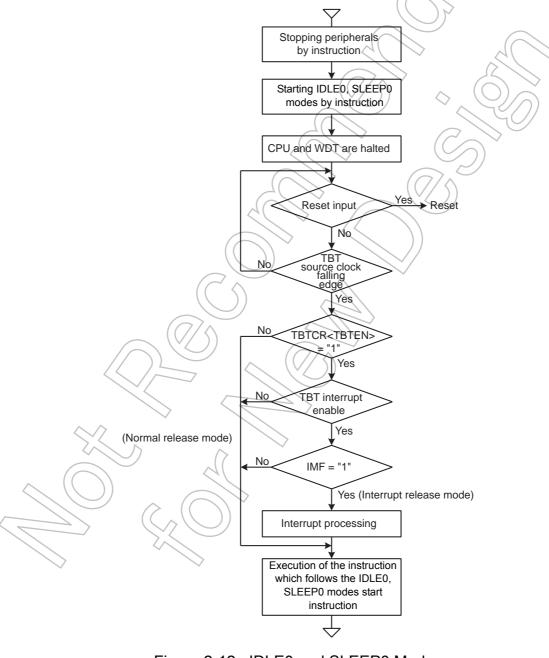


Figure 2-12 IDLE0 and SLEEP0 Modes

· Start the IDLE0 and SLEEP0 modes

Stop (Disable) peripherals such as a timer counter.

To start IDLE0 and SLEEP0 modes, set SYSCR2<TGHALT> to "1".

Release the IDLE0 and SLEEP0 modes

IDLE0 and SLEEP0 modes include a normal release mode and an interrupt release mode.

These modes are selected by interrupt master flag (IMF), the individual interrupt enable flag of TBT and TBTCR<TBTEN>.

After releasing IDLE0 and SLEEP0 modes, the SYSCR2<TGHALT> is automatically cleared to "0" and the operation mode is returned to the mode preceding IDLE0 and SLEEP0 modes. Before starting the IDLE0 or SLEEP0 mode, when the TBTCR<TBTEN> is set to "1", INTTBT interrupt latch is set to "1".

IDLE0 and SLEEP0 modes can also be released by inputting low level on the RESET pin. After releasing reset, the operation mode is started from NORMAL1 mode.

Note: IDLE0 and SLEEP0 modes start/release without reference to TBTCR<TBTEN> setting

(1) Normal release mode (IMF•EF6•TBTCR<TBTEN> = "0"

IDLE0 and SLEEP0 modes are released by the source clock falling edge, which is setting by the TBTCR<TBTCK>. After the falling edge is detected, the program operation is resumed from the instruction following the IDLE0 and SLEEP0 modes start instruction. Before starting the IDLE0 or SLEEP0 mode, when the TBTCR<TBTEN> is set to "1", INTTBT interrupt latch is set to "1".

(2) Interrupt release mode (IMF•EF6•TBTCR<TBTEN> = "1")

IDLE0 and SLEEP0 modes are released by the source clock falling edge, which is setting by the TBTCR<TBTCK> and INTTBT interrupt processing is started.

- Note 1: Because returning from IDLE0, SLEEP0 to NORMAL1, SLOW1 is executed by the asynchronous internal clock, the period of IDLE0, SLEEP0 mode might be the shorter than the period setting by TBTCR<TBTCK>.
- Note 2: When a watchdog timer interrupt is generated immediately before IDLE0/SLEEP0 mode is started, the watchdog timer interrupt will be processed but IDLE0/SLEEP0 mode will not be started.

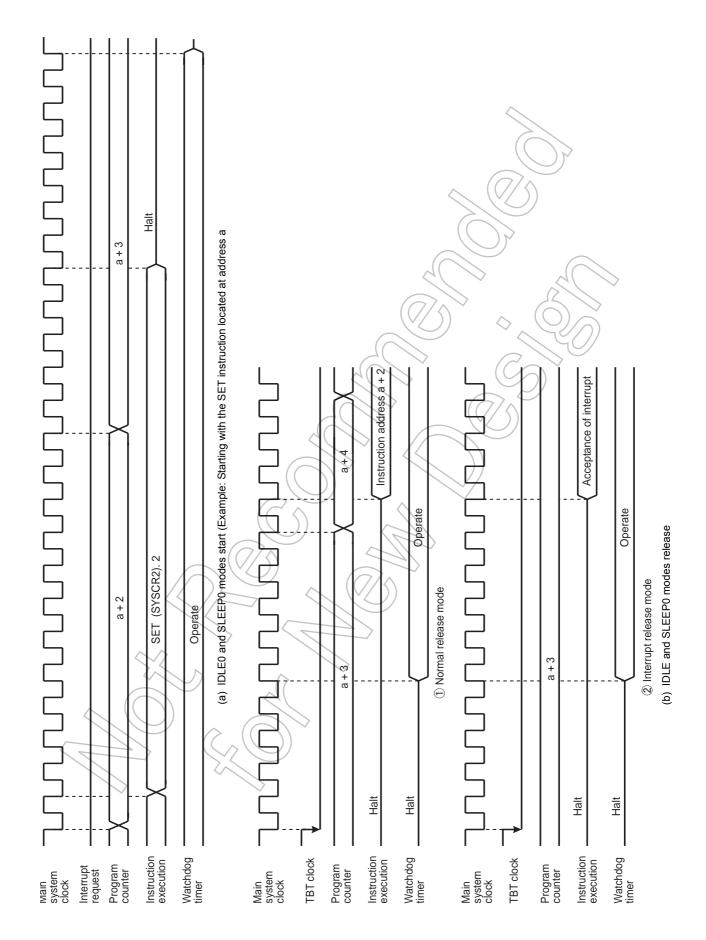


Figure 2-13 IDLE0 and SLEEP0 Modes Start/Release

2.2.4.4 SLOW mode

SLOW mode is controlled by the system control register 2 (SYSCR2).

The following is the methods to switch the mode with the warm-up counter.

Switching from NORMAL2 mode to SLOW1 mode

First, set SYSCR2<SYSCK> to switch the main system clock to the low-frequency clock for SLOW2 mode. Next, clear SYSCR2<XEN> to turn off high-frequency oscillation.

Note: The high-frequency clock can be continued oscillation in order to return to NORMAL2 mode from SLOW mode quickly. Always turn off oscillation of high-frequency clock when switching from SLOW mode to stop mode.

Example 1: Switching from NORMAL2 mode to SLOW1 mode.

SET (SYSCR2). 5 ; SYSCR2<SYSCK> ←

(Switches the main system clock to the low-frequency

clock for SLOW2)

CLR (SYSCR2). 7 ; SYSCR2<XEN> \leftarrow 0

(Turns off high-frequency oscillation)

Example 2 :Switching to the SLOW1 mode after low-frequency clock has stabilized.

SET (SYSCR2). 6 SYSCR2<XTEN> ← 1

LD (TC3CR), 43H Sets mode for TC4, 3 (16-bit mode, fs for source)

LD (TC4CR), 05H ; Sets warming-up counter mode

LDW (TTREG3), 8000H ; Sets warm-up time (Depend on oscillator accompanied)

DI ; IMF $\leftarrow 0$

(EIRE). 5 SET ; Enables INTTC4

Εļ IMF ←

SET (TC4CR). 3 ; Starts TC4, 3

PINTTC4: **CLR** (TC4CR). 3 Stops TC4, 3

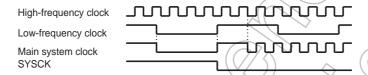
CLR

RETI

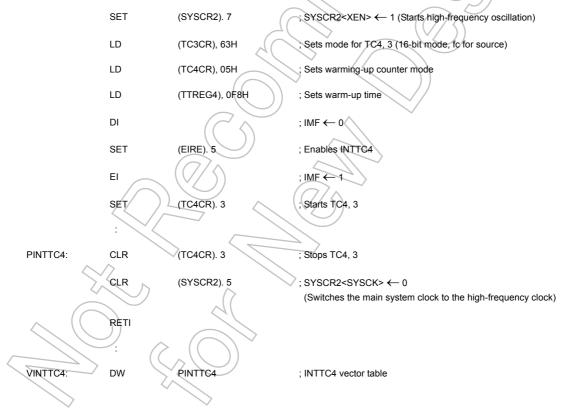
(SYSCR2), 5 SET : SYSCR2<SYSCK> ← 1

(Switches the main system clock to the low-frequency clock)

(SYSCR2). 7 ; SYSCR2<XEN> \leftarrow 0 (Turns off high-frequency oscillation)


VINTTC4: DW PINTTC4 ; INTTC4 vector table

(2) Switching from SLOW1 mode to NORMAL2 mode


First, set SYSCR2<XEN> to turn on the high-frequency oscillation. When time for stabilization (Warm up) has been taken by the timer/counter (TC4,TC3), clear SYSCR2<SYSCK> to switch the main system clock to the high-frequency clock.

SLOW mode can also be released by inputting low level on the RESET pin. After releasing reset, the operation mode is started from NORMAL1 mode.

Note: After SYSCK is cleared to "0", executing the instructions is continued by the low-frequency clock for the period synchronized with low-frequency and high-frequency clocks.

Example :Switching from the SLOW1 mode to the NORMAL2 mode (fc = 16 MHz, warm-up time is 4.0 ms).

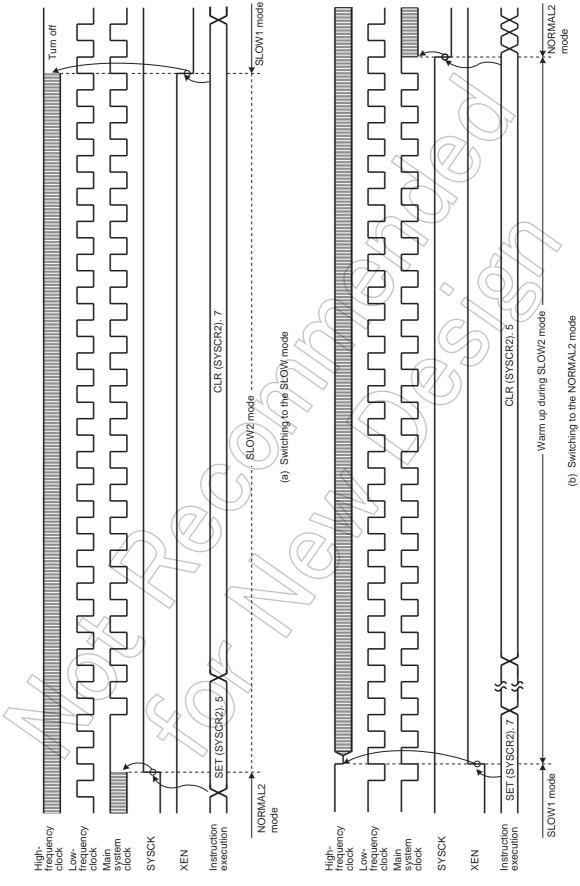


Figure 2-14 Switching between the NORMAL2 and SLOW Modes

TOSHIBA TMP86FS28FG

2.3 Reset Circuit

The TMP86FS28FG has four types of reset generation procedures: An external reset input, an address trap reset, a watchdog timer reset and a system clock reset. Of these reset, the address trap reset, the watchdog timer and the system clock reset are a malfunction reset. When the malfunction reset request is detected, reset occurs during the maximum 24/fc[s].

The malfunction reset circuit such as watchdog timer reset, address trap reset and system clock reset is not initialized when power is turned on. Therefore, reset may occur during maximum 24/fc[s] (1.5µs at 16.0 MHz) when power is turned on.

Table 2-3 shows on-chip hardware initialization by reset action.

Table 2-3 Initializing Internal Status by Reset Action

On-chip Hardware		Initial Value	On-chip Hardware	Initial Value
Program counter	(PC)	(FFFEH)	4()	
Stack pointer	(SP)	Not initialized	Prescaler and divider of timing generator	
General-purpose registers (W, A, B, C, D, E, H, L, IX, I	Y)	Not initialized	Prescale and divide of liming generator	
Jump status flag	(JF)	Not initialized	Watchdog timer	Enable
Zero flag	(ZF)	Not initialized		\bigcirc
Carry flag	(CF)	Not initialized		
Half carry flag	(HF)	Not initialized		Defeate I/O and singuitar
Sign flag	(SF)	Not initialized	Output latches of I/O ports	Refer to I/O port circuitry
Overflow flag	(VF)	Not initialized		
Interrupt master enable flag	(IMF)	(6)		
Interrupt individual enable flags	(EF)		Construct on winds	Refer to each of control
Interrupt latches	(IL)	(0)	Control registers	register
			LCD data buffer	Not initialized
		$\langle \rangle$	RAM	Not initialized

2.3.1 External Reset Input

The RESET pin contains a Schmitt trigger (Hysteresis) with an internal pull-up resistor.

When the RESET pin is held at "L" level for at least 3 machine cycles (12/fc [s]) with the power supply voltage within the operating voltage range and oscillation stable, a reset is applied and the internal state is initialized.

When the RESET pin input goes high, the reset operation is released and the program execution starts at the vector address stored at addresses FFFEH to FFFFH.

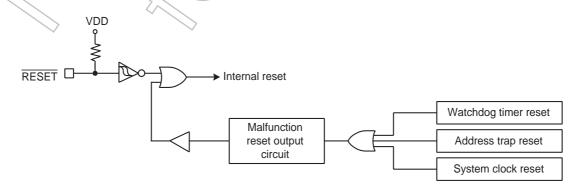
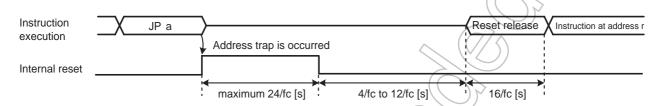



Figure 2-15 Reset Circuit

2.3.2 Address trap reset

If the CPU should start looping for some cause such as noise and an attempt be made to fetch an instruction from the on-chip RAM (when WDTCR1<ATAS> is set to "1"), DBR or the SFR area, address trap reset will be generated. The reset time is maximum 24/fc[s] (1.5µs at 16.0 MHz).

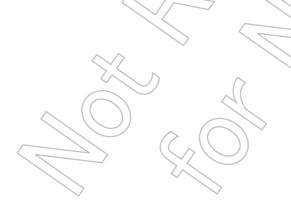
Note: The operating mode under address trapped is alternative of reset or interrupt. The address trap area is alternative.

Note 1: Address "a" is in the SFR, DBR or on-chip RAM (WDTCR1<ATAS> = "1") space.

Note 2: During reset release, reset vector "r" is read out, and an instruction at address "r" is fetched and decoded.

Figure 2-16 Address Trap Reset

2.3.3 Watchdog timer reset


Refer to Section "Watchdog Timer".

2.3.4 System clock reset

If the condition as follows is detected, the system clock reset occurs automatically to prevent dead lock of the CPU. (The oscillation is continued without stopping.)

- In case of clearing SYSCR2<XEN> and SYSCR2<XTEN> simultaneously to "0".
- In case of clearing SYSCR2<XEN> to "0", when the SYSCR2<SYSCK> is "0".
- In case of clearing SYSCR2<XTEN> to "0", when the SYSCR2<SYSCK> is "1".

The reset time is maximum 24/fc (1.5 µs at 16.0 MHz).

3. Interrupt Control Circuit

The TMP86FS28FG has a total of 23 interrupt sources excluding reset. Interrupts can be nested with priorities. Four of the internal interrupt sources are non-maskable while the rest are maskable.

Interrupt sources are provided with interrupt latches (IL), which hold interrupt requests, and independent vectors. The interrupt latch is set to "1" by the generation of its interrupt request which requests the CPU to accept its interrupts. Interrupts are enabled or disabled by software using the interrupt master enable flag (IMF) and interrupt enable flag (EF). If more than one interrupts are generated simultaneously, interrupts are accepted in order which is dominated by hardware. However, there are no prioritized interrupt factors among non-maskable interrupts.

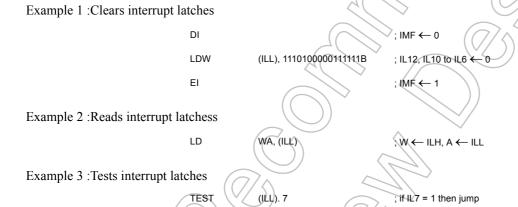
	Interrupt Factors	Enable Condition	Interrupt Latch	Vector Address	Priority
Internal/External	(Reset)	Non-maskable	- (FFFE	1
Internal	INTSWI (Software interrupt)	Non-maskable	- 41	FFFC	2
Internal	INTUNDEF (Executed the undefined instruction interrupt)	Non-maskable	6	FFFC	2
Internal	INTATRAP (Address trap interrupt)	Non-maskable	1L2	FFFA	2
Internal	INTWDT (Watchdog timer interrupt)	Non-maskable	IL3	FFF8	2
External	ĪNTO (IMF• EF4 = 1, INT0EN = 1	IL4	FFF6	5
External	INT1	IMF• EF5 = 1	JI <u>L</u> 5	FFF4	6
Internal	INTTBT	IMF• EF6 = 1	IL6	FFF2	7
Internal	INTTC10	MF• EF7 = 1) IL7	FFF0	8
Internal	INTRXD0	IMF• EF8 = 1	IL8	FFEE	9
Internal	INTTXD0	IMF• EF9 = 1	IL9	FFEC	10
Internal	INTTC11	IMF• EF10 = 1	IL10	FFEA	11
External	INT2	IMF• EF11 = 1	IL11	FFE8	12
-	Reserved	IMF• EF12 = 1	IL12	FFE6	13
-	INTSIO	IMF• EF13 = 1	IL13	FFE4	14
-	Reserved	IMF EF14 = 1	IL14	FFE2	15
-	Reserved	IMF• EF15 = 1	IL15	FFE0	16
-	Reserved	IMF• EF16 = 1	IL16	FFBE	17
=	Reserved	IMF• EF17 = 1	IL17	FFBC	18
-	Reserved	IMF• EF18 = 1	IL18	FFBA	19
- ^	Reserved	IMF• EF19 = 1	IL19	FFB8	20
Internal	INTTC3	IMF• EF20 = 1	IL20	FFB6	21
Internal	INTC4	IMF• EF21 = 1	IL21	FFB4	22
External	INT3	IMF• EF22 = 1	IL22	FFB2	23
Internal	INTTC5	IMF• EF23 = 1	IL23	FFB0	24
Internal	INTTC6	IMF• EF24 = 1	IL24	FFAE	25
External	INT4	IMF• EF25 = 1	IL25	FFAC	26
External	INT5	IMF• EF26 = 1	IL26	FFAA	27
Internal	INTRXD1	IMF• EF27 = 1	IL27	FFA8	28
Internal	INTTXD1	IMF• EF28 = 1	IL28	FFA6	29
Internal	INTADC	IMF• EF29 = 1	IL29	FFA4	30
-	Reserved	IMF• EF30 = 1	IL30	FFA2	31
-	Reserved	IMF• EF31 = 1	IL31	FFA0	32

Note 1: To use the address trap interrupt (INTATRAP), clear WDTCR1<ATOUT> to "0" (It is set for the "reset request" after reset is cancelled). For details, see "Address Trap".

Note 2: To use the watchdog timer interrupt (INTWDT), clear WDTCR1<WDTOUT> to "0" (It is set for the "Reset request" after reset is released). For details, see "Watchdog Timer".

3.1 Interrupt latches (IL29 to IL2)

An interrupt latch is provided for each interrupt source, except for a software interrupt and an executed the undefined instruction interrupt. When interrupt request is generated, the latch is set to "1", and the CPU is requested to accept the interrupt if its interrupt is enabled. The interrupt latch is cleared to "0" immediately after accepting interrupt. All interrupt latches are initialized to "0" during reset.


The interrupt latches are located on address 002EH, 002FH, 003CH and 003DH in SFR area. Each latch can be cleared to "0" individually by instruction. However, IL2 and IL3 should not be cleared to "0" by software. For clearing the interrupt latch, load instruction should be used and then IL2 and IL3 should be set to "1". If the read-modify-write instructions such as bit manipulation or operation instructions are used, interrupt request would be cleared inadequately if interrupt is requested while such instructions are executed.

Interrupt latches are not set to "1" by an instruction.

Since interrupt latches can be read, the status for interrupt requests can be monitored by software.

Note: In main program, before manipulating the interrupt enable flag (EF) of the interrupt latch (IL), be sure to clear IMF to "0" (Disable interrupt by DI instruction). Then set IMF newly again as required after operating on the EF or IL (Enable interrupt by EI instruction)

In interrupt service routine, because the IMF becomes "0" automatically, clearing IMF need not execute normally on interrupt service routine. However, if using multiple interrupt on interrupt service routine, manipulating EF or IL should be executed before setting IMF="1".

F, SSET

3.2 Interrupt enable register (EIR)

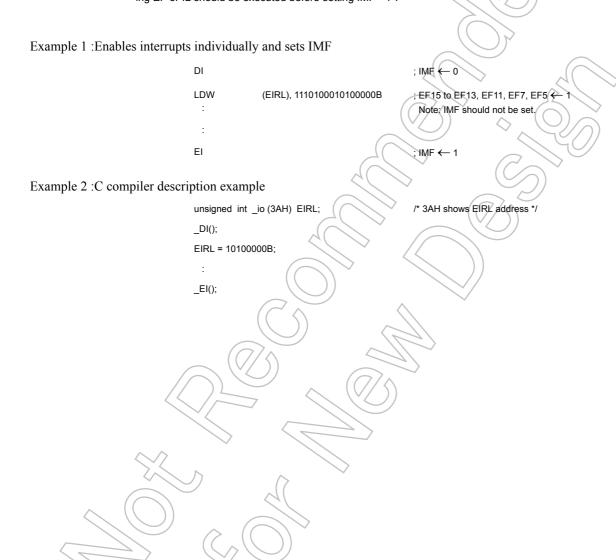
JR

The interrupt enable register (EIR) enables and disables the acceptance of interrupts, except for the non-maskable interrupts (Software interrupt, undefined instruction interrupt, address trap interrupt and watchdog interrupt). Non-maskable interrupt is accepted regardless of the contents of the EIR.

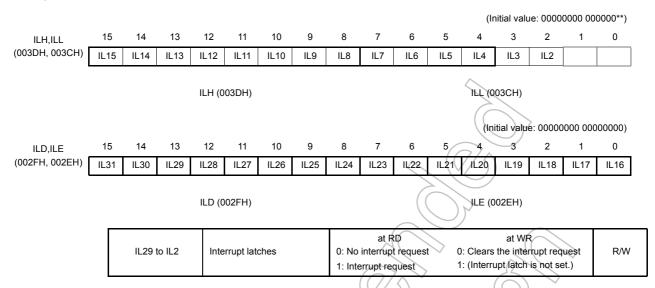
The EIR consists of an interrupt master enable flag (IMF) and the individual interrupt enable flags (EF). These registers are located on address 002CH, 002DH, 003AH and 003BH in SFR area, and they can be read and written by an instructions (Including read-modify-write instructions such as bit manipulation or operation instructions).

3.2.1 Interrupt master enable flag (IMF)

The interrupt enable register (IMF) enables and disables the acceptance of the whole maskable interrupt. While IMF = "0", all maskable interrupts are not accepted regardless of the status on each individual interrupt enable flag (EF). By setting IMF to "1", the interrupt becomes acceptable if the individuals are enabled. When an interrupt is accepted, IMF is cleared to "0" after the latest status on IMF is stacked. Thus the maskable interrupts which follow are disabled. By executing return interrupt instruction [RETI/RETN], the stacked data, which was the status before interrupt acceptance, is loaded on IMF again.


The IMF is located on bit0 in EIRL (Address: 003AH in SFR), and can be read and written by an instruction. The IMF is normally set and cleared by [EI] and [DI] instruction respectively. During reset, the IMF is initialized to "0".

3.2.2 Individual interrupt enable flags (EF29 to EF4)


Each of these flags enables and disables the acceptance of its maskable interrupt. Setting the corresponding bit of an individual interrupt enable flag to "1" enables acceptance of its interrupt, and setting the bit to "0" disables acceptance. During reset, all the individual interrupt enable flags (EF29 to EF4) are initialized to "0" and all maskable interrupts are not accepted until they are set to "1".

Note: In main program, before manipulating the interrupt enable flag (EF) or the interrupt latch (IL), be sure to clear IMF to "0" (Disable interrupt by DI instruction). Then set IMF newly again as required after operating on the EF or IL (Enable interrupt by EI instruction)

In interrupt service routine, because the IMF becomes "0" automatically, clearing IMF need not execute normally on interrupt service routine. However, if using multiple interrupt on interrupt service routine, manipulating EF or IL should be executed before setting IMF="1".

Interrupt Latches

Note 1: To clear any one of bits IL7 to IL4, be sure to write "1" into IL2 and IL3,

Note 2: In main program, before manipulating the interrupt enable flag (EF) or the interrupt latch (IL), be sure to clear IMF to "0" (Disable interrupt by DI instruction). Then set IMF newly again as required after operating on the EF or IL (Enable interrupt by EI instruction)

In interrupt service routine, because the IMF becomes "0" automatically, clearing IMF need not execute normally on interrupt service routine. However, if using multiple interrupt on interrupt service routine, manipulating EF or IL should be executed before setting IMF="1".

Note 3: Do not clear IL with read-modify-write instructions such as bit operations.

Interrupt Enable Registers

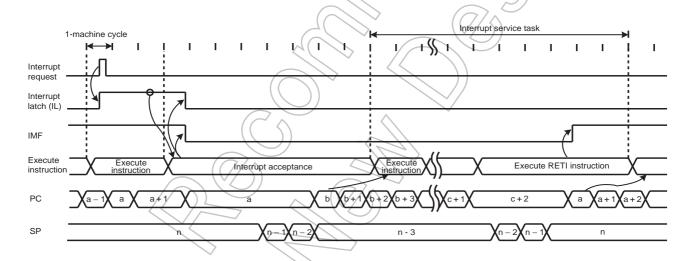
(Initial value: 00000000 0000***0) 7 6 15 14 13 12 _11 8 EIRH.EIRL (003BH, 003AH) EF15 EF14 EF13 EF10 EF6 EF4 EF12 EF11 EF9 EF7 EF5 IMF EF8 EIRH (003BH) EIRL (003AH) (Initial value: 00000000 00000000) 14 12 10 8 6 5 4 EIRD.EIRE (002DH, 002CH) EF31 EF30 EF28 EF27 EF26 EF25 EF24 EF23 EF18 EF17 EF16 EF22 EF21 EF20 EF19 EIRD (002DH) EIRE (002CH) Individual-interrupt enable flag Disables the acceptance of each maskable interrupt. EF29 to EF4 (Specified for each bit) Enables the acceptance of each maskable interrupt. R/W Disables the acceptance of all maskable interrupts IMF Interrupt master enable flag Enables the acceptance of all maskable interrupts

Note 1: *: Don't care

Note 2: Do not set IMF and the interrupt enable flag (EF15 to EF4) to "1" at the same time.

Note 3: In main program, before manipulating the interrupt enable flag (EF) or the interrupt latch (IL), be sure to clear IMF to "0" (Disable interrupt by DI instruction). Then set IMF newly again as required after operating on the EF or IL (Enable interrupt by EI instruction)

In interrupt service routine, because the IMF becomes "0" automatically, clearing IMF need not execute normally on interrupt service routine. However, if using multiple interrupt on interrupt service routine, manipulating EF or IL should be executed before setting IMF="1".


3.3 Interrupt Sequence

An interrupt request, which raised interrupt latch, is held, until interrupt is accepted or interrupt latch is cleared to "0" by resetting or an instruction. Interrupt acceptance sequence requires 8 machine cycles (2 µs @16 MHz) after the completion of the current instruction. The interrupt service task terminates upon execution of an interrupt return instruction [RETI] (for maskable interrupts) or [RETN] (for non-maskable interrupts). Figure 3-1 shows the timing chart of interrupt acceptance processing.

3.3.1 Interrupt acceptance processing is packaged as follows

- a. The interrupt master enable flag (IMF) is cleared to "0" in order to disable the acceptance of any following interrupt.
- b. The interrupt latch (IL) for the interrupt source accepted is cleared to "0".
- c. The contents of the program counter (PC) and the program status word, including the interrupt master enable flag (IMF), are saved (Pushed) on the stack in sequence of PSW + IMF, PCH, PCL. Meanwhile, the stack pointer (SP) is decremented by 3.
- d. The entry address (Interrupt vector) of the corresponding interrupt service program, loaded on the vector table, is transferred to the program counter.
- e. The instruction stored at the entry address of the interrupt service program is executed.

Note: When the contents of PSW are saved on the stack, the contents of IMF are also saved

Note 1: a: Return address entry address, b: Entry address, c: Address which RETI instruction is stored

Note 2: On condition that interrupt is enabled, it takes 38/fc [s] or 38/fs [s] at maximum (If the interrupt latch is set at the first machine cycle on 10 cycle instruction) to start interrupt acceptance processing since its interrupt latch is set.

Figure 3-1 Timing Chart of Interrupt Acceptance/Return Interrupt Instruction

Example: Correspondence between vector table address for INTTBT and the entry address of the interrupt service program

Figure 3-2 Vector table address, Entry address

A maskable interrupt is not accepted until the IMF is set to "1" even if the maskable interrupt higher than the level of current servicing interrupt is requested.

In order to utilize nested interrupt service, the IMF is set to "1" in the interrupt service program. In this case, acceptable interrupt sources are selectively enabled by the individual interrupt enable flags.

To avoid overloaded nesting, clear the individual interrupt enable flag whose interrupt is currently serviced, before setting IMF to "1". As for non-maskable interrupt, keep interrupt service shorten compared with length between interrupt requests; otherwise the status cannot be recovered as non-maskable interrupt would simply nested.

3.3.2 Saving/restoring general-purpose registers

During interrupt acceptance processing, the program counter (PC) and the program status word (PSW, includes IMF) are automatically saved on the stack, but the accumulator and others are not. These registers are saved by software if necessary. When multiple interrupt services are nested, it is also necessary to avoid using the same data memory area for saving registers. The following methods are used to save/restore the general-purpose registers.

3.3.2.1 Using PUSH and POP instructions

If only a specific register is saved or interrupts of the same source are nested, general-purpose registers can be saved/restored using the PUSH/POP instructions.

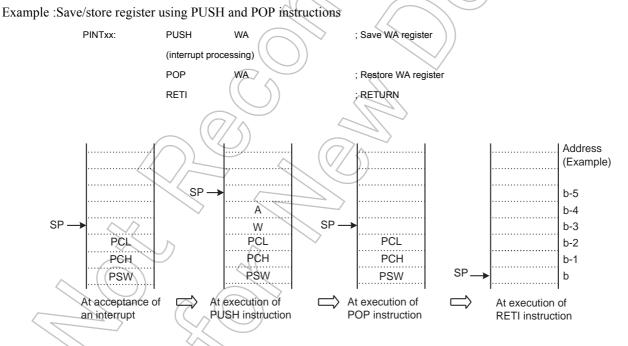
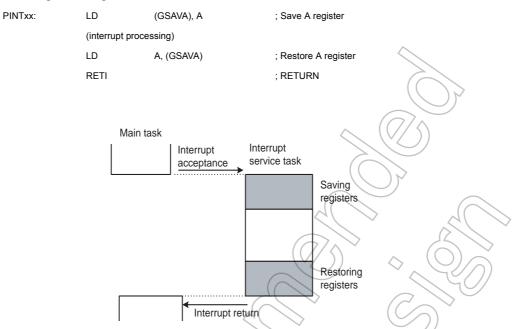



Figure 3-3 Save/store register using PUSH and POP instructions

3.3.2.2 Using data transfer instructions

To save only a specific register without nested interrupts, data transfer instructions are available.

Example :Save/store register using data transfer instructions

Saving/Restoring general-purpose registers using PUSH/POP data transfer instruction

Figure 3-4 Saving/Restoring General-purpose Registers under Interrupt Processing

3.3.3 Interrupt return

Interrupt return instructions [RETI]/[RETN] perform as follows.

[RETI]/[RETN] Interrupt Return

1. Program counter (PC) and program status word
(PSW, includes IMF) are restored from the stack.

2. Stack pointer (SP) is incremented by 3.

As for address trap interrupt (INTATRAP), it is required to alter stacked data for program counter (PC) to restarting address, during interrupt service program.

Note: If [RETN] is executed with the above data unaltered, the program returns to the address trap area and INTATRAP occurs again. When interrupt acceptance processing has completed, stacked data for PCL and PCH are located on address (SP + 1) and (SP + 2) respectively.

Example 1:Returning from address trap interrupt (INTATRAP) service program

PINTxx: POP WA ; Recover SP by 2

LD WA, Return Address ;

PUSH WA ; Alter stacked data

(interrupt processing)

RETN ; RETURN

Example 2: Restarting without returning interrupt

(In this case, PSW (Includes IMF) before interrupt acceptance is discarded.)

PINTxx: INC SP ; Recover SP by 3

INC SP ;

INC SP ;

(interrupt processing)

LD EIRL, data ; Set IMF to "1" or clear it to "0"

JP Restart Address : Jump into restarting address

Interrupt requests are sampled during the final cycle of the instruction being executed. Thus, the next interrupt can be accepted immediately after the interrupt return instruction is executed.

Note 1: It is recommended that stack pointer be return to rate before INTATRAP (Increment 3 times), if return interrupt instruction [RETN] is not utilized during interrupt service program under INTATRAP (such as Example 2).

Note 2: When the interrupt processing time is longer than the interrupt request generation time, the interrupt service task is performed but not the main task.

3.4 Software Interrupt (INTSW)

Executing the SWI instruction generates a software interrupt and immediately starts interrupt processing (INTSW is highest prioritized interrupt).

Use the SWI instruction only for detection of the address error or for debugging

3.4.1 Address error detection

FFH is read if for some cause such as noise the CPU attempts to fetch an instruction from a non-existent memory address during single chip mode. Code FFH is the SWI instruction, so a software interrupt is generated and an address error is detected. The address error detection range can be further expanded by writing FFH to unused areas of the program memory. Address trap reset is generated in case that an instruction is fetched from RAM, DBR or SFR areas.

3.4.2 Debugging

Debugging efficiency can be increased by placing the SWI instruction at the software break point setting address.

3.5 Undefined Instruction Interrupt (INTUNDEF)

Taking code which is not defined as authorized instruction for instruction causes INTUNDEF. INTUNDEF is generated when the CPU fetches such a code and tries to execute it. INTUNDEF is accepted even if non-maskable interrupt is in process. Contemporary process is broken and INTUNDEF interrupt process starts, soon after it is requested.

Note: The undefined instruction interrupt (INTUNDEF) forces CPU to jump into vector address, as software interrupt (SWI) does.

3.6 Address Trap Interrupt (INTATRAP)

Fetching instruction from unauthorized area for instructions (Address trapped area) causes reset output or address trap interrupt (INTATRAP). INTATRAP is accepted even if non-maskable interrupt is in process. Contemporary process is broken and INTATRAP interrupt process starts, soon after it is requested.

Note: The operating mode under address trapped, whether to be reset output or interrupt processing, is selected on watchdog timer control register (WDTCR).

3.7 External Interrupts

The TMP86FS28FG has 6 external interrupt inputs. These inputs are equipped with digital noise reject circuits (Pulse inputs of less than a certain time are eliminated as noise).

Edge selection is also possible with INT1 to INT4. The INT0/P30 pin can be configured as either an external interrupt input pin or an input/output port, and is configured as an input port during reset.

Edge selection, noise reject control and INT0/P30 pin function selection are performed by the external interrupt control register (EINTCR).

Source	Pin	Enable Conditions	Release Edge (level)	Digital Noise Reject
INT0	ĪNTO	IMF • EF4 • INT0EN=1	Falling edge	Pulses of less than 2/fc [s] are eliminated as noise. Pulses of 7/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.
INT1	INT1	IMF • EF5 = 1	Falling edge or Rising edge	Pulses of less than 15/fc or 63/fc [s] are eliminated as noise. Pulses of 49/fc or 193/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.
INT2	INT2	IMF • EF11 = 1	Falling edge or Rising edge	Pulses of less than 7/fc [s] are eliminated as noise. Pulses of 25/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.
INT3	INT3	IMF • EF22 ≠1	Falling edge or Rising edge	Pulses of less than 7/fc [s] are eliminated as noise. Pulses of 25/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.
INT4	INT4	IMF • EF25 = 1	Falling edge, Rising edge, Falling and Rising edge or H level	Pulses of less than 7/fc [s] are eliminated as noise. Pulses of 25/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.
INT5	NT5	IMF • EF26 = 1	Falling edge	Pulses of less than 2/fc [s] are eliminated as noise. Pulses of 7/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.

Note 1: In NORMAL1/2 or IDLE1/2 mode, if a signal with no noise is input on an external interrupt pin, it takes a maximum of "signal establishment time + 6/fs[s]" from the input signal's edge to set the interrupt latch.

Note 2: When INT0EN = "0", IL4 is not set even if a falling edge is detected on the $\overline{\text{INT0}}$ pin input.

Note 3: When a pin with more than one function is used as an output and a change occurs in data or input/output status, an interrupt request signal is generated in a pseudo manner. In this case, it is necessary to perform appropriate processing such as disabling the interrupt enable flag.

External Interrupt Control Register

EINTCR	7	6	5	4	3	2	1	0	
(0037H)	INT1NC	INT0EN	INT4	ES	INT3ES	INT2ES	INT1ES		(Initial value: 0000 000*)

INT1NC	Noise reject time select	O: Pulses of less than 63/fc [s] are eliminated as noise I: Pulses of less than 15/fc [s] are eliminated as noise	R/W
INT0EN	P30/INT0 pin configuration	0: P30 input/output port 1: NTO pin (Port P30 should be set to an input mode)	R/W
INT4 ES	INT4 edge select	00: Rising edge 01: Falling edge 10: Rising edge and Falling edge 11: H level	R/W
INT3 ES	INT3 edge select	0: Rising edge 1: Falling edge	R/W
INT2 ES	INT2 edge select	0: Rising edge 1: Falling edge	R/W
INT1 ES	INT1 edge select	0: Rising edge 1: Falling edge	R/W

Note 1: fc: High-frequency clock [Hz], *: Don't care

Note 2: When the system clock frequency is switched between high and low or when the external interrupt control register (EINTCR) is overwritten, the noise canceller may not operate normally. It is recommended that external interrupts are disabled using the interrupt enable register (EIR).

Note 3: The maximum time from modifying INT1NC until a noise reject time is changed is 26/fc.

Note 4: In case RESET pin is released while the state of INT4 pin keeps "H" level, the external interrupt 4 request is not generated even if the INT4 edge select is specified as "H" level. The rising edge is needed after RESET pin is released.

4. Special Function Register (SFR)

The TMP86FS28FG adopts the memory mapped I/O system, and all peripheral control and data transfers are performed through the special function register (SFR) or the data buffer register (DBR). The SFR is mapped on address 0000H to 003FH, DBR is mapped on address 0F00H to 0FFFH.

This chapter shows the arrangement of the special function register (SFR) and data buffer register (DBR) for TMP86FS28FG.

4.1 SFR

Address	Read Write			
0000H	PODR			
0001H	PIDR			
0002H	P2DR			
0003H	P3DR			
0004H	P4DR			
0005H	P5DR P5DR			
0006H	P6DR			
0007H	P7DR (7/A)			
0008H	P8DR			
0009H	TC3CR			
000AH	TG4CR			
000BH	TC5CR			
000CH	TC6CR			
000DH	Reserved			
000EH	Reserved			
000FH	Reserved			
0010H	TC10DRAL			
0011H	TC10DRAH			
0012H	TC10DRBL			
0013H	TC10DRBH			
0014H	TC10CR			
0015H	TTREG3			
0016H	TTREG4			
0017H	TTREG5			
0018H	TTREG6			
0019H (\	PWREG3			
001AH	PWREG4			
001BH	PWREG5			
001CH	PWREG6			
001DH	Reserved			
001EH	Reserved			
001FH	Reserved			
0020H	TC11DRAL			
0021H	TC11DRAH			
0022H	TC11DRBL			
0023H	TC11DRBH			
0024H	TC11CR			
0025H	Reserved			

Address	Read	Write	
0026H	Reserved		
0027H	Reserved		
0028H	Rese	erved	
0029H	Rese	erved	
002AH	Rese	erved	
002BH	P3OI	JTCR	
002CH	EI	RE	
002DH	EII	RD	
002EH	IL	E ((//))	
002FH	IL	.D	
0030H	Reserved		
0031H	-	STOPCR	
0032H	P000	JTCR	
0033H	Rese	prved	
0034H	- (7)	WDTCR1	
0035H	- (//	WDTCR2	
0036H	TB	TCR GO	
0037H	EIN	TCR	
0038H	sys	CR1	
0039H	SYS	CR2	
003AH	EI	RL (V/))	
003BH	EIRH		
003CH		T //	
003DH	ILH.		
003EH	Rese	erved	
003FH	PS	SW	

Note 1: Do not access reserved areas by the program.

Note 2: -; Cannot be accessed.

Note 3: Write-only registers and interrupt latches cannot use the read-modify-write instructions (Bit manipulation instructions such as SET, CLR, etc. and logical operation instructions such as AND, OR, etc.).

4.2 DBR

Address	Read	Write		
0F00H	Res	erved		
::	::			
0F5FH	Res	erved		
		(()>		
Address	Read	Write		
0F60H	SIC	OBRO (//		
0F61H	SIC	OBR1		
0F62H	SIC	DBR2		
0F63H	SIC	DBR3		
0F64H	Sic	DBR4		
0F65H	SIC	DBR5		
0F66H	SIC	DBR6		
0F67H	(/sic	DBR7		
0F68H	-	SIOCR1		
0F69H	SIOSR	SIOCR2		
Address	Read	Write		
0F70H	Res	erved		
::				
0F7FH	Res	erved		
\checkmark				

Address	Read	Write
0F80H	Reser	ved
::	::	
0F9FH	Reser	ved
Address	Read	Write
0FA0H	Reser	ved
0FA1H	Reserv	ved
0FA2H	Reserv	ved
0FA3H	Reserv	ved
0FA4H	Reserv	ved
0FA5H	Reserv	ved
0FA6H	Reserv	ved
0FA7H	Reserv	ved
0FA8H	Reser	ved O
0FA9H	Resen	ved
0FAAH	Resen	ved
0FABH	Resen	ved
0FACH	Reserv	ved
0FADH	Reserved	FLSSTB
0FAEH	Reserv	ved
0FAFH	FLSC	CR
0FB0H	Reserv	ved
0FB1H	Reser	ved
0FB2H	Reser	ved
0FB3H	Reser	ved
0FB4H	Reserv	ved
0FB5H	Reser	ved
0FB6H	Reserv	ved
0FB7H	Reserv	ved
0FB8H	Reserv	ved
0FB9H	Reserv	ved
0FBAH	Reserv	ved
ОГВВН	Reserv	ved
0FBCH	Reserv	ved
OFBDH	Reserv	ved
OFBEH	Reserv	ved
0FBFH 0	Reserv	ved

Address	Read	Write	
0FC0H	SEC	G1/0	
0FC1H	SEC	G3/2	
0FC2H	SEC	G5/4	
0FC3H	SEC	G7/6	
0FC4H	SEC	G9/8	
0FC5H	SEG	11/10	
0FC6H	SEG	13/12	
0FC7H	SEG	15/14	
0FC8H	SEG	17/16	
0FC9H	SEG	19/18	
0FCAH	SEG:	21/20	
0FCBH	SEG:	23/22	
0FCCH	SEG:	25/24	
0FCDH	SEG	27/26	
0FCEH	SEG29/28		
0FCFH	SEG31/30		
0FD0H	SEG33/32		
0FD1H	\$EG35/34		
0FD2H	SEG:	37/36	
0FD3H	SEG	39/38	
0FD4H	P4L	CR	
0FD5H	P5t	LCR .	
0FD6H	P6L	.CR \\	
0FD7H	P7I	_CR	
0FD8H	P8L	CR	
0FD9H	LCDCR		
0FDAH	Reserved		
0FDBH	Reserved		
0FDCH	Reserved		
0FDDH	Reserved		
0FDEH	Reserved		
0FDFH	Rese	erved	

Address	Read	Write		
0FE0H	ADCDR2	-		
0FE1H	ADCDR1	-		
0FE2H	AD	CCR1		
0FE3H	AD	CCR2		
0FE4H	Res	served		
0FE5H	UART0SR	UART0CR1		
0FE6H	-	UART0CR2		
0FE7H	RD0BUF	TDOBUF		
0FE8H	UART1SR	UART1CR1		
0FE9H	-	UART1CR2		
0FEAH	RD1BUF	TD1BUF		
0FEBH	Res	served		
0FECH	Reserved			
0FEDH	Reserved			
0FEEH	Res	served		
0FEFH	Reserved			
0FF0H	P0PRD	- 40		
0FF1H	Reserved			
0FF2H	P2PRD	(-)		
0FF3H	P3PRD			
0FF4H	P4PRD	((/)) -		
0FF5H	P5PRD			
0FF6H	P6PRD	-		
0FF7H	P7PRD	- //		
0FF8H	P8PRD	-		
0FF9H	P1	CR1		
0FFAH	P1CR2			
0FFBH	P40UTCR			
OFFCH	P5OUTCR			
0FFDH	P6OUTCR			
OFFEH	P7OUTCR			
OFFFH	P8C	UTCR		

Note 1: Do not access reserved areas by the program.

Note 2: -; Cannot be accessed.

Note 3: Write-only registers and interrupt latches cannot use the read-modify-write instructions (Bit manipulation instructions such as SET, CLR, etc. and logical operation instructions such as AND, OR, etc.).

5. I/O Ports

The TMP86FS28FG has 9 input/output ports (62 pins) as shown below.

Table 5-1 Port Functions

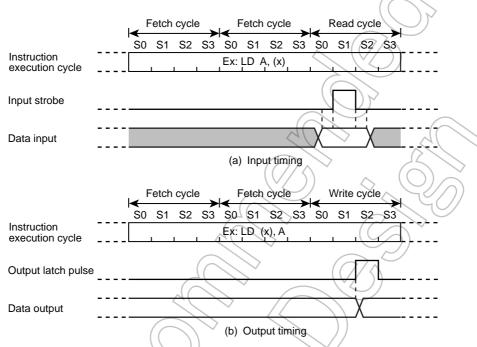

	Primary Function	Secondary Functions
Port P0	3-bit input/output port	External interrupt input, PPG output
Port P1	8-bit input/output port	Analog input, STOP mode release signal input
Port P2	3-bit input/output port	External interrupt input, low-frequency resonator connection, STOP mode release signal input
Port P3	8-bit input/output port	External interrupt input, timer/counter input, serial interface input/output, UART input/output, divider output
Port P4	8-bit input/output port	External interrupt input, timer/counter input, LCD segment output, PPG output
Port P5	8-bit input/output port	Timer/counter input/output, LCD segment output, UART input/output
Port P6	8-bit input/output port	LCD segment output
Port P7	8-bit input/output port	LCD segment output
Port P8	8-bit input/output port	LCD segment output

Table 5-2 Register List

Port	Latch	Read	Pch Control	CRT	CR2	LCD Control
P0	P0DR (0000H)	P0PRD (0FF0H)	P0OUTCR (0032H)	-	/-	-
P1	P1DR (0001H)	-		P1CR1 (0FF9H)	P1CR2 (0FFAH)	-
P2	P2DR (0002H)	P2PRD (0FF2H)))		_	-
P3	P3DR (0003H)	P3PRD (0FF3H)	P3OUTCR (002BH)	-	-	-
P4	P4DR (0004H)	P4PRD (0FF4H)	P4OUTCR (0FFBH)		ı	P4LCR (0FD4H)
P5	P5DR (0005H)	P5PRD (0FF5H)	P5OUTCR (0FFCH)		ı	P5LCR (0FD5H)
P6	P6DR (0006H)	P6PRD (0FF6H)	P6OUTCR (0FFDH)	2	ı	P6LCR (0FD6H)
P7	P7DR (0007H)	P7PRD (0FF7H)	P7OUTCR (0FFEH)			P7LCR (0FD7H)
P8	P8DR (0008H)	P8PRD (0FF8H)	P8OUTCR (0FFFH)	_	_	P8LCR (0FD8H)

Each output port contains a latch for holding output data. All input ports do not have latches, making it necessary to externally hold input data until it is read externally or to read input data multiple times before it is processed. Figure 5-1 shows input/output timings.

External data is read from an input/output port in the S1 state of the read cycle in instruction execution. Since this timing cannot be recognized externally, transient input such as chattering must be processed by software. Data is output to an input/output port in the S2 state of the write cycle in instruction execution.

Note: The positions of the read and write cycles may vary depending on the instruction.

Figure 5-1 Input/Output Timings (Example)

5.1 Port P0 (P00 to P02)

Port P0 is a 3-bit input/output port that can also be used for external interrupt input or PPG output.

A reset initializes the output latch (P0DR) to "1" and the Pch control (P0OUTCR) to "0".

To use a pin in Port P0 as an input port or external interrupt input, set P0DR to "1" and then set the corresponding bit in P0OUTCR to "0".

To use a pin in Port P0 as a PPG output, set P0DR to "1".

The output circuit of Port P0 can be set either as sink open-drain output ("0") or CMOS output ("1") individually for each bit in P0OUTCR.

Port P0 has a separate data input register. The output latch state can be read from the P0DR register, and the pin state can be read from the P0PRD register.

Table 5-3 Register Programming for Port P0 (P00 to P02)

		2 11	
Function		Programmed Value	
Function		PODR	P0OUTCR
Port input, external interrupt input		"1"	"0"
Port "0" output		"o"	Set as
Port "1" output, PPG output	4()	1 "	appropriate.
			. /

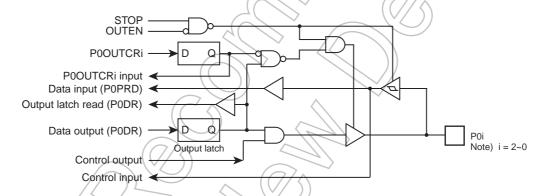
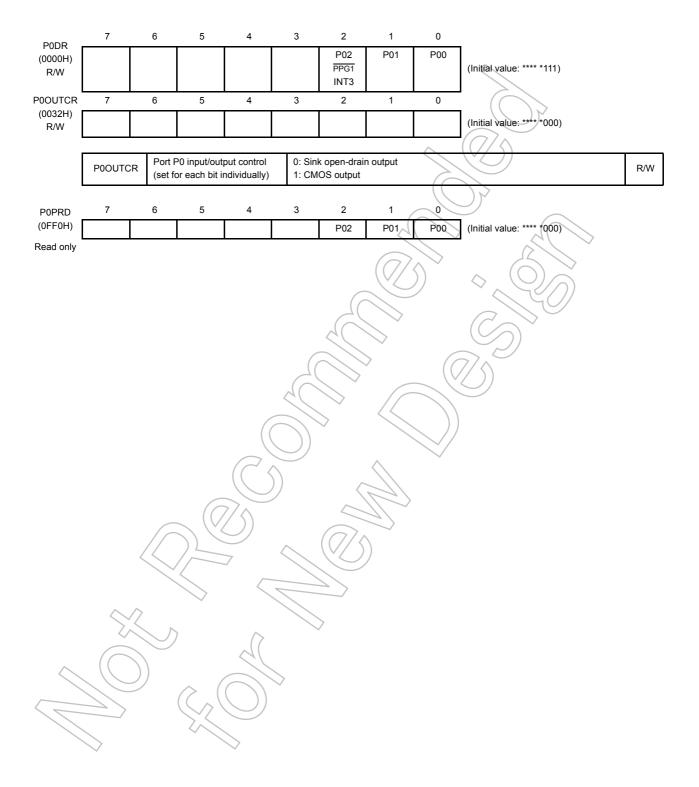



Figure 5-2 Port P0

5.2 Port P1 (P10 to P17)

Port P1 is an 8-bit input/output port that can be configured as an input or an output on a bit basis. Port P1 is also used for analog input or key-on wake-up input.

The Port P1 input/output control register (P1CR1) and Port P1 input control register (P1CR2) are used to specify the function of each pin.

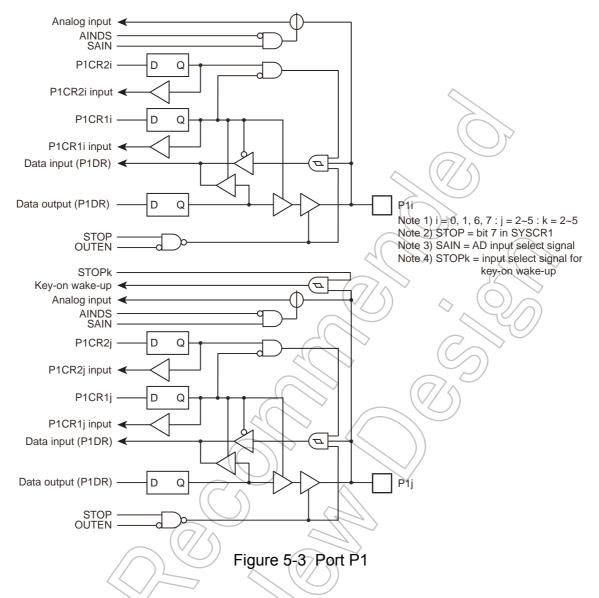
A reset initializes P1CR1 to "0", P1CR2 to "1", and the output latch (P1DR) to "0" so that Port P1 becomes an input port.

To use a pin in Port P1 as an input port, set P1CR1 to "0" and then set P1CR2 to "1". To use a pin in Port P1 as an analog input or key-on wake-up input, set P1CR1 to "0" and then set P1CR2 to "0".

To use a pin in Port P1 as an output port, set the corresponding bit in P1CR1 to "1"

To read the output latch data, set P1CR1 to "1" and read P1DR. To read the pin state, set P1CR1 to "0" and P1CR2 to "1" and then read P1DR. When P1CR1 = "0" and P1CR2 = "0", P1DR is read as "0".

Bits not used as analog inputs are used as input/output pins. During AD conversion, however, output instructions must not be executed to ensure the accuracy of conversion results. Also, during AD conversion, do not input signals that fluctuate widely to pins near analog input pins.


Table 5-4 Register Programming for Port P1 (P10 to P17)

Function	Programmed Value		
Tunction	P1DR	P1CR1	P1CR2
Port input	*	"0")) "1"
Analog input, key-on wake-up input	\> * //	"0"	"0"
Port "0" output	"0"	"1"))	*
Port "1" output	"1"	"1"	*

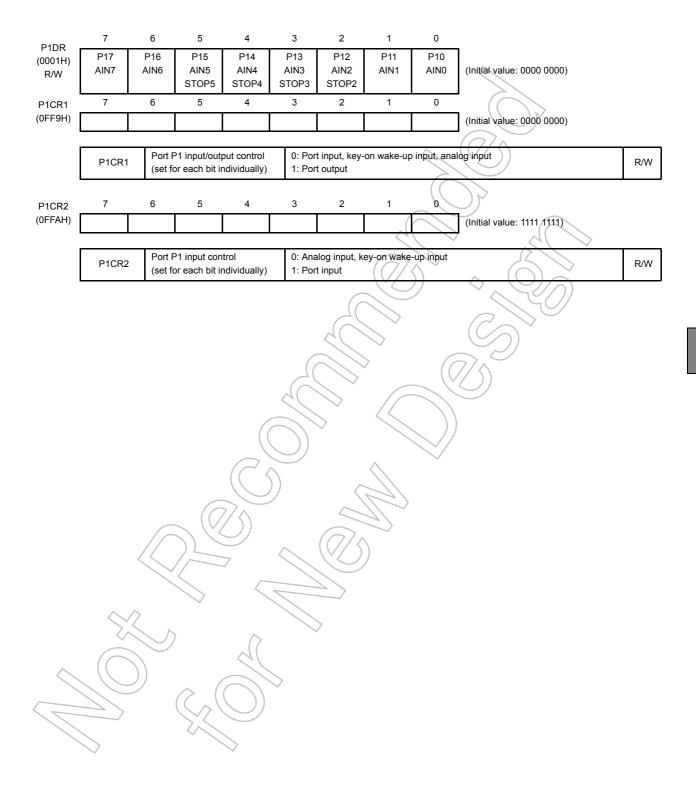

Note: An asterisk (*) indicates that either "1" or "0" can be set.

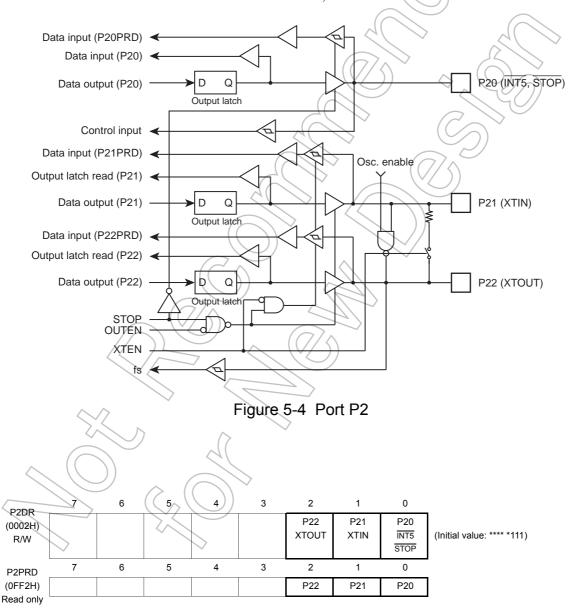
Table 5-5 Values Read from P1DR according to Register Programming

/ ' /	Conditions P1CR1 P1CR2		Values Read from P1DR	
	"0"	"0"	"0"	
	"0"	"1"	Pin state	
//	"1"	"0"	Output latch state	

- Note 1: Pins set to input mode read the pin input data. Therefore, when both input and output modes are used in Port P1, the contents of the output latch of a pin set to input mode may be overwritten by a bit manipulation instruction.
- Note 2: For a pin used as an analog input, be sure to clear the corresponding bit in P1CR2 to "0" to prevent flow-through current.
- Note 3: For a pin used as an analog input, do not set P1CR1 to "1" (port output) to prevent the pin from becoming shorted with an external signal.
- Note 4: Pins not used as analog inputs can be used as input/output pins. During AD conversion, however, output instructions must not be executed to ensure the accuracy of conversion results. Also, during AD conversion, do not input signals that fluctuate widely to pins near analog input pins.

5.3 Port P2 (P20 to P22)

Port P2 is a 3-bit input/output port that can also be used for external interrupt input, STOP mode release signal input, or low-frequency resonator connection.


To use Port P2 as an input port or function pins, set the output latch (P2DR) to "1". A reset initializes P2DR to "1".

In the dual clock mode, pins P21 (XTIN) and P22 (XOUT) are connected with a low-frequency resonator (32.768 kHz). In the single clock mode, pins P21 and P22 can be used as normal input/output port pins.

It is recommended that pin P20 be used as an external interrupt input, STOP release signal input, or input port. (When P20 is used as an output port, the interrupt latch is set on the falling edge of the output pulse.)

Port P2 has a separate data input register. The output latch state can be read from the P2DR register, and the pin state can be read from the P2PRD register.

When a read instruction is executed on P2DR or P2PRD, bits 7 to 3 are read as undefined.

Note: Since pin P20 is also used as a \$\overline{STOP}\$ pin, the output of P20 becomes high-impedance in STOP mode regardless of the OUTEN state.

5.4 Port P3 (P30 to P37)

Port P3 is an 8-bit input/output port that can also be used for external interrupt input, divider output, timer/counter input, serial interface input/output, or UART input/output.

A reset initializes the output latch (P3DR) to "1" and the Pch control (P3OUTCR) to "0".

To use a pin in Port P3 as an external interrupt input, timer/counter input, serial interface input, or UART input, set P3DR to "1" and then set the corresponding bit in P3OUTCR to "0".

To use a pin in Port P3 as a divider output, serial interface output, or UART output, set P3DR to "1".

Port 3 can be used for either SIO or UART, so be sure not to enable both of these functions at the same time.

The output circuit of Port P3 can be set either as sink open-drain output ("0") or CMOS output ("1") individually for each bit in P3OUTCR.

Port P3 has a separate data input register. The output latch state can be read from the P3DR register, and the pin state can be read from the P3PRD register.

Table 5-6 Register Programming for Port P3 (P30 to P37)

Function	Programmed Value		
Function	P3DR	P3OUTCR	
Port input, external interrupt input, timer/counter input, serial interface input, UART input	"1"	"0"	
Port "0" output	"0"	Set as	
Port "1" output, serial interface output, UART output, divider output	"1"	appropriate.	

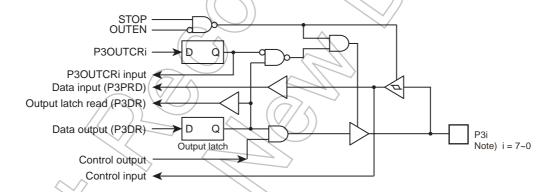
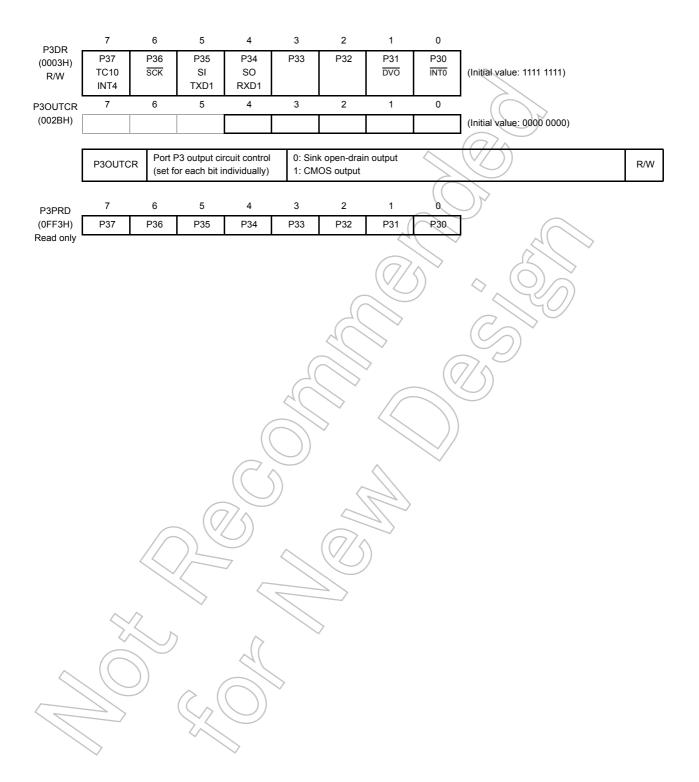



Figure 5-5 Port P3

5.5 Port P4 (P40 to P47)

Port P4 is an 8-bit input/output port that can also be used for external interrupt input, PPG output, timer/counter input, or LCD segment output.

A reset initializes the output latch (P4DR) to "1", the Pch control (P4OUTCR) to "0", and the LCD output control register (P4LCR) to "0".

To use a pin in Port P4 as an input port, external interrupt input, or timer/counter input, set P4DR to "1" and then set the corresponding bit in P4LCR and P4OUTCR to "0".

To use a pin in Port P4 as an LCD segment output, set the corresponding bit in P4LCR to "1".

To use a pin in Port P4 as a PPG output, set P4DR to "1" and then set the corresponding bit in P4LCR to "0".

The output circuit of Port P4 can be set either as sink open-drain outut ("0") or CMOS output ("1") individually for each bit in P4OUTCR.

Port P4 has a separate data input register. The output latch state can be read from the P4DR register, and the pin state can be read from the P4PRD register.

				V , C//
Function			Programmed Value	e
Function		P4DR	P4OUTCR	P4LCR
Port input, external interrupt input, timer/counter input	6	"1"	"0"	"0"
Port "0" output		"0"	\sim)) "0"
Port "1" output		"1"	Set as appropriate.	"0"
PPG output		"1"		"0"
LCD segment output))	*	\\\	"1"

Table 5-7 Register Programming for Port P4 (P40 to P47)

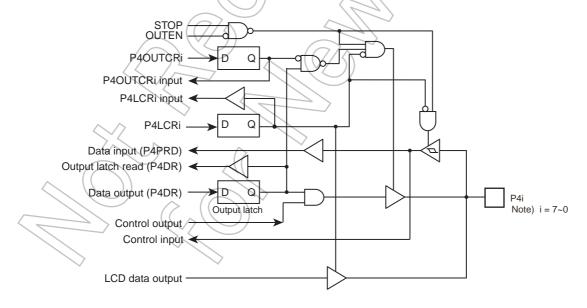
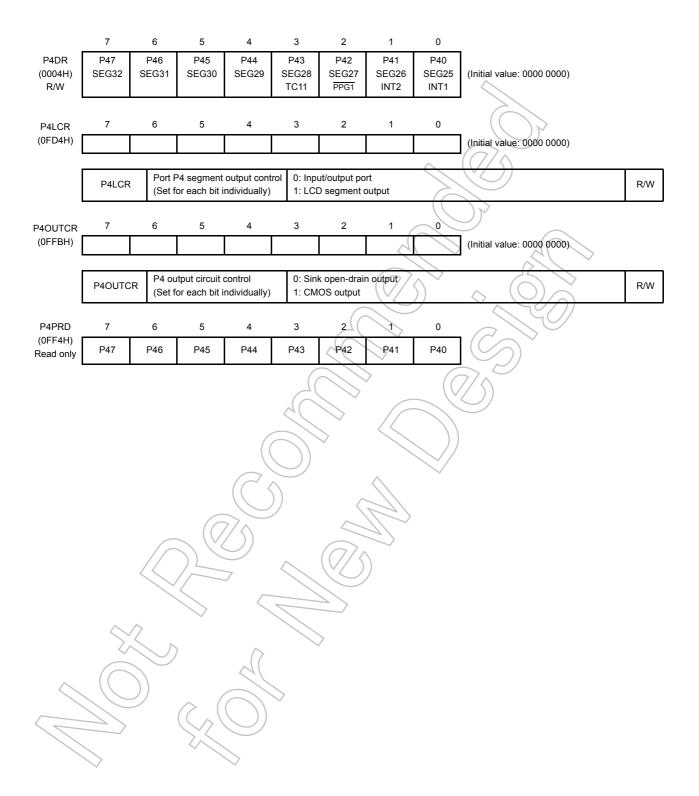



Figure 5-6 Port P4

5.6 Port P5 (P50 to P57)

Port P5 is an 8-bit input/output port that can also be used for timer/counter input/output, LCD segment output, or UART input/output.

A reset initializes the output latch (P5DR) to "1", the Pch control (P5OUTCR) to "0", and the LCD output control register (P5LCR) to "0".

To use a pin in Port P5 as an input port, timer/counter input, or UART input, set P5DR to "1" and then set the corresponding bit in P5LCR and P5OUTCR to "0".

To use a pin in Port P5 as an LCD segment output, set the corresponding bit in P5LCR to "1".

To use a pin in Port P5 as a UART output or timer/counter output, set P5DR to "1" and then set the corresponding bit in P5LCR to "0".

The output circuit of Port P5 can be set either as sink open-drain output ("0") or CMOS otuput ("1") individually for each bit in P5OUTCR.

Port P5 has a separate data input register. The output latch state can be read from the P5DR register, and the pin state can be read from the P5PRD register.

Table 5-8 Register Programming for Port P5 (P50 to P57)

Function	Programmed Value				
Function	P5DR	P5OUTCR	P5LCR		
Port input, UART input, timer/counter input	"4"	"0"	"0"		
Port "0" output	"0"	Set as	"0"		
Port "1" output, UART output	"1" //	appropriate.	"0"		
LCD segment output	*	*))	"1"		

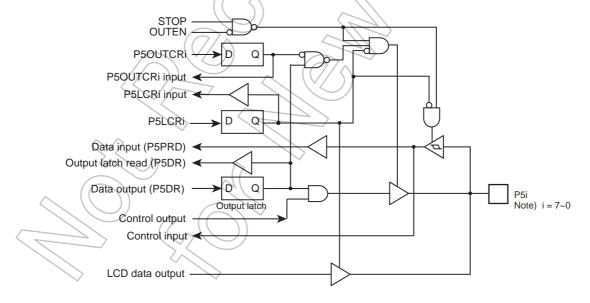
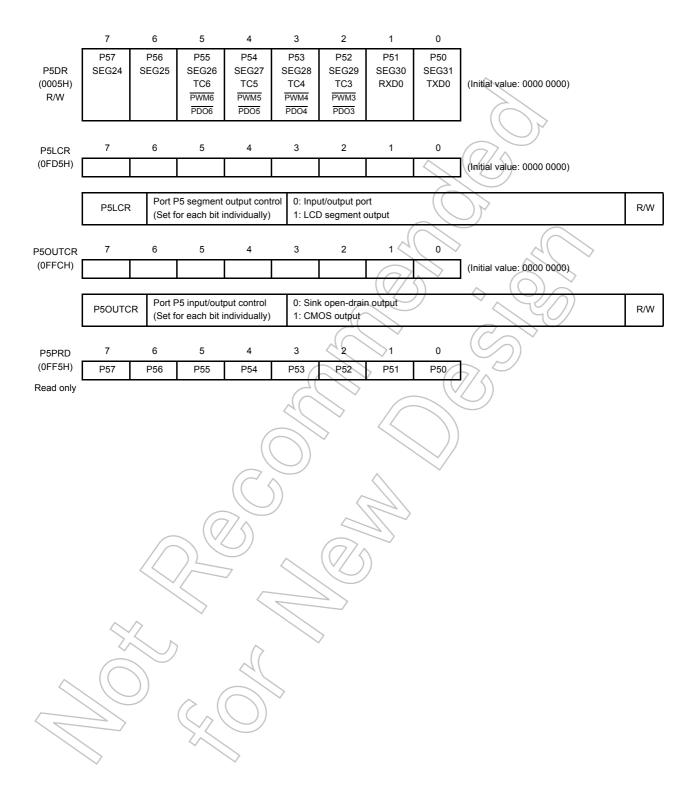



Figure 5-7 Port P5

5.7 Port P6 (P60 to P67)

Port P6 is an 8-bit input/output port that can also be used for LCD segment output.

A reset initializes the output latch (P6DR) to "1", the Pch control (P6OUTCR) to "0", and the LCD output control register (P6LCR) to "0".

To use a pin in Port P6 as an input port, set P6DR to "1" and then set the corresponding bit in P6LCR and P6OUTCR to "0".

To use a pin in Port P6 as an LCD segment output, set the corresponding bit in P6LCR to "1".

The output circuit of Port P6 can be set either as sink open-drain output ("0") or CMOS output ("1") individually for each bit in P6OUTCR.

Port P6 has a separate data input register. The outut latch state can be read from the P6DR register, and the pin state can be read from the P6PRD register.

Table 5-9 Register Programming for Port P6 (P60 to P67)

Function		(7)	Programmed Value	
Function		P6DR	P6OUTCR	P6LCR
Port input		"4"	"0"	"0"
Port "0" output	\mathcal{A}	"0"	Set as	"0"
Port "1" output		"1"	appropriate.	"0"
LCD segment output		*	((/*/ \)	"1"

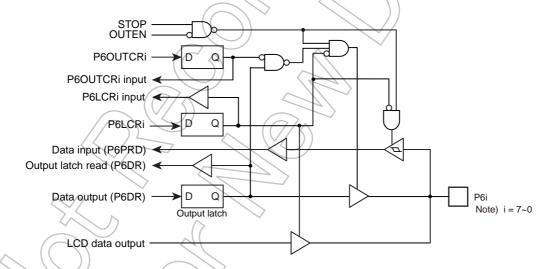
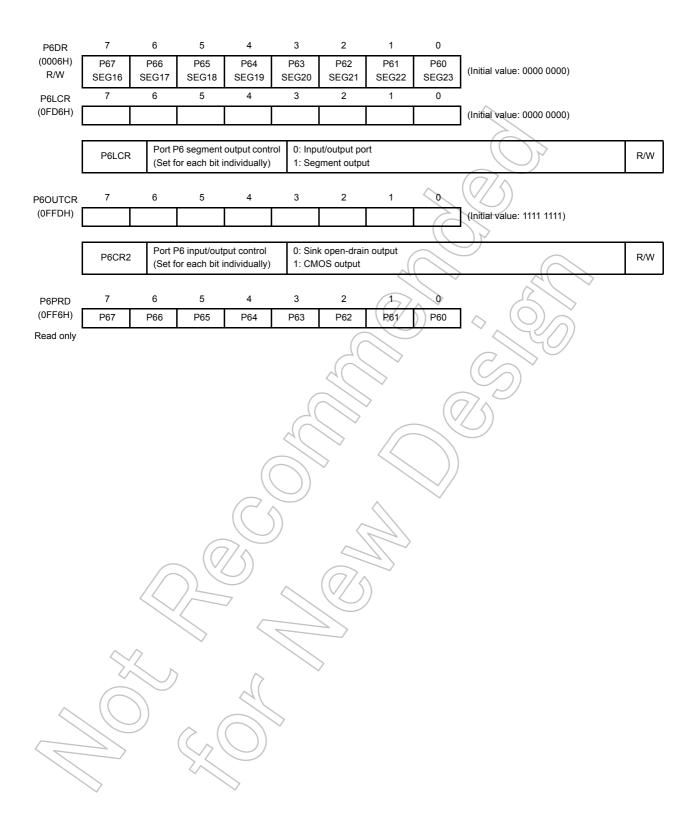



Figure 5-8 Port P6

5.8 Port P7 (P70 to P77)

Port P7 is an 8-bit input/output port that can also be used for LCD segment output.

A reset initializes the output latch (P7DR) to "1", the Pch control (P7OUTCR) to "0", and the LCD output control register (P7LCR) to "0".

To use a pin in Port P7 as an input port, set P7DR to "1" and then set the corresponding bit in P7LCR and P7OUTCR to "0".

To use a pin in Port P7 as an LCD segment output, set the corresponding bit in P7LCR to "1".

The output circuit of Port P7 can be set either as sink open-drain output ("0") or CMOS output ("1") individually for each bit in P7OUTCR.

Port P7 has a separate data input register. The output latch state can be read from the P7DR register, and the pin state can be read from the P7PRD register.

Table 5-10 Register Programming for Port P7 (P70 to P77)

Function	Programmed Value			
Function	P7DR	P7OUTCR	P7LCR	
Port input	(1"	"0"	"0"	
Port "0" output	("0"	Set as	"0"	
Port "1" output	"1"	appropriate.	, "0"	
LCD segment output		*((///	1"	

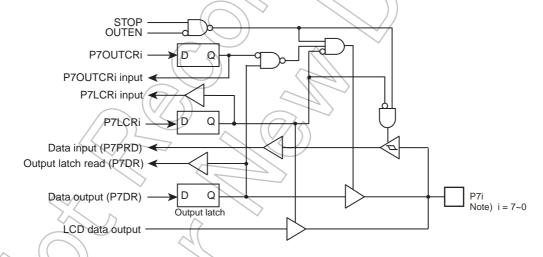
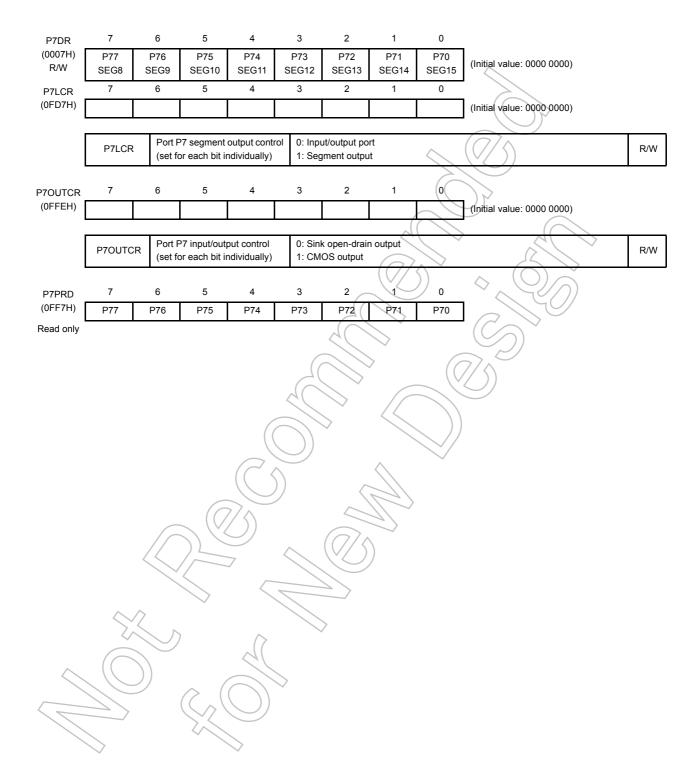



Figure 5-9 Port P7

5.9 Port P8 (P80 to P87)

Port P8 is an 8-bit input/output port that can also be used for LCD segment output.

A reset initializes the output latch (P8DR) to "1", the Pch control (P8OUTCR) to "0", and the LCD output control register (P8LCR) to "0".

To use a pin in Port P8 as an input port, set P8DR to "1" and then set the corresponding bit in P8LCR and P8OUTCR to "0".

To use a pin in Port P8 as an LCD segment output, set the corresponding bit in P8LCR to "1".

The output circuit of Port P8 can be set either as sink open-drain output ("0") or CMOS output ("1") individually for each bit in P8OUTCR.

Port P8 has a separate data input register. The output latch state can be read from the P8DR register, and the pin state can be read from the P8PRD register.

Table 5-11 Register Programming for Port P8 (P80 to P87)

Function	(0		
Function	P8DR	P8OUTCR	P8LCR
Port input	(1"	"0"	"0"
Port "0" output	"0"	Set as	"0"
Port "1" output	"1"	appropriate.	, ("0"
LCD segment output	\\\`	*((///	1"

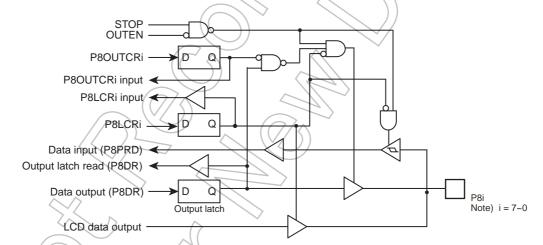
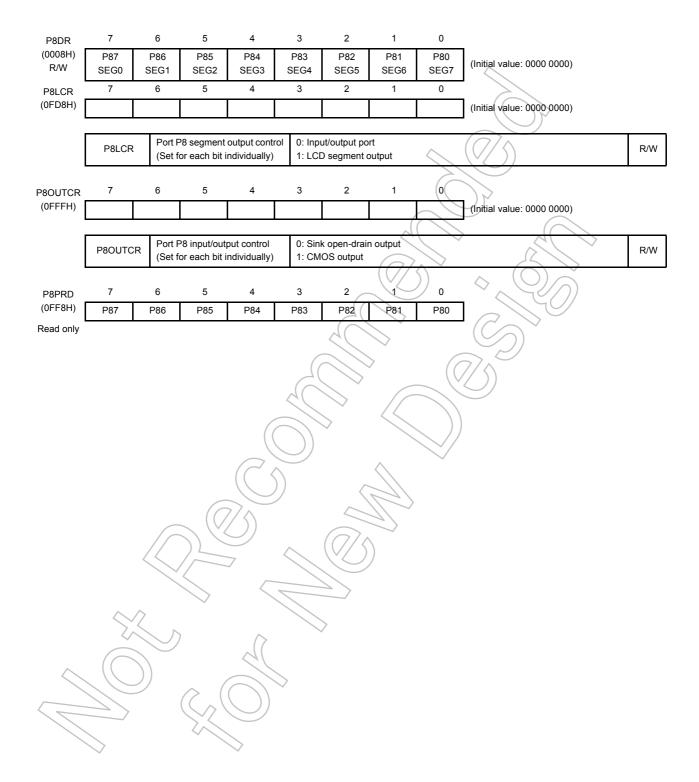
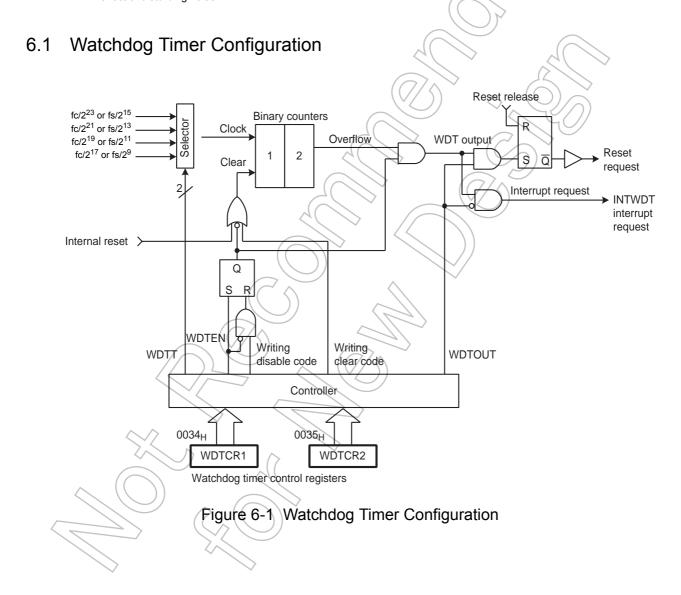



Figure 5-10 Port P8

TOSHIBA TMP86FS28FG


Watchdog Timer (WDT)

The watchdog timer is a fail-safe system to detect rapidly the CPU malfunctions such as endless loops due to spurious noises or the deadlock conditions, and return the CPU to a system recovery routine.

The watchdog timer signal for detecting malfunctions can be programmed only once as "reset request" or "interrupt request". Upon the reset release, this signal is initialized to "reset request".

When the watchdog timer is not used to detect malfunctions, it can be used as the timer to provide a periodic interrupt.

Note: Care must be taken in system design since the watchdog timer functions are not be operated completely due to effect of disturbing noise.

6.2 Watchdog Timer Control

The watchdog timer is controlled by the watchdog timer control registers (WDTCR1 and WDTCR2). The watchdog timer is automatically enabled after the reset release.

6.2.1 Malfunction Detection Methods Using the Watchdog Timer

The CPU malfunction is detected, as shown below.

- 1. Set the detection time, select the output, and clear the binary counter.
- 2. Clear the binary counter repeatedly within the specified detection time.

If the CPU malfunctions such as endless loops or the deadlock conditions occur for some reason, the watchdog timer output is activated by the binary-counter overflow unless the binary counters are cleared. When WDTCR1<WDTOUT> is set to "1" at this time, the reset request is generated and then internal hardware is initialized. When WDTCR1<WDTOUT> is set to "0", a watchdog timer interrupt (INTWDT) is generated.

The watchdog timer temporarily stops counting in the STOP mode including the warm-up or IDLE/SLEEP mode, and automatically restarts (continues counting) when the STOP/IDLE/SLEEP mode is inactivated.

Note: The watchdog timer consists of an internal divider and a two-stage binary counter. When the clear code 4EH is written, only the binary counter is cleared, but not the internal divider. The minimum binary-counter overflow time, that depends on the timing at which the clear code (4EH) is written to the WDTCR2 register, may be 3/4 of the time set in WDTCR1<WDTT>. Therefore, write the clear code using a cycle shorter than 3/4 of the time set to WDTCR1<WDTT>.

Example :Setting the watchdog timer detection time to 2²¹/fc [s], and resetting the CPU malfunction detection

Watchdog Timer Control Register 1

WDTCR1	7	6	5	4	3	2	1	0	
(0034H)			(ATAS)	(ATOUT)	WDTEN	WD	ГТ	WDTOUT	(Initial value: **11 1001)

WDTEN	Watchdog timer enable/disable	0: Disal 1: Enab	, •	e code to WDTCR2 is	required.)	Write only
			NORMAL	_1/2 mode	SLOW1/2	
			DV7CK = 0	DV7CK = 1	mode	
	Watchdog timer detection time	00	2 ²⁵ /fc	2 ¹⁷ /fs	2 ¹⁷ /fs	Write
WDTT	[s]	01	2 ²³ /fc	2 ¹⁵ /fs	2 ¹⁵ fs	only
		10	2 ²¹ fc	2 ¹³ /fs	2 ¹³ fs	
		11	2 ¹⁹ /fc	2 ¹¹ /fs	2 ¹¹ /fs	
WDTOUT	Watchdog timer output select		rupt request et request			Write only

- Note 1: After clearing WDTOUT to "0", the program cannot set it to "1".
- Note 2: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], f: Døn't care
- Note 3: WDTCR1 is a write-only register and must not be used with any of read-modify-write instructions. If WDTCR1 is read, a don't care is read.
- Note 4: To activate the STOP mode, disable the watchdog timer or clear the counter immediately before entering the STOP mode.

 After clearing the counter, clear the counter again immediately after the STOP mode is inactivated.
- Note 5: To clear WDTEN, set the register in accordance with the procedures shown in "6.2.3 Watchdog Timer Disable".

Watchdog Timer Control Register 2

WDTCR2	7	6	5	4	3	2	1	0	\	
(0035H)					1/1				(Initial value: **** ****)	
-								\\/		
					4EH: CI	ear the w	atchdog time	er binary o	counter (Clear code)	
	WDTCR	Write		((\(\)	B1H: Di	sable the	watchdog ti	mer (Disa	ble code)	Write
	WDICK	Watcl	ndog timer o	control code	D2H: Er	nable ass	igning addre	ss trap ar	ea	only
				37	Others:	Invalid				

Note 1: The disable code is valid only when WDTCR1<WDTEN> = 0.

Note 2: *: Don't care

Note 3: The binary counter of the watchdog timer must not be cleared by the interrupt task.

Note 4: Write the clear code 4EH using a cycle shorter than 3/4 of the time set in WDTCR1<WDTT>.

6.2.2 Watchdog Timer Enable

Setting WDTCR1<WDTEN> to "1" enables the watchdog timer. Since WDTCR1<WDTEN> is initialized to "1" during reset, the watchdog timer is enabled automatically after the reset release.

6.2.3 Watchdog Timer Disable

To disable the watchdog timer, set the register in accordance with the following procedures. Setting the register in other procedures causes a malfunction of the microcontroller.

- 1. Set the interrupt master flag (IMF) to "0".
- 2. Set WDTCR2 to the clear code (4EH).
- 3. Set WDTCR1<WDTEN> to "0".
- 4. Set WDTCR2 to the disable code (B1H).

Note: While the watchdog timer is disabled, the binary counters of the watchdog timer are cleared.

Example: Disabling the watchdog timer

DI : IMF \leftarrow 0

LD (WDTCR2), 04EH : Clears the binary counter

LDW (WDTCR1), 0B101H : WDTEN ← 0, WDTCR2 ← Disable code

Table 6-1 Watchdog Timer Detection Time (Example: fc = 16.0 MHz, fs = 32.768 kHz)

	Watchdog		
WDTT	NORMAL	1/2 mode	SLOW
	DV7CK = 0	DV7CK = 1	mode
00	2.097	4	4
01	524.288 m	1	1
10	131.072 m	250 m	250 m
11	32.768 m	62.5 m	62.5 m

6.2.4 Watchdog Timer Interrupt (INTWDT)

When WDTCR1<WDTOUT> is cleared to "0", a watchdog timer interrupt request (INTWDT) is generated by the binary-counter overflow.

A watchdog timer interrupt is the non-maskable interrupt which can be accepted regardless of the interrupt master flag (IMF).

When a watchdog timer interrupt is generated while the other interrupt including a watchdog timer interrupt is already accepted, the new watchdog timer interrupt is processed immediately and the previous interrupt is held pending. Therefore, if watchdog timer interrupts are generated continuously without execution of the RETN instruction, too many levels of nesting may cause a malfunction of the microcontroller.

To generate a watchdog timer interrupt, set the stack pointer before setting WDTCR1<WDTOUT>.

Example :Setting watchdog timer interrupt

LD SP, 083FH : Sets the stack pointer

LD (WDTCR1), 00001000B : WDTOUT \leftarrow 0

6.2.5 Watchdog Timer Reset

When a binary-counter overflow occurs while WDTCR1<WDTOUT> is set to "1", a watchdog timer reset request is generated. When a watchdog timer reset request is generated, the internal hardware is reset. The reset time is maximum 24/fc [s] (1.5 μ s @ fc = 16.0 MHz).

Note: When a watchdog timer reset is generated in the SLOW1 mode, the reset time is maximum 24/fc (high-frequency clock) since the high-frequency clock oscillator is restarted. However, when crystals have inaccuracies upon start of the high-frequency clock oscillator, the reset time should be considered as an approximate value because it has slight errors.

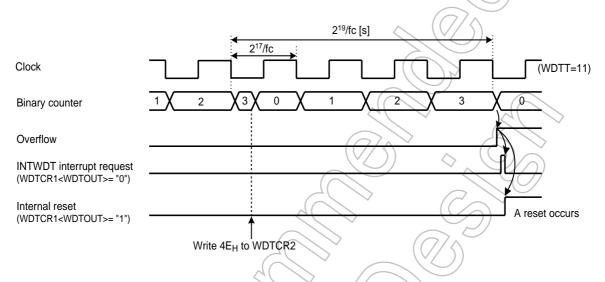
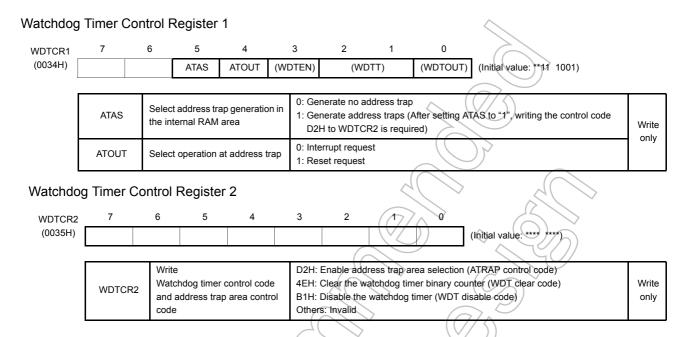



Figure 6-2 Watchdog Timer Interrupt

6.3 Address Trap

The Watchdog Timer Control Register 1 and 2 share the addresses with the control registers to generate address traps.

6.3.1 Selection of Address Trap in Internal RAM (ATAS)

WDTCR1<ATAS> specifies whether or not to generate address traps in the internal RAM area. To execute an instruction in the internal RAM area, clear WDTCR1<ATAS> to "0". To enable the WDTCR1<ATAS> setting, set WDTCR1<ATAS> and then write D2H to WDTCR2.

Executing an instruction in the SFR or DBR area generates an address trap unconditionally regardless of the setting in WDTCR1<ATAS>.

6.3.2 Selection of Operation at Address Trap (ATOUT)

When an address trap is generated, either the interrupt request or the reset request can be selected by WDTCR1<ATOUT>.

6.3.3 Address Trap Interrupt (INTATRAP)

While WDTCR1<ATOUT> is "0", if the CPU should start looping for some cause such as noise and an attempt be made to fetch an instruction from the on-chip RAM (while WDTCR1<ATAS> is "1"), DBR or the SFR area, address trap interrupt (INTATRAP) will be generated.

An address trap interrupt is a non-maskable interrupt which can be accepted regardless of the interrupt master flag (IMF).

When an address trap interrupt is generated while the other interrupt including an address trap interrupt is already accepted, the new address trap is processed immediately and the previous interrupt is held pending. Therefore, if address trap interrupts are generated continuously without execution of the RETN instruction, too many levels of nesting may cause a malfunction of the microcontroller.

To generate address trap interrupts, set the stack pointer beforehand.

6.3.4 Address Trap Reset

While WDTCR1<ATOUT> is "1", if the CPU should start looping for some cause such as noise and an attempt be made to fetch an instruction from the on-chip RAM (while WDTCR1<ATAS> is "1"), DBR or the SFR area, address trap reset will be generated.

When an address trap reset request is generated, the internal hardware is reset. The reset time is maximum 24/fc [s] (1.5 μ s @ fc = 16.0 MHz).

Note: When an address trap reset is generated in the SLOW1 mode, the reset time is maximum 24/fc (high-frequency clock) since the high-frequency clock oscillator is restarted. However, when crystals have inaccuracies upon start of the high-frequency clock oscillator, the reset time should be considered as an approximate value because it has slight errors.

TOSHIBA TMP86FS28FG

7. Time Base Timer (TBT)

The time base timer generates time base for key scanning, dynamic displaying, etc. It also provides a time base timer interrupt (INTTBT).

7.1 Time Base Timer

7.1.1 Configuration

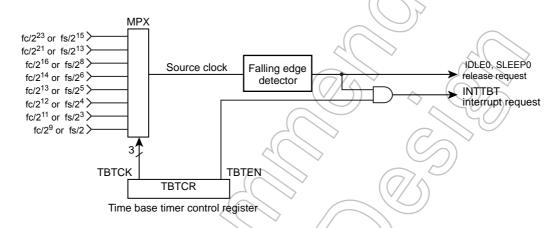
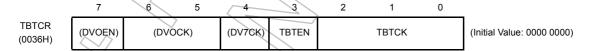



Figure 7-1 Time Base Timer configuration

7.1.2 Control

Time Base Timer is controlled by Time Base Timer control register (TBTCR).

Time Base Timer Control Register

<	TBTEN	Time Base Timer enable / disable	0: Disab 1: Enab				
				NORMAL1/2,	IDLE1/2 Mode	SLOW1/2	
				DV7CK = 0	DV7CK = 1	SLEEP1/2 Mode	
			000	fc/2 ²³	fs/2 ¹⁵	fs/2 ¹⁵	
	*		001	fc/2 ²¹	fs/2 ¹³	fs/2 ¹³	
	ТВТСК	Time Base Timer interrupt	010	fc/2 ¹⁶	fs/2 ⁸	-	R/W
	IBIOR	Frequency select : [Hz]	011	fc/2 ¹⁴	fs/2 ⁶	-	1000
			100	fc/2 ¹³	fs/2 ⁵	-	
			101	fc/2 ¹²	fs/2 ⁴	_	
			110	fc/2 ¹¹	fs/2 ³	_	
			111	fc/2 ⁹	fs/2	_	

Note 1: fc; High-frequency clock [Hz], fs; Low-frequency clock [Hz], *; Don't care

Note 2: The interrupt frequency (TBTCK) must be selected with the time base timer disabled (TBTEN="0"). (The interrupt frequency must not be changed with the disable from the enable state.) Both frequency selection and enabling can be performed simultaneously.

Example :Set the time base timer frequency to fc/2¹⁶ [Hz] and enable an INTTBT interrupt.

LD (TBTCR), 00000010B ; TBTCK \leftarrow LD (TBTCR), 00001010B ; TBTEN \leftarrow DI ; IMF \leftarrow SET (EIRL). 6

Table 7-1 Time Base Timer Interrupt Frequency (Example: fc = 16,0 MHz, fs = 32.768 kHz)

		_					
TBTCK	Time Base Timer Interrupt Frequency [Hz]						
IBICK	NORMAL1/2, IDLE1/2 Mode	NORMAL1/2, IDLE1/2 Mode	SLOW1/2, SLEEP1/2 Mode				
	DV7CK = 0	DV7CK=1					
000	1.91	1	\$ (D)				
001	7.63	4	450				
010	244.14	128					
011	976.56	512					
100	1953.13	1024	(7/4) -				
101	3906.25	2048	-				
110	7812.5	4096	_				
111	31250	16384	_				

7.1.3 Function

An INTTBT (Time Base Timer Interrupt) is generated on the first falling edge of source clock (The divider output of the timing generator which is selected by TBTCK.) after time base timer has been enabled.

The divider is not cleared by the program; therefore, only the first interrupt may be generated ahead of the set interrupt period (Figure 7-2).

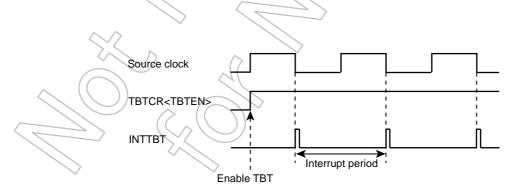


Figure 7-2 Time Base Timer Interrupt

7.2 Divider Output (DVO)

Approximately 50% duty pulse can be output using the divider output circuit, which is useful for piezoelectric buzzer drive. Divider output is from \overline{DVO} pin.

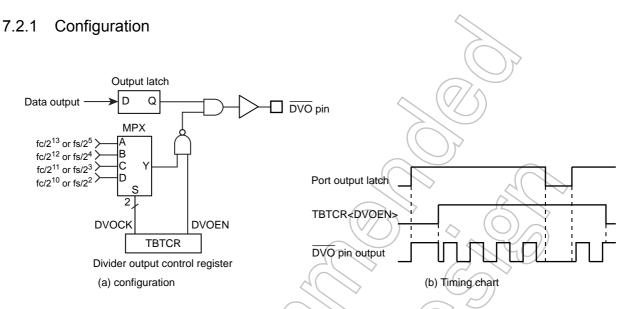
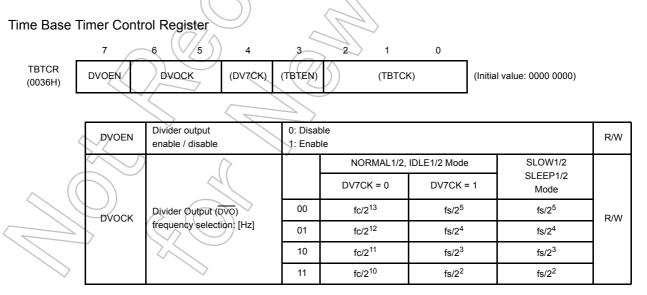



Figure 7-3 Divider Output

7.2.2 Control

The Divider Output is controlled by the Time Base Timer Control Register.

Note: Selection of divider output frequency (DVOCK) must be made while divider output is disabled (DVOEN="0"). Also, in other words, when changing the state of the divider output frequency from enabled (DVOEN="1") to disable(DVOEN="0"), do not change the setting of the divider output frequency.

Example :1.95 kHz pulse output (fc = 16.0 MHz)

LD (TBTCR), 00000000B ; DVOCK ← "00"

LD (TBTCR), 10000000B ; DVOEN ← "1"

Table 7-2 Divider Output Frequency (Example: fc = 16.0 MHz, fs = 32.768 kHz)

	D	tz]	
DVOCK	NORMAL1/2,	IDLE1/2 Mode	SLOW1/2, SLEEP1/2
	DV7CK = 0	DV7CK = 1	Mode
00	1.953 k	1.024 k	1.024 k
01	3.906 k	2.048 k	2.048 k
10	7.813 k	4.096 k	4.096 k
11	15.625 k	8.192 k	8.192 k

TOSHIBA

8. 16-Bit TimerCounter (TC10,TC11)

8.1 16-Bit TimerCounter 10

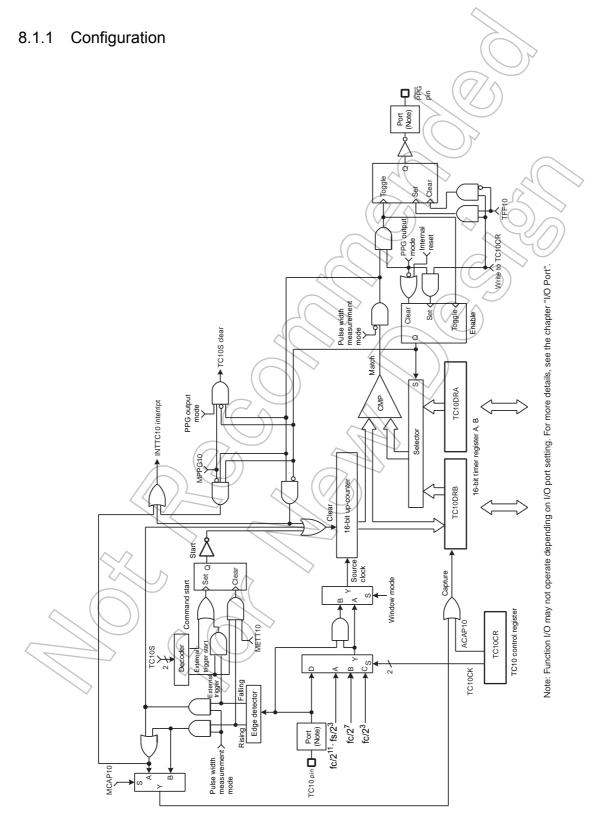


Figure 8-1 TimerCounter 10 (TC10)

8.1.2 TimerCounter Control

The TimerCounter 10 is controlled by the TimerCounter 10 control register (TC10CR) and two 16-bit timer registers (TC10DRA and TC10DRB).

imer Regist	er															
	15	14	13	12	11	10	9	8	7		6	5 4	3	2	1	0
TC10DRA	TC10DRAH (0011H) TC10DRAL (00									ORAL (00	10H)					
(0011H, 0010H)	(Initial value: 1111 1111 1111)							Read/Write								
TC10DRB			7	C10DRE	3H (0013H	1)				<		\ <u> </u>	ORBL (00			
(0013H, 0012H)		·			I 1111 1 ¹	11 1111 <u> </u>)		F	Read/	Write (W	rite enable	ed only in	the PPG	output mod	de)
TimerCou			oi Re	-					<	1					>	
TC10CR (0014H)	7 TFF10	ACAP MCAP METT	10 10	5 TC10	9 0S	3	ГС10СК	2	1	C10N	0	Read/Wr	ite	0000)	•	
		MPPG	10				(7(0				
TFF10	Timer F/F	10 contro	ı	0: Clea	r		4		\supset		1: Set	0))			R/W
ACAP10	Auto captu	ure contro	ol	0:Auto-	capture d	isable					1:Auto-c	apture en	able			
MCAP10	Pulse widt ment mod		I 0:Double edge capture								R/W					
METT10	External tr mode conf		er	0:Trigg	0:Trigger start and stop									K/VV		
MPPG10	PPG outpu	ut control		0:Conti	0:Continuous pulse generation 1:One-shot											
	TC10 start control						<	Tim	ner	Extrig- ger	Event	Win- dow	Pulse	PPG		
			00: Sto	p and cou	inter clea	ar	1	7/6	}	0	0	0	0	0		
			01: Cor	nmand st	art			7/ 5	5	-	-	-	-	0		
TC10S			Ris	ing edge ing edge sitive logic	(Ex-tri count (Ev	vent)	lse/PPG) _	-	0	0	0	0	0	R/W	
	S	2	7	Fall	ing edge ling edge gative log	(Ex-tri count (E	vent)	llse/PPG) _	-	0	0	0	0	0	
					21		NC	RMAL1/	2, IDLE	1/2 m	ode				SLOW,	
	TC10CK TC10 source clock select			DV7CK = 0			DV7CK = 1					Divider	SLEEP mode			
TC106K				00 fc/2 ¹¹			fs/2 ³				DV9	fs/2 ³	R/W			
				01		fc/	2 ⁷				fc	/2 ⁷		DV5	-	
				10	>_	fc/	2 ³				fc	/2 ³		DV1	-	
				11 External clock (TC10 pin input)												
TC10M	TC10 oper select	rating mo	ode	01: Wir 10: Pul	er/externandow mod se width r G (Progra	e neasurer	ment mo	ode								R/W

- Note 1: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz]
- Note 2: The timer register consists of two shift registers. A value set in the timer register becomes valid at the rising edge of the first source clock pulse that occurs after the upper byte (TC10DRAH and TC10DRBH) is written. Therefore, write the lower byte and the upper byte in this order (it is recommended to write the register with a 16-bit access instruction). Writing only the lower byte (TC10DRAL and TC10DRBL) does not enable the setting of the timer register.
- Note 3: To set the mode, source clock, PPG output control and timer F/F control, write to TC10CR1 during TC10S=00. Set the timer F/F10 control until the first timer start after setting the PPG mode.

- Note 4: Auto-capture can be used only in the timer, event counter, and window modes.
- Note 5: To set the timer registers, the following relationship must be satisfied.

 TC10DRA > TC10DRB > 1 (PPG output mode), TC10DRA > 1 (other modes)
- Note 6: Set TFF10 to "0" in the mode except PPG output mode.
- Note 7: Set TC10DRB after setting TC10M to the PPG output mode.
- Note 8: When the STOP mode is entered, the start control (TC10S) is cleared to "00" automatically, and the timer stops. After the STOP mode is exited, set the TC10S to use the timer counter again.
- Note 9: Use the auto-capture function in the operative condition of TC10. A captured value may not be fixed if it's read after the execution of the timer stop or auto-capture disable. Read the capture value in a capture enabled condition.
- Note 10:Since the up-counter value is captured into TC10DRB by the source clock of up-counter after setting TC10CR<ACAP10> to "1". Therefore, to read the captured value, wait at least one cycle of the internal source clock before reading TC10DRB for the first time.

8.1.3 Function

TimerCounter 10 has six types of operating modes: timer, external trigger timer, event counter, window, pulse width measurement, programmable pulse generator output modes.

8.1.3.1 Timer mode

In the timer mode, the up-counter counts up using the internal clock. When a match between the up-counter and the timer register 1A (TC10DRA) value is detected, an INTTC10 interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting. Setting TC10CR<ACAP10> to "1" captures the up-counter value into the timer register 1B (TC10DRB) with the auto-capture function. Use the auto-capture function in the operative condition of TC10. A captured value may not be fixed if it's read after the execution of the timer stop or auto-capture disable. Read the capture value in a capture enabled condition. Since the up-counter value is captured into TC10DRB by the source clock of up-counter after setting TC10CR<ACAP10> to "1". Therefore, to read the captured value, wait at least one cycle of the internal source clock before reading TC10DRB for the first time.

Table 8-1 Internal Source Clock for TimerCounter 10 (Example: fc = 16 MHz, fs = 32.768 kHz)

TC10CK		OLOW OLEED made				
TOTOCK	DV7C	K=0	DV70	SLOW, SLEEP mode		
	Resolution [μs]	Maximum Time Setting [s]	Resolution [μs]	Maximum Time Setting [s]	Resolution [μs]	Maximum Time Set- ting [s]
00	128	8.39	244.14	16.0	244.14	16.0
01	8.0	0.524	8.0	0.524	-	-
10	0.5	32.77 m	0.5	32.77 m	_	-

Example 1:Setting the timer mode with source clock $fc/2^{11}$ [Hz] and generating an interrupt 1 second later (fc = 16 MHz, TBTCR < DV7CK > = "0")

LDW (TC10DRA), 1E84H ; Sets the timer register (1 s \div 2¹¹/fc = 1E84H) DI ; IMF= "0" SET (EIRL). 7 ; Enables INTTC10

(EINE). 7 , ENGOISS INT TO IN

EI ; IMF= "1"

LD (TC10CR), 00000000B ; Selects the source clock and mode

LD (TC10CR), 00010000B ; Starts TC10

Example 2: Auto-capture

LD (TC10CR), 01010000B ; ACAP10 \leftarrow 1

: :

LD WA, (TC10DRB) ; Reads the capture value

Note: Since the up-counter value is captured into TC10DRB by the source clock of up-counter after setting TC10CR<ACAP10> to
"1". Therefore, to read the captured value, wait at least one cycle of the internal source clock before reading TC10DRB for the
first time.

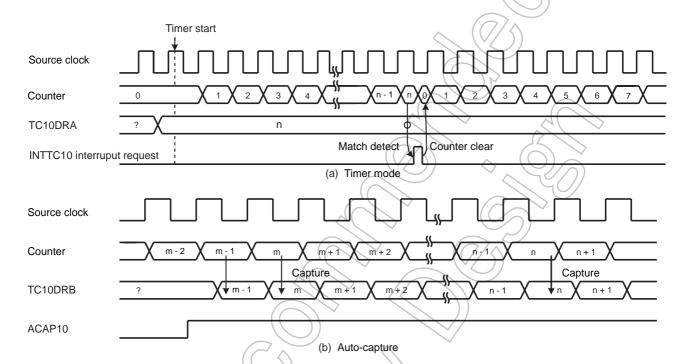


Figure 8-2 Timer Mode Timing Chart

8.1.3.2 External Trigger Timer Mode

In the external trigger timer mode, the up-counter starts counting by the input pulse triggering of the TC10 pin, and counts up at the edge of the internal clock. For the trigger edge used to start counting, either the rising or falling edge is defined in TC10CR<TC10S>.

• When TC10CR<METT10> is set to "1" (trigger start and stop)

When a match between the up-counter and the TC10DRA value is detected after the timer starts, the up-counter is cleared and halted and an INTTC10 interrupt request is generated.

If the edge opposite to trigger edge is detected before detecting a match between the upcounter and the TC10DRA, the up-counter is cleared and halted without generating an interrupt request. Therefore, this mode can be used to detect exceeding the specified pulse by interrupt.

After being halted, the up-counter restarts counting when the trigger edge is detected.

• When TC10CR<METT10> is set to "0" (trigger start)

When a match between the up-counter and the TC10DRA value is detected after the timer starts, the up-counter is cleared and halted and an INTTC10 interrupt request is generated.

The edge opposite to the trigger edge has no effect in count up. The trigger edge for the next counting is ignored if detecting it before detecting a match between the up-counter and the TC10DRA.

Since the TC10 pin input has the noise rejection, pulses of 4/fc [s] or less are rejected as noise. A pulse width of 12/fc [s] or more is required to ensure edge detection. The rejection circuit is turned off in the SLOW1/2 or SLEEP1/2 mode, but a pulse width of one machine cycle or more is required.

Example 1 :Generating an interrupt Γ ms after the rising edge of the input pulse to the TC10 pin (fc = 16 MHz)

Example 2 :Generating an interrupt when the low-level pulse with 4 ms or more width is input to the TC10 pin (fc = 16 MHz)

LDW (TC10DRA), 01F4H ; $4 \text{ ms} \div 2^7/\text{fc} = 1\text{F4H}$ DΙ : IMF= "0" SET (EIRL). 7 ; Enables INTTC10 interrupt ΕI : IMF= "1" LD (TC10CR), 00000100B ; Selects the source clock and mode LD (TC10CR), 01110100B ; Starts TC10 external trigger, METT10 = 0

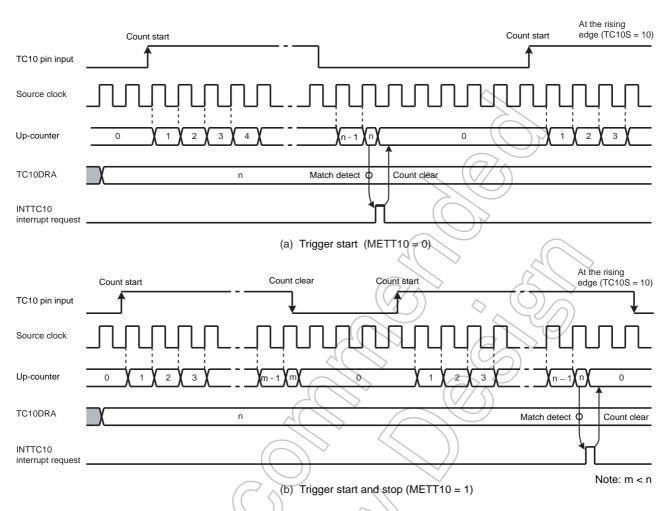


Figure 8-3 External Trigger Timer Mode Timing Chart

8.1.3.3 Event Counter Mode

In the event counter mode, the up-counter counts up at the edge of the input pulse to the TC10 pin. Either the rising or falling edge of the input pulse is selected as the count up edge in TC10CR<TC10S>.

When a match between the up-counter and the TC10DRA value is detected, an INTTC10 interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting at each edge of the input pulse to the TC10 pin. Since a match between the up-counter and the value set to TC10DRA is detected at the edge opposite to the selected edge, an INTTC10 interrupt request is generated after a match of the value at the edge opposite to the selected edge.

Two or more machine cycles are required for the low-or high-level pulse input to the TC10 pin.

Setting TC10CR<ACAP10> to "1" captures the up-counter value into TC10DRB with the auto capture function. Use the auto-capture function in the operative condition of TC10. A captured value may not be fixed if it's read after the execution of the timer stop or auto-capture disable. Read the capture value in a capture enabled condition. Since the up-counter value is captured into TC10DRB by the source clock of up-counter after setting TC10CR<ACAP10> to "1". Therefore, to read the captured value, wait at least one cycle of the internal source clock before reading TC10DRB for the first time.

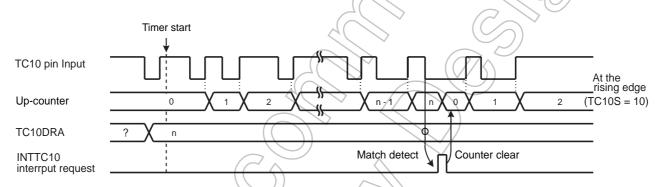
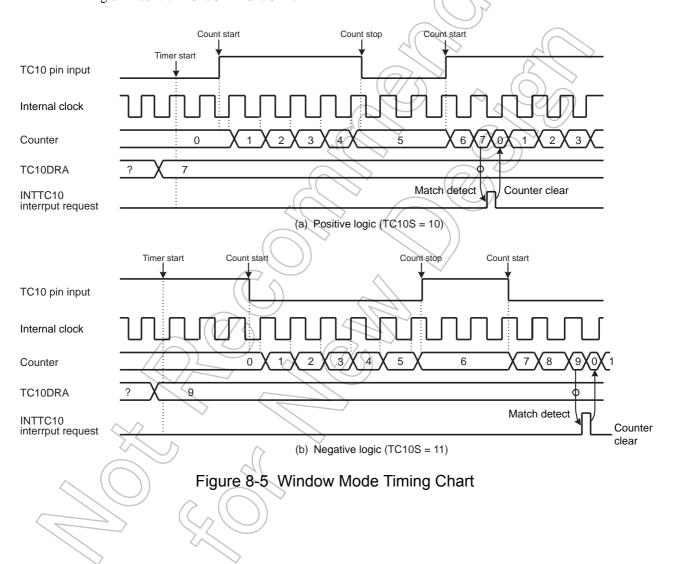


Figure 8-4 Event Counter Mode Timing Chart

Table 8-2 Input Pulse Width to TC10 Pin


	Minimum Pu	se Width [s]		
	NORMAL1/2, IDLE1/2 Mode	SLOW1/2, SLEEP1/2 Mode		
High-going	2 ³ /fc	2 ³ /fs		
Low-going	2 ³ /fc	2 ³ /fs		

8.1.3.4 Window Mode

In the window mode, the up-counter counts up at the rising edge of the pulse that is logical ANDed product of the input pulse to the TC10 pin (window pulse) and the internal source clock. Either the positive logic (count up during high-going pulse) or negative logic (count up during low-going pulse) can be selected.

When a match between the up-counter and the TC10DRA value is detected, an INTTC10 interrupt is generated and the up-counter is cleared.

Define the window pulse to the frequency which is sufficiently lower than the internal source clock programmed with TC10CR<TC10CK>.

Page 90

8.1.3.5 Pulse Width Measurement Mode

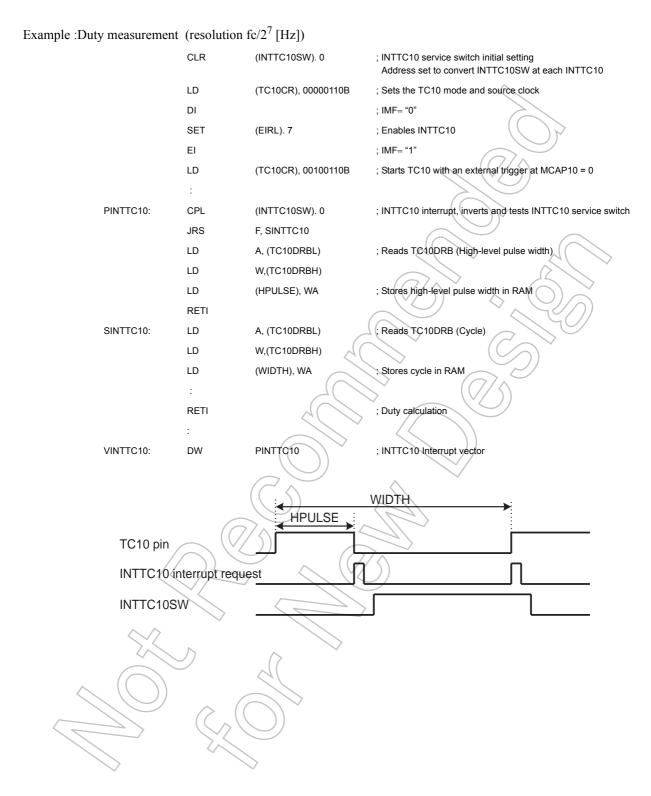
In the pulse width measurement mode, the up-counter starts counting by the input pulse triggering of the TC10 pin, and counts up at the edge of the internal clock. Either the rising or falling edge of the internal clock is selected as the trigger edge in TC10CR<TC10S>. Either the single- or double-edge capture is selected as the trigger edge in TC10CR<MCAP10>.

• When TC10CR<MCAP10> is set to "1" (single-edge capture)

Either high- or low-level input pulse width can be measured. To measure the high-level input pulse width, set the rising edge to TC10CR<TC10S>. To measure the low-level input pulse width, set the falling edge to TC10CR<TC10S>.

When detecting the edge opposite to the trigger edge used to start counting after the timer starts, the up-counter captures the up-counter value into TC10DRB and generates an INTTC10 interrupt request. The up-counter is cleared at this time, and then restarts counting when detecting the trigger edge used to start counting.

• When TC10CR<MCAP10> is set to "0" (double-edge capture)


The cycle starting with either the high- or low-going input pulse can be measured. To measure the cycle starting with the high-going pulse, set the rising edge to TC10CR<TC10S>. To measure the cycle starting with the low-going pulse, set the falling edge to TC10CR<TC10S>.

When detecting the edge opposite to the trigger edge used to start counting after the timer starts, the up-counter captures the up-counter value into TC10DRB and generates an INTTC10 interrupt request. The up-counter continues counting up, and captures the up-counter value into TC10DRB and generates an INTTC10 interrupt request when detecting the trigger edge used to start counting. The up-counter is cleared at this time, and then continues counting.

Note 1: The captured value must be read from TC10DRB until the next trigger edge is detected. If not read, the captured value becomes a don't care. It is recommended to use a 16-bit access instruction to read the captured value from TC10DRB.

Note 2: For the single-edge capture, the counter after capturing the value stops at "1" until detecting the next edge. Therefore, the second captured value is "1" larger than the captured value immediately after counting starts.

Note 3: The first captured value after the timer starts may be read incorrectively, therefore, ignore the first captured value.

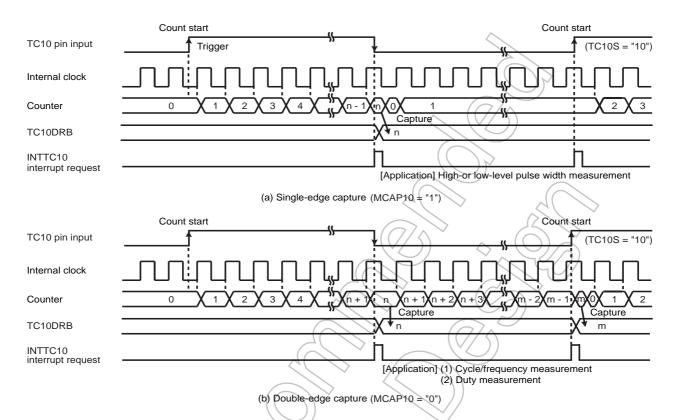


Figure 8-6 Pulse Width Measurement Mode

8.1.3.6 Programmable Pulse Generate (PPG) Output Mode

In the programmable pulse generation (PPG) mode, an arbitrary duty pulse is generated by counting performed in the internal clock. To start the timer, TC10CR<TC10S> specifies either the edge of the input pulse to the TC10 pin or the command start. TC10CR<MPPG10> specifies whether a duty pulse is produced continuously or not (one-shot pulse).

• When TC10CR<MPPG10> is set to "0" (Continuous pulse generation)

When a match between the up-counter and the TC10DRB value is detected after the timer starts, the level of the \overline{PPG} pin is inverted and an INTTC10 interrupt request is generated. The up-counter continues counting. When a match between the up-counter and the TC10DRA value is detected, the level of the \overline{PPG} pin is inverted and an INTTC10 interrupt request is generated. The up-counter is cleared at this time, and then continues counting and pulse generation.

When TC10S is cleared to "00" during PPG output, the PPG pin retains the level immediately before the counter stops.

• When TC10CR<MPPG10> is set to "1" (One-shot pulse generation)

When a match between the up-counter and the TC10DRB value is detected after the timer starts, the level of the PPG pin is inverted and an INTTC10 interrupt request is generated. The up-counter continues counting. When a match between the up-counter and the TC10DRA value is detected, the level of the PPG pin is inverted and an INTTC10 interrupt request is generated. TC10CR<TC10S> is cleared to "00" automatically at this time, and the timer stops. The pulse generated by PPG retains the same level as that when the timer stops.

Since the output level of the \overline{PPG} pin can be set with TC10CR<TFF10> when the timer starts, a positive or negative pulse can be generated. Since the inverted level of the timer F/F1 output level is output to the \overline{PPG} pin, specify TC10CR<TFF10> to "0" to set the high level to the \overline{PPG} pin, and "1" to set the low level to the \overline{PPG} pin. Upon reset, the timer F/F1 is initialized to "0".

Note 1: To change TC10DRA or TC10DRB during a run of the timer, set a value sufficiently larger than the count value of the counter. Setting a value smaller than the count value of the counter during a run of the timer may generate a pulse different from that specified.

Note 2: Do not change TC10CR<TFF10> during a run of the timer. TC10CR<TFF10> can be set correctly only at initialization (after reset). When the timer stops during PPG, TC10CR<TFF10> can not be set correctly from this point onward if the PPG output has the level which is inverted of the level when the timer starts. (Setting TC10CR<TFF10> specifies the timer F/F1 to the level inverted of the programmed value.) Therefore, the timer F/F1 needs to be initialized to ensure an arbitrary level of the PPG output. To initialize the timer F/F1, change TC10CR<TC10M> to the timer mode (it is not required to start the timer mode), and then set the PPG mode. Set TC10CR<TFF10> at this time.

Note 3: In the PPG mode, the following relationship must be satisfied. TC10DRA > TC10DRB

Note 4: Set TC10DRB after changing the mode of TC10M to the PPG mode.

Example :Generating a pulse which is high-going for 800 μs and low-going for 200 μs (fc = 16 MHz)

Setting port

	LD	(TC10CR), 10000111B	; Sets the PPG mode, selects the source clock
	LDW	(TC10DRA), 007DH	; Sets the cycle (1 ms $\div 2^7$ /fc ms = 007DH)
	LDW	(TC10DRB), 0019H	; Sets the low-level pulse width (200 $\mu\text{s} \div 2^{7}\text{/fc}$ = 0019H)
	LD	(TC10CR), 10010111B	; Starts the timer
		G, setting the PPG pin	to a high-level to restart PPG
(fc =	16 MHz)		$\langle \langle \rangle \rangle$
		Setting port	
	LD	(TC10CR), 10000111B	; Sets the PPG mode, selects the source clock
	LDW	(TC10DRA), 007DH	; Sets the cycle (1 ms \div 2 ⁷ /fc μ s = 007DH)
	LDW	(TC10DRB), 0019H	; Sets the low-level pulse width (200 $\mu s = 2^7/\text{fc} = 0019\text{H}$)
	LD	(TC10CR), 10010111B	; Starts the timer
	:		
	LD	(TC10CR), 10000111B	; Stops the timer
	LD	(TC10CR), 10000100B	; Sets the timer mode
	LD	(TC10CR), 00000111B	; Sets the PPG mode, TFF10 = 0
	LD	(TC10CR), 00010111B	; Starts the timer

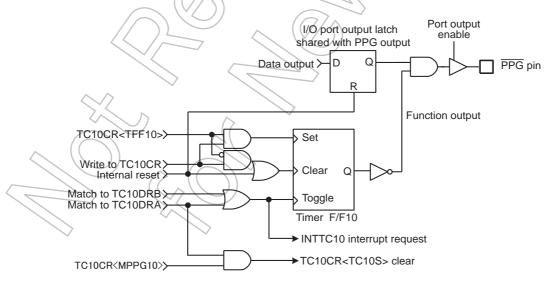


Figure 8-7 PPG Output

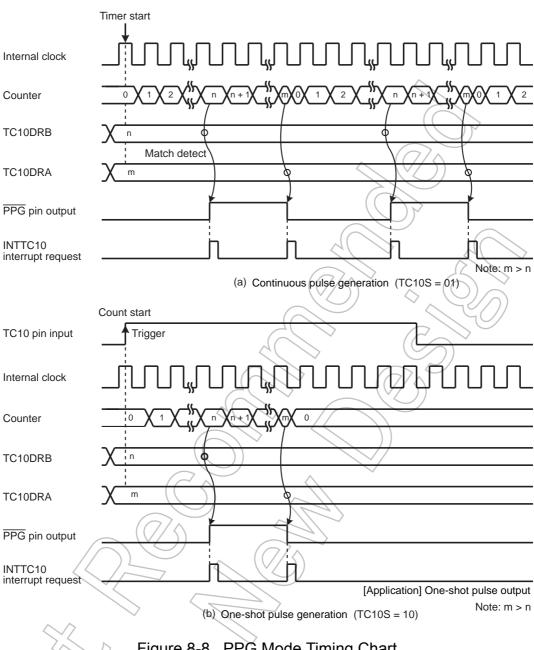


Figure 8-8 PPG Mode Timing Chart

8.2 16-Bit TimerCounter 11

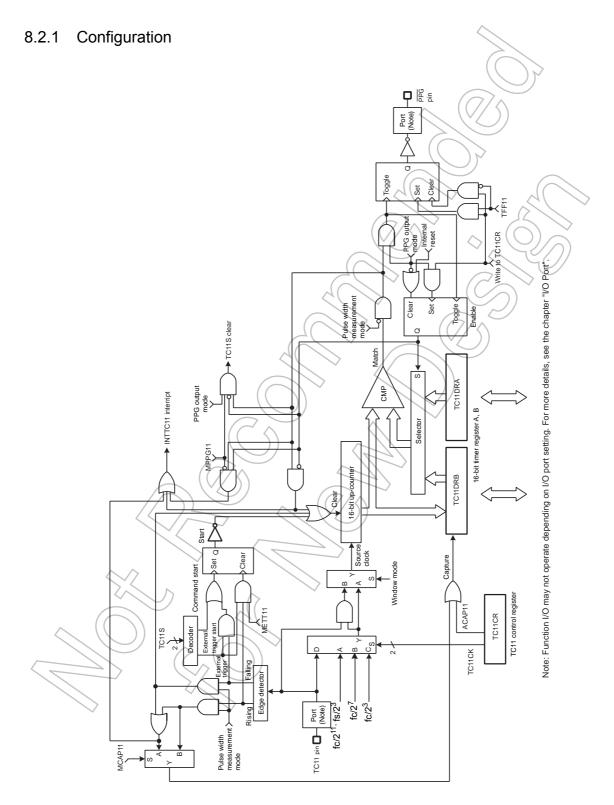


Figure 8-9 TimerCounter 11 (TC11)

8.2.2 TimerCounter Control

The TimerCounter 11 is controlled by the TimerCounter 11 control register (TC11CR) and two 16-bit timer registers (TC11DRA and TC11DRB).

Timer Regist	ter													>		
	15	14	13	12	11	10	9	8	7		6	5 4	3	2	1	0
TC11DRA			TC	C11DRA	H (0021	1)						ŢC11	ORAL (002	20H)		
(0021H, 0020H)		(Ir	nitial valu	ue: 1111	1111 1	111 1111)					R	ead/Write			l l
TC11DRB			TC	C11DRB	H (0023F	H)						TC110	ORBL (002	22H)		
(0023H, 0022H)		(Ir	nitial valu	ue: 1111	1111 1	111 1111)			Reac	l/Write (W	rite enable	ed only in	the PPG	output mo	de)
TimerCou	ınter 11	Contro	l Regi	ister						75)	\Diamond	6			
	7	6		5	4	3		2	1		0	~ <	7	(Ω)		
TC11CR (0024H)	TFF11	ACAP1 MCAP1 METT1 MPPG1	l1 ∣1	TC1 ²	1S	7	ГС11СI) TC11	М	Read/Wi	rite alue: 0000	0000)		
											(//				
TFF11	Timer F/F1			0: Clea		((1: Set					R/W
ACAP11 MCAP11	Auto captu Pulse widt ment mode	h measur			le edge o			<u> </u>	\prec			e edge cap				
METT11	External tr	igger time	er	0:Trigge	er start)		\wedge		1:Trigge	er start and	d stop			R/W
MPPG11	PPG outpu	ut control		0:Conti	nuous pu	lse gener	ration	_			1:One-s	shot				
					25)				T	imer	Extrig- ger	Event	Win- dow	Pulse	PPG	
			\bigcap		nmand s	unter clea	ır ((7/\$		0	0	0	0	0	0	
TC11S	TC11 start	control		10: Risi	ing edge	start	rent)	ulse/PP(3)	-	0	0	0	0	0	R/W
	\(\lambda\)		9	Fall			vent)	ulse/PP0 w)	G)	-	0	0	0	0	0	
	11/		\bigcirc	((N	ORMAL.	1/2, IDL	E1/2 ı	mode				SLOW,	
				2		DV7C					DV70	CK = 1		Divider	SLEEP mode	
TC11CK	TC11 sour	ce clock s	select	00	>	fc/2	211				fs	/2 ³		DV9	fs/2 ³	R/W
	[Hz]			01		fc/	2 ⁷				fc	/2 ⁷		DV5	_	
				10		fc/	2 ³				fc	/2 ³		DV1	-	
				11				E	xternal	clock	(TC11 pin	input)			1	1
TC11M	TC11 oper	rating mod	de	01: Win	idow mod	al trigger de measurer			unter m	ode						R/W
				11: PP0	3 (Progra	ımmable	pulse g	enerate)) output	mode)					

Note 1: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz]

Note 2: The timer register consists of two shift registers. A value set in the timer register becomes valid at the rising edge of the first source clock pulse that occurs after the upper byte (TC11DRAH and TC11DRBH) is written. Therefore, write the lower

byte and the upper byte in this order (it is recommended to write the register with a 16-bit access instruction). Writing only the lower byte (TC11DRAL and TC11DRBL) does not enable the setting of the timer register.

- Note 3: To set the mode, source clock, PPG output control and timer F/F control, write to TC11CR1 during TC11S=00. Set the timer F/F10 control until the first timer start after setting the PPG mode.
- Note 4: Auto-capture can be used only in the timer, event counter, and window modes.
- Note 5: To set the timer registers, the following relationship must be satisfied.

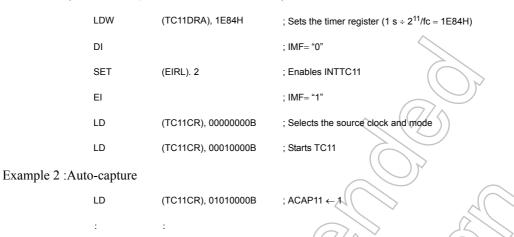
 TC11DRA > TC11DRB > 1 (PPG output mode), TC11DRA > 1 (other modes)
- Note 6: Set TFF11 to "0" in the mode except PPG output mode.
- Note 7: Set TC11DRB after setting TC11M to the PPG output mode.
- Note 8: When the STOP mode is entered, the start control (TC11S) is cleared to "00" automatically, and the timer stops. After the STOP mode is exited, set the TC11S to use the timer counter again.
- Note 9: Use the auto-capture function in the operative condition of TC11. A captured value may not be fixed if it's read after the execution of the timer stop or auto-capture disable. Read the capture value in a capture enabled condition.
- Note 10:Since the up-counter value is captured into TC11DRB by the source clock of up-counter after setting TC11CR<ACAP11> to "1". Therefore, to read the captured value, wait at least one cycle of the internal source clock before reading TC11DRB for the first time

8.2.3 Function

TimerCounter 11 has six types of operating modes: timer, external trigger timer, event counter, window, pulse width measurement, programmable pulse generator output modes.

8.2.3.1 Timer mode

In the timer mode, the up-counter counts up using the internal clock. When a match between the up-counter and the timer register 1A (TC11DRA) value is detected, an INTTC11 interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting. Setting TC11CR<ACAP11> to "1" captures the up-counter value into the timer register 1B (TC11DRB) with the auto-capture function. Use the auto-capture function in the operative condition of TC11. A captured value may not be fixed if it's read after the execution of the timer stop or auto-capture disable. Read the capture value in a capture enabled condition. Since the up-counter value is captured into TC11DRB by the source clock of up-counter after setting TC11CR<ACAP11> to "1". Therefore, to read the captured value, wait at least one cycle of the internal source clock before reading TC11DRB for the first time.


Table 8-3 Internal Source Clock for TimerCounter 11 (Example: fc = 16 MHz, fs = 32.768 kHz)

-							
	TC11CK	DV7C	SLOW, SLEEP mode				
		Resolution [μs]	Maximum Time Setting	Resolution [μs]	Maximum Time Setting [s]	Resolution [μs]	Maximum Time Set- ting [s]
ľ	00	128	8.39	244.14	16.0	244.14	16.0
	01	8.0	0.524	8.0	0.524	-	-
	10	0.5	32.77 m	0.5	32.77 m	_	_

LD

WA, (TC11DRB)

Example 1 :Setting the timer mode with source clock $fc/2^{11}$ [Hz] and generating an interrupt 1 second later (fc = 16 MHz, TBTCR < DV7CK > = "0")

Note: Since the up-counter value is captured into TC11DRB by the source clock of up-counter after setting TC11CR<ACAP11> to "1". Therefore, to read the captured value, wait at least one cycle of the internal source clock before reading TC11DRB for the first time.

; Reads the capture value

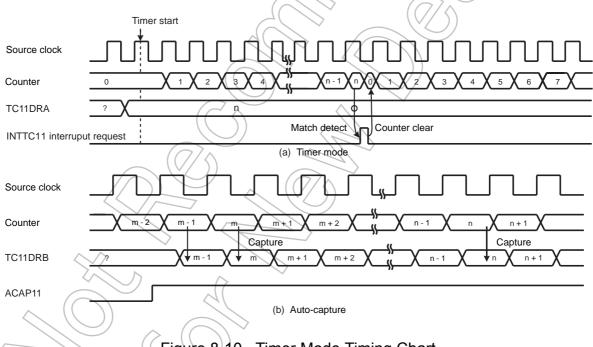


Figure 8-10 Timer Mode Timing Chart

8.2.3.2 External Trigger Timer Mode

In the external trigger timer mode, the up-counter starts counting by the input pulse triggering of the TC11 pin, and counts up at the edge of the internal clock. For the trigger edge used to start counting, either the rising or falling edge is defined in TC11CR<TC11S>.

• When TC11CR<METT11> is set to "1" (trigger start and stop)

When a match between the up-counter and the TC11DRA value is detected after the timer starts, the up-counter is cleared and halted and an INTTC11 interrupt request is generated.

If the edge opposite to trigger edge is detected before detecting a match between the upcounter and the TC11DRA, the up-counter is cleared and halted without generating an interrupt request. Therefore, this mode can be used to detect exceeding the specified pulse by interrupt.

After being halted, the up-counter restarts counting when the trigger edge is detected.

• When TC11CR<METT11> is set to "0" (trigger start)

When a match between the up-counter and the TC11DRA value is detected after the timer starts, the up-counter is cleared and halted and an INTTC11 interrupt request is generated.

The edge opposite to the trigger edge has no effect in count up. The trigger edge for the next counting is ignored if detecting it before detecting a match between the up-counter and the TC11DRA.

Since the TC11 pin input has the noise rejection, pulses of 4/fc [s] or less are rejected as noise. A pulse width of 12/fc [s] or more is required to ensure edge detection. The rejection circuit is turned off in the SLOW1/2 or SLEEP1/2 mode, but a pulse width of one machine cycle or more is required.

Example 1 :Generating an interrupt T ms after the rising edge of the input pulse to the TC11 pin (fc =16 MHz)

Example 2 :Generating an interrupt when the low-level pulse with 4 ms or more width is input to the TC11 pin (fc = 16 MHz)

LDW (TC11DRA), 01F4H ; $4 \text{ ms} \div 2^7/\text{fc} = 1\text{F4H}$ DΙ : IMF= "0" SET (EIRL). 2 ; Enables INTTC11 interrupt ΕI : IMF= "1" LD (TC11CR), 00000100B ; Selects the source clock and mode LD (TC11CR), 01110100B ; Starts TC11 external trigger, METT11 = 0

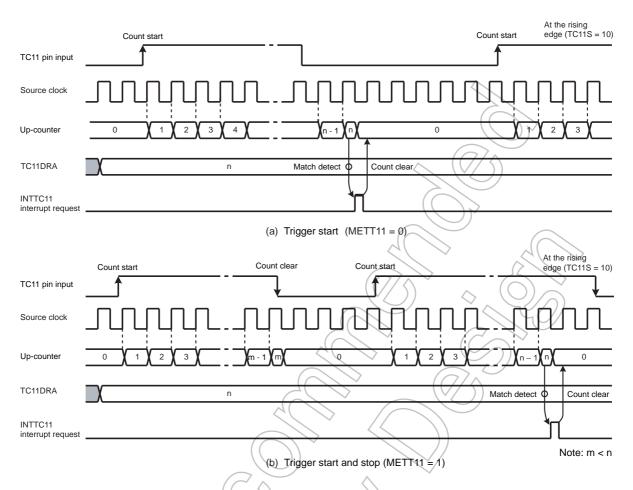


Figure 8-11 External Trigger Timer Mode Timing Chart

8.2.3.3 Event Counter Mode

In the event counter mode, the up-counter counts up at the edge of the input pulse to the TC11 pin. Either the rising or falling edge of the input pulse is selected as the count up edge in TC11CR<TC11S>.

When a match between the up-counter and the TC11DRA value is detected, an INTTC11 interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting at each edge of the input pulse to the TC11 pin. Since a match between the up-counter and the value set to TC11DRA is detected at the edge opposite to the selected edge, an INTTC11 interrupt request is generated after a match of the value at the edge opposite to the selected edge.

Two or more machine cycles are required for the low-or high-level pulse input to the TC11 pin.

Setting TC11CR<ACAP11> to "1" captures the up-counter value into TC11DRB with the auto capture function. Use the auto-capture function in the operative condition of TC11. A captured value may not be fixed if it's read after the execution of the timer stop or auto-capture disable. Read the capture value in a capture enabled condition. Since the up-counter value is captured into TC11DRB by the source clock of up-counter after setting TC11CR<ACAP11> to "1". Therefore, to read the captured value, wait at least one cycle of the internal source clock before reading TC11DRB for the first time.

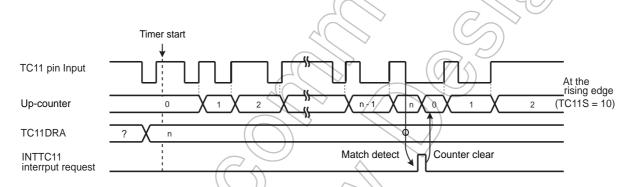
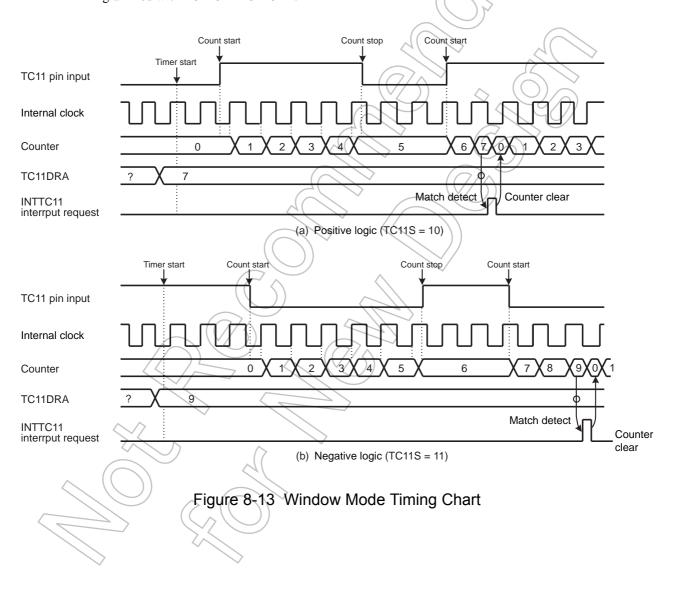


Figure 8-12 Event Counter Mode Timing Chart

Table 8-4 Input Pulse Width to TC11 Pin


	Minimum Pulse Width [s]						
	NORMAL1/2, IDLE1/2 Mode	SLOW1/2, SLEEP1/2 Mode					
High-going	2 ³ /fc	2 ³ /fs					
Low-going	2 ³ /fc	2 ³ /fs					

8.2.3.4 Window Mode

In the window mode, the up-counter counts up at the rising edge of the pulse that is logical ANDed product of the input pulse to the TC11 pin (window pulse) and the internal source clock. Either the positive logic (count up during high-going pulse) or negative logic (count up during low-going pulse) can be selected.

When a match between the up-counter and the TC11DRA value is detected, an INTTC11 interrupt is generated and the up-counter is cleared.

Define the window pulse to the frequency which is sufficiently lower than the internal source clock programmed with TC11CR<TC11CK>.

8.2.3.5 Pulse Width Measurement Mode

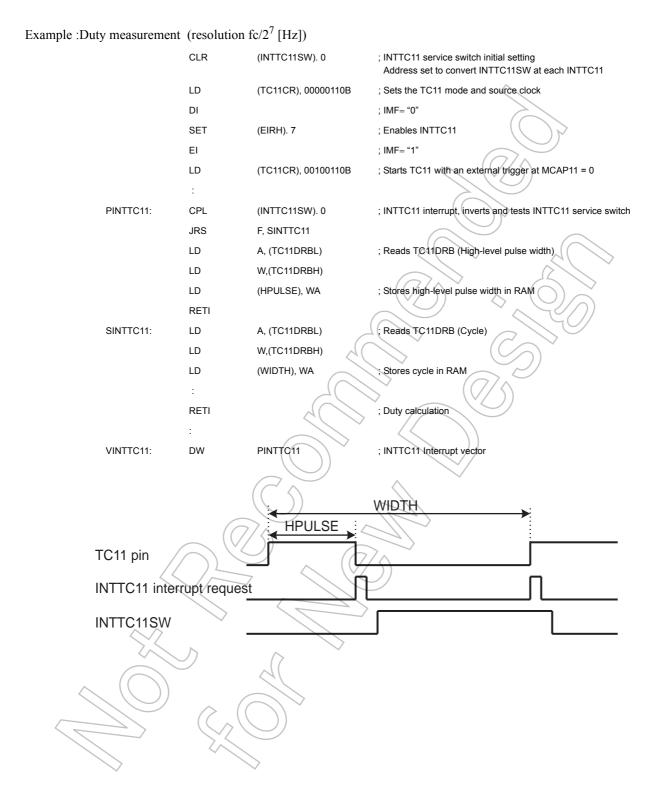
In the pulse width measurement mode, the up-counter starts counting by the input pulse triggering of the TC11 pin, and counts up at the edge of the internal clock. Either the rising or falling edge of the internal clock is selected as the trigger edge in TC11CR<TC11S>. Either the single- or double-edge capture is selected as the trigger edge in TC11CR<MCAP11>.

• When TC11CR<MCAP11> is set to "1" (single-edge capture)

Either high- or low-level input pulse width can be measured. To measure the high-level input pulse width, set the rising edge to TC11CR<TC11S>. To measure the low-level input pulse width, set the falling edge to TC11CR<TC11S>.

When detecting the edge opposite to the trigger edge used to start counting after the timer starts, the up-counter captures the up-counter value into TC11DRB and generates an INTTC11 interrupt request. The up-counter is cleared at this time, and then restarts counting when detecting the trigger edge used to start counting.

• When TC11CR<MCAP11> is set to "0" (double-edge capture)


The cycle starting with either the high- or low-going input pulse can be measured. To measure the cycle starting with the high-going pulse, set the rising edge to TC11CR<TC11S>. To measure the cycle starting with the low-going pulse, set the falling edge to TC11CR<TC11S>.

When detecting the edge opposite to the trigger edge used to start counting after the timer starts, the up-counter captures the up-counter value into TC11DRB and generates an INTTC11 interrupt request. The up-counter continues counting up, and captures the up-counter value into TC11DRB and generates an INTTC11 interrupt request when detecting the trigger edge used to start counting. The up-counter is cleared at this time, and then continues counting.

Note 1: The captured value must be read from TC11DRB until the next trigger edge is detected. If not read, the captured value becomes a don't care. It is recommended to use a 16-bit access instruction to read the captured value from TC11DRB.

Note 2: For the single-edge capture, the counter after capturing the value stops at "1" until detecting the next edge. Therefore, the second captured value is "1" larger than the captured value immediately after counting starts.

Note 3: The first captured value after the timer starts may be read incorrectively, therefore, ignore the first captured value.

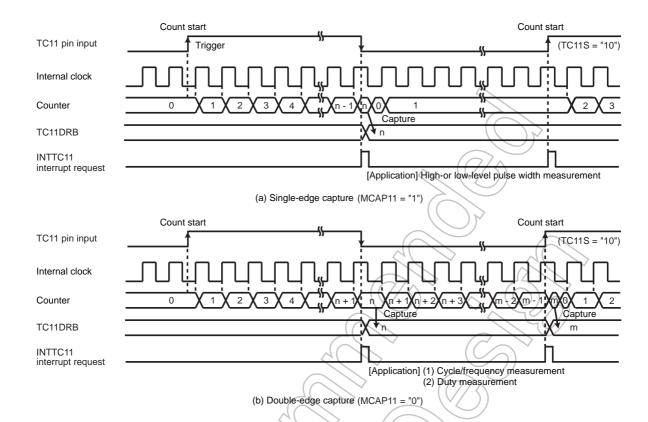


Figure 8-14 Pulse Width Measurement Mode

8.2.3.6 Programmable Pulse Generate (PPG) Output Mode

In the programmable pulse generation (PPG) mode, an arbitrary duty pulse is generated by counting performed in the internal clock. To start the timer, TC11CR<TC11S> specifies either the edge of the input pulse to the TC11 pin or the command start. TC11CR<MPPG11> specifies whether a duty pulse is produced continuously or not (one-shot pulse).

• When TC11CR<MPPG11> is set to "0" (Continuous pulse generation)

When a match between the up-counter and the TC11DRB value is detected after the timer starts, the level of the \overline{PPG} pin is inverted and an INTTC11 interrupt request is generated. The up-counter continues counting. When a match between the up-counter and the TC11DRA value is detected, the level of the \overline{PPG} pin is inverted and an INTTC11 interrupt request is generated. The up-counter is cleared at this time, and then continues counting and pulse generation.

When TC11S is cleared to "00" during PPG output, the PPG pin retains the level immediately before the counter stops.

• When TC11CR<MPPG11> is set to "1" (One-shot pulse generation)

When a match between the up-counter and the TC11DRB value is detected after the timer starts, the level of the PPG pin is inverted and an INTTC11 interrupt request is generated. The up-counter continues counting. When a match between the up-counter and the TC11DRA value is detected, the level of the PPG pin is inverted and an INTTC11 interrupt request is generated. TC11CR<TC11S> is cleared to "00" automatically at this time, and the timer stops. The pulse generated by PPG retains the same level as that when the timer stops.

Since the output level of the \overline{PPG} pin can be set with TC11CR<TFF11> when the timer starts, a positive or negative pulse can be generated. Since the inverted level of the timer F/F1 output level is output to the \overline{PPG} pin, specify TC11CR<TFF11> to "0" to set the high level to the \overline{PPG} pin, and "1" to set the low level to the \overline{PPG} pin. Upon reset, the timer F/F1 is initialized to "0".

Note 1. To change TC11DRA or TC11DRB during a run of the timer, set a value sufficiently larger than the count value of the counter. Setting a value smaller than the count value of the counter during a run of the timer may generate a pulse different from that specified.

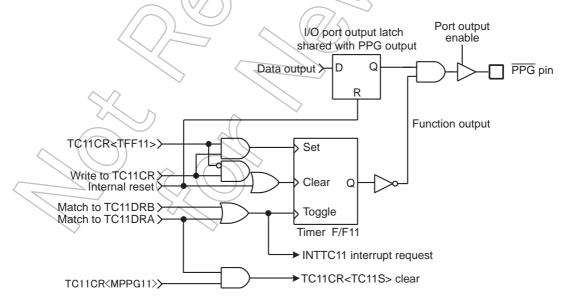
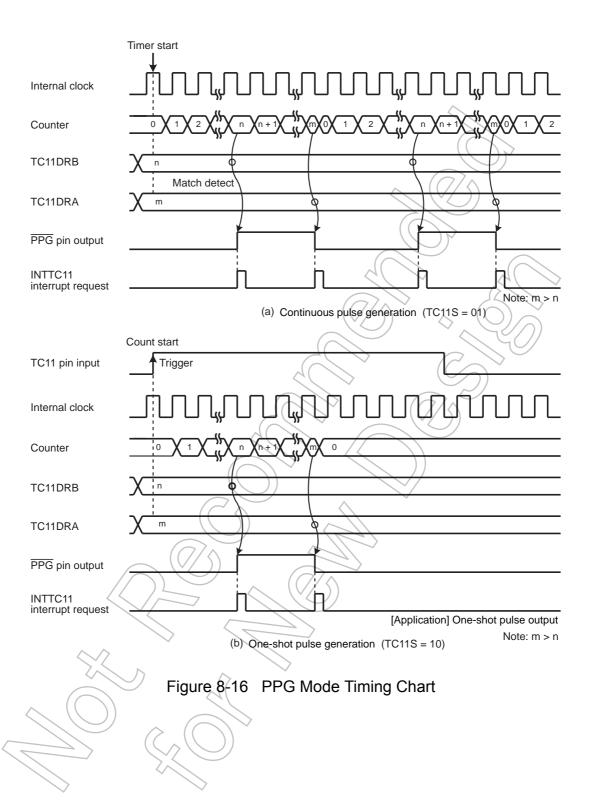
Note 2: Do not change TC11CR<TFF11> during a run of the timer. TC11CR<TFF11> can be set correctly only at initialization (after reset). When the timer stops during PPG, TC11CR<TFF11> can not be set correctly from this point onward if the PPG output has the level which is inverted of the level when the timer starts. (Setting TC11CR<TFF11> specifies the timer F/F1 to the level inverted of the programmed value.) Therefore, the timer F/F1 needs to be initialized to ensure an arbitrary level of the PPG output. To initialize the timer F/F1, change TC11CR<TC11M> to the timer mode (it is not required to start the timer mode), and then set the PPG mode. Set TC11CR<TFF11> at this time.

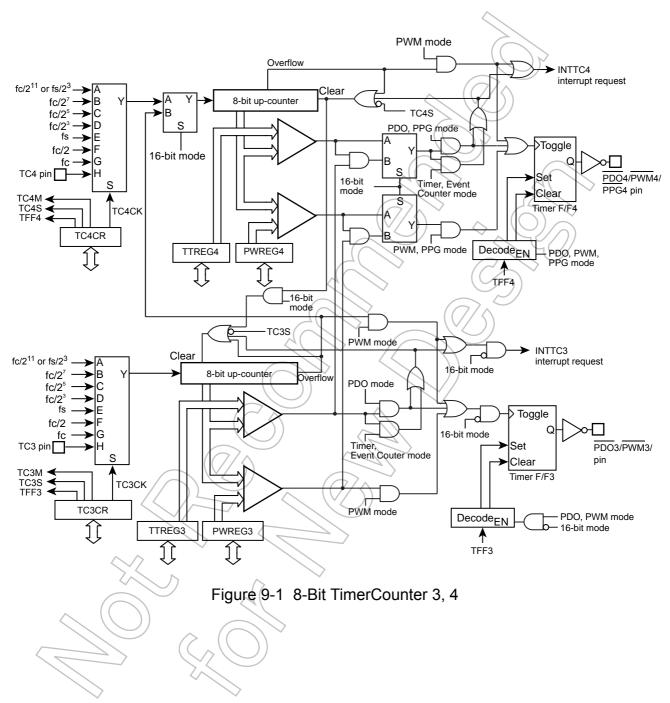
Note 3: In the PPG mode, the following relationship must be satisfied. TC11DRA > TC11DRB

Note 4: Set TC11DRB after changing the mode of TC11M to the PPG mode.

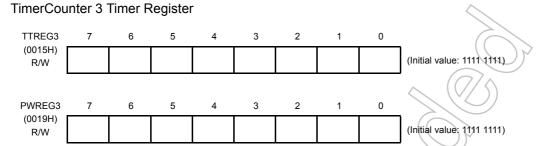
Example :Generating a pulse which is high-going for 800 μs and low-going for 200 μs (fc = 16 MHz)

		Setting port	_
LD		(TC11CR), 10000111B	; Sets the PPG mode, selects the source clock
LDW	I	(TC11DRA), 007DH	; Sets the cycle (1 ms $\div 2^7$ /fc ms = 007DH)
LDW	I	(TC11DRB), 0019H	; Sets the low-level pulse width (200 $\mu s \div 2^7 \text{/fc}$ = 0019H)
LD		(TC11CR), 10010111B	; Starts the timer
Example : After stop $(fc = 16 M)$		G, setting the PPG pin t	to a high-level to restart PPG
		Setting port	
LD		(TC11CR), 10000111B	; Sets the PPG mode, selects the source clock
LDW	1	(TC11DRA), 007DH	; Sets the cycle (1 ms \div 2 ⁷ /fc μ s = 007DH)
LDW	/	(TC11DRB), 0019H	; Sets the low-level pulse width (200 $\mu s = 2^7/\text{fc} = 0019\text{H}$)
LD		(TC11CR), 10010111B	; Starts the timer
:			
LD		(TC11CR), 10000111B	; Stops the timer
LD		(TC11CR), 10000100B	; Sets the timer mode
LD		(TC11CR), 00000111B	; Sets the PPG mode, TFF11 = 0
LD		(TC11CR), 00010111B	; Starts the timer
		77/	


Figure 8-15 PPG Output

TOSHIBA


9. 8-Bit TimerCounter (TC3, TC4)

9.1 Configuration

9.2 TimerCounter Control

The TimerCounter 3 is controlled by the TimerCounter 3 control register (TC3CR) and two 8-bit timer registers (TTREG3, PWREG3).

Note 1: Do not change the timer register (TTREG3) setting while the timer is running.

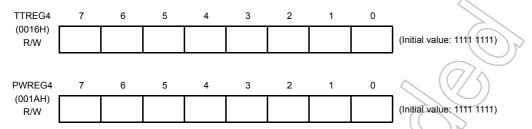
Note 2: Do not change the timer register (PWREG3) setting in the operating mode except the 8-bit and 16-bit PWM modes while the timer is running.

TimerCounter 3 Control Register

TC3CR	7	6	5	4	3	2		0	
(0009H)	TFF3		TC3CK		TC3S		тсзм	>	(Initial value: 0000 0000)

TFF3	Time F/F3 control	0: Clear 1: Set				R/W
			NORMAL1/2, DV7CK = 0	IDLE1/2 mode DV7CK = 1	SLOW1/2 SLEEP1/2 mode	
		000	fc/2 ¹¹	fs/2 ³	fs/2 ³	
		001	fc/2 ⁷	fc/2 ⁷	-	
тсзск	Operating clock selection [Hz]	010	fc/2 ⁵	fc/2 ⁵	-	R/W
		014	fc/2 ³	fc/2 ³	-	
		100	fs	fs	fs	
		101	fc/2	fc/2	-	
	⟨ ⟨? .	110	fc	fc	fc (Note 8)	
		/ 111	*	TC3 pin input		
TC3S	TC3 start control	0: Operati 1: Operati	on stop and counter cl on start	ear		R/W
ТСЗМ	TC3M operating mode select	001: 8-bit pro 010: 8-bit pu 011: 16-bit m	node is selectable with	rtput (PDO) mode PWM) output mode		R/W

- Note 1: fc: High-frequency clock [Hz] fs: Low-frequency clock[Hz]
- Note 2: Do not change the TC3M, TC3CK and TFF3 settings while the timer is running.
- Note 3: To stop the timer operation (TC3S= $1 \rightarrow 0$), do not change the TC3M, TC3CK and TFF3 settings. To start the timer operation (TC3S= $0 \rightarrow 1$), TC3M, TC3CK and TFF3 can be programmed.
- Note 4: To use the TimerCounter in the 16-bit mode, set the operating mode by programming TC4CR<TC4M>, where TC3M must be fixed to 011.
- Note 5: To use the TimerCounter in the 16-bit mode, select the source clock by programming TC3CK. Set the timer start control and timer F/F control by programming TC4CR<TC4S> and TC4CR<TFF4>, respectively.
- Note 6: The operating clock settings are limited depending on the timer operating mode. For the detailed descriptions, see Table 9-1 and Table 9-2.


Note 7: The timer register settings are limited depending on the timer operating mode. For the detailed descriptions, see Table 9-3.

Note 8: The operating clock fc in the SLOW or SLEEP mode can be used only as the high-frequency warm-up mode.

The TimerCounter 4 is controlled by the TimerCounter 4 control register (TC4CR) and two 8-bit timer registers (TTREG4 and PWREG4).

TimerCounter 4 Timer Register

Note 1: Do not change the timer register (TTREG4) setting while the timer is running.

Note 2: Do not change the timer register (PWREG4) setting in the operating mode except the 8-bit and 16-bit PWM modes while the timer is running.

TimerCounter 4 Control Register

TC4CR	7	6	5	4	3	2	1 0	
(000AH)	TFF4		TC4CK		TC4S		TC4M	(Initial value: 0000 0000)

-						
TFF4	Timer F/F4 control	0: Clear 1: Set	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			R/W
			NORMAL1/2,	IDLE1/2 mode	SLOW1/2 SLEEP1/2	
			DV7CK = 0	DV7CK = 1	mode	
	(000	fc/2 ¹¹	fs/2 ³	fs/2 ³	
		001	fc/2 ⁷	fc/2 ⁷	-	
TC4CK	Operating clock selection [Hz]	010	fc/2 ⁵	fc/2 ⁵	-	R/W
		011	fc/2 ³	fc/2 ³	-	
		100	fs	fs	fs	
		101	fc/2	fc/2	_	
	<√7	110	fc	fc TC4 pin input	_	
	\	\rightarrow	<u> </u>			
TC4S	TC4 start control	0: Operation 1: Operation	on stop and counter cl on start	lear		R/W
		1.1.	ner/event counter mod			
		11	ogrammable divider ou			
		010: 8-bit pu 011: Reserve	lse width modulation (ed	Pyvivi) output mode		
TC4M	TC4M operating mode select		mer/event counter mo	de		R/W
			p counter mode			
			ulse width modulation	(PWM) output mode		
		111: 16-bit P	PG mode			

Note 1: fc: High-frequency clock [Hz] fs: Low-frequency clock [Hz]

Note 2: Do not change the TC4M, TC4CK and TFF4 settings while the timer is running.

Note 3: To stop the timer operation (TC4S= $1 \rightarrow 0$), do not change the TC4M, TC4CK and TFF4 settings. To start the timer operation (TC4S= $0 \rightarrow 1$), TC4M, TC4CK and TFF4 can be programmed.

Note 4: When TC4M= 1** (upper byte in the 16-bit mode), the source clock becomes the TC3 overflow signal regardless of the TC4CK setting.

Note 5: To use the TimerCounter in the 16-bit mode, select the operating mode by programming TC4M, where TC3CR<TC3M> must be set to 011.

- Note 6: To the TimerCounter in the 16-bit mode, select the source clock by programming TC3CR<TC3CK>. Set the timer start control and timer F/F control by programming TC4S and TFF4, respectively.
- Note 7: The operating clock settings are limited depending on the timer operating mode. For the detailed descriptions, see Table 9-1 and Table 9-2.
- Note 8: The timer register settings are limited depending on the timer operating mode. For the detailed descriptions, see Table 9-3.

Table 9-1 Operating Mode and Selectable Source Clock (NORMAL1/2 and IDLE1/2 Modes)

Operating mode	fc/2 ¹¹ or fs/2 ³	fc/2 ⁷	fc/2 ⁵	fc/2 ³	fs	fc/2	fc	TC3 pin input	TC4 pin input
8-bit timer	О	О	О	О	-))	_	-
8-bit event counter	ı	ı	-	-	-		> -	О	О
8-bit PDO	О	О	О	О	(-		-
8-bit PWM	О	О	О	О	0/	0	0	4(- /	<u> </u>
16-bit timer	О	О	О	0 /	\bigcirc	> -	- (-
16-bit event counter	-	-	-	- \	Y(-))	- <	> -(-
Warm-up counter	-	-	-	7	0	_	<u> </u>	9(-//	-
16-bit PWM	О	0	0	0	o	0 (0	> o	-
16-bit PPG	О	О	0	0	_		<u> </u>	О	_

Note 1: For 16-bit operations (16-bit timer/event counter, warm-up counter, 16-bit PWM and 16-bit PPG), set its source clock on lower bit (TC3CK).

Note 2: O: Available source clock

Table 9-2 Operating Mode and Selectable Source Clock (SLOW1/2 and SLEEP1/2 Modes)

Operating mode	fc/2 ¹¹ or fs/2 ³	fc/2 ⁷	fc/2 ⁵	fc/2 ³	fs	fc/2	fc	TC3 pin input	TC4 pin input
8-bit timer	0//))-	-) 	> -	-	-	_	_
8-bit event counter)	-	((//-	-	1	-	О	О
8-bit PDO	0	-	\ <u>-</u>		-	-	-	_	_
8-bit PWM	o			- /	О	ı	-	_	-
16-bit timer	0	-	<u> </u>	-	-	-	-	_	-
16-bit event counter	_	1		ı	-	ı	ı	О	-
Warm-up counter	_	7	_	ı	-	ı	О	_	-
16-bit PWM	0		_	-	О	_	-	О	_
16-bit PPG) o ((-	_	_	_	_	О	_

Note1: For 16-bit operations (16-bit timer/event counter, warm-up counter, 16-bit PWM and 16-bit PPG), set its source clock on lower bit (TC3CK).

Note2: O : Available source clock

Table 9-3 Constraints on Register Values Being Compared

Operating mode	Register Value
8-bit timer/event counter	1≤ (TTREGn) ≤255
8-bit PDO	1≤ (TTREGn) ≤255
8-bit PWM	2≤ (PWREGn) ≤254
16-bit timer/event counter	1≤ (TTREG4, 3) ≤65535
Warm-up counter	256≤ (TTREG4, 3) ≤65535
16-bit PWM	2≤ (PWREG4, 3) ≤65534
16-bit PPG	1≤ (PWREG4, 3) < (TTREG4, 3) ≤65535 and (PWREG4, 3) + 1 < (TTREG4, 3)

9.3 Function

The TimerCounter 3 and 4 have the 8-bit timer, 8-bit event counter, 8-bit programmable divider output (PDO), 8-bit pulse width modulation (PWM) output modes. The TimerCounter 3 and 4 (TC3, 4) are cascadable to form a 16-bit timer. The 16-bit timer has the operating modes such as the 16-bit timer, 16-bit event counter, warm-up counter, 16-bit pulse width modulation (PWM) output and 16-bit programmable pulse generation (PPG) modes.

9.3.1 8-Bit Timer Mode (TC3 and 4)

In the timer mode, the up-counter counts up using the internal clock. When a match between the up-counter and the timer register j (TTREGj) value is detected, an INTTCj interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting.

Note 1: In the timer mode, fix TCjCR<TFFj> to 0. If not fixed, the PDOj, PWMj and PPGj pins may output pulses.

Note 2: In the timer mode, do not change the TTREGj setting while the timer is running. Since TTREGj is not in the shift register configuration in the timer mode, the new value programmed in TTREGj is in effect immediately after the programming. Therefore, if TTREGi is changed while the timer is running, an expected operation may not be obtained.

Note 3: j = 3, 4

Table 9-4 Source Clock for TimerCounter 3, 4 (Internal Clock)

DI

	Source Clock		Reso	olution	Maximum Time Setting		
NORMAL1/2,	IDLE1/2 mode	SLOW1/2,					
DV7CK = 0	DV7CK = 1	SLEEP1/2 mode	fc = 16 MHz	fs = 32.768 kHz	fc = 16 MHz	fs = 32.768 kHz	
fc/2 ¹¹ [Hz]	fs/2 ³ [Hz]	fs/2 ³ [Hz]	128 μs	244.14 μs	32.6 ms	62.3 ms	
fc/2 ⁷	fc/2 ⁷	- (8 μs	-	2.0 ms	_	
fc/2 ⁵	fc/2 ⁵		2 μs		510 μs	-	
fc/2 ³	fc/2 ³	(-)	500 ns	_	127.5 μs	-	

Example :Setting the timer mode with source clock $fc/2^7$ Hz and generating an interrupt 80 μ s later (TimerCounter4, fc = 16.0 MHz)

LD (TTREG4), 0AH : Sets the timer register (80 μ s÷2 7 /fc = 0AH).

SET (EIRE), 5 : Enables INTTC4 interrupt.

EI

LD (TC4CR), 00010000B : Sets the operating clock to fc/2⁷, and 8-bit timer mode.

LD (TC4CR), 00011000B : Starts TC4.

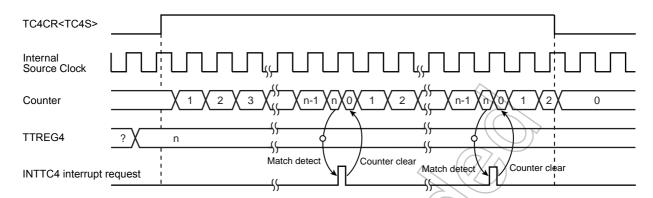


Figure 9-2 8-Bit Timer Mode Timing Chart (TC4)

9.3.2 8-Bit Event Counter Mode (TC3, 4)

In the 8-bit event counter mode, the up-counter counts up at the falling edge of the input pulse to the TCj pin. When a match between the up-counter and the TTREGj value is detected, an INTTCj interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting at the falling edge of the input pulse to the TCj pin. Two machine cycles are required for the low- or high-level pulse input to the TCj pin. Therefore, a maximum frequency to be supplied is fc/2⁴ Hz in the NORMAL1/2 or IDLE1/2 mode, and fs/2⁴ Hz in the SLOW1/2 or SLEEP1/2 mode.

Note 1: In the event counter mode, fix TCjCR<TFFj> to 0. If not fixed, the PDOj, PWMj and PPGj pins may output pulses.

Note 2: In the event counter mode, do not change the TTREGj setting while the timer is running. Since TTREGj is not in the shift register configuration in the event counter mode, the new value programmed in TTREGj is in effect immediately after the programming. Therefore, if TTREGi is changed while the timer is running, an expected operation may not be obtained.

Note 3: j = 3, 4

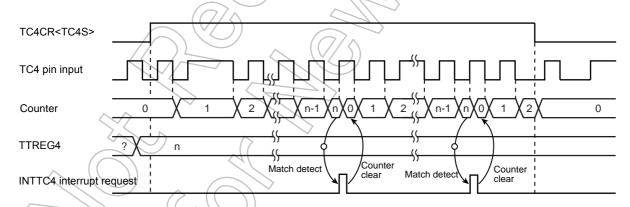


Figure 9-3 8-Bit Event Counter Mode Timing Chart (TC4)

9.3.3 8-Bit Programmable Divider Output (PDO) Mode (TC3, 4)

This mode is used to generate a pulse with a 50% duty cycle from the PDOj pin.

In the PDO mode, the up-counter counts up using the internal clock. When a match between the up-counter and the TTREGj value is detected, the logic level output from the \overline{PDOj} pin is switched to the opposite state and the up-counter is cleared. The INTTCj interrupt request is generated at the time. The logic state opposite to the timer F/Fj logic level is output from the \overline{PDOj} pin. An arbitrary value can be set to the timer F/Fj by TCjCR<TFFj>. Upon reset, the timer F/Fj value is initialized to 0.

To use the programmable divider output, set the output latch of the I/O port to 1.

Example :Generating 1024 Hz pulse using TC4 (fc = 16.0 MHz)

Setting port

LD (TTREG4), 3DH : $1/1024 \div 2^7/\text{fc} \div 2 = 3DH$

LD (TC4CR), 00010001B : Sets the operating clock to fc/2⁷, and 8-bit PDO mode.

LD (TC4CR), 00011001B : Starts TC4.

Note 1: In the programmable divider output mode, do not change the TTREGj setting while the timer is running. Since TTREGj is not in the shift register configuration in the programmable divider output mode, the new value programmed in TTREGj is in effect immediately after programming. Therefore, if TTREGi is changed while the timer is running, an expected operation may not be obtained.

Note 2: When the timer is stopped during PDO output, the PDOj pin holds the output status when the timer is stopped. To change the output status, program TCjCR<TFFj> after the timer is stopped. Do not change the TCjCR<TFFj> setting upon stopping of the timer.

Example: Fixing the PDOj pin to the high level when the TimerCounter is stopped

CLR (TCjCR).3: Stops the timer.

CLR (TCjCR).7: Sets the PDOj pin to the high level.

Note 3: j = 3, 4

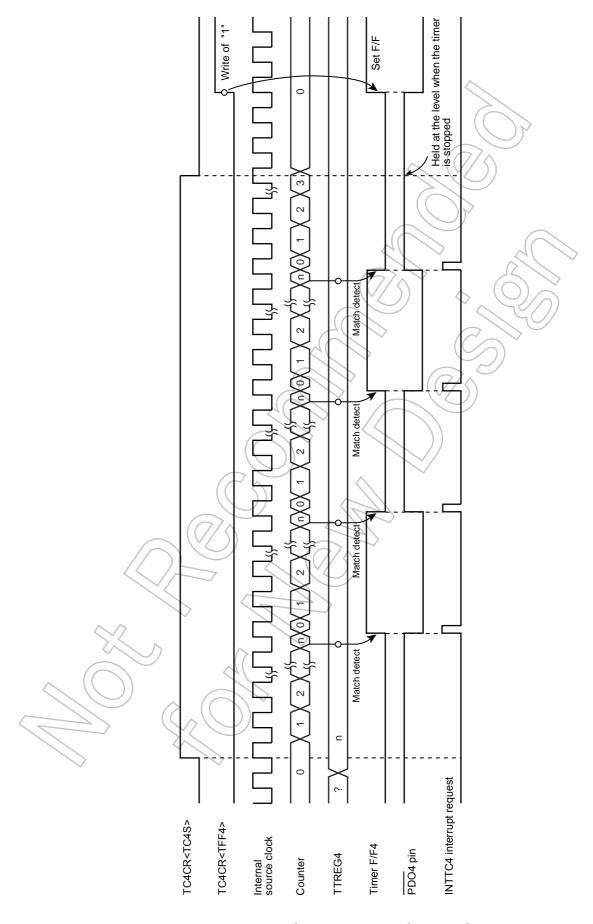


Figure 9-4 8-Bit PDO Mode Timing Chart (TC4)

8-Bit Pulse Width Modulation (PWM) Output Mode (TC3, 4) 9.3.4

This mode is used to generate a pulse-width modulated (PWM) signals with up to 8 bits of resolution. The up-counter counts up using the internal clock.

When a match between the up-counter and the PWREGj value is detected, the logic level output from the timer F/Fi is switched to the opposite state. The counter continues counting. The logic level output from the timer F/Fj is switched to the opposite state again by the up-counter overflow, and the counter is cleared. The INTTCj interrupt request is generated at this time.

Since the initial value can be set to the timer F/Fj by TCjCR<TFFj>, positive and negative pulses can be generated. Upon reset, the timer F/Fj is cleared to 0.

(The logic level output from the PWMj pin is the opposite to the timer F/Fj logic level.)

Since PWREGj in the PWM mode is serially connected to the shift register, the value set to PWREGj can be changed while the timer is running. The value set to PWREGj during a run of the timer is shifted by the INTTCj interrupt request and loaded into PWREGj. While the timer is stopped, the value is shifted immediately after the programming of PWREGj. If executing the read instruction to PWREGj during PWM output, the value in the shift register is read, but not the value set in PWREG. Therefore, after writing to PWREG, the reading data of PWREGi is previous value until INTTCi is generated.

For the pin used for PWM output, the output latch of the I/O port must be set to 1.

- Note 1: In the PWM mode, program the timer register PWREGj immediately after the INTTCj interrupt request is generated (normally in the INTTCj interrupt service routine.) If the programming of PWREGj and the interrupt request occur at the same time, an unstable value is shifted, that may result in generation of the pulse different from the programmed value until the next INTTCj interrupt request is generated.
- Note 2: When the timer is stopped during PWM output, the PWMj pin holds the output status when the timer is stopped. To change the output status, program TCjCR<TFFj> after the timer is stopped. Do not change the TCjCR<TFFj> upon stopping of the timer. Example: Fixing the PWMj pin to the high level when the TimerCounter is stopped

CLR (TCjCR).3: Stops the timer.

CLR (TCjCR).7: Sets the PWMj pin to the high level.

Note 3: To enter the STOP mode during PWM output, stop the timer and then enter the STOP mode. If the STOP mode is entered without stopping the timer when fc, fc/2 or fs is selected as the source clock, a pulse is output from the PWMj pin during the warm-up period time after exiting the STOP mode.

Note 4: j = 3, 4

Table 9-5 PWM Output Mode

Source Clock			Resolution		Repeated Cycle	
NORMAL1/2,	IDLE1/2 mode	SLOW1/2, SLEEP1/2	fc = 16 MHz	fs = 32.768 kHz	fc = 16 MHz	fs = 32.768 kHz
DV7CK = 0	DV7CK = 1	mode	IC = 16 MHZ	IS = 32.700 KHZ	IC = 16 WHZ	IS = 32.766 KHZ
fc/2 ¹¹ [Hz]	fs/2 ³ [Hz]	fs/2 ³ [Hz]	128 μs	244.14 μs	32.8 ms	62.5 ms
fc/2 ⁷	fc/2 ⁷	4	8 μs	_	2.05 ms	-
fc/2 ⁵	fc/2 ⁵		2 μs	-	512 μs	-
fc/2 ³	fc/2 ³	~ (-))	500 ns	-	128 μs	-
fs	fs	fs	30.5 μs	30.5 μs	7.81 ms	7.81 ms
fc/2	fc/2	_	125 ns	-	32 μs	-
fc	fc	_	62.5 ns	-	16 μs	-

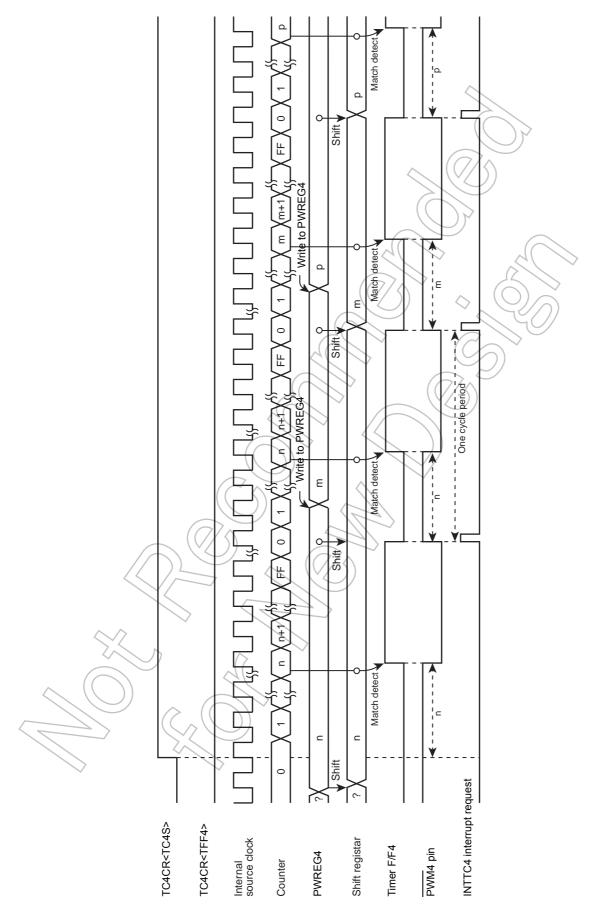


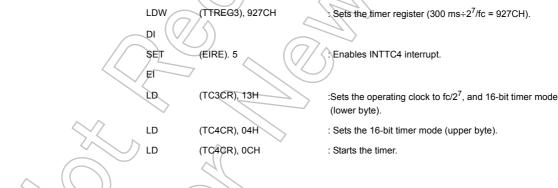
Figure 9-5 8-Bit PWM Mode Timing Chart (TC4)

9.3.5 16-Bit Timer Mode (TC3 and 4)

In the timer mode, the up-counter counts up using the internal clock. The TimerCounter 3 and 4 are cascadable to form a 16-bit timer.

When a match between the up-counter and the timer register (TTREG3, TTREG4) value is detected after the timer is started by setting TC4CR<TC4S> to 1, an INTTC4 interrupt is generated and the up-counter is cleared. After being cleared, the up-counter continues counting. Program the lower byte and upper byte in this order in the timer register. (Programming only the upper or lower byte should not be attempted.)

Note 1: In the timer mode, fix TCjCR<TFFj> to 0. If not fixed, the PDOj, PWMj, and PPGj pins may output a pulse.


Note 2: In the timer mode, do not change the TTREGj setting while the timer is running. Since TTREGj is not in the shift register configuration in the timer mode, the new value programmed in TTREGj is in effect immediately after programming of TTREGj. Therefore, if TTREGj is changed while the timer is running, an expected operation may not be obtained.

Note 3: j = 3, 4

Table 9-6 Source Clock for 16-Bit Timer Mode

Source Clock			Resolution		Maximum Time Setting	
NORMAL1/2, IDLE1/2 mode		SLOW1/2,			\$ (Q)	<u></u>
DV7CK = 0	DV7CK = 1	SLEEP1/2 mode	fc = 16 MHz	fs = 32.768 kHz	fc = 16 MHz	fs = 32.768 kHz
fc/2 ¹¹	fs/2 ³	fs/2 ³	128 μs	244.14 μs	8.39 s	16 s
fc/2 ⁷	fc/2 ⁷	_	8 μs	· -	524.3 ms	_
fc/2 ⁵	fc/2 ⁵	_	2 μs	- ((131.1 ms	-
fc/2 ³	fc/2 ³	- <	500 ns		32.8 ms	-

Example :Setting the timer mode with source clock $fe/2^7$ Hz, and generating an interrupt 300 ms later (fc = 16.0 MHz)

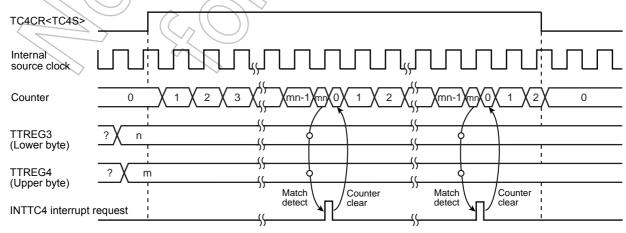


Figure 9-6 16-Bit Timer Mode Timing Chart (TC3 and TC4)

9.3.6 16-Bit Event Counter Mode (TC3 and 4)

In the event counter mode, the up-counter counts up at the falling edge to the TC3 pin. The TimerCounter 3 and 4 are cascadable to form a 16-bit event counter.

When a match between the up-counter and the timer register (TTREG3, TTREG4) value is detected after the timer is started by setting TC4CR<TC4S> to 1, an INTTC4 interrupt is generated and the up-counter is cleared.

After being cleared, the up-counter restarts counting at the falling edge of the input pulse to the TC3 pin. Two machine cycles are required for the low- or high-level pulse input to the TC3 pin.

Therefore, a maximum frequency to be supplied is fc/2⁴ Hz in the NORMAL1/2 or IDLE1/2 mode, and fs/2⁴ in the SLOW1/2 or SLEEP1/2 mode. Program the lower byte (TTREG3), and upper byte (TTREG4) in this order in the timer register. (Programming only the upper or lower byte should not be attempted.)

Note 1: In the event counter mode, fix TCjCR<TFFj> to 0. If not fixed, the PDOj, PWMj and PPGj pins may output pulses.

Note 2: In the event counter mode, do not change the TTREGi setting while the timer is running. Since TTREGi is not in the shift register configuration in the event counter mode, the new value programmed in TTREGi is in effect immediately after the programming. Therefore, if TTREGi is changed while the timer is running, an expected operation may not be obtained.

Note 3: j = 3, 4

9.3.7 16-Bit Pulse Width Modulation (PWM) Output Mode (TC3 and 4)

This mode is used to generate a pulse-width modulated (PWM) signals with up to 16 bits of resolution. The TimerCounter 3 and 4 are cascadable to form the 16-bit PWM signal generator.

The counter counts up using the internal clock or external clock.

When a match between the up-counter and the timer register (PWREG3, PWREG4) value is detected, the logic level output from the timer F/F4 is switched to the opposite state. The counter continues counting. The logic level output from the timer F/F4 is switched to the opposite state again by the counter overflow, and the counter is cleared. The INTTC4 interrupt is generated at this time.

Two machine cycles are required for the high- or low-level pulse input to the TC3 pin. Therefore, a maximum frequency to be supplied is $fc/2^4$ Hz in the NORMAL1/2 or IDLE1/2 mode, and $fs/2^4$ to in the SLOW1/2 or SLEEP1/2 mode.

Since the initial value can be set to the timer F/F4 by TC4CR<TFF4>, positive and negative pulses can be generated. Upon reset, the timer F/F4 is cleared to 0.

(The logic level output from the $\overline{PWM4}$ pin is the opposite to the timer F/F4 logic level.)

Since PWREG4 and 3 in the PWM mode are serially connected to the shift register, the values set to PWREG4 and 3 can be changed while the timer is running. The values set to PWREG4 and 3 during a run of the timer are shifted by the INTTCj interrupt request and loaded into PWREG4 and 3. While the timer is stopped, the values are shifted immediately after the programming of PWREG4 and 3. Set the lower byte (PWREG3) and upper byte (PWREG4) in this order to program PWREG4 and 3. (Programming only the lower or upper byte of the register should not be attempted.)

If executing the read instruction to PWREG4 and 3 during PWM output, the values set in the shift register is read, but not the values set in PWREG4 and 3. Therefore, after writing to the PWREG4 and 3, reading data of PWREG4 and 3 is previous value until INTTC4 is generated.

For the pin used for PWM output, the output latch of the I/O port must be set to 1.

Note 1: In the PWM mode, program the timer register PWREG4 and 3 immediately after the INTTC4 interrupt request is generated (normally in the INTTC4 interrupt service routine.) If the programming of PWREGj and the interrupt request occur at the same time, an unstable value is shifted, that may result in generation of pulse different from the programmed value until the next INTTC4 interrupt request is generated.

Note 2: When the timer is stopped during PWM output, the PWM4 pin holds the output status when the timer is stopped. To change the output status, program TC4CR<TFF4> after the timer is stopped. Do not program TC4CR<TFF4> upon_stopping of the timer.

Example: Fixing the PWM4 pin to the high level when the TimerCounter is stopped

CLR (TC4CR).3: Stops the timer.

CLR (TC4CR).7 : Sets the PWM4 pin to the high level.

Note 3: To enter the STOP mode, stop the timer and then enter the STOP mode. If the STOP mode is entered without stopping of the timer when fc, fc/2 or fs is selected as the source clock, a pulse is output from the PWM4 pin during the warm-up period time after exiting the STOP mode.

Table 9-7 16-Bit PWM Output Mode

Source Clock			Resolution		Repeated Cycle	
NORMAL1/2, IDLE1/2 mode		SLOW1/2,				
DV7CK = 0	DV7CK = 1	SLEEP1/2 mode	fc = 16 MHz	fs = 32.768 kHz	fc = 16 MHz	fs = 32.768 kHz
fc/2 ¹¹	fs/2 ³ [Hz]	fs/2 ³ [Hz]	128 μs	244.14 μs	8.39 s	16 s
fc/2 ⁷	fc/2 ⁷	_	8 µs	- (524.3 ms	-
fc/2 ⁵	fc/2 ⁵	_	2 μs	_	131.1 ms	-
fc/2 ³	fc/2 ³	_	500 ns	4->	32.8 ms	-
fs	fs	fs	30.5 μs	30.5 μs	2 s	2 s
fc/2	fc/2	_	125 ns	(7/4)	8.2 ms	_
fc	fc	-	62.5 ns	$\langle \mathcal{O} \rangle$	4.1 ms	-

Example: Generating a pulse with 1-ms high-level width and a period of 32.768 ms (fc = 16.0 MHz)

Setting ports

LDW (PWREG3), 07D0H

LD (TC3CR), 33H

(TC4CR), 056H

LD (TC4CR), 05EH

LD

Sets the pulse width.

: Sets the operating clock to fc/2³, and 16-bit PWM output mode (lower byte).

: Sets TFF4 to the initial value 0, and 16-bit PWM signal generation mode (upper byte).

: Starts the timer.

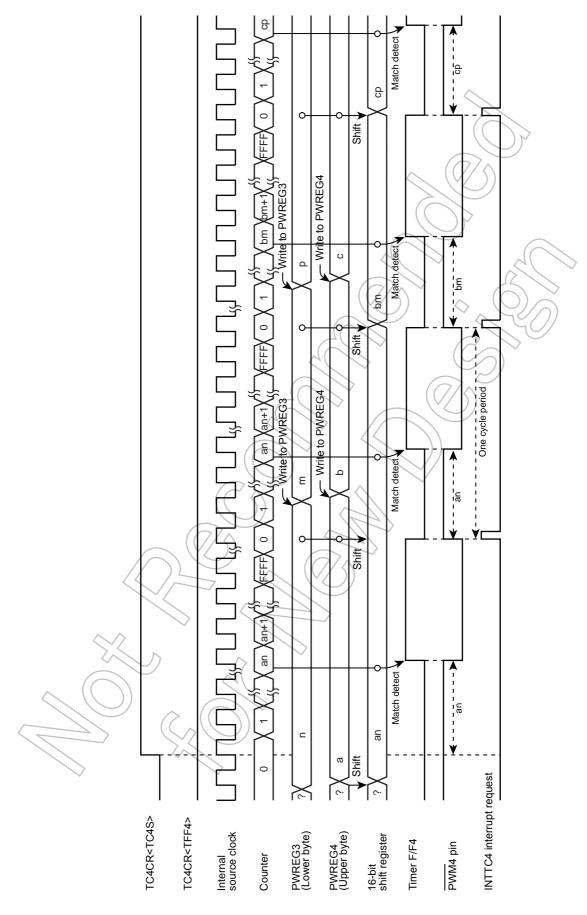


Figure 9-7 16-Bit PWM Mode Timing Chart (TC3 and TC4)

TMP86FS28FG

9.3.8 16-Bit Programmable Pulse Generate (PPG) Output Mode (TC3 and 4)

This mode is used to generate pulses with up to 16-bits of resolution. The timer counter 3 and 4 are cascadable to enter the 16-bit PPG mode.

The counter counts up using the internal clock or external clock. When a match between the up-counter and the timer register (PWREG3, PWREG4) value is detected, the logic level output from the timer F/F4 is switched to the opposite state. The counter continues counting. The logic level output from the timer F/F4 is switched to the opposite state again when a match between the up-counter and the timer register (TTREG3, TTREG4) value is detected, and the counter is cleared. The INTTC4 interrupt is generated at this time.

Two machine cycles are required for the high- or low-level pulse input to the TC3 pin. Therefore, a maximum frequency to be supplied is fc/2⁴ Hz in the NORMAL1/2 or IDLE1/2 mode, and fs/2⁴ to in the SLOW1/2 or SLEEP1/2 mode.

Since the initial value can be set to the timer F/F4 by TC4CR<TFF4>, positive and negative pulses can be generated. Upon reset, the timer F/F4 is cleared to 0.

(The logic level output from the $\overline{PPG4}$ pin is the opposite to the timer F/F4.)

Set the lower byte and upper byte in this order to program the timer register. (TTREG3 \rightarrow TTREG4, PWREG3 \rightarrow PWREG4) (Programming only the upper or lower byte should not be attempted.)

For PPG output, set the output latch of the I/O port to 1.

Example: Generating a pulse with 1-ms high-level width and a period of 16.385 ms (fc = 16.0 MHz)

Setting ports : Sets the pulse width. LDW (PWREG3), 07D0H LDW (TTREG3), 8002h : Sets the cycle period : Sets the operating clock to fc/2³, and16-bit PPG mode (TC3CR), 33H LD (lower byte). Sets TFF4 to the initial value 0, and 16-bit ΙD (TC4CR), 057F PPG mode (upper byte). (TC4CR), 05FH Starts the timer. LD

Note 1: In the PPG mode, do not change the PWREG and TTREG settings while the timer is running. Since PWREG and TTREG are not in the shift register configuration in the PPG mode, the new values programmed in PWREG and TTREG are in effect immediately after programming PWREG and TTREG. Therefore, if PWREG and TTREG are changed while the timer is running, an expected operation may not be obtained.

Note 2: When the timer is stopped during PPG output, the PPG4 pin holds the output status when the timer is stopped. To change the output status, program TC4CR<TFF4> after the timer is stopped. Do not change TC4CR<TFF4> upon stopping of the timer.

Example: Fixing the PPG4 pin to the high level when the TimerCounter is stopped CLR (TC4CR).3: Stops the timer

CLR (TC4CR).7: Sets the PPG4 pin to the high level

Note 3: i = 3, 4

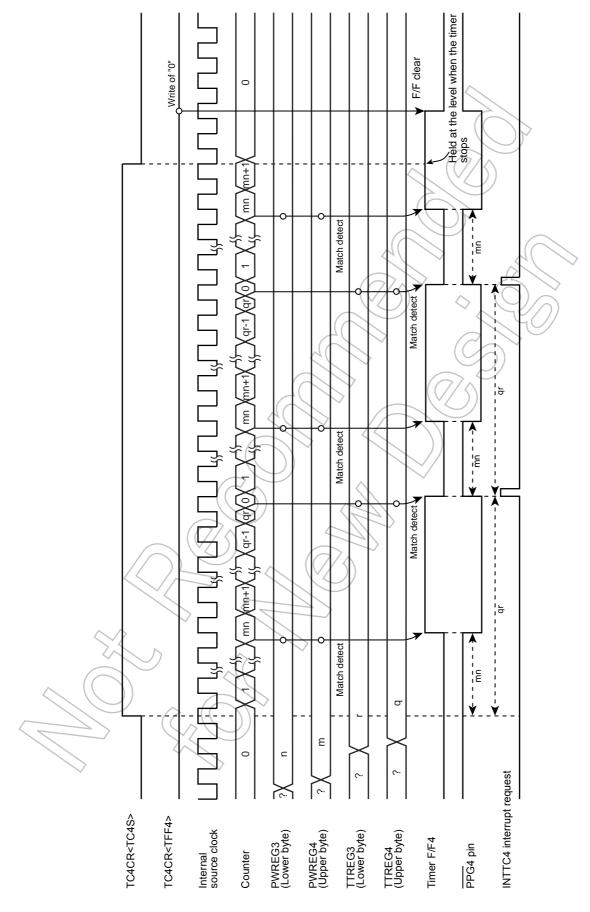


Figure 9-8 16-Bit PPG Mode Timing Chart (TC3 and TC4)

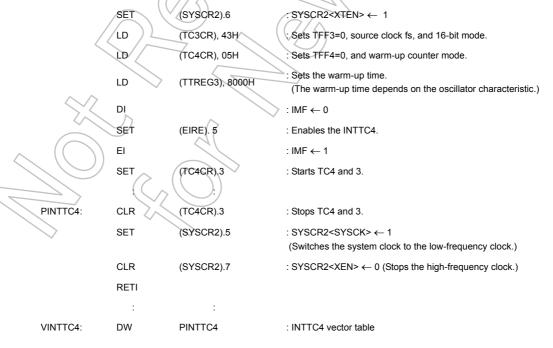
9.3.9 Warm-Up Counter Mode

In this mode, the warm-up period time is obtained to assure oscillation stability when the system clocking is switched between the high-frequency and low-frequency. The timer counter 3 and 4 are cascadable to form a 16-bit TimerCounter. The warm-up counter mode has two types of mode; switching from the high-frequency to low-frequency, and vice-versa.

Note 1: In the warm-up counter mode, fix TCiCR<TFFi> to 0. If not fixed, the PDOi, PWMi and PPGi pins may output pulses.

Note 2: In the warm-up counter mode, only upper 8 bits of the timer register TTREG4 and 3 are used for match detection and lower 8 bits are not used.

Note 3: i = 3, 4

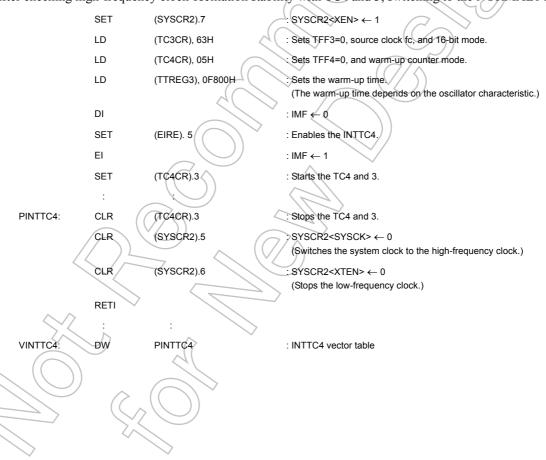

9.3.9.1 Low-Frequency Warm-up Counter Mode (NORMAL1 → NORMAL2 → SLOW2 → SLOW1)

In this mode, the warm-up period time from a stop of the low-frequency clock fs to oscillation stability is obtained. Before starting the timer, set SYSCR2<XTEN> to 1 to oscillate the low-frequency clock. When a match between the up-counter and the timer register (TTREG4, 3) value is detected after the timer is started by setting TC4CR<TC4S> to 1, the counter is cleared by generating the INTTC4 interrupt request. After stopping the timer in the INTTC4 interrupt service routine, set SYSCR2<SYSCK> to 1 to switch the system clock from the high-frequency to low-frequency, and then clear of SYSCR2<XEN> to 0 to stop the high-frequency clock.

Table 9-8 Setting Time of Low-Frequency Warm-Up Counter Mode (fs = 32.768 kHz)

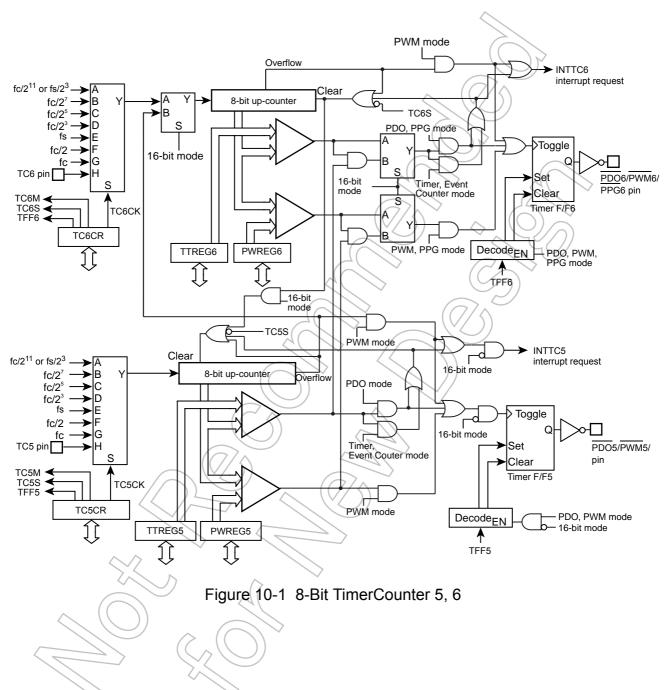
Minimum Time Setting (TTREG4, 3 = 0100H)		Maximum Time Setting (TTREG4, 3 = FF00H)
7.81 ms	$((\))$	1.99 s

Example : After checking low-frequency clock oscillation stability with TC4 and 3, switching to the SLOW1 mode

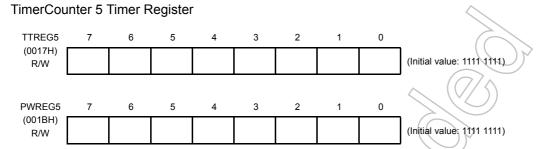

9.3.9.2 High-Frequency Warm-Up Counter Mode (SLOW1 → SLOW2 → NORMAL2 → NORMAL1)

In this mode, the warm-up period time from a stop of the high-frequency clock fc to the oscillation stability is obtained. Before starting the timer, set SYSCR2<XEN> to 1 to oscillate the high-frequency clock. When a match between the up-counter and the timer register (TTREG4, 3) value is detected after the timer is started by setting TC4CR<TC4S> to 1, the counter is cleared by generating the INTTC4 interrupt request. After stopping the timer in the INTTC4 interrupt service routine, clear SYSCR2<SYSCK> to 0 to switch the system clock from the low-frequency to high-frequency, and then SYSCR2<XTEN> to 0 to stop the low-frequency clock.

Table 9-9 Setting Time in High-Frequency Warm-Up Counter Mode


Minimum time Setting	Maximum time Setting		
(TTREG4, 3 = 0100H)	(TTREG4, 3 = FF00H)		
16 μs	4.08 ms		

Example : After checking high-frequency clock oscillation stability with TC4 and 3, switching to the NORMAL1 mode


10.8-Bit TimerCounter (TC5, TC6)

10.1 Configuration

10.2 TimerCounter Control

The TimerCounter 5 is controlled by the TimerCounter 5 control register (TC5CR) and two 8-bit timer registers (TTREG5, PWREG5).

Note 1: Do not change the timer register (TTREG5) setting while the timer is running.

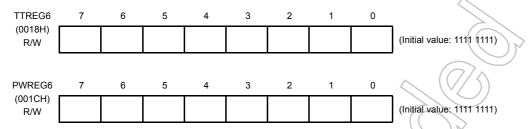
Note 2: Do not change the timer register (PWREG5) setting in the operating mode except the 8-bit and 16-bit PWM modes while the timer is running.

TimerCounter 5 Control Register

TC5CR	7	6	5	4	3	2	1	0	
(000BH)	TFF5		TC5CK		TC5S		ТС5М	\supset	(Initial value: 0000 0000)

TFF5	Time F/F5 control	0: Clear 1: Set				R/W	
			NORMAL1/2, DV7CK = 0	IDLE1/2 mode DV7CK = 1	SLOW1/2 SLEEP1/2 mode		
		000	fc/2 ¹¹	fs/2 ³	fs/2 ³		
	C5CK Operating clock selection [Hz]	001	fc/2 ⁷	fc/2 ⁷	-		
TC5CK		010	fc/2 ⁵	fc/2 ⁵	-	R/W	
		011	fc/2 ³	fc/2 ³	-		
		100	fs	fs	fs		
		101	fc/2	fc/2	-		
		110	fc	fc	fc (Note 8)		
		/ 111	TC5 pin input				
TC5S	TC5 start control		on stop and counter cl on start	ear		R/W	
TÇ5M	TC5M operating mode select	001: 8-bit pro 010: 8-bit pu 011: 16-bit m (Each n	001: 8-bit programmable divider output (PDO) mode 010: 8-bit pulse width modulation (PWM) output mode 011: 16-bit mode (Each mode is selectable with TC6M.)				

- Note 1: fc: High-frequency clock [Hz] fs: Low-frequency clock[Hz]
- Note 2: Do not change the TC5M, TC5CK and TFF5 settings while the timer is running.
- Note 3: To stop the timer operation (TC5S= $1 \rightarrow 0$), do not change the TC5M, TC5CK and TFF5 settings. To start the timer operation (TC5S= $0 \rightarrow 1$), TC5M, TC5CK and TFF5 can be programmed.
- Note 4: To use the TimerCounter in the 16-bit mode, set the operating mode by programming TC6CR<TC6M>, where TC5M must be fixed to 011.
- Note 5: To use the TimerCounter in the 16-bit mode, select the source clock by programming TC5CK. Set the timer start control and timer F/F control by programming TC6CR<TC6S> and TC6CR<TFF6>, respectively.
- Note 6: The operating clock settings are limited depending on the timer operating mode. For the detailed descriptions, see Table 10-1 and Table 10-2.


Note 7: The timer register settings are limited depending on the timer operating mode. For the detailed descriptions, see Table 10-3.

Note 8: The operating clock fc in the SLOW or SLEEP mode can be used only as the high-frequency warm-up mode.

The TimerCounter 6 is controlled by the TimerCounter 6 control register (TC6CR) and two 8-bit timer registers (TTREG6 and PWREG6).

TimerCounter 6 Timer Register

Note 1: Do not change the timer register (TTREG6) setting while the timer is running.

Note 2: Do not change the timer register (PWREG6) setting in the operating mode except the 8-bit and 16-bit PWM modes while the timer is running.

TimerCounter 6 Control Register

TC6CR	7	6	5	4	3	2	1 0	
(000CH)	TFF6		TC6CK		TC6S		TC6M	(Initial value: 0000 0000)

TFF6	Timer F/F6 control	0: Clear 1: Set	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			R/W		
			NORMAL1/2, IDLE1/2 mode SLOW1/2					
			DV7CK = 0	DV7CK = 1	SLEEP1/2 mode			
	(000	fc/2 ¹¹	fs/2 ³	fs/2 ³			
		001	fc/2 ⁷	fc/2 ⁷				
TC6CK	TC6CK Operating clock-selection [Hz]	010	fc/2 ⁵	fc/2 ⁵		R/W		
		011	fc/2 ³	fc/2 ³	-			
		100	fs	fs	fs			
		101	fc/2	fc/2	-			
	$\langle \rangle$	110	fc	fc	-			
		111 TC6 pin input						
TC6S	TC6 start control	0: Operation 1: Operation	on stop and counter con start	lear		R/W		
		000: 8-bit tim	er/event counter mod	e				
		, , , , , , , , , , , , , , , , , , , ,	ogrammable divider ou					
		010: 8-bit pulse width modulation (PWM) output mode						
TC6M	TC6M operating mode select		eu mer/event counter mo	de		R/W		
			p counter mode					
			ulse width modulation	(PWM) output mode				
		111: 16-bit P	PG mode					

- Note 1: fc: High-frequency clock [Hz] fs: Low-frequency clock [Hz]
- Note 2: Do not change the TC6M, TC6CK and TFF6 settings while the timer is running.
- Note 3: To stop the timer operation (TC6S= $1 \rightarrow 0$), do not change the TC6M, TC6CK and TFF6 settings. To start the timer operation (TC6S= $0 \rightarrow 1$), TC6M, TC6CK and TFF6 can be programmed.
- Note 4: When TC6M= 1** (upper byte in the 16-bit mode), the source clock becomes the TC5 overflow signal regardless of the TC6CK setting.
- Note 5: To use the TimerCounter in the 16-bit mode, select the operating mode by programming TC6M, where TC5CR<TC5M> must be set to 011.

- Note 6: To the TimerCounter in the 16-bit mode, select the source clock by programming TC5CR<TC5CK>. Set the timer start control and timer F/F control by programming TC6S and TFF6, respectively.
- Note 7: The operating clock settings are limited depending on the timer operating mode. For the detailed descriptions, see Table 10-1 and Table 10-2.
- Note 8: The timer register settings are limited depending on the timer operating mode. For the detailed descriptions, see Table 10-3.

Table 10-1 Operating Mode and Selectable Source Clock (NORMAL1/2 and IDLE1/2 Modes)

Operating mode	fc/2 ¹¹ or fs/2 ³	fc/2 ⁷	fc/2 ⁵	fc/2 ³	fs	fc/2	fc	TC5 pin input	TC6 pin input
8-bit timer	О	О	О	О	ı			-	-
8-bit event counter	ı	ı	-	-	ı	(-)	> -	О	О
8-bit PDO	О	О	О	О	(()	_		-
8-bit PWM	О	О	О	О	9	0	0	4(- /	> -
16-bit timer	О	О	О	0 /		> -	- (\-_\	-
16-bit event counter	-	-	-	- \	<u> </u>	- <	> -(-
Warm-up counter	-	1	-	7)°	_	\ <u>-</u>	7(1)	-
16-bit PWM	О	0	0	0	O	0 (0) o	-
16-bit PPG	О	О	0	0	_	-	~ <u>-</u>))	О	_

Note 1: For 16-bit operations (16-bit timer/event counter, warm-up counter, 16-bit PWM and 16-bit PPG), set its source clock on lower bit (TC5CK).

Note 2: O: Available source clock

Table 10-2 Operating Mode and Selectable Source Clock (SLOW1/2 and SLEEP1/2 Modes)

Operating mode	fc/2 ¹¹ or fs/2 ³	fc/2 ⁷	fc/2 ⁵	fc/2 ³	fs	fc/2	fc	TC5 pin input	TC6 pin input
8-bit timer	0//))-	- /	// // ₍₍	> -	-	-	-	-
8-bit event counter)	-	((//-	-	-	-	О	О
8-bit PDO	0	-	-		-	-	-	-	-
8-bit PWM	o			- /	О	-	-	-	-
16-bit timer	0	-	<u></u>	-	-	-	-	-	-
16-bit event counter	_	_		ı	ı	1	ı	О	_
Warm-up counter	_	4	_	-	-	-	О	-	-
16-bit PWM	0		_	ı	0	-	-	O	-
16-bit PPG) o (}	_	-	-	-	-	О	-

Note1: For 16-bit operations (16-bit timer/event counter, warm-up counter, 16-bit PWM and 16-bit PPG), set its source clock on lower bit (TC5CK).

Note2: O : Available source clock

Table 10-3 Constraints on Register Values Being Compared

Operating mode	Register Value
8-bit timer/event counter	1≤ (TTREGn) ≤255
8-bit PDO	1≤ (TTREGn) ≤255
8-bit PWM	2≤ (PWREGn) ≤254
16-bit timer/event counter	1≤ (TTREG6, 5) ≤65535
Warm-up counter	256≤ (TTREG6, 5) ≤65535
16-bit PWM	2≤ (PWREG6, 5) ≤65534
16-bit PPG	1≤ (PWREG6, 5) < (TTREG6, 5) ≤65535 and (PWREG6, 5) + 1 < (TTREG6, 5)

10.3 Function

The TimerCounter 5 and 6 have the 8-bit timer, 8-bit event counter, 8-bit programmable divider output (PDO), 8-bit pulse width modulation (PWM) output modes. The TimerCounter 5 and 6 (TC5, 6) are cascadable to form a 16-bit timer. The 16-bit timer has the operating modes such as the 16-bit timer, 16-bit event counter, warm-up counter, 16-bit pulse width modulation (PWM) output and 16-bit programmable pulse generation (PPG) modes.

10.3.1 8-Bit Timer Mode (TC5 and 6)

In the timer mode, the up-counter counts up using the internal clock. When a match between the up-counter and the timer register j (TTREGj) value is detected, an INTTCj interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting.

Note 1: In the timer mode, fix TCjCR<TFFj> to 0. If not fixed, the PDOj, PWMj and PPGj pins may output pulses.

Note 2: In the timer mode, do not change the TTREGj setting while the timer is running. Since TTREGj is not in the shift register configuration in the timer mode, the new value programmed in TTREGj is in effect immediately after the programming. Therefore, if TTREGi is changed while the timer is running, an expected operation may not be obtained.

Note 3: j = 5, 6

Table 10-4 Source Clock for TimerCounter 5, 6 (Internal Clock)

DI

	Source Clock		Reso	olution	Maximum Time Setting		
NORMAL1/2,	IDLE1/2 mode	SLOW1/2,					
DV7CK = 0	DV7CK = 1	SLEEP1/2 mode	fc = 16 MHz	fs = 32.768 kHz	fc = 16 MHz	fs = 32.768 kHz	
fc/2 ¹¹ [Hz]	fs/2 ³ [Hz]	fs/2 ³ [Hz]	128 μs	244.14 μs	32.6 ms	62.3 ms	
fc/2 ⁷	fc/2 ⁷	- (8 μs	-	2.0 ms	_	
fc/2 ⁵	fc/2 ⁵		2 μs		510 μs	-	
fc/2 ³	fc/2 ³	((-))	500 ns	_	127.5 μs	-	

Example :Setting the timer mode with source clock $fc/2^7$ Hz and generating an interrupt 80 μ s later (TimerCounter6, fc = 16.0 MHz)

LD (TTREG6), 0AH : Sets the timer register (80 μ s÷2 7 /fc = 0AH).

SET (EIRD),0 : Enables INTTC6 interrupt.

EI

LD (TC6CR), 00010000B : Sets the operating clock to fc/2⁷, and 8-bit timer mode.

LD (TC6CR), 00011000B : Starts TC6.

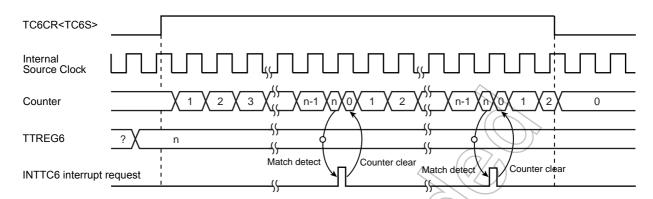


Figure 10-2 8-Bit Timer Mode Timing Chart (TC6)

10.3.2 8-Bit Event Counter Mode (TC5, 6)

In the 8-bit event counter mode, the up-counter counts up at the falling edge of the input pulse to the TCj pin. When a match between the up-counter and the TTREGj value is detected, an INTTCj interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting at the falling edge of the input pulse to the TCj pin. Two machine cycles are required for the low- or high-level pulse input to the TCj pin. Therefore, a maximum frequency to be supplied is fc/2⁴ Hz in the NORMAL1/2 or IDLE1/2 mode, and fs/2⁴ Hz in the SLOW1/2 or SLEEP1/2 mode.

Note 1: In the event counter mode, fix TCjCR<TFFj> to 0. If not fixed, the PDOj, PWMj and PPGj pins may output pulses.

Note 2: In the event counter mode, do not change the TTREGj setting while the timer is running. Since TTREGj is not in the shift register configuration in the event counter mode, the new value programmed in TTREGj is in effect immediately after the programming. Therefore, if TTREGi is changed while the timer is running, an expected operation may not be obtained.

Note 3: j = 5, 6

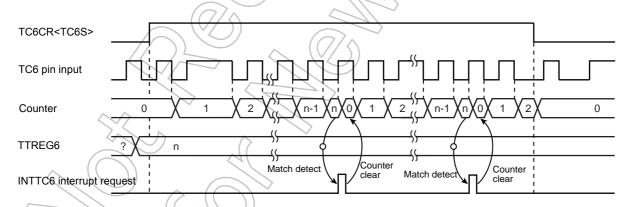


Figure 10-3 8-Bit Event Counter Mode Timing Chart (TC6)

10.3.3 8-Bit Programmable Divider Output (PDO) Mode (TC5, 6)

This mode is used to generate a pulse with a 50% duty cycle from the PDOj pin.

In the PDO mode, the up-counter counts up using the internal clock. When a match between the up-counter and the TTREGj value is detected, the logic level output from the \overline{PDOj} pin is switched to the opposite state and the up-counter is cleared. The INTTCj interrupt request is generated at the time. The logic state opposite to the timer F/Fj logic level is output from the \overline{PDOj} pin. An arbitrary value can be set to the timer F/Fj by TCjCR<TFFj>. Upon reset, the timer F/Fj value is initialized to 0.

To use the programmable divider output, set the output latch of the I/O port to 1.

Example :Generating 1024 Hz pulse using TC6 (fc = 16.0 MHz)

Setting port

LD (TTREG6), 3DH : $1/1024 \div 2^7/\text{fc} \div 2 = 3DH$

LD (TC6CR), 00010001B : Sets the operating clock to $fc/2^7$, and 8-bit PDO mode.

LD (TC6CR), 00011001B : Starts TC6.

Note 1: In the programmable divider output mode, do not change the TTREGj setting while the timer is running. Since TTREGj is not in the shift register configuration in the programmable divider output mode, the new value programmed in TTREGj is in effect immediately after programming. Therefore, if TTREGi is changed while the timer is running, an expected operation may not be obtained.

Note 2: When the timer is stopped during PDO output, the PDOj pin holds the output status when the timer is stopped. To change the output status, program TCjCR<TFFj> after the timer is stopped. Do not change the TCjCR<TFFj> setting upon stopping of the timer.

Example: Fixing the $\overline{\text{PDOj}}$ pin to the high level when the TimerCounter is stopped

CLR (TCjCR).3: Stops the timer.

CLR (TCjCR).7: Sets the PDOj pin to the high level.

Note 3: j = 5, 6

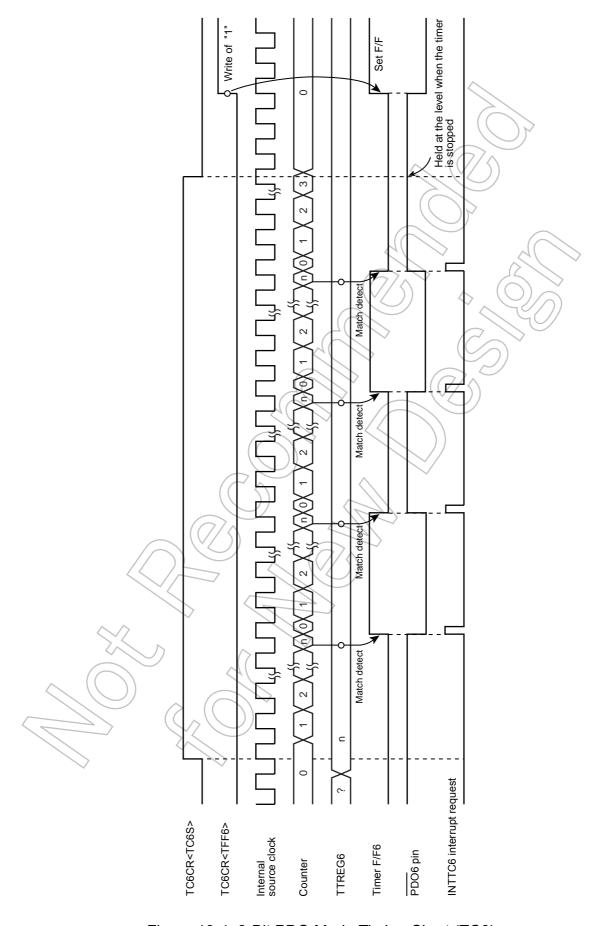


Figure 10-4 8-Bit PDO Mode Timing Chart (TC6)

10.3.4 8-Bit Pulse Width Modulation (PWM) Output Mode (TC5, 6)

This mode is used to generate a pulse-width modulated (PWM) signals with up to 8 bits of resolution. The up-counter counts up using the internal clock.

When a match between the up-counter and the PWREGj value is detected, the logic level output from the timer F/Fi is switched to the opposite state. The counter continues counting. The logic level output from the timer F/Fj is switched to the opposite state again by the up-counter overflow, and the counter is cleared. The INTTCj interrupt request is generated at this time.

Since the initial value can be set to the timer F/Fj by TCjCR<TFFj>, positive and negative pulses can be generated. Upon reset, the timer F/Fj is cleared to 0.

(The logic level output from the PWMj pin is the opposite to the timer F/Fj logic level.)

Since PWREGj in the PWM mode is serially connected to the shift register, the value set to PWREGj can be changed while the timer is running. The value set to PWREGj during a run of the timer is shifted by the INTTCj interrupt request and loaded into PWREGj. While the timer is stopped, the value is shifted immediately after the programming of PWREGj. If executing the read instruction to PWREGj during PWM output, the value in the shift register is read, but not the value set in PWREG. Therefore, after writing to PWREG, the reading data of PWREGi is previous value until INTTCi is generated.

For the pin used for PWM output, the output latch of the I/O port must be set to 1.

- Note 1: In the PWM mode, program the timer register PWREGj immediately after the INTTCj interrupt request is generated (normally in the INTTCj interrupt service routine.) If the programming of PWREGj and the interrupt request occur at the same time, an unstable value is shifted, that may result in generation of the pulse different from the programmed value until the next INTTCj interrupt request is generated.
- Note 2: When the timer is stopped during PWM output, the PWMj pin holds the output status when the timer is stopped. To change the output status, program TCjCR<TFFj> after the timer is stopped. Do not change the TCjCR<TFFj> upon stopping of the timer.
 - Example: Fixing the PWMj pin to the high level when the TimerCounter is stopped
 - CLR (TCjCR).3: Stops the timer.
 - CLR (TCjCR).7: Sets the PWMj pin to the high level.
- Note 3: To enter the STOP mode during PWM output, stop the timer and then enter the STOP mode. If the STOP mode is entered without stopping the timer when fc, fc/2 or fs is selected as the source clock, a pulse is output from the PWMj pin during the warm-up period time after exiting the STOP mode.

Note 4: j = 5, 6

Table 10-5 PWM Output Mode

	Source Clock		Reso	lution	Repeated Cycle		
NORMAL1/2,	IDLE1/2 mode	SLOW1/2,					
DV7CK = 0	DV7CK = 1	SLEEP1/2 mode	fc = 16 MHz	fs = 32.768 kHz	fc = 16 MHz	fs = 32.768 kHz	
fc/2 ¹¹ [Hz]	fs/2 ³ [Hz]	fs/2 ³ [Hz]	128 μs	244.14 μs	32.8 ms	62.5 ms	
fc/2 ⁷	fc/2 ⁷	4	8 μs	-	2.05 ms	-	
fc/2 ⁵	fc/2 ⁵		2 μs	-	512 μs	=	
fc/2 ³	fc/2 ³	^((-))	500 ns	-	128 μs	-	
fs	fs	fs	30.5 μs	30.5 μs	7.81 ms	7.81 ms	
fc/2	fc/2	_	125 ns	-	32 μs	-	
fc	fc	_	62.5 ns	-	16 μs	-	

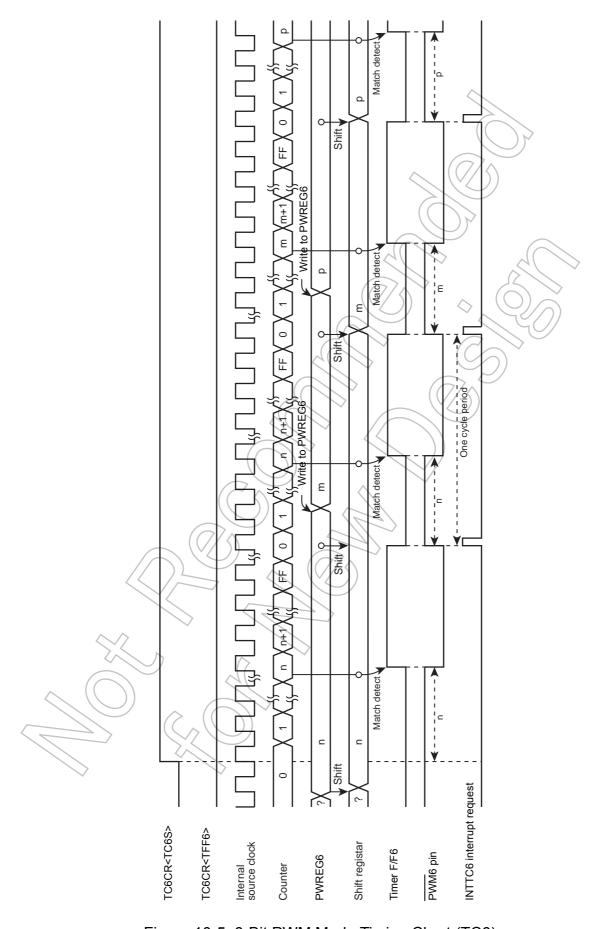


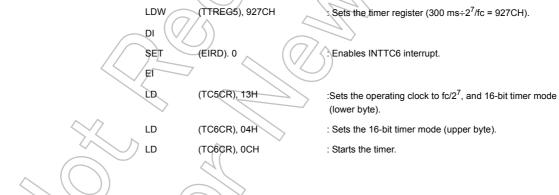
Figure 10-5 8-Bit PWM Mode Timing Chart (TC6)

10.3.5 16-Bit Timer Mode (TC5 and 6)

In the timer mode, the up-counter counts up using the internal clock. The TimerCounter 5 and 6 are cascadable to form a 16-bit timer.

When a match between the up-counter and the timer register (TTREG5, TTREG6) value is detected after the timer is started by setting TC6CR<TC6S> to 1, an INTTC6 interrupt is generated and the up-counter is cleared. After being cleared, the up-counter continues counting. Program the lower byte and upper byte in this order in the timer register. (Programming only the upper or lower byte should not be attempted.)

Note 1: In the timer mode, fix TCjCR<TFFj> to 0. If not fixed, the PDOj, PWMj, and PPGj pins may output a pulse.


Note 2: In the timer mode, do not change the TTREGj setting while the timer is running. Since TTREGj is not in the shift register configuration in the timer mode, the new value programmed in TTREGj is in effect immediately after programming of TTREGj. Therefore, if TTREGj is changed while the timer is running, an expected operation may not be obtained.

Note 3: j = 5, 6

Table 10-6 Source Clock for 16-Bit Timer Mode

	Source Clock			lution	Maximum Time Setting	
NORMAL1/2,	IDLE1/2 mode	SLOW1/2,			\$ (Q)/	<u></u>
DV7CK = 0	DV7CK = 1	SLEEP1/2 mode	fc = 16 MHz	fs = 32.768 kHz	fc = 16 MHz	fs/= 32.768 kHz
fc/2 ¹¹	fs/2 ³	fs/2 ³	128 μs	244.14 μs	8.39 s	16 s
fc/2 ⁷	fc/2 ⁷	_	8 μs	· -	524.3 ms	-
fc/2 ⁵	fc/2 ⁵	_	2 μs	- ((131.1 ms	-
fc/2 ³	fc/2 ³	- <	500 ns		32.8 ms	-

Example :Setting the timer mode with source clock $fe/2^7$ Hz, and generating an interrupt 300 ms later (fc = 16.0 MHz)

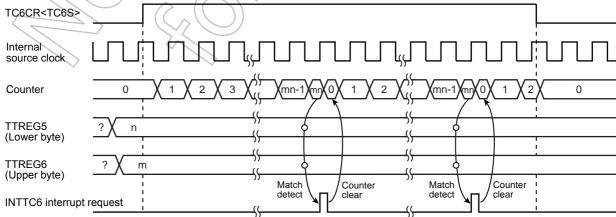


Figure 10-6 16-Bit Timer Mode Timing Chart (TC5 and TC6)

10.3.6 16-Bit Event Counter Mode (TC5 and 6)

In the event counter mode, the up-counter counts up at the falling edge to the TC5 pin. The TimerCounter 5 and 6 are cascadable to form a 16-bit event counter.

When a match between the up-counter and the timer register (TTREG5, TTREG6) value is detected after the timer is started by setting TC6CR<TC6S> to 1, an INTTC6 interrupt is generated and the up-counter is cleared.

After being cleared, the up-counter restarts counting at the falling edge of the input pulse to the TC5 pin. Two machine cycles are required for the low- or high-level pulse input to the TC5 pin.

Therefore, a maximum frequency to be supplied is fc/2⁴ Hz in the NORMAL1/2 or IDLE1/2 mode, and fs/2⁴ in the SLOW1/2 or SLEEP1/2 mode. Program the lower byte (TTREG5), and upper byte (TTREG6) in this order in the timer register. (Programming only the upper or lower byte should not be attempted.)

Note 1: In the event counter mode, fix TCjCR<TFFj> to 0. If not fixed, the PDOj, PWMj and PPGj pins may output pulses.

Note 2: In the event counter mode, do not change the TTREGi setting while the timer is running. Since TTREGi is not in the shift register configuration in the event counter mode, the new value programmed in TTREGi is in effect immediately after the programming. Therefore, if TTREGi is changed while the timer is running, an expected operation may not be obtained.

Note 3: j = 5, 6

10.3.7 16-Bit Pulse Width Modulation (PWM) Output Mode (TC5 and 6)

This mode is used to generate a pulse-width modulated (PWM) signals with up to 16 bits of resolution. The TimerCounter 5 and 6 are cascadable to form the 16-bit PWM signal generator.

The counter counts up using the internal clock or external clock.

When a match between the up-counter and the timer register (PWREG5, PWREG6) value is detected, the logic level output from the timer F/F6 is switched to the opposite state. The counter continues counting. The logic level output from the timer F/F6 is switched to the opposite state again by the counter overflow, and the counter is cleared. The INTTC6 interrupt is generated at this time.

Two machine cycles are required for the high- or low-level pulse input to the TC5 pin. Therefore, a maximum frequency to be supplied is $fc/2^4$ Hz in the NORMAL1/2 or IDLE1/2 mode, and $fs/2^4$ to in the SLOW1/2 or SLEEP1/2 mode.

Since the initial value can be set to the timer F/F6 by TC6CR<TFF6>, positive and negative pulses can be generated. Upon reset, the timer F/F6 is cleared to 0.

(The logic level output from the $\overline{PWM}6$ pin is the opposite to the timer F/F6 logic level.)

Since PWREG6 and 5 in the PWM mode are serially connected to the shift register, the values set to PWREG6 and 5 can be changed while the timer is running. The values set to PWREG6 and 5 during a run of the timer are shifted by the INTTCj interrupt request and loaded into PWREG6 and 5. While the timer is stopped, the values are shifted immediately after the programming of PWREG6 and 5. Set the lower byte (PWREG5) and upper byte (PWREG6) in this order to program PWREG6 and 5. (Programming only the lower or upper byte of the register should not be attempted.)

If executing the read instruction to PWREG6 and 5 during PWM output, the values set in the shift register is read, but not the values set in PWREG6 and 5. Therefore, after writing to the PWREG6 and 5, reading data of PWREG6 and 5 is previous value until INTTC6 is generated.

For the pin used for PWM output, the output latch of the I/O port must be set to 1.

Note 1: In the PWM mode, program the timer register PWREG6 and 5 immediately after the INTTC6 interrupt request is generated (normally in the INTTC6 interrupt service routine.) If the programming of PWREGj and the interrupt request occur at the same time, an unstable value is shifted, that may result in generation of pulse different from the programmed value until the next INTTC6 interrupt request is generated.

Note 2: When the timer is stopped during PWM output, the PWM6 pin holds the output status when the timer is stopped. To change the output status, program TC6CR<TFF6> after the timer is stopped. Do not program TC6CR<TFF6> upon stopping of the timer.

Example: Fixing the PWM6 pin to the high level when the TimerCounter is stopped

CLR (TC6CR).3: Stops the timer.

CLR (TC6CR).7 : Sets the PWM6 pin to the high level.

Note 3: To enter the STOP mode, stop the timer and then enter the STOP mode. If the STOP mode is entered without stopping of the timer when fc, fc/2 or fs is selected as the source clock, a pulse is output from the PWM6 pin during the warm-up period time after exiting the STOP mode.

Table 10-7 16-Bit PWM Output Mode

	Source Clock		Reso	olution	Repeated Cycle		
NORMAL1/2,	IDLE1/2 mode	SLOW1/2,					
DV7CK = 0	DV7CK = 1	SLEEP1/2 mode	fc = 16 MHz	fs = 32.768 kHz	fc = 16 MHz	fs = 32.768 kHz	
fc/2 ¹¹	fs/2 ³ [Hz]	fs/2 ³ [Hz]	128 μs	244.14 μs	8.39 s	16 s	
fc/2 ⁷	fc/2 ⁷	_	8 µs	- (524.3 ms	-	
fc/2 ⁵	fc/2 ⁵	_	2 μs	_	131.1 ms	-	
fc/2 ³	fc/2 ³	_	500 ns	4->	32.8 ms	-	
fs	fs	fs	30.5 μs	30.5 μs	2 s	2 s	
fc/2	fc/2	_	125 ns	(7/4)	8.2 ms	_	
fc	fc	-	62.5 ns	$\langle \mathcal{O} \rangle$	4.1 ms	-	

Example: Generating a pulse with 1-ms high-level width and a period of 32.768 ms (fc = 16.0 MHz)

Setting ports

LDW (PWREG5), 07D0H

LD (TC5CR), 33H

LD

(TC6CR), 056H

LD (TC6CR), 05EH

: Sets the pulse width.

: Sets the operating clock to fc/2³, and 16-bit PWM output mode (lower byte).

: Sets TFF6 to the initial value 0, and 16-bit PWM signal

generation mode (upper byte).

: Starts the timer.

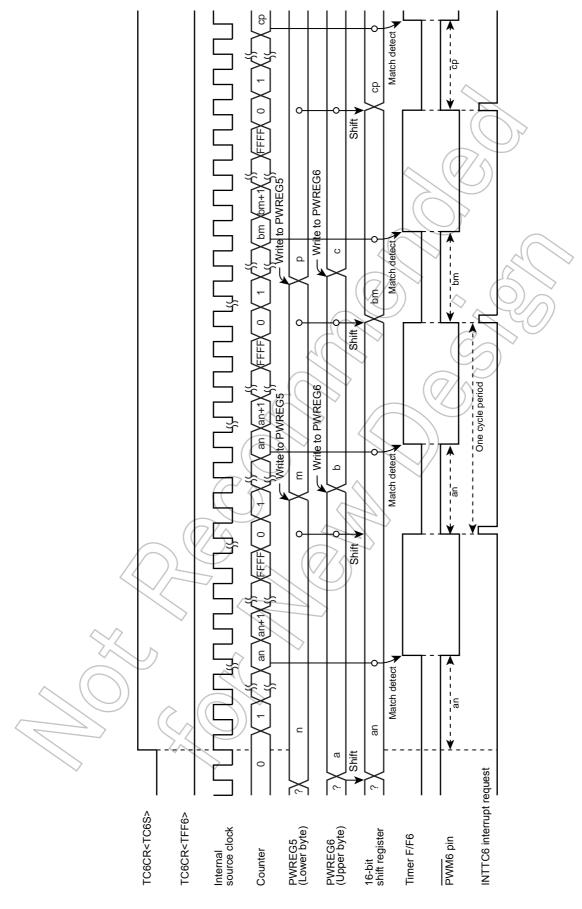


Figure 10-7 16-Bit PWM Mode Timing Chart (TC5 and TC6)

TMP86FS28FG

10.3.8 16-Bit Programmable Pulse Generate (PPG) Output Mode (TC5 and 6)

This mode is used to generate pulses with up to 16-bits of resolution. The timer counter 5 and 6 are cascadable to enter the 16-bit PPG mode.

The counter counts up using the internal clock or external clock. When a match between the up-counter and the timer register (PWREG5, PWREG6) value is detected, the logic level output from the timer F/F6 is switched to the opposite state. The counter continues counting. The logic level output from the timer F/F6 is switched to the opposite state again when a match between the up-counter and the timer register (TTREG5, TTREG6) value is detected, and the counter is cleared. The INTTC6 interrupt is generated at this time.

Two machine cycles are required for the high- or low-level pulse input to the TC5 pin. Therefore, a maximum frequency to be supplied is fc/2⁴ Hz in the NORMAL1/2 or IDLE1/2 mode, and fs/2⁴ to in the SLOW1/2 or SLEEP1/2 mode.

Since the initial value can be set to the timer F/F6 by TC6CR<TFF6>, positive and negative pulses can be generated. Upon reset, the timer F/F6 is cleared to 0.

(The logic level output from the \overline{PPG} 6 pin is the opposite to the timer F/F6.)

Set the lower byte and upper byte in this order to program the timer register. (TTREG5 \rightarrow TTREG6, PWREG5 \rightarrow PWREG6) (Programming only the upper or lower byte should not be attempted.)

For PPG output, set the output latch of the I/O port to 1.

Example :Generating a pulse with 1-ms high-level width and a period of 16.385 ms (fc = 16.0 MHz)

Setting ports : Sets the pulse width. LDW (PWREG5), 07D0F LDW (TTREG5), 8002h : Sets the cycle period : Sets the operating clock to fc/2³, and16-bit PPG mode (TC5CR), 33H LD (lower byte). Sets TFF6 to the initial value 0, and 16-bit (TC6CR), 057H ΙD PPG mode (upper byte). (TC6CR), 05FH Starts the timer. LD

Note 1: In the PPG mode, do not change the PWREGi and TTREGi settings while the timer is running. Since PWREGi and TTREGi are not in the shift register configuration in the PPG mode, the new values programmed in PWREGi and TTREGi are in effect immediately after programming PWREGi and TTREGi. Therefore, if PWREGi and TTREGi are changed while the timer is running, an expected operation may not be obtained.

Note 2: When the timer is stopped during PPG output, the PPG6 pin holds the output status when the timer is stopped. To change the output status, program TC6CR<TFF6> after the timer is stopped. Do not change TC6CR<TFF6> upon stopping of the timer.

Example: Fixing the PPG6 pin to the high level when the TimerCounter is stopped CLR (TC6CR).3: Stops the timer

CLR (TC6CR).7: Sets the PPG6 pin to the high level

Note 3: i = 5, 6

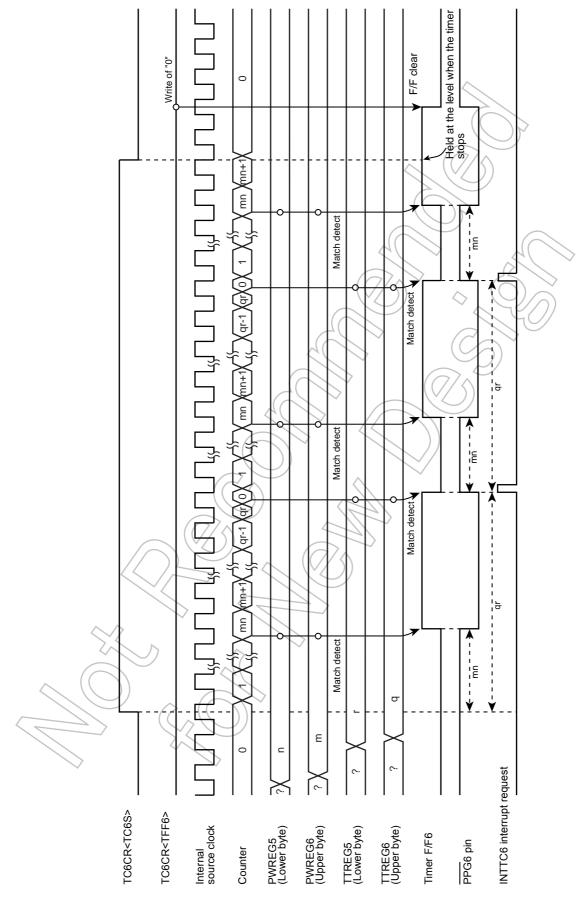


Figure 10-8 16-Bit PPG Mode Timing Chart (TC5 and TC6)

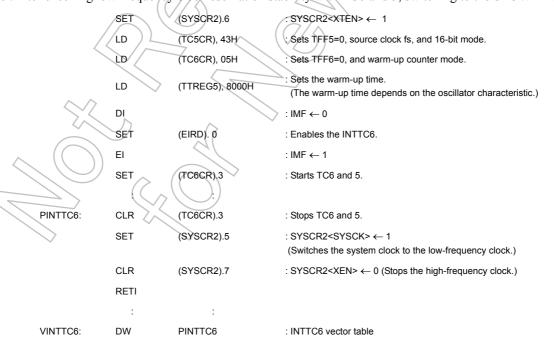
10.3.9 Warm-Up Counter Mode

In this mode, the warm-up period time is obtained to assure oscillation stability when the system clocking is switched between the high-frequency and low-frequency. The timer counter 5 and 6 are cascadable to form a 16-bit TimerCounter. The warm-up counter mode has two types of mode; switching from the high-frequency to low-frequency, and vice-versa.

Note 1: In the warm-up counter mode, fix TCiCR<TFFi> to 0. If not fixed, the PDOi, PWMi and PPGi pins may output pulses.

Note 2: In the warm-up counter mode, only upper 8 bits of the timer register TTREG6 and 5 are used for match detection and lower 8 bits are not used.

Note 3: i = 5, 6

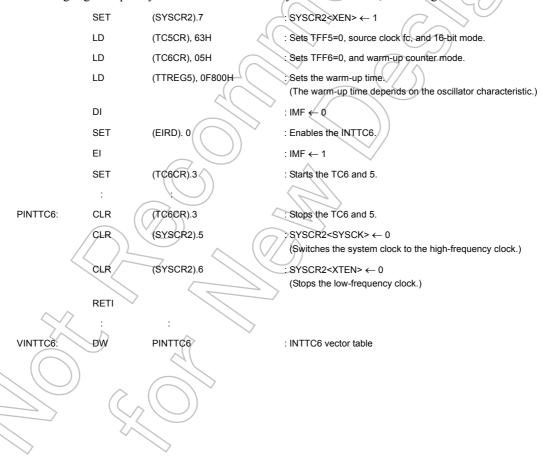

10.3.9.1 Low-Frequency Warm-up Counter Mode (NORMAL1 → NORMAL2 → SLOW2 → SLOW1)

In this mode, the warm-up period time from a stop of the low-frequency clock fs to oscillation stability is obtained. Before starting the timer, set SYSCR2<XTEN> to 1 to oscillate the low-frequency clock. When a match between the up-counter and the timer register (TTREG6, 5) value is detected after the timer is started by setting TC6CR<TC6S> to 1, the counter is cleared by generating the INTTC6 interrupt request. After stopping the timer in the INTTC6 interrupt service routine, set SYSCR2<SYSCK> to 1 to switch the system clock from the high-frequency to low-frequency, and then clear of SYSCR2<XEN> to 0 to stop the high-frequency clock.

Table 10-8 Setting Time of Low-Frequency Warm-Up Counter Mode (fs = 32.768 kHz)

Minimum Time Setting (TTREG6, 5 = 0100H)		Maximum Time Setting (TTREG6, 5 = FF00H)
7.81 ms	$((\))$	1.99 s

Example: After checking low-frequency clock oscillation stability with TC6 and 5, switching to the SLOW1 mode


10.3.9.2 High-Frequency Warm-Up Counter Mode (SLOW1 → SLOW2 → NORMAL2 → NORMAL1)

In this mode, the warm-up period time from a stop of the high-frequency clock fc to the oscillation stability is obtained. Before starting the timer, set SYSCR2<XEN> to 1 to oscillate the high-frequency clock. When a match between the up-counter and the timer register (TTREG6, 5) value is detected after the timer is started by setting TC6CR<TC6S> to 1, the counter is cleared by generating the INTTC6 interrupt request. After stopping the timer in the INTTC6 interrupt service routine, clear SYSCR2<SYSCK> to 0 to switch the system clock from the low-frequency to high-frequency, and then SYSCR2<XTEN> to 0 to stop the low-frequency clock.

Table 10-9 Setting Time in High-Frequency Warm-Up Counter Mode

Minimum time Setting	Maximum time Setting
(TTREG6, 5 = 0100H)	(TTREG6, 5 = FF00H)
16 μs	4.08 ms

Example : After checking high-frequency clock oscillation stability with TC6 and 5, switching to the NORMAL1 mode

TOSHIBA

11. Synchronous Serial Interface (SIO)

The TMP86FS28FG has a clocked-synchronous 8-bit serial interface. Serial interface has an 8-byte transmit and receive data buffer that can automatically and continuously transfer up to 64 bits of data.

Serial interface is connected to outside peripherl devices via SO, SI, SCK port. 11.1 Configuration SIO control / status register SIOSR SIOCR1 SIOCR2 CPU Transmit and receive data buffer Buffer control (8 bytes in DBR) Control circuit circuit Shift register Serial data output 4-bit transfer 8-bit transfer Serial data input Serial clock INTSIO interrupt request SCK Serial clock I/O Figure 11-1 Serial Interface

11.2 Control

The serial interface is controlled by SIO control registers (SIOCR1/SIOCR2). The serial interface status can be determined by reading SIO status register (SIOSR).

The transmit and receive data buffer is controlled by the SIOCR2<BUF>. The data buffer is assigned to address 0F60H to 0F67H for SIO in the DBR area, and can continuously transfer up to 8 words (bytes or nibbles) at one time. When the specified number of words has been transferred, a buffer empty (in the transmit mode) or a buffer full (in the receive mode or transmit/receive mode) interrupt (INTSIO) is generated.

When the internal clock is used as the serial clock in the 8-bit receive mode and the 8-bit transmit/receive mode, a fixed interval wait can be applied to the serial clock for each word transferred. Four different wait times can be selected with SIOCR2<WAIT>.

SIO Control Register 1

SIOCR1	7	6	5	4	3	2	1	0	
(0F68H)	SIOS	SIOINH		SIOM			3CK		(Initial value: 0000 0000)
-				•					

!
Write
only
W1/2
EP1/2 ode
/2 ⁵
-
- Write
only
-
-

Note 1: fc; High-frequency clock [Hz], fs; Low-frequency clock [Hz]

Note 2: Set SIOS to "0" and SIOINH to "1" when setting the transfer mode or serial clock.

Note 3: SIOCR1 is write-only register, which cannot access any of in read-modify-write instruction such as bit operate, etc.

SIO Control Register 2

SIOCR2	7	6	5	4	3	2	1	0	_
(0F69H)				W	AIT		BUF		(Initial value: ***0 0000)

		Always sets "00" except 8-bit transmit / receive mode.					
		00:	$T_f = T_D(Non wait)$				
WAIT	Wait control	01:	$T_f = 2T_D(Wait)$				
		10:	$T_f = 4T_D(Wait)$				
		11:	T _f = 8T _D (Wait)				
		000:	1 word transfer 0F60H	Write			
		001:	2 words transfer 0F60H ~ 0F61H	only			
		010:	3 words transfer 0F60H ~ 0F62H				
BUF	Number of transfer words	011:	4 words transfer 0F60H ~ 0F63H				
BUF	(Buffer address in use)	100:	5 words transfer 0F60H ~ 0F64 H				
		101:	6 words transfer 0F60H ~ 0F65H				
		110:	7 words transfer 0F60H ~ 0F66 H				
		111:	8 words transfer 0F60H ~ 0F67H				

- Note 1: The lower 4 bits of each buffer are used during 4-bit transfers. Zeros (0) are stored to the upper 4-bits when receiving.
- Note 2: Transmitting starts at the lowest address. Received data are also stored starting from the lowest address to the highest address. (The first buffer address transmitted is 0F60H).
- Note 3: The value to be loaded to BUF is held after transfer is completed.
- Note 4: SIOCR2 must be set when the serial interface is stopped (SIOF = 0).
- Note 5: *: Don't care

Note 6: SIOCR2 is write-only register, which cannot access any of in read-modify-write instruction such as bit operate, etc.

SIO Status Register

SIOSR	7	6	5	4	3 2	1	0
(0F69H)	SIOF	SEF					
			="	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\ \ /	

SIOF	Serial transfer operating status monitor	O: Transfer terminated 1: Transfer in process	Read
SEF	Shift operating status monitor	Shift operation terminated Shift operation in process	only

Note 1: T_f; Frame time, T_D; Data transfer time

Note 2: After SIOS is cleared to "0", SIOF is cleared to "0" at the termination of transfer or the setting of SIOINH to "1".

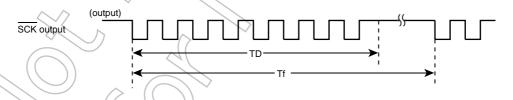


Figure 11-2 Frame time (T_f) and Data transfer time (T_D)

11.3 Serial clock

11.3.1 Clock source

Internal clock or external clock for the source clock is selected by SIOCR1<SCK>.

11.3.1.1 Internal clock

Any of six frequencies can be selected. The serial clock is output to the outside on the SCK pin. The SCK pin goes high when transfer starts.

When data writing (in the transmit mode) or reading (in the receive mode or the transmit/receive mode) cannot keep up with the serial clock rate, there is a wait function that automatically stops the serial clock and holds the next shift operation until the read/write processing is completed.

Table	11 1	Coriol (مامماد	Data
rabie	11-1	Serial (JIOCK	Raie

		SLO	W1/2,			
	DV70	CK = 0	DV70	SLEEP1/2 mode		
SCK	Clock	Baud Rate	Clock	Baud Rate	Clock	Baud Rate
000	fc/2 ¹³	1.91 Kbps	fs/2 ⁵	1024 bps	fs/2 ⁵	1024 bps
001	fc/2 ⁸	61.04 Kbps	fc/2 ⁸	61.04 Kbps	71.	-
010	fc/2 ⁷	122.07 Kbps	fc/2 ⁷	122.07 Kbps	7	-
011	fc/2 ⁶	244.14 Kbps	fc/2 ⁶	244.14 Kbps		ı
100	fc/2 ⁵	488.28 Kbps	fc/2 ⁵	488.28 Kbps		-
101	fc/2 ⁴	976.56 Kbps	fc/2 ⁴	976.56 Kbps	1	ı
110	-	-			-	-
111	External	External	External	External	External	External

Note: 1 Kbit = 1024 bit (fc = 16 MHz, fs = 32.768 kHz)

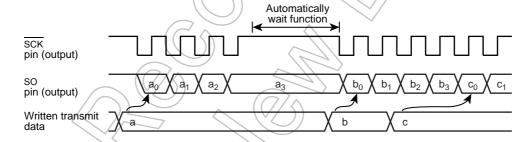


Figure 11-3 Automatic Wait Function (at 4-bit transmit mode)

11.3.1.2 External clock

An external clock connected to the \overline{SCK} pin is used as the serial clock. In this case, output latch of this port should be set to "1". To ensure shifting, a pulse width of at least 4 machine cycles is required. This pulse is needed for the shift operation to execute certainly. Actually, there is necessary processing time for interrupting, writing, and reading. The minimum pulse is determined by setting the mode and the program. Therfore, maximum transfer frequency will be 488.3K bit/sec (at fc=16MHz).

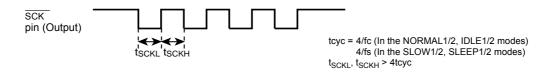


Figure 11-4 External clock pulse width

11.3.2 Shift edge

The leading edge is used to transmit, and the trailing edge is used to receive.

11.3.2.1 Leading edge

Transmitted data are shifted on the leading edge of the serial clock (falling edge of the SCK pin input/output).

11.3.2.2 Trailing edge

Received data are shifted on the trailing edge of the serial clock (rising edge of the SCK pin input/output).

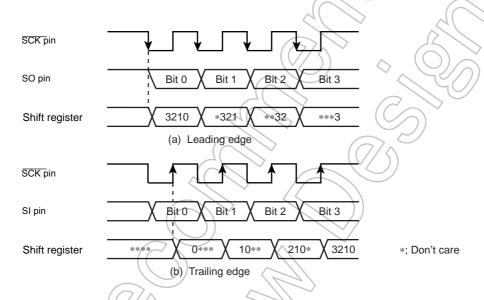


Figure 11-5 Shift edge

11.4 Number of bits to transfer

Either 4-bit or 8-bit serial transfer can be selected. When 4-bit serial transfer is selected, only the lower 4 bits of the transmit/receive data buffer register are used. The upper 4 bits are cleared to "0" when receiving. The data is transferred in sequence starting at the least significant bit (LSB).

11.5 Number of words to transfer

Up to 8 words consisting of 4 bits of data (4-bit serial transfer) or 8 bits (8-bit serial transfer) of data can be transferred continuously. The number of words to be transferred can be selected by SIOCR2<BUF>.

An INTSIO interrupt is generated when the specified number of words has been transferred. If the number of words is to be changed during transfer, the serial interface must be stopped before making the change. The number of words can be changed during automatic-wait operation of an internal clock. In this case, the serial interface is not required to be stopped.

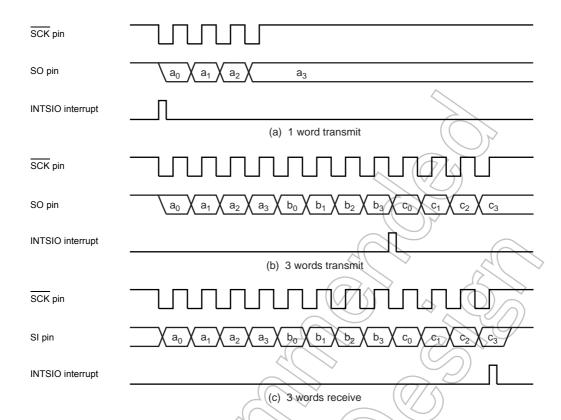


Figure 11-6 Number of words to transfer (Example: 1word = 4bit)

11.6 Transfer Mode

SIOCR1<SIOM> is used to select the transmit, receive, or transmit/receive mode.

11.6.1 4-bit and 8-bit transfer modes

In these modes, firstly set the SIO control register to the transmit mode, and then write first transmit data (number of transfer words to be transferred) to the data buffer registers (DBR).

After the data are written, the transmission is started by setting SIOCR1<SIOS> to "1". The data are then output sequentially to the SO pin in synchronous with the serial clock, starting with the least significant bit (LSB). As soon as the LSB has been output, the data are transferred from the data buffer register to the shift register. When the final data bit has been transferred and the data buffer register is empty, an INTSIO (Buffer empty) interrupt is generated to request the next transmitted data.

When the internal clock is used, the serial clock will stop and an automatic-wait will be initiated if the next transmitted data are not loaded to the data buffer register by the time the number of data words specified with the SIOCR2<BUF> has been transmitted. Writing even one word of data cancels the automatic-wait; therefore, when transmitting two or more words, always write the next word before transmission of the previous word is completed.

Note: Automatic waits are also canceled by writing to a DBR not being used as a transmit data buffer register; therefore, during SIO do not use such DBR for other applications. For example, when 3 words are transmitted, do not use the DBR of the remained 5 words.

When an external clock is used, the data must be written to the data buffer register before shifting next data. Thus, the transfer speed is determined by the maximum delay time from the generation of the interrupt request to writing of the data to the data buffer register by the interrupt service program.

The transmission is ended by clearing SIOCR1<SIOS> to "0" or setting SIOCR1<SIOINH> to "1" in buffer empty interrupt service program.

SIOCR1<SIOS> is cleared, the operation will end after all bits of words are transmitted.

That the transmission has ended can be determined from the status of SIOSR<SIOF> because SIOSR<SIOF> is cleared to "0" when a transfer is completed.

When SIOCR1<SIOINH> is set, the transmission is immediately ended and SIOSR<SIOF> is cleared to "0".

When an external clock is used, it is also necessary to clear SIOCR1<SIOS> to "0" before shifting the next data; If SIOCR1<SIOS> is not cleared before shift out, dummy data will be transmitted and the operation will end.

If it is necessary to change the number of words, SIOCR1<SIOS> should be cleared to "0", then SIOCR2<BUF> must be rewritten after confirming that SIOSR<SIOF> has been cleared to "0".

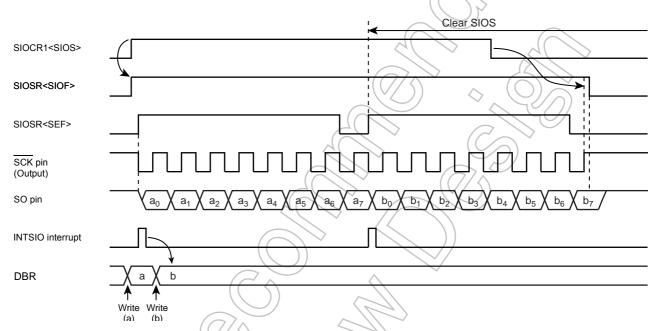


Figure 11-7 Transfer Mode (Example: 8bit, 1word transfer, Internal clock)

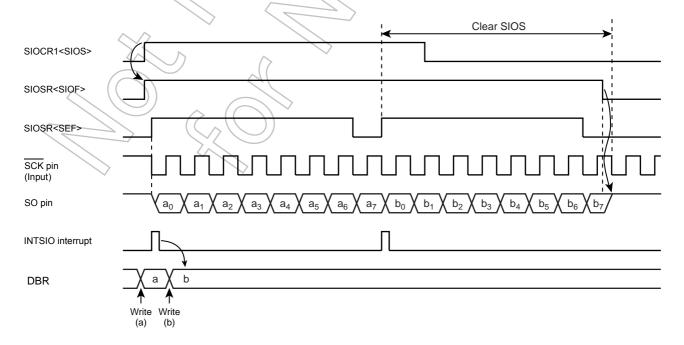


Figure 11-8 Transfer Mode (Example: 8bit, 1word transfer, External clock)

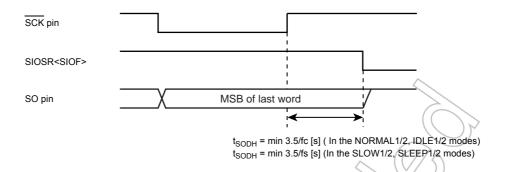


Figure 11-9 Transmiiied Data Hold Time at End of Transfer

11.6.2 4-bit and 8-bit receive modes

After setting the control registers to the receive mode, set SIOCR1<SIOS> to "1" to enable receiving. The data are then transferred to the shift register via the SI pin in synchronous with the serial clock. When one word of data has been received, it is transferred from the shift register to the data buffer register (DBR). When the number of words specified with the SIOCR2<BUF> has been received, an INTSIO (Buffer full) interrupt is generated to request that these data be read out. The data are then read from the data buffer registers by the interrupt service program.

When the internal clock is used, and the previous data are not read from the data buffer register before the next data are received, the serial clock will stop and an automatic-wait will be initiated until the data are read. A wait will not be initiated if even one data word has been read.

Note: Waits are also canceled by reading a DBR not being used as a received data buffer register is read; therefore, during SIO do not use such DBR for other applications.

When an external clock is used, the shift operation is synchronized with the external clock; therefore, the previous data are read before the next data are transferred to the data buffer register. If the previous data have not been read, the next data will not be transferred to the data buffer register and the receiving of any more data will be canceled. When an external clock is used, the maximum transfer speed is determined by the delay between the time when the interrupt request is generated and when the data received have been read.

The receiving is ended by clearing SIOCR1<SIOS> to "0" or setting SIOCR1<SIOINH> to "1" in buffer full interrupt service program.

When SIOCR1<SIOS> is cleared, the current data are transferred to the buffer. After SIOCR1<SIOS> cleared, the receiving is ended at the time that the final bit of the data has been received. That the receiving has ended can be determined from the status of SIOSR<SIOF>. SIOSR<SIOF> is cleared to "0" when the receiving is ended. After confirmed the receiving termination, the final receiving data is read. When SIOCR1<SIO-INH> is set, the receiving is immediately ended and SIOSR<SIOF> is cleared to "0". (The received data is ignored, and it is not required to be read out.)

If it is necessary to change the number of words in external clock operation, SIOCR1<SIOS> should be cleared to "0" then SIOCR2<BUF> must be rewritten after confirming that SIOSR<SIOF> has been cleared to "0". If it is necessary to change the number of words in internal clock, during automatic-wait operation which occurs after completion of data receiving, SIOCR2<BUF> must be rewritten before the received data is read out.

Note: The buffer contents are lost when the transfer mode is switched. If it should become necessary to switch the transfer mode, end receiving by clearing SIOCR1<SIOS> to "0", read the last data and then switch the transfer mode.

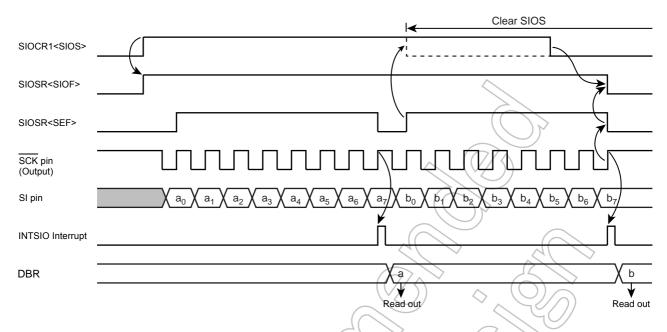


Figure 11-10 Receive Mode (Example: 8bit, 1word transfer, Internal clock)

11.6.3 8-bit transfer / receive mode

After setting the SIO control register to the 8-bit transmit/receive mode, write the data to be transmitted first to the data buffer registers (DBR). After that, enable the transmit/receive by setting SIOCR1<SIOS> to "1". When transmitting, the data are output from the SO pin at leading edges of the serial clock. When receiving, the data are input to the SI pin at the trailing edges of the serial clock. When the all receive is enabled, 8-bit data are transferred from the shift register to the data buffer register. An INTSIO interrupt is generated when the number of data words specified with the SIOCR2<BUF> has been transferred. Usually, read the receive data from the buffer register in the interrupt service. The data buffer register is used for both transmitting and receiving; therefore, always write the data to be transmitted after reading the all received data.

When the internal clock is used, a wait is initiated until the received data are read and the next transfer data are written. A wait will not be initiated if even one transfer data word has been written.

When an external clock is used, the shift operation is synchronized with the external clock; therefore, it is necessary to read the received data and write the data to be transmitted next before starting the next shift operation. When an external clock is used, the transfer speed is determined by the maximum delay between generation of an interrupt request and the received data are read and the data to be transmitted next are written.

The transmit/receive operation is ended by clearing SIOCR1<SIOS> to "0" or setting SIOCR1<SIOINH> to "1" in INTSIO interrupt service program.

When SIOCR1<SIOS> is cleared, the current data are transferred to the buffer. After SIOCR1<SIOS> cleared, the transmitting/receiving is ended at the time that the final bit of the data has been transmitted.

That the transmitting/receiving has ended can be determined from the status of SIOSR<SIOF>. SIOSR<SIOF> is cleared to "0" when the transmitting/receiving is ended.

When SIOCR1<SIOINH> is set, the transmit/receive operation is immediately ended and SIOSR<SIOF> is cleared to "0".

If it is necessary to change the number of words in external clock operation, SIOCR1<SIOS> should be cleared to "0", then SIOCR2<BUF> must be rewritten after confirming that SIOSR<SIOF> has been cleared to "0"

If it is necessary to change the number of words in internal clock, during automatic-wait operation which occurs after completion of transmit/receive operation, SIOCR2<BUF> must be rewritten before reading and writing of the receive/transmit data.

Note: The buffer contents are lost when the transfer mode is switched. If it should become necessary to switch the transfer mode, end receiving by clearing SIOCR1<SIOS> to "0", read the last data and then switch the transfer mode.

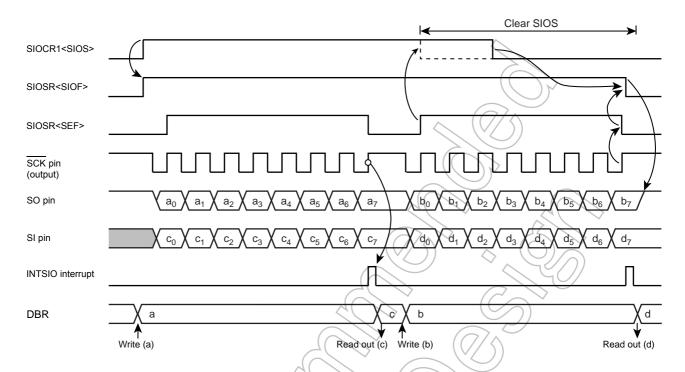


Figure 11-11 Transfer / Receive Mode (Example: 8bit, 1word transfer, Internal clock)

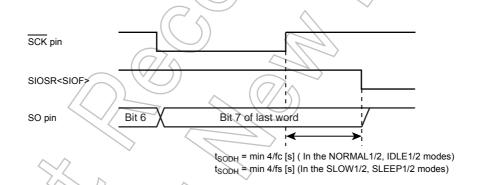


Figure 11-12 Transmitted Data Hold Time at End of Transfer / Receive

12. Asynchronous Serial interface (UART1)

12.1 Configuration

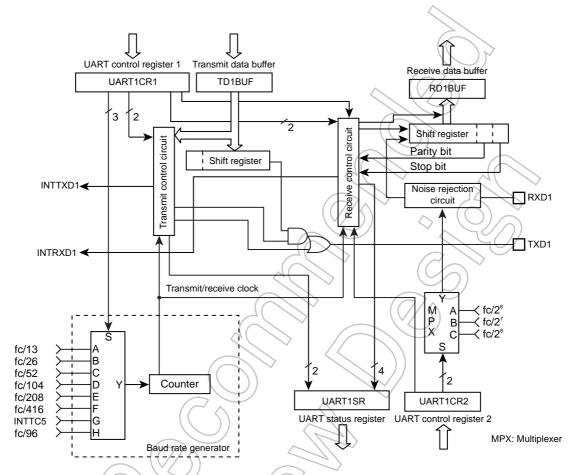


Figure 12-1 UART1 (Asynchronous Serial Interface)

EVEN

PΕ

Even-numbered parity

Parity addition

Write

only

12.2 Control

UART1 is controlled by the UART1 Control Registers (UART1CR1, UART1CR2). The operating status can be monitored using the UART status register (UART1SR).

UART1 Control Register1 7 UART1CR1 3 2 (0FE8H) RXE STBT EVEN PE BRG TXE (Initial value: 0000 0000) Disable TXE Transfer operation Enable 0: Disable RXE Receive operation Fnable 1. 0: 1 bit STBT Transmit stop bit length

1: 2 bits

0:

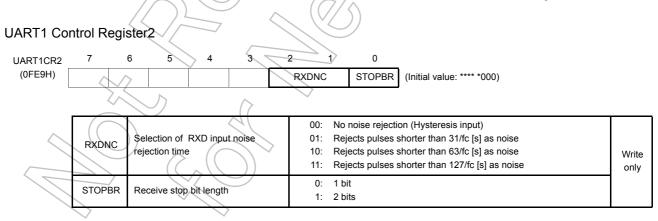
000:

Odd-numbered parity

1: Even-numbered parity

No parity

fc/13 [Hz] 001: fc/26


Parity

	BRG	Transmit clock select	010: fc/52 011: fc/104 100: fc/208 101: fc/416 410: TC5 (Input INTTC5) 111: fc/96
Note 1:	•		TXE and RXE bit to "0", the setting becomes valid when data transmit or receive

complete. When the transmit data is stored in the transmit data buffer, the data are not transmitted. Even if data transmit is enabled, until new data are written to the transmit data buffer, the current data are not transmitted.

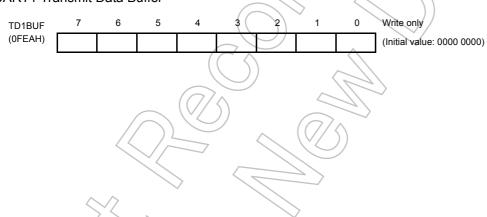
Note 2: The transmit clock and the parity are common to transmit and receive.

Note 3: UART1CR1<RXE> and UART1CR1<TXE> should be set to "0" before UART1CR1<BRG> is changed.

Note: When UART1CR2<RXDNC> = "01", pulses longer than 96/fc [s] are always regarded as signals; when UART1CR2<RXDNC> = "10", longer than 192/fc [s]; and when UART1CR2<RXDNC> = "11", longer than 384/fc [s].

UART1 Status Register

UART1SR	7	6	5	4	3	2	1	0	
(0FE8H)	PERR	FERR	OERR	RBFL	TEND	TBEP			(Initial value: 0000 11**)


PERR	Parity error flag	0: No parity error 1: Parity error	
FERR	Framing error flag	0: No framing error 1: Framing error	
OERR	Overrun error flag	0: No overrun error 1: Overrun error	Read
RBFL	Receive data buffer full flag	Receive data buffer empty Receive data buffer full	only
TEND	Transmit end flag	0: On transmitting 1: Transmit end	
TBEP	Transmit data buffer empty flag	Transmit data buffer full (Transmit data writing is finished) Transmit data buffer empty	

Note: When an INTTXD is generated, TBEP flag is set to "1" automatically.

UART1 Receive Data Buffer

RD1BUF	7	6	5	4	3	2 1	0	Read only
(0FEAH)								(Initial value: 0000 0000)

UART1 Transmit Data Buffer

12.3 Transfer Data Format

In UART1, an one-bit start bit (Low level), stop bit (Bit length selectable at high level, by UART1CR1<STBT>), and parity (Select parity in UART1CR1<PE>; even- or odd-numbered parity by UART1CR1<EVEN>) are added to the transfer data. The transfer data formats are shown as follows.

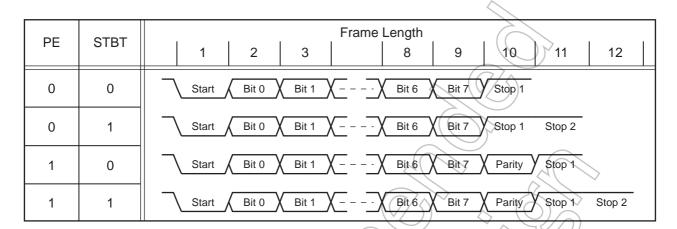


Figure 12-2 Transfer Data Format

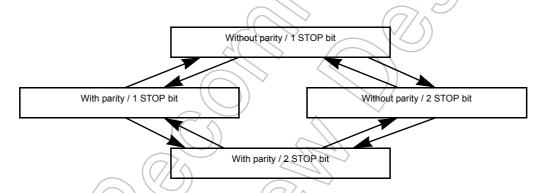


Figure 12-3 Caution on Changing Transfer Data Format

Note: In order to switch the transfer data format, perform transmit operations in the above Figure 12-3 sequence except for the initial setting.

12.4 Transfer Rate

The baud rate of UART1 is set of UART1CR1<BRG>. The example of the baud rate are shown as follows.

			^	
BRG		Source Clock		
BRG	16 MHz	8 MHz	4 MHz	
000	76800 [baud]	38400 [baud]	19200 [baud]	
001	38400	19200	9600	
010	19200	9600	4800	
011	9600	4800	2400	
100	4800	2400	1200	

Table 12-1 Transfer Rate (Example)

When TC5 is used as the UART1 transfer rate (when UART1CR1<BRG> = "110"), the transfer clock and transfer rate are determined as follows:

1200

600

Transfer clock [Hz] = TC5 source clock [Hz] / TTREG5 setting value

2400

Transfer Rate [baud] = Transfer clock [Hz] / 16

12.5 Data Sampling Method

101

The UART1 receiver keeps sampling input using the clock selected by UART1CR1<BRG> until a start bit is detected in RXD1 pin input. RT clock starts detecting "L" level of the RXD1 pin. Once a start bit is detected, the start bit, data bits, stop bit(s), and parity bit are sampled at three times of RT7, RT8, and RT9 during one receiver clock interval (RT clock). (RT0 is the position where the bit supposedly starts.) Bit is determined according to majority rule (The data are the same twice or more out of three samplings).

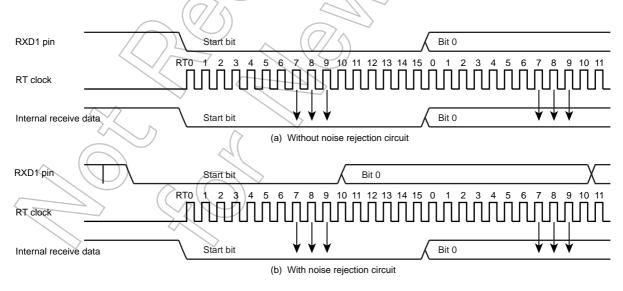


Figure 12-4 Data Sampling Method

12.6 STOP Bit Length

Select a transmit stop bit length (1 bit or 2 bits) by UART1CR1<STBT>.

12.7 Parity

Set parity / no parity by UART1CR1<PE> and set parity type (Odd- or Even-numbered) by UART1CR1<EVEN>.

12.8 Transmit/Receive Operation

12.8.1 Data Transmit Operation

Set UART1CR1<TXE> to "1". Read UART1SR to check UART1SR<TBEP> = "1", then write data in TD1BUF (Transmit data buffer). Writing data in TD1BUF zero-clears UART1SR<TBEP>, transfers the data to the transmit shift register and the data are sequentially output from the TXD1 pin. The data output include a one-bit start bit, stop bits whose number is specified in UART1CR1<STBT> and a parity bit if parity addition is specified. Select the data transfer baud rate using UART1CR1<BRG>. When data transmit starts, transmit buffer empty flag UART1SR<TBEP> is set to "1" and an INTTXD1 interrupt is generated.

While UART1CR1<TXE> = "0" and from when "1" is written to UART1CR1<TXE> to when send data are written to TD1BUF, the TXD1 pin is fixed at high level.

When transmitting data, first read UARTISR, then write data in TDIBUF. Otherwise, UARTISR<TBEP> is not zero-cleared and transmit does not start.

12.8.2 Data Receive Operation

Set UART1CR1<RXE> to "1". When data are received via the RXD1 pin, the receive data are transferred to RD1BUF (Receive data buffer). At this time, the data transmitted includes a start bit and stop bit(s) and a parity bit if parity addition is specified. When stop bit(s) are received, data only are extracted and transferred to RD1BUF (Receive data buffer). Then the receive buffer full flag UART1SR<RBFL> is set and an INTRXD1 interrupt is generated. Select the data transfer band rate using UART1CR1<BRG>.

If an overrun error (OERR) occurs when data are received, the data are not transferred to RD1BUF (Receive data buffer) but discarded; data in the RD1BUF are not affected.

Note: When a receive operation is disabled by setting UART1CR1<RXE> bit to "0", the setting becomes valid when data receive is completed. However, if a framing error occurs in data receive, the receive-disabling setting may not become valid. If a framing error occurs, be sure to perform a re-receive operation.

12.9 Status Flag

12.9.1 Parity Error

When parity determined using the receive data bits differs from the received parity bit, the parity error flag UART1SR<PERR> is set to "1". The UART1SR<PERR> is cleared to "0" when the RD1BUF is read after reading the UART1SR.

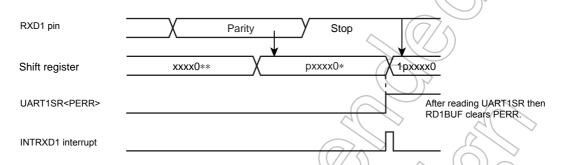


Figure 12-5 Generation of Parity Error

12.9.2 Framing Error

When "0" is sampled as the stop bit in the receive data, framing error flag UART1SR<FERR> is set to "1". The UART1SR<FERR> is cleared to "0" when the RD1BUF is read after reading the UART1SR.

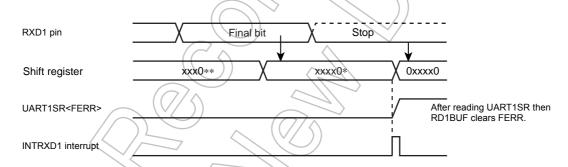


Figure 12-6 Generation of Framing Error

12.9.3 Overrun Error

When all bits in the next data are received while unread data are still in RD1BUF, overrun error flag UART1SR<OERR> is set to "1". In this case, the receive data is discarded; data in RD1BUF are not affected. The UART1SR<OERR> is cleared to "0" when the RD1BUF is read after reading the UART1SR.

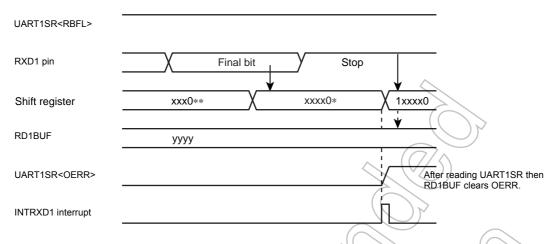


Figure 12-7 Generation of Overrun Error

Note: Receive operations are disabled until the overrun error flag UART1SR<OERR> is cleared

12.9.4 Receive Data Buffer Full

Loading the received data in RD1BUF sets receive data buffer full flag UART1SR<RBFL> to "1". The UART1SR<RBFL> is cleared to "0" when the RD1BUF is read after reading the UART1SR.

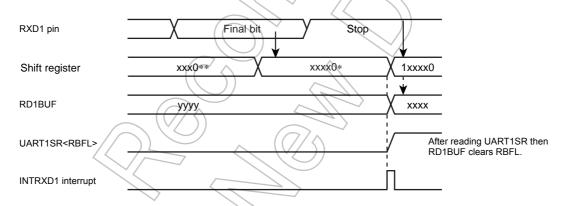


Figure 12-8 Generation of Receive Data Buffer Full

Note: If the overrun error flag UART1\$R<OERR> is set during the period between reading the UART1\$R and reading the RD1BUF, it cannot be cleared by only reading the RD1BUF. Therefore, after reading the RD1BUF, read the UART1\$R again to check whether or not the overrun error flag which should have been cleared still remains set.

12.9.5 Transmit Data Buffer Empty

When no data is in the transmit buffer TD1BUF, that is, when data in TD1BUF are transferred to the transmit shift register and data transmit starts, transmit data buffer empty flag UART1SR<TBEP> is set to "1". The UART1SR<TBEP> is cleared to "0" when the TD1BUF is written after reading the UART1SR.

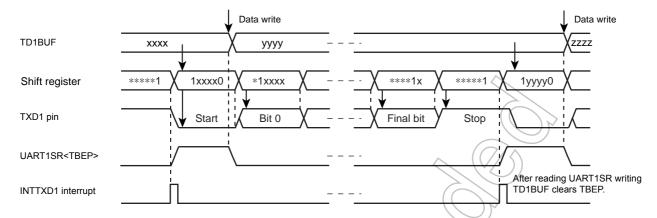


Figure 12-9 Generation of Transmit Data Buffer Empty

12.9.6 Transmit End Flag

When data are transmitted and no data is in TD1BUF (UART1SR<TBEP> = "1"), transmit end flag UART1SR<TEND> is set to "1". The UART1SR<TEND> is cleared to "0" when the data transmit is started after writing the TD1BUF.

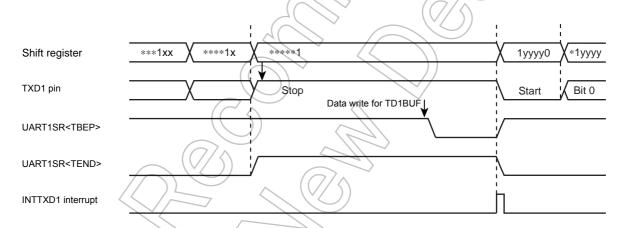


Figure 12-10 Generation of Transmit End Flag and Transmit Data Buffer Empty

13. Asynchronous Serial interface (UART0)

13.1 Configuration

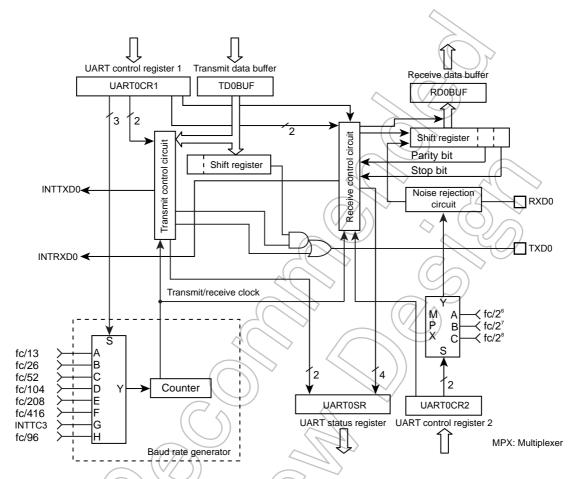
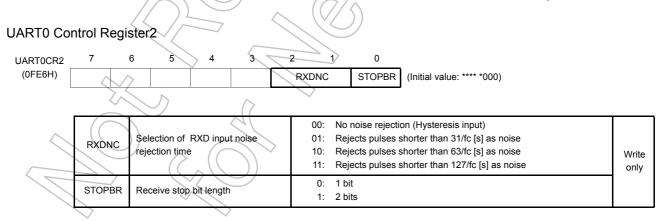


Figure 13-1 UART0 (Asynchronous Serial Interface)

13.2 Control

UART0 is controlled by the UART0 Control Registers (UART0CR1, UART0CR2). The operating status can be monitored using the UART status register (UART0SR).


UART0 Control Register1 UART0CR1 7 6 5 4 3 2 1 0 (0FE5H) TXE RXE STBT EVEN PE BRG (Initial value: 0000-0000) TXE Transfer operation 0: Disable 1: Enable DV5 Disable 0: Disable

TXE	Transfer operation	0: Disable 1: Enable	
RXE	Receive operation	0: Disable 1: Enable	
STBT	Transmit stop bit length	0: 1 bit 1: 2 bits	
EVEN	Even-numbered parity	Odd-numbered parity Even-numbered parity	Write
PE	Parity addition	0: No parity 1: Parity	only
BRG	Transmit clock select	000: fc/13 [Hz] 001: fc/26 010: fc/52 011: fc/104 100: fc/208 101: fc/416 110: TC3 (Input INTTC3) 111: fc/96	

Note 1: When operations are disabled by setting TXE and RXE bit to "0", the setting becomes valid when data transmit or receive complete. When the transmit data is stored in the transmit data buffer, the data are not transmitted. Even if data transmit is enabled, until new data are written to the transmit data buffer, the current data are not transmitted.

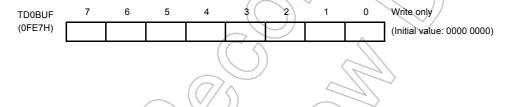
Note 2: The transmit clock and the parity are common to transmit and receive.

Note 3: UART0CR1<RXE> and UART0CR1<TXE> should be set to "0" before UART0CR1<BRG> is changed.

Note: When UART0CR2<RXDNC> = "01", pulses longer than 96/fc [s] are always regarded as signals; when UART0CR2<RXDNC> = "10", longer than 192/fc [s]; and when UART0CR2<RXDNC> = "11", longer than 384/fc [s].

UARTO Status Register

UART0SR	7	6	5	4	3	2	1	0	
(0FE5H)	PERR	FERR	OERR	RBFL	TEND	TBEP			(Initial value: 0000 11**)


PERR	Parity error flag	0: No parity error 1: Parity error	
FERR	Framing error flag	0: No framing error 1: Framing error	
OERR	Overrun error flag	0: No overrun error 1: Overrun error	Read
RBFL	Receive data buffer full flag	Receive data buffer empty Receive data buffer full	only
TEND	Transmit end flag	0: On transmitting 1: Transmit end	
TBEP	Transmit data buffer empty flag	Transmit data buffer full (Transmit data writing is finished) Transmit data buffer empty	

Note: When an INTTXD is generated, TBEP flag is set to "1" automatically.

UARTO Receive Data Buffer

RD0BUF	7	6	5	4	3	2 1	0	Read only
(0FE7H)								(Initial value: 0000 0000)
								- / / < \

UARTO Transmit Data Buffer

13.3 Transfer Data Format

In UART0, an one-bit start bit (Low level), stop bit (Bit length selectable at high level, by UART0CR1<STBT>), and parity (Select parity in UART0CR1<PE>; even- or odd-numbered parity by UART0CR1<EVEN>) are added to the transfer data. The transfer data formats are shown as follows.

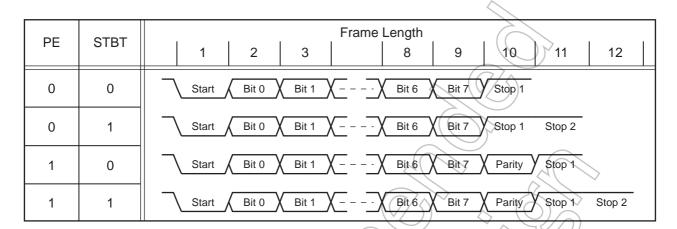


Figure 13-2 Transfer Data Format

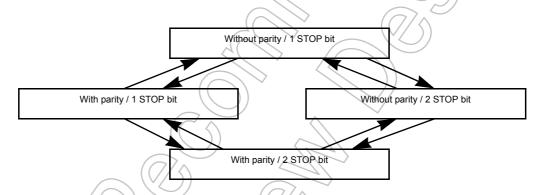


Figure 13-3 Caution on Changing Transfer Data Format

Note: In order to switch the transfer data format, perform transmit operations in the above Figure 13-3 sequence except for the initial setting.

13.4 Transfer Rate

The baud rate of UART0 is set of UART0CR1<BRG>. The example of the baud rate are shown as follows.

222		Source Clock	
BRG	16 MHz	8 MHz	4 MHz
000	76800 [baud]	38400 [baud]	19200 [baud]
001	38400	19200	9600
010	19200	9600	4800
011	9600	4800	2400
100	4800	2400	1200

Table 13-1 Transfer Rate (Example)

When TC3 is used as the UART0 transfer rate (when UART0CR1<BRG> = "110"), the transfer clock and transfer rate are determined as follows:

1200

600

Transfer clock [Hz] = TC3 source clock [Hz] / TTREG3 setting value

2400

Transfer Rate [baud] = Transfer clock [Hz] / 16

13.5 Data Sampling Method

101

The UART0 receiver keeps sampling input using the clock selected by UART0CR1<BRG> until a start bit is detected in RXD0 pin input. RT clock starts detecting "L" level of the RXD0 pin. Once a start bit is detected, the start bit, data bits, stop bit(s), and parity bit are sampled at three times of RT7, RT8, and RT9 during one receiver clock interval (RT clock). (RT0 is the position where the bit supposedly starts.) Bit is determined according to majority rule (The data are the same twice or more out of three samplings).

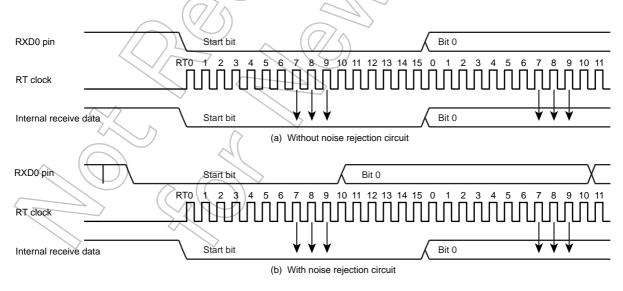


Figure 13-4 Data Sampling Method

13.6 STOP Bit Length

Select a transmit stop bit length (1 bit or 2 bits) by UART0CR1<STBT>.

13.7 Parity

Set parity / no parity by UART0CR1<PE> and set parity type (Odd- or Even-numbered) by UART0CR1<EVEN>.

13.8 Transmit/Receive Operation

13.8.1 Data Transmit Operation

Set UART0CR1<TXE> to "1". Read UART0SR to check UART0SR<TBEP> = "1", then write data in TD0BUF (Transmit data buffer). Writing data in TD0BUF zero-clears UART0SR<TBEP>, transfers the data to the transmit shift register and the data are sequentially output from the TXD0 pin. The data output include a one-bit start bit, stop bits whose number is specified in UART0CR1<STBT> and a parity bit if parity addition is specified. Select the data transfer baud rate using UART0CR1<BRG>. When data transmit starts, transmit buffer empty flag UART0SR<TBEP> is set to "1" and an INTTXD0 interrupt is generated.

While UART0CR1<TXE> = "0" and from when "1" is written to UART0CR1<TXE> to when send data are written to TD0BUF, the TXD0 pin is fixed at high level.

When transmitting data, first read UARTOSR, then write data in TD0BUF. Otherwise, UARTOSR<TBEP> is not zero-cleared and transmit does not start.

13.8.2 Data Receive Operation

Set UART0CR1<RXE> to "1". When data are received via the RXD0 pin, the receive data are transferred to RD0BUF (Receive data buffer). At this time, the data transmitted includes a start bit and stop bit(s) and a parity bit if parity addition is specified. When stop bit(s) are received, data only are extracted and transferred to RD0BUF (Receive data buffer). Then the receive buffer full flag UART0SR<RBFL> is set and an INTRXD0 interrupt is generated. Select the data transfer band rate using UART0CR1<BRG>.

If an overrun error (OERR) occurs when data are received, the data are not transferred to RD0BUF (Receive data buffer) but discarded; data in the RD0BUF are not affected.

Note: When a receive operation is disabled by setting UART0CR1<RXE> bit to "0", the setting becomes valid when data receive is completed. However, if a framing error occurs in data receive, the receive-disabling setting may not become valid. If a framing error occurs, be sure to perform a re-receive operation.

13.9 Status Flag

13.9.1 Parity Error

When parity determined using the receive data bits differs from the received parity bit, the parity error flag UART0SR<PERR> is set to "1". The UART0SR<PERR> is cleared to "0" when the RD0BUF is read after reading the UART0SR.

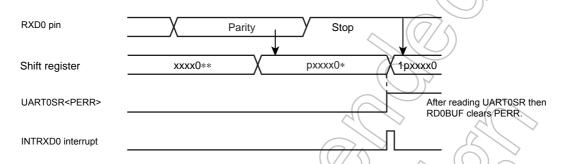


Figure 13-5 Generation of Parity Error

13.9.2 Framing Error

When "0" is sampled as the stop bit in the receive data, framing error flag UART0SR<FERR> is set to "1". The UART0SR<FERR> is cleared to "0" when the RD0BUF is read after reading the UART0SR.

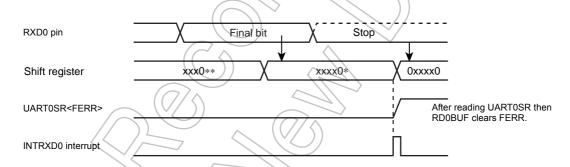


Figure 13-6 Generation of Framing Error

13.9.3 Overrun Error

When all bits in the next data are received while unread data are still in RD0BUF, overrun error flag UART0SR<OERR> is set to "1". In this case, the receive data is discarded; data in RD0BUF are not affected. The UART0SR<OERR> is cleared to "0" when the RD0BUF is read after reading the UART0SR.

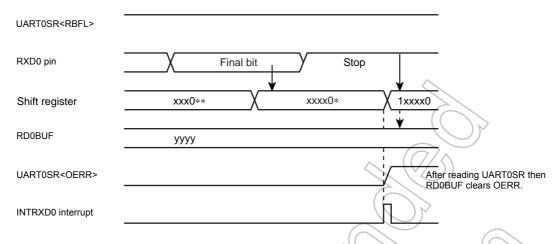


Figure 13-7 Generation of Overrun Error

Note: Receive operations are disabled until the overrun error flag UARTOSR<OERR> is cleared

13.9.4 Receive Data Buffer Full

Loading the received data in RD0BUF sets receive data buffer full flag UART0SR<RBFL> to "1". The UART0SR<RBFL> is cleared to "0" when the RD0BUF is read after reading the UART0SR.

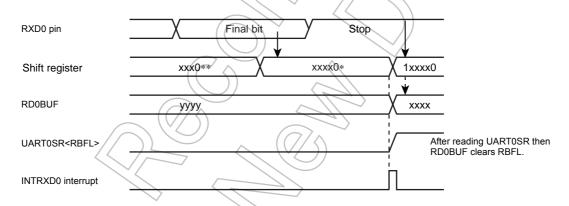


Figure 13-8 Generation of Receive Data Buffer Full

Note: If the overrun error flag UART0\$R<OERR> is set during the period between reading the UART0\$R and reading the RD0BUF, it cannot be cleared by only reading the RD0BUF. Therefore, after reading the RD0BUF, read the UART0\$R again to check whether or not the overrun error flag which should have been cleared still remains set.

13.9.5 Transmit Data Buffer Empty

When no data is in the transmit buffer TD0BUF, that is, when data in TD0BUF are transferred to the transmit shift register and data transmit starts, transmit data buffer empty flag UART0SR<TBEP> is set to "1". The UART0SR<TBEP> is cleared to "0" when the TD0BUF is written after reading the UART0SR.

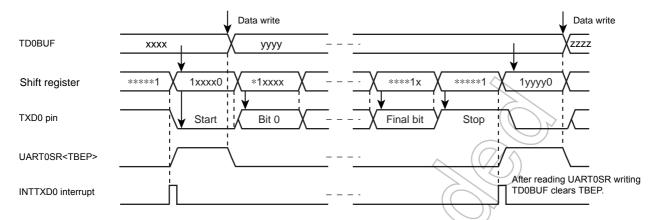


Figure 13-9 Generation of Transmit Data Buffer Empty

13.9.6 Transmit End Flag

When data are transmitted and no data is in TD0BUF (UART0SR<TBEP> = "1"), transmit end flag UART0SR<TEND> is set to "1". The UART0SR<TEND> is cleared to "0" when the data transmit is started after writing the TD0BUF.

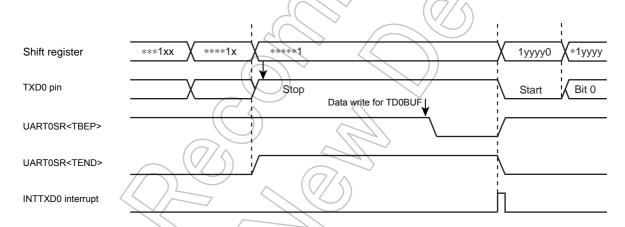
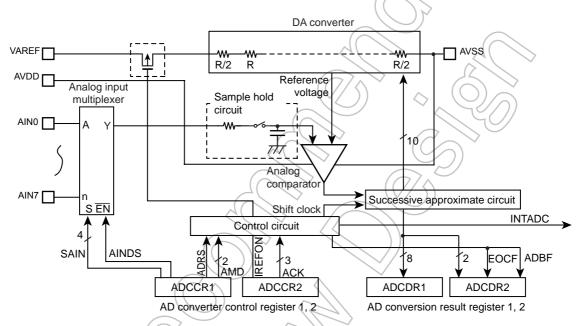


Figure 13-10 Generation of Transmit End Flag and Transmit Data Buffer Empty

TOSHIBA

TMP86FS28FG


14. 10-bit AD Converter (ADC)

The TMP86FS28FG have a 10-bit successive approximation type AD converter.

14.1 Configuration

The circuit configuration of the 10-bit AD converter is shown in Figure 14-1.

It consists of control register ADCCR1 and ADCCR2, converted value register ADCDR1 and ADCDR2, a DA converter, a sample-hold circuit, a comparator, and a successive comparison circuit.

Note: Before using AD converter, set appropriate value to I/O port register conbining a analog input port. For details, see the section on "I/O ports".

Figure 14-1 10-bit AD Converter

14.2 Register configuration

The AD converter consists of the following four registers:

1. AD converter control register 1 (ADCCR1)

This register selects the analog channels and operation mode (Software start or repeat) in which to perform AD conversion and controls the AD converter as it starts operating.

2. AD converter control register 2 (ADCCR2)

This register selects the AD conversion time and controls the connection of the DA converter (Ladder resistor network).

3. AD converted value register 1 (ADCDR1)

This register used to store the digital value fter being converted by the AD converter.

4. AD converted value register 2 (ADCDR2)

This register monitors the operating status of the AD converter.

AD Converter Control Register 1

ADCCR1	7	6	5	4	3	2 1	0	_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	/
(0FE2H)	ADRS	AN	/ID	AINDS		SAIN		(Initial value: 0001	0000)

ADRS	AD conversion start	0: 1: AD conversion start	
AMD	AD operating mode	00: AD operation disable 01: Software start mode 10: Reserved 11: Repeat mode	
AINDS	Analog input control	0: Analog input enable 1: Analog input disable	
SAIN	Analog input channel select	0000: AIN0 0001: AIN1 0010: AIN2 0011: AIN3 0100: AIN4 0101: AIN5 0110: AIN6 0111: AIN7 1000: Reserved 1001: Reserved 1010: Reserved 1101: Reserved 1101: Reserved 1101: Reserved 1110: Reserved 1110: Reserved 1111: Reserved	R/W

- Note 1: Select analog input channel during AD converter stops (ADCDR2<ADBF> = "0").
- Note 2: When the analog input channel is all use disabling, the ADCCR1<AINDS> should be set to "1".
- Note 3: During conversion, Do not perform port output instruction to maintain a precision for all of the pins because analog input port use as general input port. And for port near to analog input, Do not input intense signaling of change.
- Note 4: The ADCCR1<ADRS> is automatically cleared to "0" after starting conversion.
- Note 5: Do not set ADCCR1<ADRS> newly again during AD conversion. Before setting ADCCR1<ADRS> newly again, check ADCDR2<EOCF> to see that the conversion is completed or wait until the interrupt signal (INTADC) is generated (e.g., interrupt handling routine).
- Note 6: After STOP or SLOW/SLEEP mode are started, AD converter control register1 (ADCCR1) is all initialized and no data can be written in this register. Therfore, to use AD converter again, set the ADCCR1 newly after returning to NORMAL1 or NORMAL2 mode.

AD Converter Control Register 2

ADCCR2	7	6	5	4	3	2	1	0	
(0FE3H)			IREFON	"1"		ACK		"0"	(Initial value: **0* 000*)

IREFON	DA converter (Ladder resistor) connection control	0: 1:	Connected only during AD conversion Always connected	
ACK	AD conversion time select (Refer to the following table about the conversion time)	000: 001: 010: 011: 100: 101: 110: 111:	39/fc Reserved 78/fc 156/fc 312/fc 624/fc 1248/fc Reserved	R/W

Note 1: Always set bit0 in ADCCR2 to "0" and set bit4 in ADCCR2 to "1"

Note 2: When a read instruction for ADCCR2, bit6 to 7 in ADCCR2 read in as undefined data.

Note 3: After STOP or SLOW/SLEEP mode are started, AD converter control register2 (ADCCR2) is all initialized and no data can be written in this register. Therfore, to use AD converter again, set the ADCCR2 newly after returning to NORMAL1 or NORMAL2 mode.

Table 14-1 ACK setting and Conversion time

			/					
Condition ACK	Conversion time	16 MHz	8 MHz	4 MHz	2 MHz	10 MHz	5 MHz	2.5 MHz
000	39/fc	-		//	19.5 μs) -	-	15.6 μs
001			(())	Rese	rved	//		
010	78/fc	- (19.5 μs	39.0 μs	· -	15.6 μs	31.2 μs
011	156/fc	- ((19.5 μs	39.0 μs	78.0 μs	15.6 μs	31.2 μs	62.4 μs
100	312/fc	19.5 μs	39.0 μs	78.0 μs	156.0 μs	31.2 μs	62.4 μs	124.8 μs
101	624/fc	39.0 μs	78.0 μs	156.0 μs	- 1)	62.4 μs	124.8 μs	-
110	1248/fc	78.0 μs	156.0 μs	((/-//^	-	124.8 μs	-	-
111				Rese	rved			·

Note 1: Setting for "-" in the above table are inhibited. fc: High Frequency oscillation clock [Hz]

Note 2: Set conversion time setting should be kept more than the following time by Analog reference voltage (VAREF).

- VAREF = 4.5 to 5.5 V

15.6 μs and more

- VAREF = 2.7 to 5.5 V

31.2 μs and more

AD Converted value Register 1

ADCDR1	7	6	5	4	3	2	1	0	_
(0FE1H)	AD09	AD08	AD07	AD06	AD05	AD04	AD03	AD02	(Initial value: 0000 0000)

AD Converted value Register 2

ADCDR2	7	6	5	4	3	2	1	0	
(0FE0H)	AD01	AD00	EOCF	ADBF					(Initial value: 0000 ****)

EOCF	AD conversion end flag	Before or during conversion Conversion completed	Read
ADBF	AD conversion BUSY flag	During stop of AD conversion During AD conversion	only

Note 1: The ADCDR2<EOCF> is cleared to "0" when reading the ADCDR1. Therfore, the AD conversion result should be read to ADCDR2 more first than ADCDR1.

Note 2: The ADCDR2<ADBF> is set to "1" when AD conversion starts, and cleared to "0" when AD conversion finished. It also is cleared upon entering STOP mode or SLOW mode .

Note 3: If a read instruction is executed for ADCDR2, read data of bit3 to bit0 are unstable.

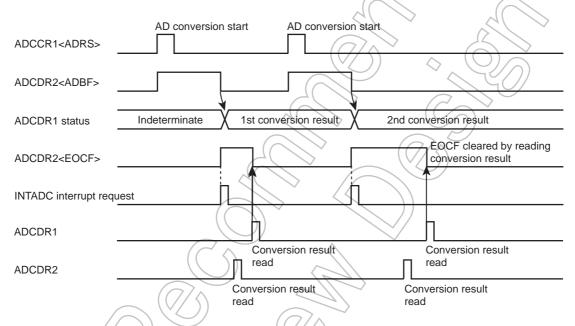
14.3 Function

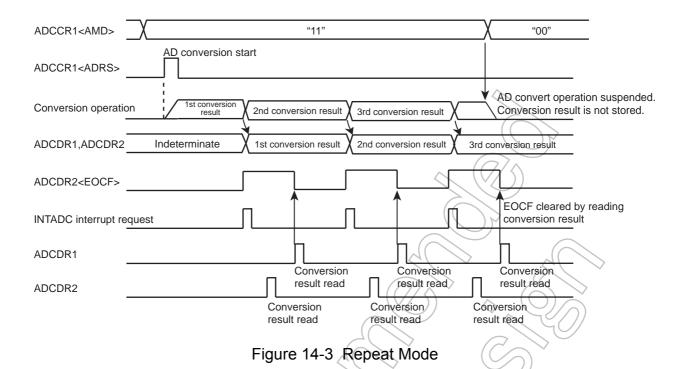
14.3.1 Software Start Mode

After setting ADCCR1<AMD> to "01" (software start mode), set ADCCR1<ADRS> to "1". AD conversion of the voltage at the analog input pin specified by ADCCR1<SAIN> is thereby started.

After completion of the AD conversion, the conversion result is stored in AD converted value registers (ADCDR1, ADCDR2) and at the same time ADCDR2<EOCF> is set to 1, the AD conversion finished interrupt (INTADC) is generated.

ADRS is automatically cleared after AD conversion has started. Do not set ADCCR1<ADRS> newly again (Restart) during AD conversion. Before setting ADRS newly again, check ADCDR2<EOCF> to see that the conversion is completed or wait until the interrupt signal (INTADC) is generated (e.g., interrupt handling routine).




Figure 14-2 Software Start Mode

14.3.2 Repeat Mode

AD conversion of the voltage at the analog input pin specified by ADCCR1<SAIN> is performed repeatedly. In this mode, AD conversion is started by setting ADCCR1<ADRS> to "1" after setting ADCCR1<AMD> to "11" (Repeat mode).

After completion of the AD conversion, the conversion result is stored in AD converted value registers (ADCDR1, ADCDR2) and at the same time ADCDR2<EOCF> is set to 1, the AD conversion finished interrupt (INTADC) is generated.

In repeat mode, each time one AD conversion is completed, the next AD conversion is started. To stop AD conversion, set ADCCR1<AMD> to "00" (Disable mode) by writing 0s. The AD convert operation is stopped immediately. The converted value at this time is not stored in the AD converted value register.

14.3.3 Register Setting

- 1. Set up the AD converter control register 1 (ADCCR1) as follows:
 - Choose the channel to AD convert using AD input channel select (SAIN).
 - Specify analog input enable for analog input control (AINDS).
 - Specify AMD for the AD converter control operation mode (software or repeat mode).
- 2. Set up the AD converter control register 2 (ADCCR2) as follows:
 - Set the AD conversion time using AD conversion time (ACK). For details on how to set the conversion time, refer to Figure 14-1 and AD converter control register 2.
 - Choose IREFON for DA converter control.
- 3. After setting up (1) and (2) above, set AD conversion start (ADRS) of AD converter control register 1 (ADCCR1) to "1". If software start mode has been selected, AD conversion starts immediately.
- 4. After an elapse of the specified AD conversion time, the AD converted value is stored in AD converted value register 1 (ADCDR1) and the AD conversion finished flag (EOCF) of AD converted value register 2 (ADCDR2) is set to "1", upon which time AD conversion interrupt INTADC is generated
- 5. EOCF is cleared to "0" by a read of the conversion result. However, if reconverted before a register read, although EOCF is cleared the previous conversion result is retained until the next conversion is completed.

Example :After selecting the conversion time 19.5 µs at 16 MHz and the analog input channel AIN3 pin, perform AD conversion once. After checking EOCF, read the converted value, store the lower 2 bits in address 0009EH nd store the upper 8 bits in address 0009FH in RAM. The operation mode is software start mode.

	: (port setting)	:	;Set port register approrriately before setting AD converter registers.
	:	:	(Refer to section I/O port in details)
	LD	(ADCCR1), 00100011B	; Select AIN3
	LD	(ADCCR2), 11011000B	;Select conversion time(312/fc) and operation mode
	SET	(ADCCR1) . 7	; ADRS = 1(AD conversion start)
SLOOP:	TEST	(ADCDR2) . 5	; EOCF= 1?
	JRS	T, SLOOP	
	LD	A , (ADCDR2)	; Read result data
	LD	(9EH) , A	
	LD	A , (ADCDR1)	; Read result data
	LD	(9FH), A	

14.4 STOP/SLOW Modes during AD Conversion

When standby mode (STOP or SLOW mode) is entered forcibly during AD conversion, the AD convert operation is suspended and the AD converter is initialized (ADCCR1 and ADCCR2 are initialized to initial value). Also, the conversion result is indeterminate. (Conversion results up to the previous operation are cleared, so be sure to read the conversion results before entering standby mode (STOP or SLOW mode).) When restored from standby mode (STOP or SLOW mode), AD conversion is not automatically restarted, so it is necessary to restart AD conversion. Note that since the analog reference voltage is automatically disconnected, there is no possibility of current flowing into the analog reference voltage.

14.5 Analog Input Voltage and AD Conversion Result

The analog input voltage is corresponded to the 10-bit digital value converted by the AD as shown in Figure 14-4.

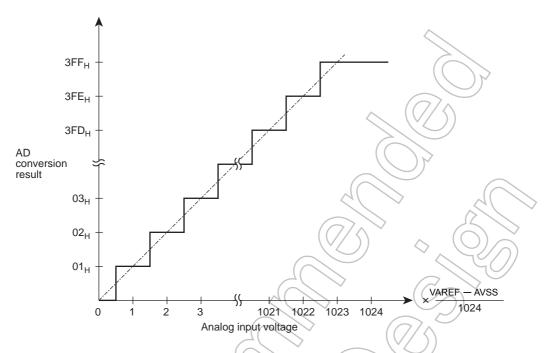


Figure 14-4 Analog Input Voltage and AD Conversion Result (Typ.)

14.6 Precautions about AD Converter

14.6.1 Analog input pin voltage range

Make sure the analog input pins (AIN0 to AIN7) are used at voltages within VAREF to AVSS. If any voltage outside this range is applied to one of the analog input pins, the converted value on that pin becomes uncertain. The other analog input pins also are affected by that.

14.6.2 Analog input shared pins

The analog input pins (AIN0 to AIN7) are shared with input/output ports. When using any of the analog inputs to execute AD conversion, do not execute input/output instructions for all other ports. This is necessary to prevent the accuracy of AD conversion from degrading. Not only these analog input shared pins, some other pins may also be affected by noise arising from input/output to and from adjacent pins.

14.6.3 Noise Countermeasure

The internal equivalent circuit of the analog input pins is shown in Figure 14-5. The higher the output impedance of the analog input source, more easily they are susceptible to noise. Therefore, make sure the output impedance of the signal source in your design is $5 \text{ k}\Omega$ or less. Toshiba also recommends attaching a capacitor external to the chip.

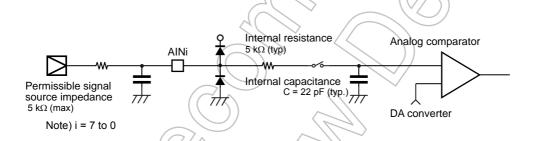


Figure 14-5 Analog Input Equivalent Circuit and Example of Input Pin Processing

15. Key-on Wakeup (KWU)

In the TMP86FS28FG, the STOP mode is released by not only P20(INT5/STOP) pin but also four (STOP2 to STOP5) pins.

When the STOP mode is released by STOP2 to STOP5 pins, the STOP pin needs to be used. In details, refer to the following section "15.2 Control".

15.1 Configuration

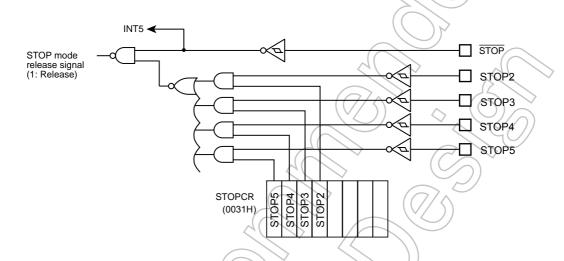


Figure 15-1 Key-on Wakeup Circuit

15.2 Control

STOP2 to STOP5 pins can controlled by Key-on Wakeup Control Register (STOPCR). It can be configured as enable/disable in 1-bit unit. When those pins are used for STOP mode release, configure corresponding I/O pins to input mode by I/O port register beforehand.

Key-on Wakeup Control Register

STOPCR	7 </th <th>6</th> <th>5</th> <th>/4</th> <th>3</th> <th>2</th> <th>1</th> <th>0</th> <th></th> <th></th>	6	5	/4	3	2	1	0		
(0031H)	STOP5	STOP4	STOP3	STOP2					(Initial value: 0000 ****)	
			· (c		•				-	
	STOP5	STOP mod	le released	by STOP5		-	Disable Enable			Write only
	STOP4 STOP mode released by STOP4			-	Disable Enable			Write only		
	STOP3	STOP mod	le released	by STOP3		-	Disable Enable			Write only
	STOP2	STOP mod	le released	by STOP2		-	Disable Enable			Write only

15.3 Function

Stop mode can be entered by setting up the System Control Register (SYSCR1), and can be exited by detecting the "L" level on STOP2 to STOP5 pins, which are enabled by STOPCR, for releasing STOP mode (Note1).

Also, each level of the STOP2 to STOP5 pins can be confirmed by reading corresponding I/O port data register, check all STOP2 to STOP5 pins "H" that is enabled by STOPCR before the STOP mode is started (Note2,3).

- Note 1: When the STOP mode released by the edge release mode (SYSCR1<RELM> = "0"), inhibit input from STOP2 to STOP5 pins by Key-on Wakeup Control Register (STOPCR) or must be set "H" level into STOP2 to STOP5 pins that are available input during STOP mode.
- Note 2: When the STOP pin input is high or STOP2 to STOP5 pins input which is enabled by STOPCR is low, executing an instruction which starts STOP mode will not place in STOP mode but instead will immediately start the release sequence (Warm up).
- Note 3: The input circuit of Key-on Wakeup input and Port input is separated, so each input voltage threshold value is different. Therefore, a value comes from port input before STOP mode start may be different from a value which is detected by Key-on Wakeup input (Figure 15-2).
- Note 4: STOP pin doesn't have the control register such as STOPCR, so when STOP mode is released by STOP2 to STOP5 pins, STOP pin also should be used as STOP mode release function.
- Note 5: In STOP mode, Key-on Wakeup pin which is enabled as input mode (for releasing STOP mode) by Key-on Wakeup Control Register (STOPCR) may generate the penetration current, so the said pin must be disabled AD conversion input (analog voltage input).
- Note 6: When the STOP mode is released by STOP2 to STOP5 pins, the level of STOP pin should hold "L" level (Figure 15-3).

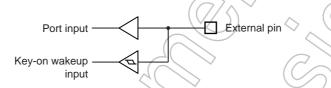


Figure 15-2 Key-on Wakeup Input and Port Input

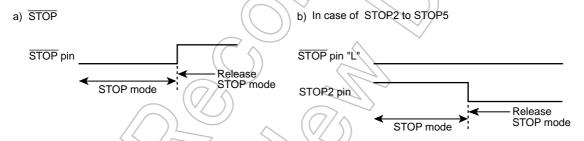


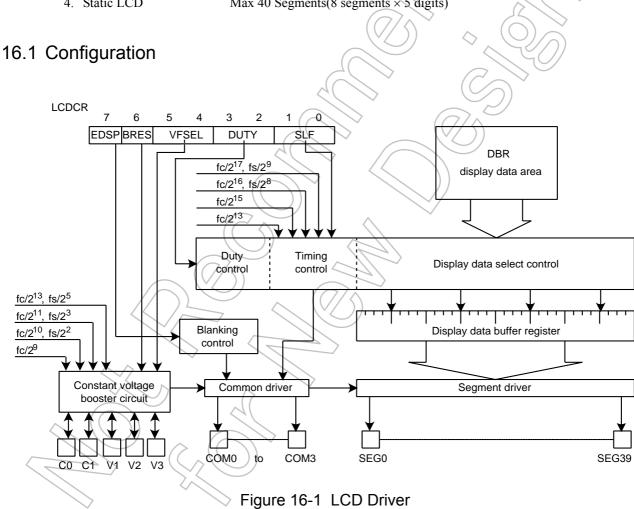
Figure 15-3 Priority of STOP pin and STOP2 to STOP5 pins

Table 15-1 Release level (edge) of STOP mode

	Release le	evel (edge)
Pin name	SYSCR1 <relm>="1" (Note2)</relm>	SYSCR1 <relm>="0"</relm>
STOP	"H" level	Rising edge
STOP2	"L" level	Don't use (Note1)
STOP3	"L" level	Don't use (Note1)
STOP4	"L" level	Don't use (Note1)
STOP5	"L" level	Don't use (Note1)

TMP86FS28FG TOSHIBA

16. LCD Driver


The TMP86FS28FG has a driver and control circuit to directly drive the liquid crystal device (LCD). The pins to be connected to LCD are as follows:

- 1. Segment output port 40 pins (SEG39 to SEG0)
- 2. Common output port4 pins (COM3 to COM0)

In addition, C0, C1, V1, V2, V3 pin are provided for the LCD driver's booster circuit.

The devices that can be directly driven is selectable from LCD of the following drive methods:

- 1. 1/4 Duty (1/3 Bias) LCD Max 160 Segments(8 segments × 20 digits)
- 2. 1/3 Duty (1/3 Bias) LCD Max 120 Segments(8 segments × 15 digits)
- 3. 1/2 Duty (1/2 Bias) LCD Max 80 Segments (8 segments × 10 digits)
- 4. Static LCD Max 40 Segments(8 segments × 5 digits)

Note: The LCD driver incorporates a dedicated divider circuit. Therefore, the break function of a debugger (development tool) will not stop LCD driver output.

16.2 Control

The LCD driver is controlled using the LCD control register (LCDCR). The LCD driver's display is enabled using the EDSP.

LCD Driver Control Register

LCDCR	7	6	5	4	3	2	1	0	
(0FD9H)	EDSP	BRES	VFS	EL	DU	ITY	SI	_F	(Initial value: 0000 0000)

EDSP	LCD Display Control		: Blanking : Enables LCD display (Blanking is released)						
BRES	Booster circuit control		: Disable (use divider resistance) : Enable						
			NORMAL1/2,	IDLE/1/2 mode	SLOW1/2,				
			DV7CK = 0	DV7CK = 1	SLEEP0/1/2 mode				
		00	fc/2 ¹³	fs/2 ⁵	fs/2 ⁵				
VFSEL	Selection of boost frequency	01	fc/2 ¹¹	fs/2 ³	fs/2 ³				
		10	fc/2 ¹⁰	fs/2 ²	fs/2 ²				
		11	fc/2 ⁹) fc/2 ⁹		R/W			
DUTY	Selection of driving methods	01: 1/3	Duty (1/3 Bias) Duty (1/3 Bias) Duty (1/2 Bias) tic		(S)				
		4	NORMAL1/2,	IDLE/1/2 mode	SLOW1/2,				
			DV7CK = 0	DV7CK = 1	SLEEP0/1/2 mode				
	Selection of LCD frame fre-	00	fc/2 ¹⁷	fs/2 ⁹	fs/2 ⁹				
SLF	quency	01	fc/2 ¹⁶	fs/28	fs/2 ⁸				
		10	fc/2 ¹⁵	fc/2 ¹⁵	-				
		11	fc/2 ¹³	fc/2 ¹³	-				

Note 1: When <BRES>(Booster circuit control) is set to "0", $V_{DD} \ge V3 \ge V2 \ge V1 \ge V_{SS}$ should be satisfied.

When <BRES> is set to "1", 5.5 [V] \geq V3 \geq V_{DD} should be satisfied.

If these conditions are not satisfied, it not only affects the quality of LCD display but also may damage the device due to over voltage of the port.

- Note 2: When used as the booster circuit, bias should be composed to 1/3. Therefore, do not set LCDCR<DUTY> to "10" or "11" when the booster circuit is enable.
- Note 3: Do not set SLF to "10" or "11" in SLOW1/2 modes.
- Note 4: Do not set VFSEL to "11" SLOW1/2 modes.

16.2.1 LCD driving methods

As for LCD driving method, 4 types can be selected by LCDCR<DUTY>. The driving method is initialized in the initial program according to the LCD used.

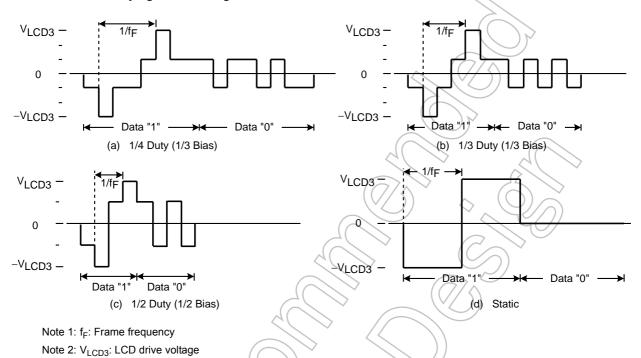


Figure 16-2 LCD Drive Waveform (COM-SEG pins)

16.2.2 Frame frequency

Frame frequency (f_F) is set according to driving method and base frequency as shown in the following Table 16-1. The base frequency is selected by LCDCR<SLF> according to the frequency fc and fs of the basic clock to be used.

Table 16-1 Setting of LCD Frame Frequency

(a) At the single clock mode. At the dual clock mode (DV7CK = 0).

01.5	Dana francisco (III-)		Frame free	quency [Hz]	
SLF	Base frequency [Hz]	1/4 Duty	1/3 Duty	1/2 Duty	Static
00	$\frac{fc}{2^{17}}$	$\frac{\text{fc}}{2^{17}}$	$\frac{4}{3} \cdot \frac{\text{fc}}{2^{17}}$	4 fc 2 2 ¹⁷	$\frac{fc}{2^{17}}$
00	(fc = 16 MHz)	122	163	244	122
	(fc = 8 MHz)	61	81	122	61)
01	fc 2 ¹⁶	fc 2 ¹⁶	$ \begin{array}{c} 4 & \text{fc} \\ 3 & 2^{16} \end{array} $	$\frac{4}{2} \cdot \frac{fc}{2^{16}}$	$\frac{fc}{2^{16}}$
01	(fc = 8 MHz)	122	163	244	122
	(fc = 4 MHz)	61	81	(122	61
10	fc 2 ¹⁵	fc 2 ¹⁵	$\frac{4}{3} \cdot \frac{fc}{2^{15}}$	$\frac{4}{2} \cdot \frac{fc}{2^{15}}$	fc 2 ¹⁵
10	(fc = 4 MHz)	122	163	244	122
	(fc = 2 MHz)	61	81	122	61
11	$\frac{\text{fc}}{2^{13}}$	fc 2 ¹³	$\frac{4}{3} \cdot \frac{\text{fc}}{2^{\frac{1}{13}}}$	$\frac{4}{2} \bullet \frac{fc}{2^{13}}$	$\frac{fc}{2^{13}}$
	(fc = 1 MHz)	()) 122	163	244	122

Note: fc: High-frequency clock [Hz]

Table 16-2

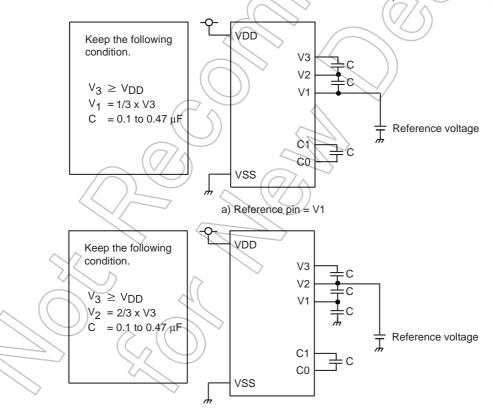
(b) At the dual clock mode (DV7CK = 1 or SYSCK = 1)

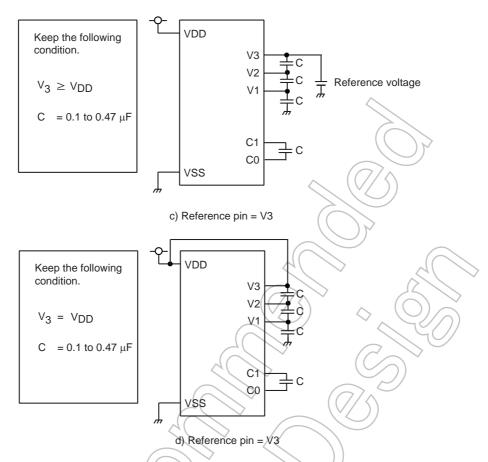
SLF	Data fraguenas (Uni	Frame frequency [Hz]					
SLF ((Base frequency [Hz]	1/4 Duty	1/3 Duty	1/2 Duty	Static		
00	$\frac{fs}{2^9}$	fs 29	$\frac{4}{3} \cdot \frac{fs}{2^9}$	$\frac{4}{2} \cdot \frac{fs}{2^9}$	<u>fs</u> 2 ⁹		
	(fs = 32.768 kHz)	64	85	128	64		
01	<u>fs</u> 2 ⁸	15 28 28	$\frac{4}{3} \cdot \frac{fs}{2^8}$	$\frac{4}{2} \cdot \frac{fs}{2^8}$	<u>fs</u> 2 ⁸		
	(fs = 32.768 kHz)	128	171	256	128		

Note: fs: Low-frequency clock [Hz]

16.2.3 Driving method for LCD driver

In the TMP86FS28FG, LCD driving voltages can be generated using either an internal booster circuit or an external resistor divider. This selection is made in LCDCR<BRES>.


16.2.3.1 When using the booster circuit (LCDCR<BRES>="1")


When the reference voltage is connected to the V1 pin, the booster circuit boosts the reference voltage twofold (V2) or threefold (V3) to generate the output voltages for segment/common signals. When the reference voltage is connected to the V2 pin, it is reduced to 1/2 (V1) or boosted to 3/2 (V3). When the reference voltage is connected to the V3 pin, it is reduced to 1/3 (V1) or 2/3 (V2).

LCDCR<VFSEL> is used to select the reference frequency in the booster circuit. The faster the boosting frequency, the higher the segment/common drive capability, but power consumption is increased. Conversely, the slower the boosting frequency, the lower the segment/common drive capability, but power consumption is reduced. If the drive capability is insufficient, the LCD may not be displayed clearly. Therefore, select an optimum boosting frequency for the LCD panel to be used.

Table 16-3 shows the V3 pin current capacity and boosting frequency.

Note: When used as the booster circuit, bias should be composed to 1/3. Therefore, do not set LCDCR<DUTY> to "10" or "11" when the booster circuit is enable (LCDCR<BRES>="1").

- Note 1: When the TMP86FS28FG uses the booster circuit to drive the LCD, the power supply and capacitor for the booster circuit should be connected as shown above.
- Note 2: When the reference voltage is connected to a pin other than V1, add a capacitor between V1 and GND.
- Note 3: The connection examples shown above are different from those shown in the datasheets of the previous version. Since the above connection method enhances the boosting characteristics, it is recommended that new boards be designed using the above connection method. (Using the existing connection method does not affect LCD display.)

Figure 16-3 Connection Examples When Using the Booster Circuit (LCDCR<BRES> = "1")

VFSEL Boosting frequency fc = 16 MHz fc = 8 MHz fc = 4 MHzfc = 32.768 MHz fc/213 or fs/25 -37 mV/ μA -80 mV/ μA -138 mV/ μA -76 mV/ μA 01 fc/2¹¹ or fs/2³ -19 mV/ μA -24 mV/ μA -37 mV/ μA –23 mV/ μA fc/210 or fs/22 –17 mV/ μA -19 mV/ μA -24 mV/ μA 10 –18 mV/ μA 11 fc/29 –16 mV/ μA -17 mV/ μA -19 mV/ μA

Table 16-3 V3 Pin Current Capacity and Boosting Frequency (typ.)

- Note 1: The current capacity is the amount of voltage that falls per $1\mu A$.
- Note 2: The boosting frequency should be selected depending on your LCD panel.
- Note 3: For the reference pin V1 or V2, a current capacity ten times larger than the above is recommended to ensure stable operation.

For example, when the boosting frequency is fc/2 9 (at fc = 8 MHz), -1.7 mV/ μ A or more is recommended for the current capacity of the reference pin V1.

16.2.3.2 When using an external resistor divider (LCDCR<BRES>="0")

When an external resistor divider is used, the voltage of an external power supply is divided and input on V1, V2, and V3 to generate the output voltages for segment/common signals.

The smaller the external resistor value, the higher the segment/common drive capability, but power consumption is increased. Conversely, the larger the external resistor value, the lower the segment/common drive capability, but power consumption is reduced. If the drive capability is insufficient, the LCD may not be displayed clearly. Therefore, select an optimum resistor value for the LCD panel to be used.

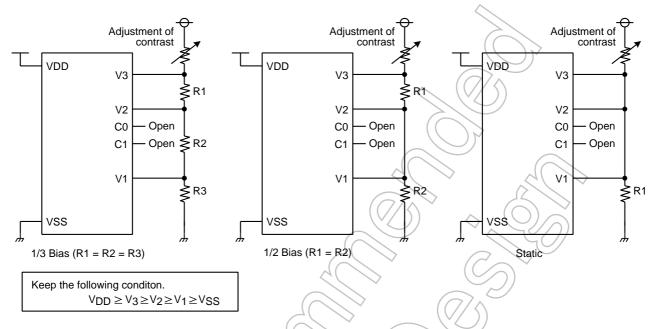


Figure 16-4 Connection Examples When Using an External Resistor Divider (LCDCR<BRES> = "0")

16.3 LCD Display Operation

16.3.1 Display data setting

Display data is stored to the display data area (assigned to address 0FC0H to 0FD3H, 20bytes) in the DBR. The display data which are stored in the display data area is automatically read out and sent to the LCD driver by the hardware. The LCD driver generates the segment signal and common signal according to the display data and driving method. Therefore, display patterns can be changed by only over writing the contents of display data area by the program. Table 16-5 shows the correspondence between the display data area and SEG/ COM pins.

LCD light when display data is "1" and turn off when "0". According to the driving method of LCD, the number of pixels which can be driven becomes different, and the number of bits in the display data area which is used to store display data also becomes different.

Therefore, the bits which are not used to store display data as well as the data buffer which corresponds to the addresses not connected to LCD can be used to store general user process data (see Table 16-4).

Note: The display data memory contents become unstable when the power supply is turned on; therefore, the display data memory should be initialized by an initiation routine.

		. ,			
Driving methods	Bit 7/3	Bit 6/2	Bit 5/1		
1/4 Duty	COM3	COM2	COM1		

Table 16-4 Driving Method and Bit for Display Data

Note: -: This bit is not used for display data

Table 16-5 LCD Display Data Area (DBR)

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0FC0H		SEG	61			SE	G0	
0FC1H		SEG	3			SE	:G2	
0FC2H		SEG	55			SE	:G4	
0FC3H		SEG	67			SE	:G6	
0FC4H		SEG	9			SE	:G8	
0FC5H		SEG	11			SE	G10 \	
0FC6H		SEG	13			SE	G12	
0FC7H		SEG	15			SE	G14	
0FC8H		SEG	17			SE	G16	
0FC9H		SEG	19			SE	G18	
0FCAH		SEG	21		M	SE	G20	7
0FCBH		SEG	23			SE	G22	
0FCCH		SEG	25		(0/4	SE	G24	
0FCDH		SEG	27			SE	G26	
0FCEH		SEG	29	(/		SE	G28	901
0FCFH		SEG	31			SE	G30	>
0FD0H		SEG	33	4		SE	G32	
0FD1H		SEG	35			SE	G34	
0FD2H		SEG	37	7(//	>	(SE	G36	
0FD3H		SEG	39			SE	G38	
_	COM3	COM2	COM1	COM0	сомз	COM2	COM1	COM0

16.3.2 Blanking

Blanking is enabled when EDSP is cleared to "0"

Blanking turns off LCD through outputting a GND level to SEG/COM pin.

When in STOP mode, EDSP is cleared to "0" and automatically blanked. To redisplay ICD after exiting STOP mode, it is necessary to set EDSP back to "1".

Note: During reset, the LCD common outputs are fixed "0" level. But the multiplex terminal of input/output port and LCD segment output becomes high impedance. Therefore, when the reset input is long remarkably, ghost problem may appear in LCD display.

TOSHIBA

16.4 Control Method of LCD Driver

16.4.1 Initial setting

Figure 16-5 shows the flowchart of initialization.

Example: To operate a 1/4 duty LCD of 40 segments × 4 com-mons at frame frequency fc/2¹⁶ [Hz], and booster frequency fc/2¹³ [Hz]

> LD (LCDCR), 01000001B ; Sets LCD driving method and frame frequency. Boost frequency ; Sets segment output control register. (*; Port No.)

LD (P*LCR), 0FFH

; Sets the initial value of display data.

LD (LCDCR), 11000001B ; Display enable

> Sets LCD driving method (DUTY). Sets boost frequency (VFSEL). Sets frame frequency (SLF). Enables booster circuit (BRES) Sets segment output control registers (P*LCR (*; Port No.)) Initialization of display data area. Display enable (EDSP) (Releases from blanking.)

Figure 16-5 Initial Setting of LCD Driver

16.4.2 Store of display data

Generally, display data are prepared as fixed data in program memory (ROM) and stored in display data area by load command.

Example :To display using 1/4 duty LCD a numerical value which corresponds to the LCD data stored in data memory at address 80H (when pins COM and SEG are connected to LCD as in Figure 16-6), display data become as shown in Table 16-6.

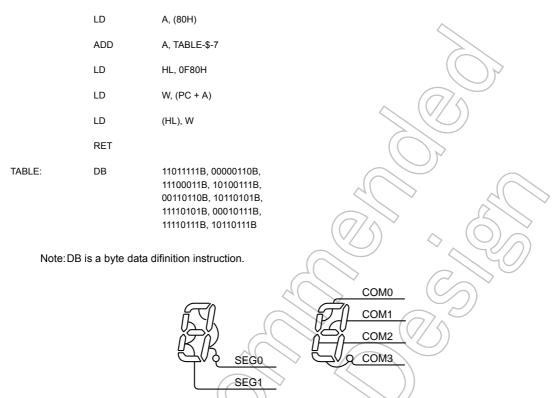
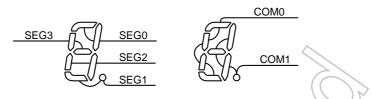
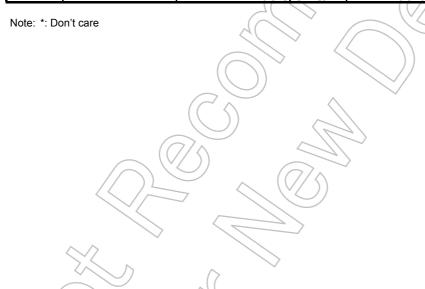


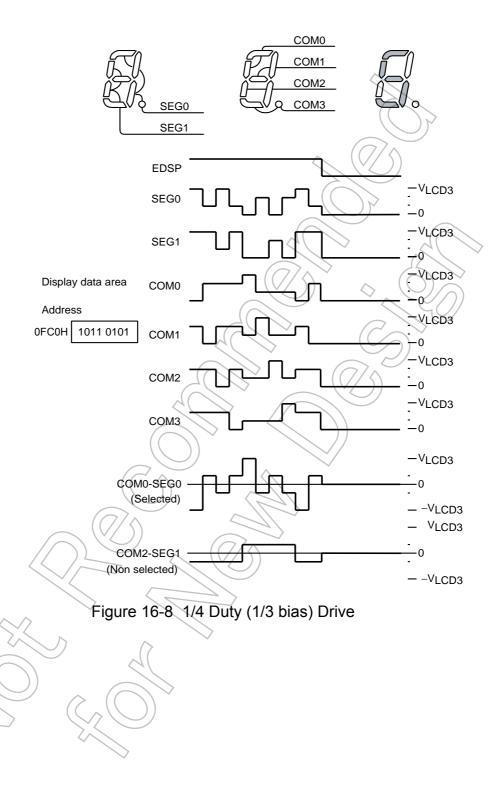
Figure 16-6 Example of COM, SEG Pin Connection (1/4 Duty)

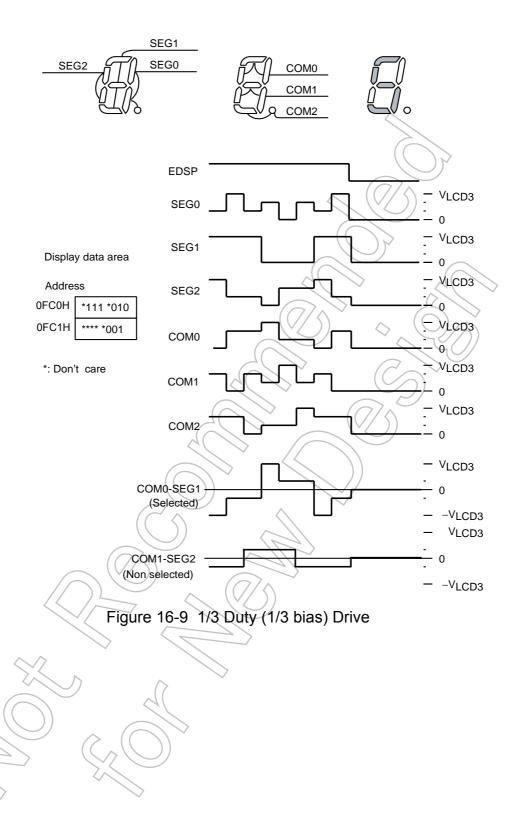
Table 16-6 Example of Display Data (1/4 Duty)

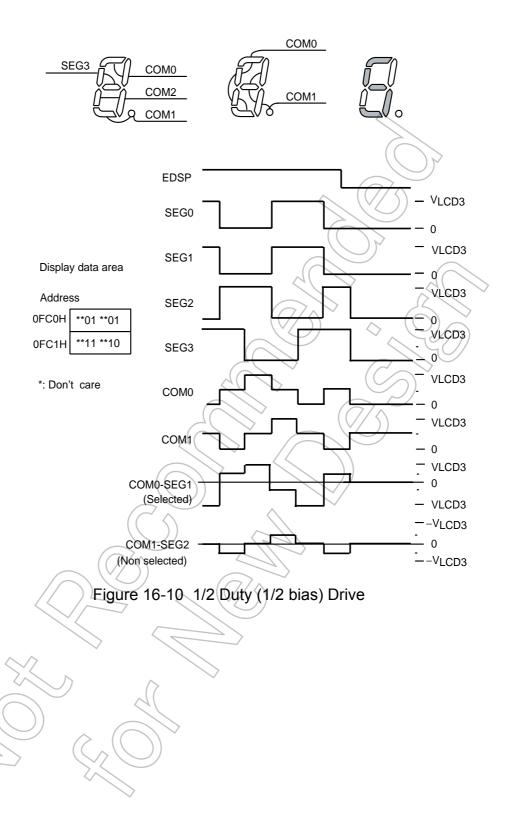
			/ ($// \wedge$		
	No. <	display	Display data	(No.)	display	Display data
	° >>>		11011111) /> 5		10110101
(///			00000110	6		11110101
>	2		11100011	7		00000111
	3		10100111	8		11110111
	4		00110110	9		10110111

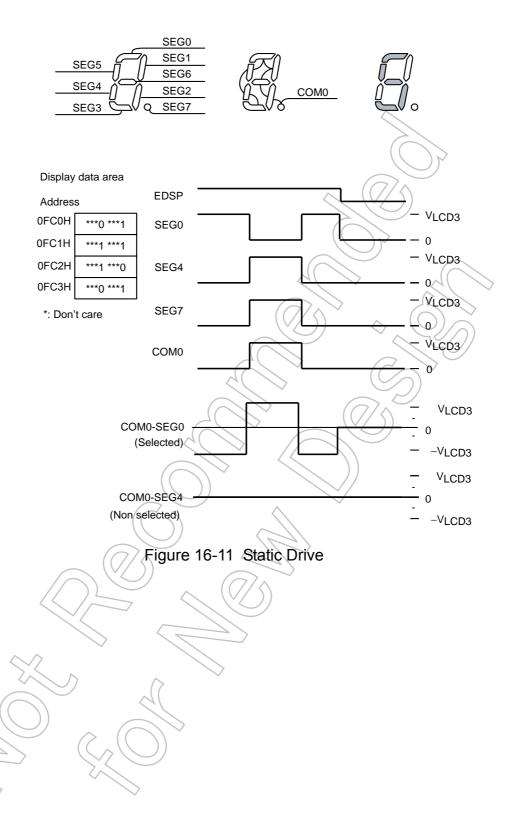
Example 2: Table 16-6 shows an example of display data which are displayed using 1/2 duty LCD in the same way as Table 16-7. The connection between pins COM and SEG are the same as shown in Figure 16-7.


Figure 16-7 Example of COM, SEG Pin Connection


Table 16-7 Example of Display Data (1/2 Duty)


Number	Displa	y data	Number	Display data		
	High order address	Low order address	Number	High order address	Low order address	
0	**01**11	**01**11	5 ((**11**10	**01**01	
1	**00**10	**00**10	6	**11**11	**01**01	
2	**10**01	**01**11	7	**01**10	**00**11	
3	**10**10	**01**11	8	**11**11	**01**11	
4	**11**10	**00**10	9	**11**10	**01**11	



16.4.3 Example of LCD drive output

17. Flash Memory

TMP86FS28FG has 61440byte flash memory (address: 1000H to FFFFH). The write and erase operations to the flash memory are controlled in the following three types of mode.

- MCU mode

The flash memory is accessed by the CPU control in the MCU mode. This mode is used for software bug correction and firmware change after shipment of the device since the write operation to the flash memory is available by retaining the application behavior.

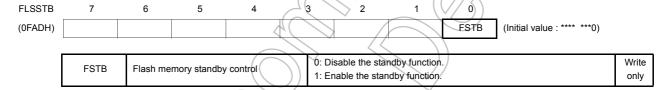
- Serial PROM mode

The flash memory is accessed by the CPU control in the serial PROM mode. Use of the serial interface (UART) enables the flash memory to be controlled by the small number of pins. TMP86FS28FG in the serial PROM mode supports on-board programming which enables users to program flash memory after the microcontroller is mounted on a user board.

- Parallel PROM mode

The parallel PROM mode allows the flash memory to be accessed as a stand-alone flash memory by the program writer provided by the third party. High-speed access to the flash memory is available by controlling address and data signals directly. For the support of the program writer, please ask Toshiba sales representative.

In the MCU and serial PROM modes, the flash memory control register (FLSCR) is used for flash memory control. This chapter describes how to access the flash memory using the flash memory control register (FLSCR) in the MCU and serial PROM modes.


17.1 Flash Memory Control

The flash memory is controlled via the flash memory control register (FLSCR) and flash memory stanby control resister (FLSSTB).

Flash Memory Control Register **FLSCR** (0FAFH) FLSMD BANKSEL (Initial value: 1100 1***) 1100: Disable command sequence execution Flash memory command sequence exe-**FLSMD** R/W 0011: Enable command sequence execution cution control Others: Reserved 0: Select BANK0 Flash memory bank select control BANKSFI R/W (Serial PROM mode only) 1: Select BANK1

- Note 1: The command sequence of the flash memory can be executed only when FLSMD="0011B". In other cases, any attempts to execute the command sequence are ineffective.
- Note 2: FLSMD must be set to either "1100B" or "0011B".
- Note 3: BANKSEL is effective only in the serial PROM mode. In the MCU mode, the flash memory is always accessed with actual addresses (1000-FFFFH) regardless of BANKSEL.
- Note 4: Bits 2 through 0 in FLSCR are always read as don't care.

Flash Memory Standby Control Register

- Note 1: When FSTB is set to 1, do not execute the read/write instruction to the flash memory because there is a possibility that the expected data is not read or the program is not operated correctly. If executing the read/write instruction, FSTB is initialized to 0 automatically.
- Note 2: If an interrupt is issued when FSTB is set to 1, FSTB is initialized to 0 automatically and then the vector area of the flash memory is read.
- Note 3: If the IDLE0/1/2, SLEEP0/1/2 or STOP mode is activated when FSTB is set to 1, FSTB is initialized to 0 automatically. In the IDLE0/1/2, SLEEP0/1/2 or STOP mode, the standby function operates regardless of FSTB setting.

17.1.1 Flash Memory Command Sequence Execution Control (FLSCR<FLSMD>)

The flash memory can be protected from inadvertent write due to program error or microcontroller misoperation. This write protection feature is realized by disabling flash memory command sequence execution via the flash memory control register (write protect). To enable command sequence execution, set FLSCR<FLSMD> to "0011B". To disable command sequence execution, set FLSCR<FLSMD> to "1100B". After reset, FLSCR<FLSMD> is initialized to "1100B" to disable command sequence execution. Normally, FLSCR<FLSMD> should be set to "1100B" except when the flash memory needs to be written or erased.

17.1.2 Flash Memory Bank Select Control (FLSCR<BANKSEL>)

In the serial PROM mode, a 2-kbyte BOOTROM is mapped to addresses 7800H-7FFFH and the flash memory is mapped to 2 banks at 8000H-FFFFH. Flash memory addresses 1000H-7FFFH are mapped to 9000H-FFFFH as BANK0, and flash memory addresses 8000H-FFFFH are mapped to 8000H-FFFFH as BANK1. FLSCR<BANKSEL> is used to switch between these banks. For example, to access the flash memory address 7000H, set FLSCR<BANKSEL> to "0" and then access F000H. To access the flash memory address 9000H, set FLSCR<BANKSEL> to "1" and then access 9000H.

In the MCU mode, the flash memory is accessed with actual addresses at 1000H-FFFFH. In this case, FLSCR<BANKSEL> is ineffective (i.e., its value has no effect on other operations).

Table 17-1 Flash Memory Access

Operating Mode	FLSCR <banksel></banksel>	Access Area	Specified Address			
MCU mode	Don't care	1000H-FFFFH				
Carial DDOM mada	0 (BANK0)	1000H-7FFFH	9000H-FFFFH			
Serial PROM mode	1 (BANK1)	8000H-FFFFH				

17.1.3 Flash Memory Standby Control (FLSSTB<FSTB>)

Low power consumption is enabled by cutting off the steady-state current of the flash memory. In the IDLE0/1/2, SLEEP0/1/2 or STOP mode, the steady-state current of the flash memory is cut off automatically.

When the program is executed in the RAM area (without accessing the flash memory) in the NORMAL 1/2 or SLOW1/2 mode, the current can be cut off by the control of the register. To cut off the steady-state current of the flash memory, set FLSSTB<FSTB> to "1" by the control program in the RAM area. The procedures for controlling the FLSSTB register are explained below.

(Steps1 and 2 are controlled by the program in the flash memory, and steps 3 through 8 are controlled by the write control program executed in the RAM area.)

- 1. Transfer the control program of the FLSSTB register to the RAM area.
- 2. Jump to the RAM area.
- 3. Disable (DI) the interrupt master enable flag (IMF = "0")
- 4. Set FLSSTB<FSTB> to "1"
- 5. Execute the user program.
- 6. Repeat step 5 until the return request to the flash memory is detected.
- 7. Set FLSSTB<FSTB> to "0".
- 8. Jump to the flash memory area.

Note 1: The standby function is not operated by setting FLSSTB<FSTB> with the program in the flash memory. You must set FLSSTB<FSTB> by the program in the RAM area.

Note 2: To use the standby function by setting FLSSTB<FSTB> to "1" with the program in the RAM area, FLSSTB<FSTB> must be set to "0" by the program in the RAM area before returning the program control to the flash memory. If the program control is returned to the flash memory with FLSSTB<FSTB> set to "1", the program may misoperate and run out of control.

17.2 Command Sequence

The command sequence in the MCU and the serial PROM modes consists of six commands (JEDEC compatible), as shown in Table 17-2. Addresses specified in the command sequence are recognized with the lower 12 bits (excluding BA, SA, and FF7FH used for read protection). The upper 4 bits are used to specify the flash memory area, as shown in Table 17-3.

Table 17-2 Command Sequence

	Command		s Write cle		s Write cle		s Write		s Write	_ >	s Write rcle		s Write rcle
	Sequence	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data
1	Byte program	555H	ААН	АААН	55H	555H	АОН	BA (Note 1)	Data (Note 1)	> -	-	-	1
2	Sector Erase (4-kbyte Erase)	555H	AAH	AAAH	55H	555H	80H	555H	AAH	AAAH	55H	SA (Note 2)	30H
3	Chip Erase (All Erase)	555H	ААН	АААН	55H	555H	80H	555H	AAH	AAAH	55H	555H	10H
4	Product ID Entry	555H	AAH	AAAH	55H	555H	90H		- <	7-10	(/ <u>-</u> /)	-	-
_	Product ID Exit	XXH	F0H	-	-	-	7(-//	> -	- /			-	-
5	Product ID Exit	555H	AAH	AAAH	55H	555H (F0H	-	- ((-	-	ı
6	Read Protect	555H	AAH	AAAH	55H	555H	A5H	FF7FH	00H		-	-	-

Note 1: Set the address and data to be written.

Note 2: The area to be erased is specified with the upper 4 bits of the address.

Table 17-3 Address Specification in the Command Sequence

Operating Mode	FLSCR <banksel></banksel>	Specified Address
MCU mode	Don't care	1***H-F***H
Social DDOM mode	0 (BANKO)	9***H-F***H
Serial PROM mode	1 (BANK1)	8***H-F***H

17.2.1 Byte Program

This command writes the flash memory for each byte unit. The addresses and data to be written are specified in the 4th bus write cycle. Each byte can be programmed in a maximum of 40 µs. The next command sequence cannot be executed until the write operation is completed. To check the completion of the write operation, perform read operations repeatedly until the same data is read twice from the same address in the flash memory. During the write operation, any consecutive attempts to read from the same address is reversed bit 6 of the data (toggling between 0 and 1).

Note: To rewrite data to Flash memory addresses at which data (including FFH) is already written, make sure to erase the existing data by "sector erase" or "chip erase" before rewriting data.

17.2.2 Sector Erase (4-kbyte Erase)

This command erases the flash memory in units of 4 kbytes. The flash memory area to be erased is specified by the upper 4 bits of the 6th bus write cycle address. For example, in the MCU mode, to erase 4 kbytes from 7000H to 7FFFH, specify one of the addresses in 7000H-7FFFH as the 6th bus write cycle. In the serial PROM mode, to erase 4 kbytes from 7000H to 7FFFH, set FLSCR<BANKSEL> to "0" and then specify one of the addresses in F000H-FFFFH as the 6th bus write cycle. The sector erase command is effective only in the MCU and serial PROM modes, and it cannot be used in the parallel PROM mode.

A maximum of 30 ms is required to erase 4 kbytes. The next command sequence cannot be executed until the erase operation is completed. To check the completion of the erase operation, perform read operations repeatedly for data polling until the same data is read twice from the same address in the flash memory. During the erase operation, any consecutive attempts to read from the same address is reversed bit 6 of the data (toggling between 0 and 1).

17.2.3 Chip Erase (All Erase)

This command erases the entire flash memory in approximately 30 ms. The next command sequence cannot be executed until the erase operation is completed. To check the completion of the erase operation, perform read operations repeatedly for data polling until the same data is read twice from the same address in the flash memory. During the erase operation, any consecutive attempts to read from the same address is reversed bit 6 of the data (toggling between 0 and 1). After the chip is erased, all bytes contain FFH.

17.2.4 Product ID Entry

This command activates the Product ID mode. In the Product ID mode, the vendor ID, the flash ID, and the read protection status can be read from the flash memory.

Read Value Address Meaning F000H Vendor ID 98H F001H Flash macro ID 41H 60 kbytes 0EH: 48 kbytes 07H: 32 kbytes Flash size 24 kbytes F002H 05H: 16 kbytes 03H: 01H: 8 kbytes (00H: 4 kbytes FFH: Read protection disabled Read protection status Other than FFH: Read protection enabled

Table 17-4 Values To Be Read in the Product ID Mode

Note: The value at address F002H (flash size) depends on the size of flash memory incorporated in each product. For example, if the product has 60-kbyte flash memory, "0EH" is read from address F002H.

17.2.5 Product ID Exit

This command is used to exit the Product ID mode.

17.2.6 Read Protect

This command enables the read protection setting in the flash memory. When the read protection is enabled, the flash memory cannot be read in the parallel PROM mode. In the serial PROM mode, the flash write command cannot be executed.

To enable the read protection setting in the serial PROM mode, set FLSCR<BANKSEL> to "1" before executing the read protect command sequence. To disable the read protection setting, it is necessary to execute the chip erase command sequence. Whether or not the read protection is enabled can be checked by reading FF7FH in the Product ID mode. For details, see Table 17-4.

It takes a maximum of $40~\mu s$ to set read protection in the flash memory. The next command sequence cannot be executed until this operation is completed. To check the completion of the read protect operation, perform read operations repeatedly for data polling until the same data is read twice from the same address in the flash memory. During the read protect operation, any attempts to read from the same address is reversed bit 6 of the data (toggling between 0 and 1).

17.3 Toggle Bit (D6)

After the byte program, chip erase, and read protect command sequence is executed, any consecutive attempts to read from the same address is reversed bit 6 (D6) of the data (toggling between 0 and 1) until the operation is completed. Therefore, this toggle bit provides a software mechanism to check the completion of each operation. Usually perform read operations repeatedly for data polling until the same data is read twice from the same address in the flash memory. After the byte program, chip erase, or read protect command sequence is executed, the initial read of the toggle bit always produces a "1".

17.4 Access to the Flash Memory Area

When the write, erase and read protections are set in the flash memory, read and fetch operations cannot be performed in the entire flash memory area. Therefore, to perform these operations in the entire flash memory area, access to the flash memory area by the control program in the BOOTROM or RAM area. (The flash memory program cannot write to the flash memory.) The serial PROM or MCU mode is used to run the control program in the BOOTROM or RAM area.

Note 1: The flash memory can be written or read for each byte unit. Erase operations can be performed either in the entire area or in units of 4 kbytes, whereas read operations can be performed by an one transfer instruction. However, the command sequence method is adopted for write and erase operations, requiring several-byte transfer instructions for each operation.

Note 2: To rewrite data to Flash memory addresses at which data (including FFH) is already written, make sure to erase the existing data by "sector erase" or "chip erase" before rewriting data.

17.4.1 Flash Memory Control in the Serial PROM Mode

The serial PROM mode is used to access to the flash memory by the control program provided in the BOOTROM area. Since almost of all operations relating to access to the flash memory can be controlled simply by the communication data of the serial interface (UART), these functions are transparent to the user. For the details of the serial PROM mode, see "Serial PROM Mode."

17.4.2 Flash Memory Control in the MCU mode

In the MCU mode, write operations are performed by executing the control program in the RAM area. Before execution of the control program, copy the control program into the RAM area or obtain it from the external using the communication pin. The procedures to execute the control program in the RAM area in the MCU mode are described below.

17.4.2.1 How to write to the flash memory by executing a user write control program in the RAM area (in the MCU mode)

(Steps 1 and 2 are controlled by the program in the flash memory, and steps 3 through 11 are controlled by the control program in the RAM area.)

- 1. Transfer the write control program to the RAM area.
- 2. Jump to the RAM area.
- 3. Disable (DI) the interrupt master enable flag (IMF←"0")
- 4. Disable the watchdog timer, if it is used.
- 5. Set FLSCR<FLSMD> to "0011B" (to enable command sequence execution).
- 6. Execute the erase command sequence.
- 7. Read the same flash memory address twice.

 (Repeat step 7 until the same data is read by two consecutive read operations.)
- 8. Execute the write command sequence. (It is not required to specify the bank to be written.)
- 9. Read the same flash memory address twice.

 (Repeat step 9 until the same data is read by two consecutive read operations.)
- 10. Set FLSCR<FLSMD> to "1100B" (to disable command sequence execution).
- 11. Jump to the flash memory area.
- Note 1: Before writing to the flash memory in the RAM area, disable interrupts by setting the interrupt master enable flag (IMF) to "0". Usually disable interrupts by executing the DI instruction at the head of the write control program in the RAM area.
- Note 2. When writing to the flash memory, do not intentionally use non-maskable interrupts (the watchdog timer must be disabled if it is used). If a non-maskable interrupt occurs while the flash memory is being written, unexpected data is read from the flash memory (interrupt vector), resulting in malfunction of the microcontroller.

Example :After sector erasure (E000H-EFFFH), the program in the RAM area writes data 3FH to address E000H

	DI		: Disable interrupts (IMF←"0")
	LD	(WDTCR2),4EH	: Clear the WDT binary counter.
	LDW	(WDTCR1),0B101H	: Disable the WDT.
	LD	(FLSCR),0011_1000B	: Enable command sequence execution.
	LD	IX,0F555H	
	LD	IY,0FAAAH	
	LD	HL,0E000H	
; #### Flash Memo	ory Sector Erase	Process ####	
	LD	(IX),0AAH	: 1st bus write cycle
	LD	(IY),55H	: 2nd bus write cycle
	LD	(IX),80H	3rd bus write cycle
	LD	(IX),0AAH	: 4th bus write cycle
	LD	(IY),55H	: 5th bus write cycle
	LD	(HL),30H	: 6th bus write cycle
sLOOP1:	LD	W,(IX)	
	CMP	W,(IX)	
	JR	NZ,sLOOP1	: Loop until the same value is read.
; #### Flash Memo	ory Write Proces	s ####	
	LD	(IX),0AAH	: 1st bus write cycle
	LD	(IY),55H	: 2nd bus write cycle
	LD)	(IX),0A0H	: 3rd bus write cycle
	LD	(HL),3FH	: 4th bus write cycle, (1000H)=3FH
sLOOP2:	LD	W,(HL)	
	СМР	W,(HL)	
	JR	NZ,sLOOP2	: Loop until the same value is read.
	LD	(FLSCR),1100_1000B	: Disable command sequence execution.
	JP (XXXXH	: Jump to the flash memory area.
	7/		

Example: This write control program reads data from address F000H and stores it to 98H in the RAM area.

LD A,(0F000H) : Read data from address F000H.

LD (98H),A : Store data to address 98H.

18. Serial PROM Mode

18.1 Outline

The TMP86FS28FG has a 2048 byte BOOTROM (Mask ROM) for programming to flash memory. The BOOTROM is available in the serial PROM mode, and controlled by TEST, BOOT and RESET pins. Communication is performed via UART. The serial PROM mode has six types of operating mode: Flash memory writing, Flash memory SUM output, Product ID code output, Flash memory status output, Flash memory erasing and Flash memory read protection setting. Memory address mapping in the serial PROM mode differs from that in the MCU mode. Figure 18-1 shows memory address mapping in the serial PROM mode.

Note: TMP86FS28FG doesn't support RAM loader mode. (The RAM loader mode can't be used in TMP86FS28FG.)

Table 18-1 Operating Range in the Serial PROM Mode

Parameter	Min	Max	Unit
Power supply	4.5	5.5	(V)
High frequency (Note)	2	16	MHz

Note: Though included in above operating range, some of high frequencies are not supported in the serial PROM mode. For details, refer to "Table 18-5".

18.2 Memory Mapping

The Figure 18-1 shows memory mapping in the Serial PROM mode and MCU mode.

In the serial PROM mode, the BOOTROM (Mask ROM) is mapped in addresses from 7800H to 7FFFH. The flash memory is divided into two banks for mapping. Figure 18-1

To use the Flash memory writing command (30H), specify the flash memory addresses from 1000H to FFFFH, that is the same addresses in the MCU mode, because the BOOTROM changes the flash memory address.

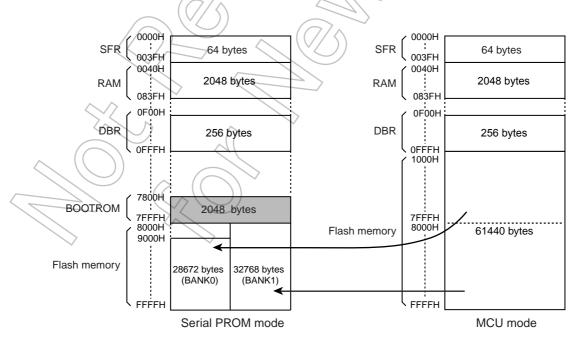


Figure 18-1 Memory Address Maps

18.3 Serial PROM Mode Setting

18.3.1 Serial PROM Mode Control Pins

To execute on-board programming, activate the serial PROM mode. Table 18-2 shows pin setting to activate the serial PROM mode.

Table 18-2 Serial PROM Mode Setting

Pin	Setting
TEST pin	High
BOOT/RXD1 pin	High
RESET pin	7

Note: The BOOT pin is shared with the UART communication pin (RXD1 pin) in the serial PROM mode. This pin is used as UART communication pin after activating serial PROM mode

18.3.2 Pin Function

In the serial PROM mode, TXD1 (P35) and RXD1 (P34) are used as a serial interface pin.

Table 18-3 Pin Function in the Serial PROM Mode

Pin Name (Serial PROM Mode)	Input/ Output	Function		Pin Name (MCU Mode)			
TXD1	Output	Serial data output P35					
BOOT/RXD1	Input/Input	Serial PROM mode control/Serial data input	(Note 1)	P34			
RESET	Input	Serial PROM mode control		RESET			
TEST	Input (//	Fixed to high		TEST			
VDD, AVDD	Power supply	4.5 to 5.5 V					
VSS, AVSS	Power supply	0 V					
VAREF	Power supply	Leave open or apply input reference voltage.					
I/O ports except P35, P34	1/0	These ports are in the high-impedance state in the serial the port inputs with a hardware feature to prevent overla					
COM3 to COM0	Output	Low output in the serial PROM mode					
C0,C1,V3 to V1	(Connect to a capacitor (resistance), or leave open.					
XIN	Input	Colf and little with an and little					
XOUT	Output	Self-oscillate with an oscillator.		(Note 2)			

Note 1: During on-board programming with other parts mounted on a user board, be careful no to affect these communication control pins.

Note 2: Operating range of high frequency in serial PROM mode is 2 MHz to 16 MHz.

TMP86FS28FG VDD(4.5 V to 5.5 V) VDD TEST Serial PROM mode MCU mode XIN XOUT TXD1 (P34) TXD1 (P35) RESET GND

Figure 18-2 Serial PROM Mode Pin Setting

Note 1: For connection of other pins, refer to " Table 18-3 Pin Function in the Serial PROM Mode ".

18.3.3 Example Connection for On-Board Writing

Figure 18-3 shows an example connection to perform on-board wring.

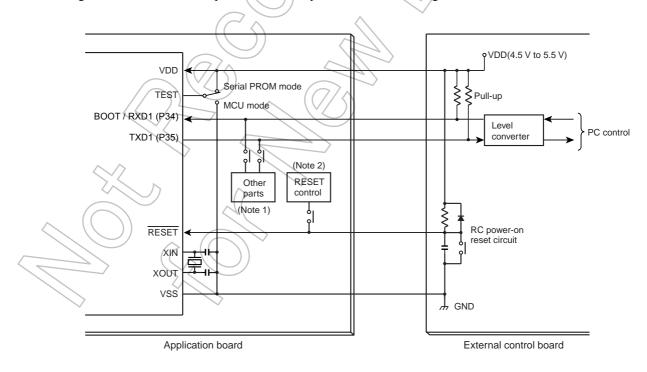


Figure 18-3 Example Connection for On-Board Writing

- Note 1: When other parts on the application board effect the UART communication in the serial PROM mode, isolate these pins by a jumper or switch.
- Note 2: When the reset control circuit on the application board effects activation of the serial PROM mode, isolate the pin by a jumper or switch.
- Note 3: For connection of other pins, refer to " Table 18-3 Pin Function in the Serial PROM Mode ".

18.3.4 Activating the Serial PROM Mode

The following is a procedure to activate the serial PROM mode. "Figure 18-4 Serial PROM Mode Timing "shows a serial PROM mode timing.

- 1. Supply power to the VDD pin.
- 2. Set the \overline{RESET} pin to low.
- 3. Set the TEST pin and BOOT/RXD1 pins to high.
- 4. Wait until the power supply and clock oscillation stabilize.
- 5. Set the \overline{RESET} pin to high.
- 6. Input the matching data (5AH) to the BOOT/RXD1 pin after setup sequence. For details of the setup timing, refer to "18.15 UART Timing".

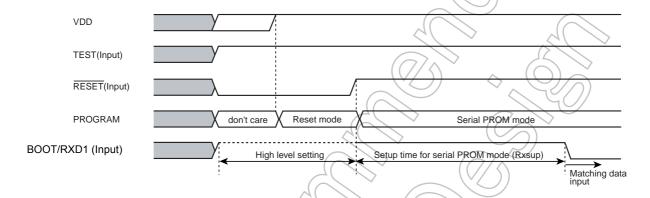


Figure 18-4 Serial PROM Mode Timing

18.4 Interface Specifications for UART

The following shows the UART communication format used in the serial PROM mode.

To perform on-board programming, the communication format of the write controller must also be set in the same manner.

The default baud rate is 9600 bps regardless of operating frequency of the microcontroller. The baud rate can be modified by transmitting the baud rate modification data shown in Table 1-4 to TMP86FS28FG. The Table 18-5 shows an operating frequency and baud rate. The frequencies which are not described in Table 18-5 can not be used.

- Baud rate (Default): 9600 bps

Data length: 8 bitsParity addition: None

- Stop bit: 1 bit

Stop oit. I oit							
ble 18-4 Baud Rate Mod	lification I	Data	40	\rightarrow			
Baud rate modification data	04H	05H	06H 07H	0AH	18H 28H		
Baud rate (bps)	76800	62500	57600 38400	31250	19200 9600		
				4	~~~		
		(7()	(
		4		0	\mathcal{D}		
				(7/1)			
				$(\vee \bigcirc)$			
	<	1					
))			
,			\wedge	,			
($((\))$						
	(
	/	$\mathcal{L}(\mathcal{C})$	7/^				
	_						
	$\langle \rangle$	~					
	9						


Table 18-5 Operating Frequency and Baud Rate in the Serial PROM Mode

		ce Baud Rate (bps)	76	300	625	500	57	600	38	400	31	250	19	200	96	600
(Note 3)		te Modification Data	04	1H	05	5H	06	6H	0.	7H	0,	AΗ	1	8H	28	8H
	Ref. Fre- quency (MHz)	Rating (MHz)	Baud rate (bps)	(%)	(bps)	(%)	(bps)	(%)	(bps)	(%)	(bps)	(%)	(bps)	(%)	(bps)	(%)
1	2	1.91 to 2.10	-	-	-	-	-	-	-	-	- \	(-)	Y-	-	9615	+0.16
2	4	3.82 to 4.19		-	-	-	-	-	-	-	31250	0.00	19231	+0.16	9615	+0.16
2	4.19	3.82 to 4.19		-	-	-	-	-	-	<u> </u>	32734	+4.75	20144	+4.92	10072	+4.92
3	4.9152	4.70 to 5.16	-	-	-	-	-	-	38400	0.00	17	Ú-	19200	0.00	9600	0.00
3	5	4.70 to 5.16		-	-	-	-	-	39063	+1.73	1-2	-	19531	+1.73	9766	+1.73
4	6	5.87 to 6.45	-	-	-	-	-	-	- /	1-		-	- (-	9375	-2.34
4	6.144	5.87 to 6.45		-	-	-	-	-	7(-	-	.(-	\ <u>-</u>	9600	0.00
5	7.3728	7.05 to 7.74	-	-		-	57600	0.00	- (\- <u>-</u>	-	- ^	19200	0.00	9600	0.00
6	8	7.64 to 8.39	-	-	62500	0.00	-	- /	38462	+0.16	31250	0.00	19231	>+0.16	9615	+0.16
7	9.8304	9.40 to 10.32	76800	0.00	-	-	-	- \	38400	0.00	\Diamond	16	19200	0.00	9600	0.00
,	10	9.40 to 10.32	78125	+1.73	-	-	-		39063	+1.73	-		19531	+1.73	9766	+1.73
	12	11.75 to 12.90	-	-	-	-	57692	+0.16	\searrow	-	31250	0.00	18750	-2.34	9375	-2.34
8	12.288	11.75 to 12.90	-	-	-	-	59077	+2.56	> -	-	32000	+2.40	19200	0.00	9600	0.00
	12.5	11.75 to 12.90	-	-	60096	-3.85	60096	+4.33	-	- (30048	-3.85	19531	+1.73	9766	+1.73
9	14.7456	14.10 to 15.48	-	-	-	- /	57600	0.00	38400	0.00	//-))	-	19200	0.00	9600	0.00
10	16	15.27 to 16.77	76923	+0.16	62500	0,00		-	38462	+0.16	31250	0.00	19231	+0.16	9615	+0.16

Note 1: "Ref. Frequency" and "Rating" show frequencies available in the serial PROM mode. Though the frequency is supported in the serial PROM mode, the serial PROM mode may not be activated correctly due to the frequency difference in the external controller (such as personal computer) and oscillator, and load capacitance of communication pins.

Note 2: It is recommended that the total frequency difference is within ±3% so that auto detection is performed correctly by the reference frequency.

Note 3: The external controller must transmit the matching data (5AH) repeatedly till the auto detection of baud rate is performed. This number indicates the number of times the matching data is transmitted for each frequency.

18.5 Operation Command

The eight commands shown in Table 18-6 are used in the serial PROM mode. After reset release, the TMP86FS28FG waits for the matching data (5AH).

Table 18-6 Operation Command in the Serial PROM Mode

Command Data	Operating Mode	Description
5AH	Setup	Matching data. Execute this command after releasing the reset.
F0H	Flash memory erasing	Erases the flash memory area (address 1000H to FFFFH).
30H	Flash memory writing	Writes to the flash memory area (address 1000H to FFFFH).
90H	Flash memory SUM output	Outputs the 2-byte checksum upper byte and lower byte in this order for the entire area of the flash memory (address 1000H to FFFFH).
C0H	Product ID code output	Outputs the product ID code (13-byte data).
СЗН	Flash memory status output	Outputs the status code (7-byte data) such as the read protection condition.
FAH	Flash memory read protection setting	Enables the read protection.

Note 1: TMP86FS28FG doesn't support RAM loader mode.

18.6 Operation Mode

The serial PROM mode has six types of modes, that are (1) Flash memory erasing, (2) Flash memory writing, (3) Flash memory SUM output, (4) Product ID code output, (5) Flash memory status output and (6) Flash memory read protection setting modes. Description of each mode is shown below.

- 1. Flash memory erasing mode
 - The flash memory is erased by the chip erase (erasing an entire flash area) or sector erase (erasing sectors in 4-kbyte units). The erased area is filled with FFH. When the read protection is enabled, the sector erase in the flash erasing mode can not be performed. To disable the read protection, perform the chip erase. Before erasing the flash memory, TMP86FS28FG checks the passwords except a blank product. If the password is not matched, the flash memory erasing mode is not activated.
- 2. Flash memory writing mode

 Data is written to the specified flash memory address for each byte unit. The external controller must transmit the write data in the Intel Hex format (Binary). If no error is encountered till the end record,
 - TMP86FS28FG calculates the checksum for the entire flash memory area (1000H to FFFFH), and returns the obtained result to the external controller. When the read protection is enabled, the flash memory writing mode is not activated. In this case, perform the chip erase command beforehand in the flash memory erasing mode. Before activating the flash memory writing mode, TMP86FS28FG checks the password except a blank product. If the password is not matched, flash memory writing mode is not activated.
- 3. Flash memory SUM output mode
 - The checksum is calculated for the entire flash memory area (1000H to FFFFH), and the result is returned to the external controller. Since the BOOTROM does not support the operation command to read the flash memory, use this checksum to identify programs when managing revisions of application programs.
- 4. Product ID code output
 - The code used to identify the product is output. The code to be output consists of 13-byte data, which includes the information indicating the area of the ROM incorporated in the product. The external controller reads this code, and recognizes the product to write.
 - (In the case of TMP86FS28FG, the addresses from 1000H to FFFFH become the ROM area.)
- 5. Flash memory status output mode
 - The status of the area from FFE0H to FFFFH, and the read protection condition are output as 7-byte code. The external controller reads this code to recognize the flash memory status.
- 6. Flash memory read protection setting mode This mode disables reading the flash memory data in parallel PROM mode. In the serial PROM mode, the flash memory writing mode is disabled. To disable the flash memory read protection, perform the chip erase in the flash memory erasing mode.

18.6.1 Flash Memory Erasing Mode (Operating command: F0H)

Table 18-7 shows the flash memory erasing mode.

Table 18-7 Flash Memory Erasing Mode

	Transfer Byte	Transfer Data from the External Controller to TMP86FS28FG	Baud Rate	Transfer Data from TMP86FS28FG to the External Controller
	1st byte 2nd byte	Matching data (5AH) -	9600 bps 9600 bps	- (Automatic baud rate adjustment) OK: Echo back data (5AH) Error: No data transmitted
	3rd byte 4th byte	Baud rate change data (Table 18-4)	9600 bps 9600 bps	OK: Echo back data Error: A1H × 3, A3H × 3, 62H × 3 (Note 1)
	5th byte 6th byte	Operation command data (F0H)	Modified baud rate Modified baud rate	- OK: Echo back data (F0H) Error: A1H × 3, A3H × 3, 63H × 3 (Note 1)
	7th byte 8th byte	Password count storage address bit 15 to 08 (Note 4, 5)	Modified baud rate Modified baud rate	- OK: Nothing transmitted Error: Nothing transmitted
	9th byte 10th byte	Password count storage address bit 07 to 00 (Note 4, 5)	Modified baud rate Modified baud rate	OK: Nothing transmitted Error: Nothing transmitted
BOOT ROM	11th byte 12th byte	Password comparison start address bit 15 to 08 (Note 4, 5)	Modified baud rate Modified baud rate	OK: Nothing transmitted Error: Nothing transmitted
	13th byte 14th byte	Password comparison start address bit 07 to 00 (Note 4, 5)	Modified baud rate Modified baud rate	- OK: Nothing transmitted Error: Nothing transmitted)
	15th byte : m'th byte	Password string (Note 4, 5)	Modified baud rate Modified baud rate	- OK: Nothing transmitted Error: Nothing transmitted
	n'th - 2 byte	Erase area specification (Note 2)	Modified baud rate	-
	n'th - 1 byte		Modified baud rate	OK: Checksum (Upper byte) (Note 3) Error: Nothing transmitted
	n'th byte	-	Modified baud rate	OK: Checksum (Lower byte) (Note 3) Error: Nothing transmitted
	n'th + 1 byte	(Wait for the next operation command data)	Modified baud rate	-

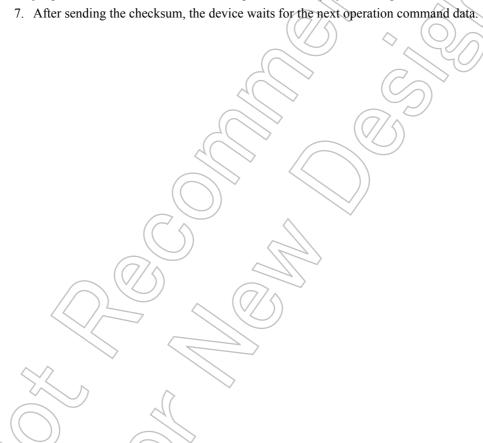
Note 1: " $xxH \times 3$ " indicates that the device enters the halt condition after transmitting 3 bytes of xxh.

Description of the flash memory erasing mode

1. The 1st through 4th bytes of the transmitted and received data contain the same data as in the flash memory writing mode.

Note 2: Refer to " 18.13 Specifying the Erasure Area ".

Note 3: Refer to " 18.8 Checksum (SUM) ".


Note 4: Refer to " 18.10 Passwords ".

Note 5: Do not transmit the password string for a blank product.

Note 6: When a password error occurs, TMP86FS28FG stops UART communication and enters the halt mode. Therefore, when a password error occurs, initialize TMP86FS28FG by the RESET pin and reactivate the serial PROM mode.

Note 7: If an error occurs during transfer of a password address or a password string, TMP86FS28FG stops UART communication and enters the halt condition. Therefore, when a password error occurs, initialize TMP86FS28FG by the RESET pin and reactivate the serial PROM mode.

- 2. The 5th byte of the received data contains the command data in the flash memory erasing mode (F0H).
- 3. When the 5th byte of the received data contains the operation command data shown in Table 18-6, the device echoes back the value which is the same data in the 6th byte position of the received data (in this case, F0H). If the 5th byte of the received data does not contain the operation command data, the device enters the halt condition after sending 3 bytes of the operation command error code (63H).
- 4. The 7th thorough m'th bytes of the transmitted and received data contain the same data as in the flash memory writing mode. In the case of a blank product, do not transmit a password string. (Do not transmit a dummy password string.)
- 5. The n'th 2 byte contains the erasure area specification data. The upper 4 bits and lower 4 bits specify the start address and end address of the erasure area, respectively. For the detailed description, see "1.13 Specifying the Erasure Area".
- 6. The n'th 1 byte and n'th byte contain the upper and lower bytes of the checksum, respectively. For how to calculate the checksum, refer to "1.8 Checksum (SUM)". Checksum is calculated unless a receiving error or Intel Hex format error occurs. After sending the end record, the external controller judges whether the transmission is completed correctly by receiving the checksum sent by the device.

18.6.2 Flash Memory Writing Mode (Operation command: 30H)

Table 18-8 shows flash memory writing mode process.

Table 18-8 Flash Memory Writing Mode Process

	Transfer Byte	Transfer Data from External Controller to TMP86FS28FG	Baud Rate	Transfer Data from TMP86FS28FG to External Controller
	1st byte 2nd byte	Matching data (5Ah) -	9600 bps 9600 bps	- (Automatic baud rate adjustment) OK: Echo back data (5AH) Error: Nothing transmitted
	3rd byte 4th byte	Baud rate modification data (See Table 18-4)	9600 bps 9600 bps	OK: Echo back data Error: A1H × 3, A3H × 3, 62H × 3 (Note 1)
	5th byte 6th byte	Operation command data (30H) -	Modified baud rate Modified baud rate	- OK: Echo back data (30H) Error: A1H × 3, A3H × 3, 63H × 3 (Note 1)
	7th byte 8th byte	Password count storage address bit 15 to 08 (Note 4)	Modified baud rate	OK: Nothing transmitted Error: Nothing transmitted
	9th byte 10th byte	Password count storage address bit 07 to 00 (Note 4)	Modified baud rate	OK: Nothing transmitted Error: Nothing transmitted
BOOT ROM	11th byte 12th byte	Password comparison start address bit 15 to 08 (Note 4)	Modified baud rate	OK: Nothing transmitted Error: Nothing transmitted
	13th byte 14th byte	Password comparison start address bit 07 to 00 (Note 4)	Modified baud rate	- OK: Nothing transmitted Error: Nothing transmitted)
	15th byte : m'th byte	Password string (Note 5)	Modified baud rate	- OK: Nothing transmitted Error: Nothing transmitted
	m'th + 1 byte : n'th - 2 byte	Intel Hex format (binary) (Note 2)	Modified baud rate	-
	n'th - 1 byte		Modified baud rate	OK: SUM (Upper byte) (Note 3) Error: Nothing transmitted
	n'th byte	2	Modified baud rate	OK: SUM (Lower byte) (Note 3) Error: Nothing transmitted
	n'th + 1 byte	(Wait state for the next operation command data)	Modified baud rate	-

- Note 1: "xxH × 3" indicates that the device enters the halt condition after sending 3 bytes of xxH. For details, refer to " 18.7 Error Code ".
- Note 2: Refer to " 18.9 Intel Hex Format (Binary) ".
- Note 3: Refer to "18.8 Checksum (SUM) ".
- Note 4: Refer to "18.10 Passwords ".
- Note 5: If addresses from FFE0H to FFFFH are filled with "FFH", the passwords are not compared because the device is considered as a blank product. Transmitting a password string is not required. Even in the case of a blank product, it is required to specify the password count storage address and the password comparison start address. Transmit these data from the external controller. If a password error occurs due to incorrect password count storage address or password comparison start address, TMP86FS28FG stops UART communication and enters the halt condition. Therefore, when a password error occurs, initialize TMP86FS28FG by the RESET pin and reactivate the serial ROM mode.
- Note 6: If the read protection is enabled or a password error occurs, TMP86FS28FG stops UART communication and enters the halt confition. In this case, initialize TMP86FS28FG by the RESET pin and reactivate the serial ROM mode.
- Note 7: If an error occurs during the reception of a password address or a password string, TMP86FS28FG stops UART communication and enters the halt condition. In this case, initialize TMP86FS28FG by the RESET pin and reactivate the serial PROM mode.

Description of the flash memory writing mode

- The 1st byte of the received data contains the matching data. When the serial PROM mode is activated, TMP86FS28FG (hereafter called device), waits to receive the matching data (5AH). Upon reception of the matching data, the device automatically adjusts the UART's initial baud rate to 9600 bps.
- 2. When receiving the matching data (5AH), the device transmits an echo back data (5AH) as the second byte data to the external controller. If the device can not recognize the matching data, it does not transmit the echo back data and waits for the matching data again with automatic baud rate adjustment. Therefore, the external controller should transmit the matching data repeatedly till the device transmits an echo back data. The transmission repetition count varies depending on the frequency of device. For details, refer to Table 18-5.
- 3. The 3rd byte of the received data contains the baud rate modification data. The five types of baud rate modification data shown in Table 18-4 are available. Even if baud rate is not modified, the external controller should transmit the initial baud rate data (28H: 9600 bps).
- 4. Only when the 3rd byte of the received data contains the baud rate modification data corresponding to the device's operating frequency, the device echoes back data the value which is the same data in the 4th byte position of the received data. After the echo back data is transmitted, baud rate modification becomes effective. If the 3rd byte of the received data does not contain the baud rate modification data, the device enters the halts condition after sending 3 bytes of baud rate modification error code (62H).
- 5. The 5th byte of the received data contains the command data (30H) to write the flash memory.
- 6. When the 5th byte of the received data contains the operation command data shown in Table 1-6, the device echoes back the value which is the same data in the 6th byte position of the received data (in this case, 30H). If the 5th byte of the received data does not contain the operation command data, the device enters the halt condition after sending 3 bytes of the operation command error code (63H).
- 7. The 7th byte contains the data for 15 to 8 bits of the password count storage address. When the data received with the 7th byte has no receiving error, the device does not send any data. If a receiving error or password error occurs, the device does not send any data and enters the halt condition.
- 8. The 9th byte contains the data for 7 to 0 bits of the password count storage address. When the data received with the 9th byte has no receiving error, the device does not send any data. If a receiving error or password error occurs, the device does not send any data and enters the halt condition.
- 9. The 11th byte contains the data for 15 to 8 bits of the password comparison start address. When the data received with the 11th byte has no receiving error, the device does not send any data. If a receiving error or password error occurs, the device does not send any data and enters the halt condition.
- 10. The 13th byte contains the data for 7 to 0 bits of the password comparison start address. When the data received with the 13th byte has no receiving error, the device does not send any data. If a receiving error or password error occurs, the device does not send any data and enters the halt condition.
- 11. The 15th through m'th bytes contain the password data. The number of passwords becomes the data (N) stored in the password count storage address. The external password data is compared with N-byte data from the address specified by the password comparison start address. The external controller should send N-byte password data to the device. If the passwords do not match, the device enters the halt condition without returning an error code to the external controller. If the addresses from FFE0H to FFFFH are filled with "FFH", the passwords are not conpared because the device is considered as a blank product.
- 12. The m'th + 1 through n'th 2 bytes of the received data contain the binary data in the Intel Hex format. No received data is echoed back to the external controller. After receiving the start mark (3AH for ":") in the Intel Hex format, the device starts data record reception. Therefore, the received data except 3AH is ignored until the start mark is received. After receiving the start mark, the device receives the data record, that consists of data length, address, record type, write data and checksum. Since the device starts checksum calculation after receiving an end record, the external controller should wait for the checksum after sending the end record. If a receiving error or Intel Hex format error occurs, the device enters the halts condition without returning an error code to the external controller.
- 13. The n'th 1 and n'th bytes contain the checksum upper and lower bytes. For details on how to calculate the SUM, refer to "18.8 Checksum (SUM)". The checksum is calculated only when the end record is detected and no receiving error or Intel Hex format error occurs. After sending the end

record, the external controller judges whether the transmission is completed correctly by receiving the checksum sent by the device.

- 14. After transmitting the checksum, the device waits for the next operation command data.
- Note 1: Do not write only the address from FFE0H to FFFFH when all flash memory data is the same. If only these area are written, the subsequent operation can not be executed due to password error.

Note 2: To rewrite data to Flash memory addresses at which data (including FFH) is already written, make sure to erase the existing data by "sector erase" or "chip erase" before rewriting data.

18.6.3 Flash Memory SUM Output Mode (Operation Command: 90H)

Table 18-9 shows flash memory SUM output mode process.

Table 18-9 Flash Memory SUM Output Process

	Transfer Bytes	Transfer Data from External Control- ler to TMP86FS28FG	Baud Rate	Transfer Data from TMP86FS28FG to External Controller
	1st byte 2nd byte	Matching data (5AH) -	9600 bps 9600 bps	- (Automatic baud rate adjustment) OK: Echo back data (5AH) Error: Nothing transmitted
	3rd byte 4th byte	Baud rate modification data (See Table 18-4)	9600 bps 9600 bps	OK: Echo back data Error: A1H × 3, A3H × 3, 62H × 3 (Note 1)
BOOT ROM	5th byte 6th byte	Operation command data (90H)	Modified baud rate Modified baud rate	- OK: Echo back data (90H) Error: A1H × 3, A3H × 3, 63H × 3 (Note 1)
	7th byte	-	Modified baud rate	OK: SUM (Upper byte) (Note 2) Error: Nothing transmitted
	8th byte		Modified baud rate	OK: SUM (Lower byte) (Note 2) Error: Nothing transmitted
	9th byte	(Wait for the next operation command data)	Modified baud rate	

Note 1: "xxH × 3" indicates that the device enters the half condition after sending 3 bytes of xxH. For details, refer to " 18.7 Error Code ".

Note 2: Refer to " 18.8 Checksum (SUM) ".

Description of the flash memory SUM output mode

- 1. The 1st through 4th bytes of the transmitted and received data contains the same data as in the flash memory writing mode.
- 2. The 5th byte of the received data contains the command data in the flash memory SUM output mode (90H).
- 3. When the 5th byte of the received data contains the operation command data shown in Table 1-6, the device echoes back the value which is the same data in the 6th byte position of the received data (in this case, 90H). If the 5th byte of the received data does not contain the operation command data, the device enters the halt condition after transmitting 3 bytes of operation command error code (63H).
- 4. The 7th and the 8th bytes contain the upper and lower bits of the checksum, respectively. For how to calculate the checksum, refer to "18.8 Checksum (SUM) ".
- 5. After sending the checksum, the device waits for the next operation command data.

18.6.4 Product ID Code Output Mode (Operation Command: C0H)

Table 18-10 shows product ID code output mode process.

Table 18-10 Product ID Code Output Process

	Transfer Bytes	Transfer Data from External Controller to TMP86FS28FG	Baud Rate	Transf	er Data from TMP86FS28FG to External Controller
	1st byte 2nd byte	Matching data (5AH) -	9600 bps 9600 bps	(Automatic baud rate adjustment) OK: Echo back data (5AH) Error: Nothing transmitted	
	3rd byte 4th byte	Baud rate modification data (See Table 18-4)	9600 bps 9600 bps	OK: Echo back data Error: A1H × 3, A3H × 3, 62H × 3 (Note 1)	
	5th byte 6th byte	Operation command data (C0H)	Modified baud rate Modified baud rate	- OK: Echo back data (C0H) Error: A1H × 3, A3H × 3, 63H × 3 (No	
	7th byte		Modified baud rate	зан	Start mark
	8th byte	<	Modified baud rate	OAH	The number of transfer data (from 9th to 18th bytes)
	9th byte		Modified baud rate	02H	Length of address (2 bytes)
	10th byte		Modified baud rate	10H	Reserved data
BOOT ROM	11th byte		Modified baud rate	00H	Reserved data
	12th byte		Modified baud rate	00H	Reserved data
	13th byte		Modified baud rate	00H	Reserved data
	14th byte		Modified baud rate	01H	ROM block count (1 block)
	15th byte		Modified baud rate	10H	First address of ROM (Upper byte)
	16th byte		Modified baud rate	00H	First address of ROM (Lower byte)
	17th byte		Modified baud rate	FFH	End address of ROM (Upper byte)
	18th byte		Modified baud rate	FFH	End address of ROM (Lower byte)
	19th byte		Modified baud rate	D2H	Checksum of transferred data (9th through 18th byte)
4	20th byte	(Wait for the next operation command data)	Modified baud rate	-	

Note: " $xxH \times 3$ " indicates that the device enters the halt condition after sending 3 bytes of xxH. For details, refer to " 18.7 Error Code ".

Description of Product ID code output mode

- 1. The 1st through 4th bytes of the transmitted and received data contain the same data as in the flash memory writing mode.
- 2. The 5th byte of the received data contains the product ID code output mode command data (C0H).
- 3. When the 5th byte contains the operation command data shown in Table 18-6, the device echoes back the value which is the same data in the 6th byte position of the received data (in this case, C0H). If the 5th byte data does not contain the operation command data, the device enters the halt condition after sending 3 bytes of operation command error code (63H).
- 4. The 9th through 19th bytes contain the product ID code. For details, refer to "18.11 Product ID Code"

5. After sending the checksum, the device waits for the next operation command data.

18.6.5 Flash Memory Status Output Mode (Operation Command: C3H)

Table 18-11 shows Flash memory status output mode process.

Table 18-11 Flash Memory Status Output Mode Process

	Transfer Bytes	Transfer Data from External Controller to TMP86FS28FG	Baud Rate	Transfer Data from TMP86FS28FG to External Controller	
	1st byte 2nd byte	Matching data (5AH) -	9600 bps 9600 bps	- (Automatic baud rate adjustment) OK: Echo back data (5AH) Error: Nothing transmitted	
	3rd byte 4th byte	Baud rate modification data (See Table 18-4)	9600 bps 9600 bps	OK: Echo back data Error: A1H × 3, A3H × 3, 62H × 3 (Note 1)	
	5th byte 6th byte	Operation command data (C3H) -	Modified baud rate Modified baud rate	- OK: Echo back data (C3H) Error: A1H × 3, A3H × 3 (63H × 3 (Note 1)	
	7th byte		Modified baud rate	3AH Start mark	
	8th byte		Modified baud rate	04H Byte count (from 9th to 12th byte)	
BOOT ROM	9th byte		Modified baud rate	00H Status code 1 to 03H	
	10th byte		Modified baud rate	00H Reserved data	
	11th byte		Modified baud rate	00H Reserved data	
	12th byte		Modified baud rate	00H Reserved data	
	13th byte		Modified baud rate	Checksum 2's complement for the sum of 9th through 12th bytes 9th byte Checksum 00H: 00H 01H: FFH 02H: FEH 03H: FDH	
	14th byte	(Wait for the next operation command data)	Modified baud rate	-	

Note 1: "xxH × 3" indicates that the device enters the halt condition after sending 3 bytes of xxH. For details, refer to " 18.7 Error Code ".

Note 2: For the details on status code 1, refer to " 18.12 Flash Memory Status Code ".

Description of Flash memory status output mode

- 1. The 1st through 4th bytes of the transmitted and received data contain the same data as in the Flash memory writing mode.
- 2. The 5th byte of the received data contains the flash memory status output mode command data (C3H).
- 3. When the 5th byte contains the operation command data shown in Table 18-6, the device echoes back the value which is the same data in the 6th byte position of the received data (in this case, C3H). If the 5th byte does not contain the operation command data, the device enters the halt condition after sending 3 bytes of operation command error code (63H).
- 4. The 9th through 13th bytes contain the status code. For details on the status code, refer to "18.12 Flash Memory Status Code".
- 5. After sending the status code, the device waits for the next operation command data.

18.6.6 Flash Memory Read Protection Setting Mode (Operation Command: FAH)

Table 18-12 shows Flash memory read protection setting mode process.

Table 18-12 Flash Memory Read Protection Setting Mode Process

	Transfer Bytes	Transfer Data from External Con- troller to TMP86FS28FG	Baud Rate	Transfer Data from TMP86FS28FG to External Controller
	1st byte 2nd byte	Matching data (5AH) -	9600 bps 9600 bps	- (Automatic baud rate adjustment) OK: Echo back data (5AH) Error: Nothing transmitted
	3rd byte 4th byte	Baud rate modification data (See Table 18-4)	9600 bps 9600 bps	OK: Echo back data Error: A1H × 3, A3H × 3, 62H × 3 (Note 1)
	5th byte 6th byte	Operation command data (FAH) -	Modified baud rate Modified baud rate	OK: Echo back data (FAH) Error: A1H & 3, A3H & 3, 63H x 3 (Note 1)
	7th byte 8th byte	Password count storage address 15 to 08 (Note 2)	Modified baud rate Modified baud rate	- OK: Nothing transmitted Error: Nothing transmitted
BOOT ROM	9th byte 10th byte	Password count storage address 07 to 00 (Note 2)	Modified baud rate Modified baud rate	OK: Nothing transmitted Error: Nothing transmitted
	11th byte 12th byte	Password comparison start address 15 to 08 (Note 2)	Modified baud rate Modified baud rate	OK: Nothing transmitted Error: Nothing transmitted
	13th byte 14th byte	Password comparison start address 07 to 00 (Note 2)	Modified baud rate Modified baud rate	- OK: Nothing transmitted Error: Nothing transmitted
	15th byte : m'th byte	Password string (Note 2)	Modified baud rate Modified baud rate	- OK: Nothing transmitted Error: Nothing transmitted
	n'th byte		Modified baud rate	OK: FBH (Note 3) Error: Nothing transmitted
	n'+1th byte	(Wait for the next operation command data)	Modified baud rate	-

Note 1: "xxH × 3" indicates that the device enters the halt condition after sending 3 bytes of xxH. For details, refer to " 18.7 Error Code ".

Note 2: Refer to "18.10 Passwords ".

Note 3: If the read protection is enabled for a blank product or a password error occurs for a non-blank product, TMP86FS28FG stops UART communication and enters the halt mode. In this case, initialize TMP86FS28FG by the RESET pin and reactivate the serial PROM mode.

Note 4 If an error occurs during reception of a password address or a password string, TMP86FS28FG stops UART communication and enters the halt mode. In this case, initialize TMP86FS28FG by the RESET pin and reactivate the serial PROM mode.

Description of the Flash memory read protection setting mode

- 1. The 1st through 4th bytes of the transmitted and received data contain the same data as in the Flash memory writing mode.
- 2. The 5th byte of the received data contains the command data in the flash memory status output mode (FAH).
- 3. When the 5th byte of the received data contains the operation command data shown in Table 1-6, the device echoes back the value which is the same data in the 6th byte position of the received data (in

this case, FAH). If the 5th byte does not contain the operation command data, the device enters the halt condition after transmitting 3 bytes of operation command error code (63H).

4. The 7th through m'th bytes of the transmitted and received data contain the same data as in the flash memory writing mode.

5. The n'th byte contains the status to be transmitted to the external controller in the case of the successful read protection.

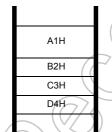
18.7 Error Code

When detecting an error, the device transmits the error code to the external controller, as shown in Table 18-13.

Table 18-13 Error Code

Transmit Data	Meaning of Error Data
62H, 62H, 62H	Baud rate modification error.
63H, 63H, 63H	Operation command error.
A1H, A1H, A1H	Framing error in the received data.
A3H, A3H, A3H	Overrun error in the received data.

Note: If a password error occurs, TMP86FS28FG does not transmit an error code.


18.8 Checksum (SUM)

18.8.1 Calculation Method

The checksum (SUM) is calculated with the sum of all bytes, and the obtained result is returned as a word.

The data is read for each byte unit and the calculated result is returned as a word.

Example:

If the data to be calculated consists of the four bytes, the checksum of the data is as shown below.

A1H + B2H + C3H + D4H = 02EAH SUM (HIGH)= 02H SUM (LOW)= EAH

The checksum which is transmitted by executing the flash memory write command or flash memory SUM output command is calculated in the manner, as shown above.

18.8.2 Calculation data

The data used to calculate the checksum is listed in Table 18-14.

Table 18-14 Checksum Calculation Data

Operating Mode	Calculation Data	Description	
Flash memory writing mode		Even when a part of the flash memory is written, the checksum of the entire flash memory area (1000H to FFFH) is calculated.	
Flash memory SUM output mode	Data in the entire area of the flash memory	The data length, address, record type and checksum in Intel Hex format are not included in the checksum.	
Product ID Code Output mode	9th through 18th bytes of the transferred data	For details, refer to " 18.11 Product ID Code".	
Flash Memory Status Output mode	9th through 12th bytes of the transferred data	For details, refer to " 18.12 Flash Memory Status Code "	
Flash Memory Erasing mode	All data in the erased area of the flash memory (the whole or part of the flash memory)	When the sector erase is executed, only the erased area is used to calculate the checksum. In the case of the chip erase, an entire area of the flash memory is used.	

18.9 Intel Hex Format (Binary)

- 1. After receiving the checksum of a data record, the device waits for the start mark (3AH ":") of the next data record. After receiving the checksum of a data record, the device ignores the data except 3AH transmitted by the external controller.
- 2. After transmitting the checksum of end record, the external controller must transmit nothing, and wait for the 2-byte receive data (upper and lower bytes of the checksum).
- 3. If a receiving error or Intel Hex format error occurs, the device enters the halt condition without returning an error code to the external controller. The Intel Hex format error occurs in the following case:

When the record type is not 00H, 01H, or 02H

When a checksum error occurs

When the data length of an extended record (record type = 02H) is not 02H

When the device receives the data record after receiving an extended record (record type = 02H) with extended address of 1000H or larger.

When the data length of the end record (record type = 01H) is not 00H

18.10Passwords

The consecutive eight or more-byte data in the flash memory area can be specified to the password. TMP86FS28FG compares the data string specified to the password with the password string transmitted from the external controller. The area in which passwords can be specified is located at addresses 1000H to FF9FH. The area from FFA0H to FFFFH can not be specified as the passwords area.

If addresses from FFE0H through FFFFH are filled with "FFH", the passwords are not compared because the product is considered as a blank product. Even in this case, the password count storage addresses and password comparison start address must be specified. Table 18-15 shows the password setting in the blank product and non-blank product.

Table 18-15 Password Setting in the Blank Product and Non-Blank Product

Password	Blank Product (Note 1)	Non-Blank Product
PNSA (Password count storage address)	1000H ≤ PNSA ⊴ FF9FH	1000H ≤ PNSA ≤ FF9FH
PCSA (Password comparison start address)	1000H ≤ PCSA ≤ FF9FH	1000H ≤ PCSA ≤ FFA0 - N
N (Password count)		8 ≤ N
Password string setting	Not required (Note 5)	Required (Note 2)

- Note 1: When addresses from FFE0H through FFFFH are filled with "FFH", the product is recognized as a blank product.
- Note 2: The data including the same consecutive data (three or more bytes) can not be used as a password. (This causes a password error data. TMP86FS28FG transmits no data and enters the halt condition.)
- Note 3: *: Don't care.
- Note 4: When the above condition is not met, a password error occurs. If a password error occurs, the device enters the halt condition without returning the error code.
- Note 5: In the flash memory writing mode, the blank product receives the Intel Hex format data immediately after receiving PCSA without receiving password strings. In this case, the subsequent processing is performed correctly because the blank product ignores the data except the start mark (3AH ":") as the Intel Hex format data, even if the external controller transmits the dummy password string. However, if the dummy password string contains "3AH", it is detected as the start mark erroneously. The microcontroller enters the halt mode. If this causes the problem, do not transmit the dummy password strings.
- Note 6: In the flash memory erasing mode, the external controller must not transmit the password string for the blank product.

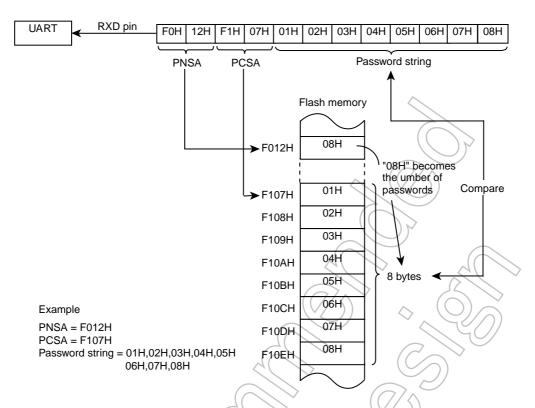


Figure 18-5 Password Comparison

18.10.1Password String

The password string transmitted from the external controller is compared with the specified data in the flash memory. When the password string is not matched to the data in the flash memory, the device enters the halt condition due to the password error.

18.10.2Handling of Password Error

If a password error occurs, the device enters the halt condition. In this case, reset the device to reactivate the serial PROM mode.

18.10.3Password Management during Program Development

If a program is modified many times in the development stage, confusion may arise as to the password. Therefore, it is recommended to use a fixed password in the program development stage.

Example :Specify PNSA to F000H, and the password string to 8 bytes from address F001H (PCSA becomes F001H.)

Password Section code abs = 0F000H

DB 08H : PNSA definition

DB "CODE1234" : Password string definition

18.11Product ID Code

The product ID code is the 13-byte data containing the start address and the end address of ROM. Table 18-16 shows the product ID code format.

Table 18-16 Product ID Code Format

Data	Description	In the Case of TMP86FS28FG
1st	Start Mark (3AH)	3AH)
2nd	The number of transfer data (10 bytes from 3rd to 12th byte)	ОАН
3rd	Address length (2 bytes)	02H
4th	Reserved data	1DH
5th	Reserved data	00H
6th	Reserved data	00H
7th	Reserved data	00H
8th	ROM block count	01H
9th	The first address of ROM (Upper byte)	10H
10th	The first address of ROM (Lower byte)	00H
11th	The end address of ROM (Upper byte)	(FEH
12th	The end address of ROM (Lower byte)	FFH
13th	Checksum of the transferred data (2's compliment for the sum of 3rd through 12th bytes)	D2H

18.12Flash Memory Status Code

The flash memory status code is the 7-byte data including the read protection status and the status of the data from FFE0H to FFFFH. Table 18-17 shows the flash memory status code.

Table 18-17 Flash Memory Status Code

	Data	Description	In the Case of TMP86FS28FG					
	1st	Start mark	ЗАН					
	2nd	Transferred data count (3rd through 6th byte) 04H						
/ > >	3rd	Status code	00H to 03H (See figure below)					
1	4th	Reserved data	00H					
	5th	Reserved data	00H					
	6th	Reserved data	00H					
>	7th	Checksum of the transferred data (2's compliment for the sum of 3rd through 6th data)	3rd byte checksum 00H 00H 01H FFH 02H FEH 03H FDH					

Status Code 1

7	6	5	4	3	2	1	0	
						RPENA	BLANK	(Initial Value: 0000 00**)

RPENA	Flash memory read pro- tection status	0: 1:	Read protection is disabled. Read protection is enabled.
BLANK	The status from FFE0H to FFFFH.	0: 1:	All data is FFH in the area from FFE0H to FFFFH. The value except FFH is included in the area from FFE0H to FFFFH.

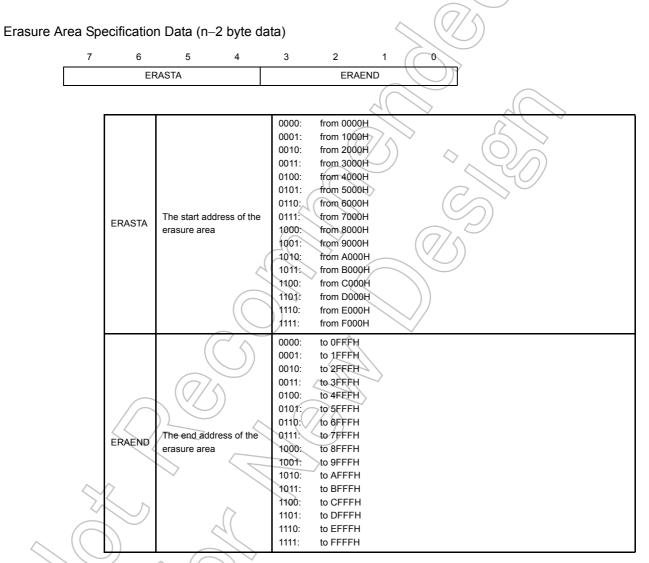
Some operation commands are limited by the flash memory status code 1. If the read protection is enabled, flash memory writing mode command can not be executed. Erase all flash memory before executing these command.

)
RPENA	BLANK	Flash Memory Writing Mode	Flash memory SUM Output Mode	Product ID Code Output Mode	Flash Memory Status Output Mode	1 / 7 /	Memory g Mode Sec- tor Erase	Read Protection Setting Mode
0	0	m	m	m	m		m	×
0	1	Pass	m	m	m	Pa	ass	Pass
1	0	×	m	m	m	m	×	×
1	1	×	m	m (/\mathematical mathematical mat	Pass	(×	Pass

Note: m: The command can be executed.

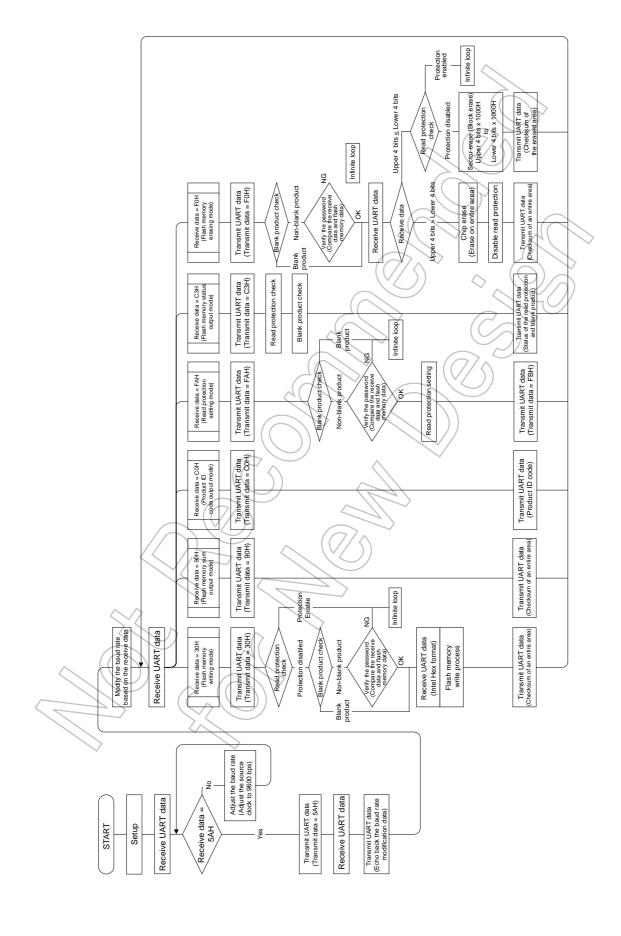
Pass: The command can be executed with a password.

X: The command can not be executed. (After echoing the command back to the external controller, TMP86FS28FG stops UART communication and enters the halt condition.)


18.13Specifying the Erasure Area

In the flash memory erasing mode, the erasure area of the flash memory is specified by n-2 byte data.

The start address of an erasure area is specified by ERASTA, and the end address is specified by ERAEND.


If ERASTA is equal to or smaller than ERAEND, the sector erase (erasure in 4 kbyte units) is executed. Executing the sector erase while the read protection is enabled results in an infinite loop.

If ERASTA is larger than ERAEND, the chip erase (erasure of an entire flash memory area) is executed and the read protection is disabled. Therefore, execute the chip erase (not sector erase) to disable the read protection.

Note: When the sector erase is executed for the area containing no flash cell, TMP86FS28FG stops the UART communication and enters the halt condition.

18.14Flowchart

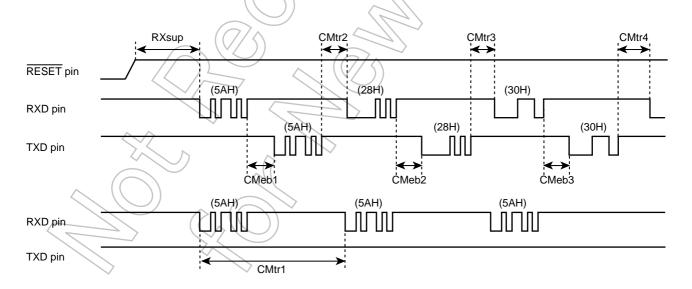
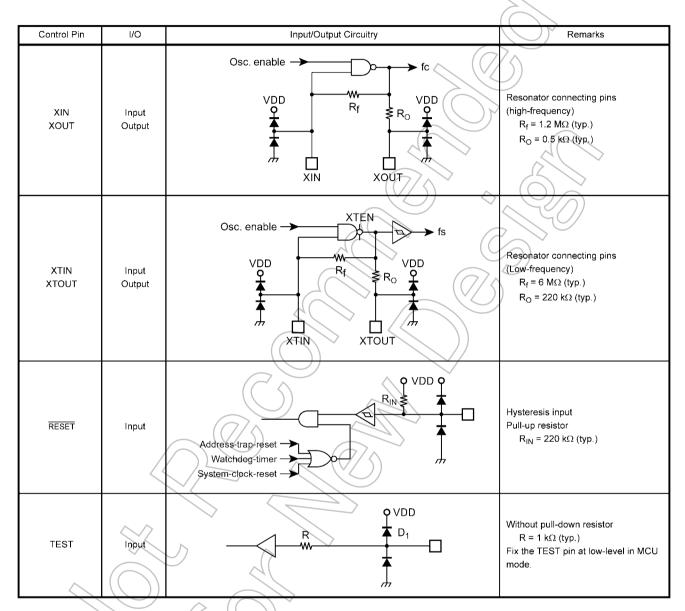

18.15UART Timing

Table 18-18 UART Timing-1 (VDD = 4.5 to 5.5 V, fc = 2 to 16 MHz, Topr = -10 to 40°C)

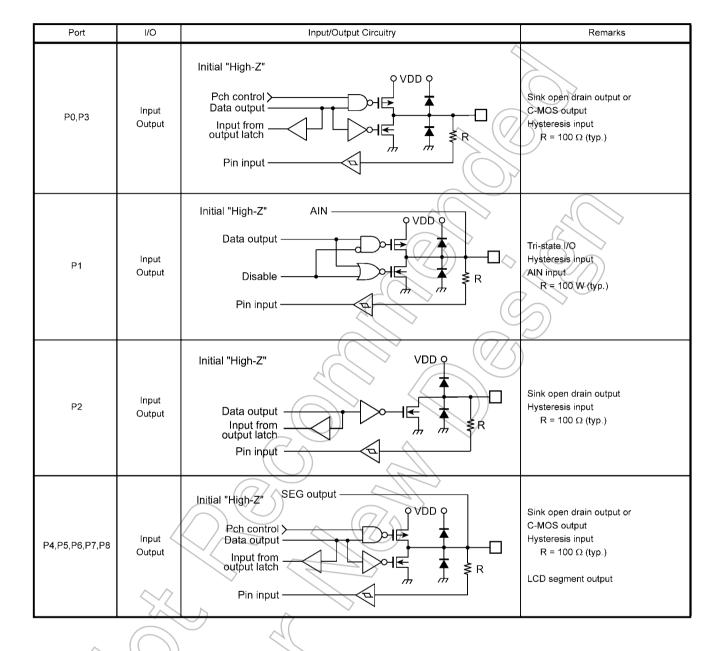
Parameter	Cumbal	Clask Fraguency (fa)	Minimum Required Time		
Parameter	Symbol	Clock Frequency (fc)	At fc = 2 MHz	At fc = 16 MHz	
Time from matching data reception to the echo back	CMeb1	Approx. 930	465 μs	58.1 μs	
Time from baud rate modification data reception to the echo back	CMeb2	Approx. 980	490 μs	61.3 μs	
Time from operation command reception to the echo back	CMeb3	Approx. 800	400 μs	50 μs	
Checksum calculation time	CKsm	Approx. 7864500	3.93 s	491.5 μs	
Erasure time of an entire flash memory	CEall	- ((30 ms	30 ms	
Erasure time for a sector of a flash memory (in 4-kbyte units)	CEsec		15 ms	15 ms	

Table 18-19 UART Timing-2 (VDD = 4.5 to 5.5 V, fc = 2 to 16 MHz, Topr = -10 to 40°C

Parameter	Overhal	Olada Francisco (fa)	Minimum R	equired Time
Parameter	Symbol	Clock Frequency (fc)	At fc = 2 MHz	At fc = 16 MHz
Time from the reset release to the acceptance of start bit of RXD pin	RXsup	2100	1.05 ms	131.3 ms
Matching data transmission interval	CMtr1	28500	14.2 ms	1.78 ms
Time from the echo back of matching data to the acceptance of baud rate modification data	CMtr2	380	190 μs	23.8 μs
Time from the echo back of baud rate modification data to the acceptance of an operation command	CMtr3	650	325 μs	40.6 μs
Time from the echo back of operation command to the acceptance of password count storage addresses (Upper byte)	CMtr4	800	400 μs	50 μs



19. Input/Output Circuitry


19.1 Control Pins

The input/output circuitries of the TMP86FS28FG control pins are shown below.

Note: The TEST pin of the TMP86FS28 does not have a pull-down resistor. Fix the TEST pin at low-level in MCU mode.

19.2 Input/Output Ports

20. Electrical Characteristics

20.1 Absolute Maximum Ratings

The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

$(V_{SS} = 0)$) V)
$(V_{SS} = 0)$	(V

Parameter	Symbol	Pins	Ratings	Unit
Supply voltage	V_{DD}		-0.3 to 6.5	
Input voltage	V _{IN}		-0.3 to V _{DD} + 0.3	V
Output voltage	V _{OUT}		-0.3 to V _{DD} + 0.3	\vee
Output current (Per 1 pin)	I _{OL1}	P0,P1,P2,P3,P4,P5,P6,P7,P8 ports	3.2	
Output current (Fer 1 pin)	I _{OH1}	P0,P1,P3,P4,P5,P6,P7,P8 ports	-1.8	A
Output current (Total)	Σ l _{OL1}	P0,P1,P2,P3,P4,P5,P6,P7,P8 ports	80	mA
Output current (Total)	Σ I _{OH1}	P0,P1,P3,P4,P5,P6,P7,P8 ports	-30	
Power dissipation [Topr = 85°C]	P_{D}		350	mW
Soldering temperature (Time)	Tsld		260 (10 s)	
Storage temperature	Tstg	40	-55 to 125	°C
Operating temperature	Topr		-40 to 85	

20.2 Operating Condition

The Operating Conditions show the conditions under which the device be used in order for it to operate normally while maintaining its quality. If the device is used outside the range of Operating Conditions (power supply voltage, operating temperature range, or AC/DC rated values), it may operate erratically. Therefore, when designing your application equipment, always make sure its intended working conditions will not exceed the range of Operating Conditions.

20.2.1 MCU mode (Flash Programming or erasing)

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -10 \text{ to } 40^{\circ}\text{C})$

Parameter	Symbol	Pins	Ratings	∬Min	Max	Unit
Supply voltage	V_{DD}		NORMAL1, 2 modes	4.5	5.5	
Input high level	V _{IH1}	Except hysteresis input	V _{DD} ≥ 4.5 V	V _{DD} × 0.70	No.	
input night level	V _{IH2}	Hysteresis input	VDD ≥ 4.3 V	$V_{DD} \times 0.75$	V _{DD}	V
Input low level	V_{IL1}	Except hysteresis input	V _{DD} ≥ 4.5 V	000	$V_{DD} \times 0.30$	
input low level	V_{IL2}	Hysteresis input	VDD = 4.5 V		V _{DD} × 0.25	
Clock frequency	fc	XIN, XOUT		1.0	16.0	MHz

20.2.2 MCU mode (Except Flash Programming or erasing)

 $(V_{SS} = 0 \text{ V, Topr} = -40 \text{ to } 85^{\circ}\text{C})$

		()	1				
Parameter	Symbol	Pins	/	Condition	Min	Max	Unit
			fc = 16 MHz	NORMAL1, 2 mode	4.0		
			IC = 16 MINZ	IDLE0, 1, 2 mode	4.0		
			fc = 8 MHz	NORMAL1, 2 mode			
Supply voltage	V _{DD}	$\langle \langle \langle \rangle \rangle$	IC = 6 MINZ	IDLE0, 1, 2 mode		5.5	
			fs = (//	SLOW1, 2 mode	2.7(Note1)		
			32.768 kHz	SLEEP0, 1, 2 mode			
			7/	STOP mode			V
Input high level	V _{IH1}	Except hysteresis input	V > 4.5.V		$V_{DD} \times 0.70$		
	V _{IH2}	Hysteresis input	V _{DD} ≥ 4.5 V		$V_{DD} \times 0.75$	V_{DD}	
	V _{IH3}	.(7	V _{DD} < 4.5 V		$V_{DD} \times 0.90$		
^ ((Y _{IL1}	Except hysteresis input	V _{DD} ≥ 4.5 V V _{DD} < 4.5 V			$V_{DD} \times 0.30$	
Input low level	$V_{\rm IL2}$	Hysteresis input			0	$V_{DD} \times 0.25$	
	V _{IL3}	$(\land ())$				$V_{DD} \times 0.10$	
	fc	XIN, XOUT	V _{DD} = 2.7 V to 5.5 V V _{DD} = 4.0 V to 5.5 V		1.0	8.0	
Clock frequency	10	XIIV, XOOT			1.0	16.0	MHz
	fs	XTIN, XTOUT	V _{DD} = 2.7 V	to 5.5 V	30.0	34.0	kHz
LCD reference voltage range	V1		LCD booster circuit enable		0.9	1.8	V
Capacity for LCD booster circuit	C _{LCD}		$(V3 \ge V_{DD})$		0.1	0.47	uF

Note 1: When the supply voltage is V_{DD} < 3.0V, the operating tempreture is Topr= -20 to 85 °C.

20.2.3 Serial PROM mode

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -10 \text{ to } 40 \,^{\circ}\text{C})$

Parameter	Symbol	Pins	Condition	Min	Max	Unit
Supply voltage	V_{DD}		NORMAL1, 2 modes	4.5	5.5	
lanut high voltage	V _{IH1}	Except hysteresis input	$V_{DD} \ge 4.5 \text{ V}$ $V_{DD} \times 0.70$ V_{DD}		V _{DD}	
Input high voltage	V _{DD} ≥ V _{IH2} Hysteresis input	V _{DD} ≥ 4.5 V	$V_{DD} \times 0.75$) y DD	V	
Input low voltage	V _{IL1}	Except hysteresis input	V>15V	$V_{DD} \times 0$		
input low voltage	w voltage $V_{DD} \ge 4.5 \text{ V}$	$V_{DD} \times 0.25$				
Clock frequency	fc	XIN, XOUT	Ĝ.	2.0	16.0	MHz

20.3 DC Characteristics

 $(V_{SS} = 0 \text{ V, Topr} = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Pins	Condition	Min	Тур.	Max	Unit
Hysteresis voltage	V_{HS}	Hysteresis input		1	0.9	-	V
	I _{IN1}	TEST					
Input current	I _{IN2}	Sink open drain, Tri-state	V _{DD} = 5.5 V, V _{IN} = 5.5 V/0 V	1) <u>}-</u>	±2	μА
	I _{IN3}	RESET, STOP	. (77/			
Input resistance	R _{IN2}	RESET pull-up	V _{DD} = 5.5 V, V _{IN} = 0 V	100	220	450	kΩ
Output leakage current	I _{LO}	Sink open drain, Tri-state	V _{DD} = 5.5 V, V _{OUT} = 5.5 V/0 V)-	-	<u>+2</u>	μА
Output high voltage	V _{OH}	C-MOS, Tri-st port	$V_{DD} = 4.5 \text{ V}, I_{OH} = -0.7 \text{ mA}$	4.1	-	-	V
Output low voltage	V _{OL}	Except XOUT	V _{DD} = 4.5 V, I _{OL} = 1.6 mA	-		0.4	V
LCD output voltage		V2 terminal	$V3 \ge V_{DD}$	_	V1 x 2	\ \	
use LCD driver's booste	V _{2-3OUT}	V3 terminal	Reference supply terminal :V1 SEG/COM terminal no load	- (V1 x 3	> -	_ V
Supply current in NORMAL 1, 2 mode			V _{DD} = 5.5 V V _{IN} = 5.3/0.2 V fc = 16 MHz fs = 32.768 kHz		15.5	16.5	mA
Supply current in IDLE 0, 1, 2 mode				(-	6	8.3	
Supply current in SLOW 1 mode		A	When a program operates on flash memory (Note5,6))-	25	260	
SLOW I mode	I _{DD}		V _{IN} = 2.8/0.2 V When a program operates on RAM	_	20	24	
Supply current in SLEEP 1 mode			LCD drive is not enable.	-	9	21	μА
Supply current in SLEEP 0 mode				-	8	18	
Supply current in STOP mode			$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$	-	0.5	10	

- Note 1: Typical values show those at Topr = 25°C, V_{DD} = 5 V
- Note 2: Input current (I_{IN1} , I_{IN2}); The current through pull-up or pull-down resistor is not included.
- Note 3: I_{DD} does not include I_{REF} current.
- Note 4: The supply currents of SLOW 2 and SLEEP 2 modes are equivalent to IDLE 0, 1, 2.
- Note 5: When a program is executing in the flash memory or when data is being read from the flash memory, the flash memory operates in an intermittent manner, causing peak currents in the operation current, as shown in Figure 20-1. In this case, the supply current I_{DD} (in NORMAL1, NORMAL2 and SLOW1 modes) is defined as the sum of the average peak current and MCU current.
- Note 6: When designing the power supply, make sure that peak currents can be supplied. In SLOW1 mode, the difference between the peak current and the average current becomes large.

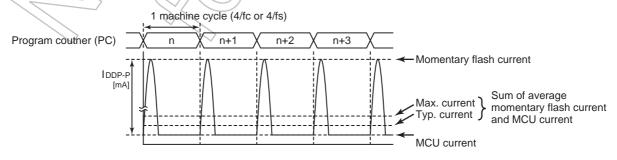


Figure 20-1 Intermittent Operation of Flash Memory

20.4 AD Conversion Characteristics

$(V_{SS} = 0.0 V,$	$4.5 \text{ V} < \text{V}_{DD}$	< 5.5 V. T	opr = -40 t	o 85°C)
(V SS - 0.0 V,	T.O V = V [][]	_ O.O v, 1	орі — то і	.0000)

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Analog reference voltage	V_{AREF}		A _{VDD} – 1.0	\ <u>-</u>	A_{VDD}	
Power supply voltage of analog control	A_{VDD}			V _{DD}		
circuit (Note6)	A _{VSS}			V _{SS}		V
Analog reference voltage range (Note4)	ΔV_{AREF}		3.5	7/^-	-	
Analog input voltage	V_{AIN}		A _{VSS}	())-	V _{AREF}	
Power supply current of analog reference voltage	I _{REF}	$V_{DD} = A_{VDD} = V_{AREF} = 5.5 \text{ V}$ $V_{SS} = A_{VSS} = 0.0 \text{ V}$		0.6	1.0	mA
Non linearity error				_	±2	
Zero point error		$V_{DD} = A_{VDD} = 5.0 \text{ V}$ $V_{SS} = A_{VSS} = 0.0 \text{ V}$		- \	±2	LSB
Full scale error		V _{AREF} = 5.0 V	-	- (2)	±2	LOD
Total error			<u> </u>		±2	

 $(V_{SS} = 0.0 \text{ V}, 2.7 \text{ V} \le V_{DD} < 4.5 \text{ V}, \text{Topr} = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Condition	Min ((Тур.	Max	Unit
Analog reference voltage	V_{AREF}		A _{VDD} – 1.0	$-\sqrt{-1}$	A_{VDD}	
Power supply voltage of analog control	A_{VDD}		(7/4	V _{DD}		
circuit (Note6)	A _{VSS}			V _{SS}		V
Analog reference voltage range (Note4)	ΔV_{AREF}		2.5	_	-	
Analog input voltage	V_{AIN}		V_{SS}	_	V _{AREF}	
Power supply current of analog reference voltage	I _{REF}	$V_{DD} = A_{VDD} = V_{AREF} = 4.5 \text{ V}$ $V_{SS} = A_{VSS} = 0.0 \text{ V}$	\\	0.5	0.8	mA
Non linearity error			-	-	±2	
Zero point error		V _{DD} = A _{VDD} = 2.7 V V _{SS} = A _{VSS} = 0.0 V V _{AREF} = 2.7 V	_	_	<u>+2</u>	LSB
Full scale error	$(\langle // \rangle)$	V _{AREF} = 2.7 V	_	_	±2	LOD
Total error		. (7/5	_	_	±2	

- Note 1: The total error includes all errors except a quantization error, and is defined as a maximum deviation from the ideal conversion line.
- Note 2: Conversion time is different in recommended value by power supply voltage.

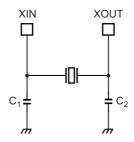
 About conversion time, please refer to "Register Configuration".
- Note 3: Please use input voltage to AIN input Pin in limit of V_{AREF} to V_{SS}. When voltage of range outside is input, conversion value becomes unsettled and gives affect to other channel conversion value.
- Note 4: Analog reference voltage range: $\Delta V_{AREF} = V_{AREF} V_{SS}$
- Note 5: When AD is used with V_{DD} < 2.7 V, the guaranteed temperature range varies with the operating voltage.
- Note 6: The A_{VDD} pin should be fixed on the V_{DD} level even though AD converter is not used.

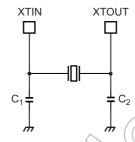
20.5 AC Characteristics

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.0 \text{ to } 5.5 \text{ V}, \text{Topr} = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Machine cycle time	-	NORMAL1, 2 mode				
	4	IDLE1, 2 mode	0.25		133.3	
	tcy	SLOW1, 2 mode	117.6	(())	122.2	μS
		SLEEP1, 2 mode	117.0		133.3	
High level clock pulse width	t _{WCH}	For external clock operation		75)		
Low level clock pulse width	t _{WCL}	(XIN input) fc = 16 MHz		31.25	_	ns
High level clock pulse width	t _{WCH}	For external clock operation		>		
Low level clock pulse width	t _{WCL}	(XTIN input) fs = 32.768 kHz		15.26		μS

 $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, \text{Topr} = -40 \text{ to } 85^{\circ}\text{C})$


Parameter	Symbol	Condition	Min 🔷	, Тур.	Max	Unit
		NORMAL1, 2 mode	0.5	17	<i>O</i> / ₄	
Machine cycle time	tcy	IDLE1, 2 mode	0.5		· ·	μS
Wachine Cycle time	tcy	SLOW1, 2 mode	117.6		133.3	μο
		SLEEP1, 2 mode	117.0		100.0	
High level clock pulse width	t _{WCH}	For external clock operation		00.5		
Low level clock pulse width	t _{WCL}	(XIN input) fc = 8 MHz		62.5	_	ns
High level clock pulse width	t _{WCH}	For external clock operation		45.00		
Low level clock pulse width	t _{WCL}	(XTIN input) fs = 32.768 kHz	$\sqrt{/}$	15.26	_	μ\$


Note 1: When the supply voltage is V_{DD} < 3.0V, the operating tempreture is Topr= -20 to 85 °C.

20.6 Flash Characteristics

Parameter	Condition	Min	Тур.	Max	Unit
Number of guaranteed writes to flash	VSS = 0 V, Topr = -10 to 40 °C			100	Times
memory	V35 - 0 V, 10pi1010 40 C	_	_	100	Tilles

20.7 Recommended Oscillating Conditions

(1) High-frequency Oscillation

(2) Low-frequency Oscillation

Note 1: To ensure stable oscillation, the resonator position, load capacitance, etc. must be appropriate. Because these factors are greatly affected by board patterns, please be sure to evaluate operation on the board on which the device will actually be mounted.

Note 2: For the resonators to be used with Toshiba microcontrollers, we recommend ceramic resonators manufactured by Murata Manufacturing Co., Ltd.

For details, please visit the website of Murata at the following URL: http://www.murata.com

20.8 Handling Precaution

- The solderability test conditions for lead-free products (indicated by the suffix G in product name) are shown below.
 - 1. When using the Sn-37Pb solder bath

Solder bath temperature = 230 °C

Dipping time = 5 seconds

Number of times = once

R-type flux used

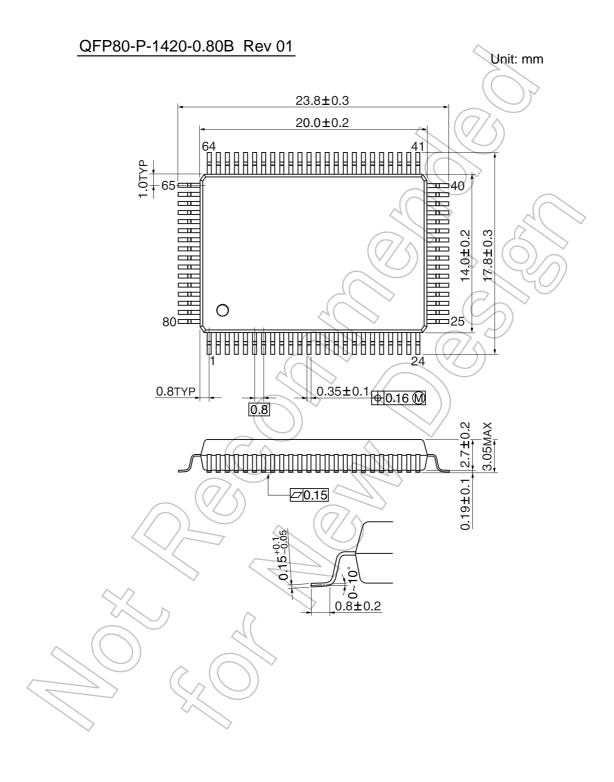
2. When using the Sn-3.0Ag-0.5Cu solder bath

Solder bath temperature = 245 °C

Dipping time = 5 seconds

Number of times = once

R-type flux used


Note: The pass criteron of the above test is as follows:

Solderability rate until forming ≥ 95 %

- When using the device (oscillator) in places exposed to high electric fields such as cathode-ray tubes, we recommend electrically shielding the package in order to maintain normal operating condition.

21. Package Dimensions

This is a technical document that describes the operating functions and electrical specifications of the 8-bit microcontroller series TLCS-870/C (LSI).

Toshiba provides a variety of development tools and basic software to enable efficient software development.

These development tools have specifications that support advances in microcomputer hardware (LSI) and can be used extensively. Both the hardware and software are supported continuously with version updates.

The recent advances in CMOS LSI production technology have been phenomenal and microcomputer systems for LSI design are constantly being improved. The products described in this document may also be revised in the future. Be sure to check the latest specifications before using.

Toshiba is developing highly integrated, high-performance microcomputers using advanced MOS production technology and especially well proven CMOS technology.

We are prepared to meet the requests for custom packaging for a variety of application areas. We are confident that our products can satisfy your application needs now and in the future.

