広負荷電力範囲で高い変換効率を実現した IoT 機器向け SIMO 型 DC-DC コンバーター

SIMO DC-DC Converter with High Efficiency over Wide Load Range for IoT Devices

山田学	チャン ナム ビン	宮崎隆行
YAMADA Manabu	TRAN Nam Binh	MIYAZAKI Takayuki

あらゆるモノがネットワークにつながる IoT (Internet of Things) 分野で用いられる無線センサーノードは, データ通信の ため間欠的に数十mWのアクティブモードで動作するが, 大部分の時間は1mW以下のスタンバイモードで待機している。そ のため, IoT 機器向け SIMO (Single-Inductor Multiple-Output) 型DC (直流)-DC コンバーターには, 広い負荷電力範 囲にわたって高い変換効率が求められている。

東芝デバイス&ストレージ(株)は、このような市場ニーズに応えて、新たにMOT(最大オン時間)制御技術とCCMS(チャ ネル連結多重スイッチング)制御技術を搭載したSIMO型DC-DCコンバーターを開発している。試作により、最大86.3%の 変換効率と、1 μWから50mWの広負荷電力範囲において65.3%以上の変換効率を達成し、コイン型リチウム電池で駆動 するIoT機器の電池寿命を大きく改善できることを確認した。

A wireless sensor node for Internet of Things (IoT) devices is mostly in standby mode, in which its power consumption is less than 1 mW, and only enters active mode intermittently when performing data communication, at which time its power consumption increases to several tens of mW. Hence, single-inductor multiple-output (SIMO) DC-DC converters for IoT devices must achieve high conversion efficiency over a wide range of loads.

In response to this market requirement, Toshiba Electronic Devices & Storage Corporation has been developing a SIMO DC-DC converter equipped with two new technologies: (1) a maximum-on-time (MOT) control technology, and (2) a channel-consolidated multiple-switching (CCMS) control technology. Experiments on a prototype chip fabricated using 65 nm complementary metal-oxide semiconductor (CMOS) process technology have verified that its peak conversion efficiency is 86.3%, while its conversion efficiency over a wide load range from 1 μ W to 50 mW is 65.3% or more. The new SIMO DC-DC converter is expected to contribute to lengthening of the operating time of IoT devices powered by coin type lithium-ion batteries.

1 まえがき

近年,様々なIoT用途に無線センサーノードが使用されるようになった。IoT機器に組み込まれるICはコイン型リチウム 電池などで駆動されるため,各回路は必要最小限の電圧で低 電力動作することが求められる。そこで,一つのインダクター で複数電圧を出力でき,機器の小型化やコスト低減に寄与す るSIMO型DC-DCコンバーター(以下,SIMO-DCDCと略記) が注目されている。

一般に、無線センサーノードは消費電力が異なるアクティブ モードとスタンバイモードを持つため、SIMO-DCDCには広負 荷電力範囲で実用的な変換効率が求められる。重負荷時の アクティブモードでは、電源電圧が変動するとセンシング精度 が低下するため、正確な電圧供給が必要である。電流不連続 モード (DCM)は、図1に示すように、ゼロ電流時間がSIMO-DCDCの出力チャネル (CH)同士を分離して電圧変動を防ぐ ことができるが、ゼロ電流時間が長いほど出力電力の上限が 小さくなるという問題があった。一方、軽負荷時のスタンバイ モードでは、消費電力が1 μW 程度まで下がる。センサーノー ドは間欠的なアクティブモード以外ではスタンバイモードで待 機しており、軽負荷時のSIMO-DCDCの変換効率が電池寿命

を大きく左右するが、従来技術の軽負荷時の変換効率は実用 的とは言えなかった^{(1), (2)}。

そこで、広負荷電力範囲で実用的な変換効率を持つSIMO-DCDCを実現するため、重負荷時に出力電力の上限を最大化 するMOT制御技術と、軽負荷時に変換効率を改善する CCMS制御技術を開発した。

ここでは、開発しているSIMO-DCDCの概要と、オンチッ プデジタル制御の試作品により評価した結果について述べる。

2 SIMO-DCDCの概要

開発しているSIMO-DCDCは、図2に示すように、入力電圧

 (V_{in}) から四つの出力電圧 $(V_{out0} \sim V_{out3})$ を生成する。各出 力電圧は参照電圧 $(V_{ref0} \sim V_{ref3})$ とデジタルコンパレーターで 比較され、参照電圧より低下すると、DTC (Digital-to-Time Converter) とプリドライバーがp型MOS (金属酸化膜半導体) トランジスター (PMOS) とn型MOSトランジスター (NMOS) をそれぞれオン、オフのタイムコード (t_{ON}, t_{OFF}) に従って駆動 する。PMOSとNMOSのスイッチング動作の1サイクルごと に、CH分配スイッチの駆動信号 $(\Phi_0 \sim \Phi_3)$ に従ってインダク ター電流 (I_L) がCHの一つに供給される。広負荷電力範囲で 高い変換効率を保つため、重負荷時と軽負荷時のそれぞれで 外部から供給する高速クロック (clk_fast) と低速クロック (clk_slow)が使用される。

2.1 重負荷時に出力電力の上限を改善するMOT制御技術

DCM動作のSIMO-DCDCで出力電力の上限を大きくするに は、ゼロ電流時間を最小化する必要がある。それには、各CH 分配スロットの終わりで*I*_Lがゼロになるようにオン時間を調整 すればよい。このようなDCM動作は電流臨界モード(BCM) と呼ばれている。従来、BCM動作のためのオン時間制御には アナログ回路を用いており⁽³⁾、ゼロ電流時間を直接フィードバッ ク制御していないため、プロセスや温度のばらつきでゼロ電流 時間が変動して常に最小化することはできなかった。

そこで今回, 正確なBCM動作を実現するためにMOT制 御技術を開発した。図3に示すように, *I*_Lが各CH分配のス ロット境界以前にゼロになった場合,オン時間のタイムコード を1ステップ増やす。一方,スロット境界から1ステップ前(数 ns相当)までに*I*_Lがゼロにならなかった場合は,オン時間を1 ステップ減らす。この動作をスイッチングサイクルごとに繰り返 すと,最小のゼロ電流時間に収束する。デジタル回路を用い てゼロ電流時間をフィードバックするため,外付け素子や,入 出力電圧,プロセス,温度などのばらつきによらず重負荷時に 出力電力の上限を最大化できる。

2.2 軽負荷時に変換効率を改善するCCMS制御技術 軽負荷時に支配的な電力損失のうち,デジタルコンパレー

特

集

1

ターに起因するものはバースト制御で動作頻度を下げることに より低減できる。SIMO-DCDCでは、更にCH分配スイッチ の駆動電力を減らすことが必要だが、従来のバースト制御を SIMO-DCDCで行うと、 I_L の供給1回ごとにCH分配スイッチ が駆動されて電力損失となる(**図4**(a))。これに対して新開発 のCCMS制御では、CH分配順序を変更し、 I_L を特定CHに 連続で供給することで、CH分配スイッチの駆動回数を大幅に 減らして電力損失を低減できる(図4(b))。

3 試作品による評価

MOT 制御技術とCCMS制御技術を搭載したオンチップデ ジタル制御 SIMO-DCDC を 65 nm 標準 CMOS (相補型 MOS) プロセスで試作し,評価を実施した。

各CHの負荷電流が3mAのときの重負荷時における I_L と 各出力電圧の波形を図5(a)に示す。このとき、 $V_{out0} \sim V_{out3}$ は 順に1.3 V, 1.2 V, 1.1 V, 及び1.0 Vに設定した。MOT制御 によってBCM動作しており、1回の I_L 供給量が最大化され、 不要なパルスがスキップされ、PMOSとNMOSの駆動電力も 削減される。図5(b)には、各CHの負荷電流が50 μ Aのとき の軽負荷時における各波形を示した。CCMS制御により16回 の連続したスイッチングが起こり、対応するCHの電圧が上昇 している。CH分配スイッチの動作頻度は従来技術に比べ 1/16に抑えられた。

次に, V_{in}が2.7 Vのときの合計出力電力と変換効率の関係 を図6に示す。重負荷時の出力電力の上限は53 mWで,約

図5. 試作品のLとVouto ~ Vout3の測定波形 — 重負荷時には MOT 制 御によりBCM 動作が実現され、軽負荷時にはCCMS制御により各CHで 連続スイッチングが起きていることが分かる。

Experimentally obtained waveform data at time of heavy-load and lightload operations

変換効率を維持できている。

Relationship between conversion efficiency and total output power of prototype SIMO DC-DC converter

1mWまで変換効率を80%以上に維持できた。軽負荷時の 最大変換効率は86.3%で、5.2 µWまで80%以上、1.1 µWで 65.3%であった。重負荷時と軽負荷時を使い分けることで、 1 μWから50 mWまで変換効率を60%以上に維持できること を確認した。

開発しているSIMO-DCDCと、変換効率が60%以上で、 かつ出力電力範囲が広い従来技術によるSIMO-DCDC^{(1), (2)} との性能比較を表1に示す。出力電力範囲が従来技術の水 準に比べて2桁以上広いことが分かる。

あとがき 4

IoT 機器向けに、新たに開発した MOT 制御技術及び CCMS

表1. 従来技術によるSIMO-DCDCとの性能比較

Comparison of performance of conventional and prototype SIMO DC-DC converters

項目		性能諸元		
		試作品	従来技術A ⁽¹⁾	従来技術B ⁽²⁾
製造プロセス		65 nm CMOS	$0.25\mu m$ CMOS	65 nm CMOS
入力電圧	(V)	1.8~3.6	2.7~5.0	2.7~3.6
出力電圧	(V)	0.6~1.8	1.2 / 1.8	1.8 / 1.2
外付けインダクター	(µH)	10	4.7	4.7
外付け容量	(µF)	47	47	4.7
最大変換効率	(%)	86.3	87	91
軽負荷効率	(%)	65.3 (1.1 μW)	60 (1.8 µW)*1	約62 (15 µW)*1
変換効率60%以上的 電力範囲	の出力 (桁)* ²	4.7 (1 μW ~ 50 mW)	2.7*1 (1.8 mW~840 mW)	1.8 ^{*1} (15 mW~900 mW)

制御技術を搭載したオンチップデジタル制御SIMO-DCDCを 試作し,最大86.3%,1µWから50mWの広負荷電力範囲に おいて65.3%以上という実用的な変換効率を達成できた。

電力をより効率的に利用できる技術として、Bluetooth® low energy (BLE) 規格などをサポートする IoT 機器向け低消費 電力ICへの適用を検討しており、コイン型リチウム電池による 駆動時間の延長に貢献していく。

文 献

- (1) Xu, W. et al. A Dual-Mode Single-Inductor Dual-Output Switching Converter with Small Ripple. IEEE Trans. Power Electron. 2010, 25, 3, p.614 - 623.
- (2) Lee, Y. H. et al. Interleaving Energy-Conservation Mode (IECM) Control in Single-Inductor Dual-Output (SIDO) Step-Down Converters with 91% Peak Efficiency. IEEE J. Solid-State Circuits. 2011, 46, 4, p.904 - 915.
- (3) Fu, W. et al. A DCM-only buck regulator with hysteretic-assisted adaptive minimum-on-time control for low-power microcontrollers. IEEE Trans. Power Electron. 2016, 31, 1, p.418 - 429.

・Bluetoothは, Bluetooth SIG, Inc.の登録商標。

山田 学 YAMADA Manabu 東芝デバイス&ストレージ(株) 半導体研究開発センター 先端回路技術開発部 Toshiba Electronic Devices & Storage Corp.

チャン ナム ビン TRAN Nam Binh 東芝デバイス&ストレージ(株) 半導体研究開発センター 先端回路技術開発部 Toshiba Electronic Devices & Storage Corp.

宮崎 隆行 MIYAZAKI Takayuki 東芝メモリ(株) メモリ技術研究所 デバイス技術研究開発センター IEEE 会員 Toshiba Memory Corp.