K. Komatsu *et al.*, "Investigating the Highly Tolerant LDMOS Cell Array Design against the Negative Carrier Injection and the ESD Events," 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 2020, pp. 404-407, doi: 10.1109/ISPSD46842.2020.9170188 © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. And published article is uploaded in IEEE Xplore (https:// ieeexplore.ieee.org/document/9170188)

Investigating the Highly Tolerant LDMOS Cell Array Design against the Negative Carrier Injection and the ESD Events

Kanako Komatsu, Daisuke Shinohara, Mariko Shimizu, Yoshiaki Ishii, Toshihiro Sakamoto, Koji Yonemura and Fumitomo Matsuoka Toshiba Electronic Devices & Storage Corporation 580-1, Horikawa-Cho, Saiwai-Ku, Kawasaki, Kanagawa 212-8520, Japan, E-mail: kanako.komatsu@toshiba.co.jp

Abstract—Optimum LDMOS array layout design is proposed which is tolerant against not only the negative carrier injection but also the ESD events. Both are indispensable features of the LDMOS, however, they have trade-off relation from cell array design point of view. Both characteristics are affected by N-guard ring resistance and its smaller value is better for negative carrier injection, but worse for ESD tolerance. The best structure in this study has increased allowable negative injection current by 40% compared to the reference structure, while TLP failure current (*It*₂) degradation was suppressed to only 9%, and total area increase was kept to less than 15%.

Keywords—LDMOS; cell array design; negative carrier injection; ESD events

I. INTRODUCTION

Tolerance against a negative carrier injection is an important characteristics of power ICs. When the negative carriers are injected into the switching devices (Injector) drain, parasitic bipolar transistor turns on and minority carriers are injected into the

(b) N-guard ring-drain isolated structure

Fig. 1: Cross-sectional views of (a) drain-shorted structure and (b) drain-isolated structure of 18V NchLDMOS. Measurement conditions of negative carrier injection are shown in the figure. Parasitic bipolar transistors, *Tr. C* and *Tr.A/Tr.B/Tr.C* exist in each structure. N-guard ring related resistors, R_v and R_{NBL} . Definition is as follows, $\alpha = In_{sen}/Id_{inj}$, $\alpha_A = In_{inj}/Id_{inj}$, and $\alpha_C = In_{sen}/In_{inj}$.

substrate, which results in undesirable influence on the surrounding devices (Sensor). To prevent the impact from the carrier injection, electrical device isolation by a deep trench and/or applying a heavy-doped substrate are effective, however, those are accompanied with process cost increase. As for a pn-junction isolation, to keep the device distance or to insert the N-guard ring (N_{gr}) between the devices both increase a chip size. Many studies have been done to analyze and model the minority carrier injection into substrate [1-2]. Nevertheless, few papers are found which analyze the LDMOS array layout design against a parasitic

bipolar transistor. In this study, the optimum LDMOS array layout design is proposed which is tolerant against not only negative carrier injection but also the ESD events, both are indispensable features of the LDMOS.

II. DEVICE STRUCTURES AND EXPERIMENT

Cross-sectional views of the studied structures are shown in Fig. 1. Parasitic bipolar transistor, Tr.C exists in N_{gr} -drain-shorted structure (Fig. 1(a)) and Tr.A/Tr.B/Tr.C are inherent in N_{gr} -drain-isolated structure (Fig. 1(b)). As for the drain-shorted structure, if the drain is biased negatively, the N_{gr} is biased simultaneously, so that both current are equivalent ($Id_{inj} = In_{inj}$). Thus the defined α (In_{sen}/Id_{inj}) is equal to Tr.C's α_C (In_{sen}/In_{inj}). Here, lower α results in higher tolerance against negative carrier injection. On the contrary, for the drain-isolated structure, Tr.A lies between drain and N_{gr} , so that α is described as a product of α_C and Tr.A's α_A (In_{inj}/Id_{inj}), hence α decreases drastically as shown in Fig. 2. It also indicates that wider N_{gr} decreases α more due to Tr.B base width increase. In order to understand α dependence on N_{gr} width in detail, 2D-TCAD simulation (Synopsys Sentaurus) was carried out

(Fig. 3-5). Fig. 3 shows that *Isub* of $N_{gr} = 7 \mu m$ case is 2 to 6 order of magnitude larger than $N_{gr} = 20 \ \mu m$ case at the same Id_{inj} . Fig. 4 is the eCurrent density distributions. At $Id_{inj} = -100 \mu A$, electron flows from Injector N_{gr} to Injector drain in both N_{gr} width cases. As the Id_{inj} increases, the electron from Sensor N_{gr} starts to flow to Injector Ngr. This phenomenon was observed above Id_{inj} = -1 mA in N_{gr} =7 µm case and -10 mA in N_{gr} =20 µm case. Fig. 5 shows the 1D profiles of the electrostatic potential of both structures. The voltage difference between Injector N_{qr} and P-substrate is always smaller in N_{gr} =7 µm case compared to 20 µm case, and the N_{gr} /P-substrate junction becomes forwardbiased in N_{gr} =7 µm case and emits minority carrier (electron) into the substrate, which behavior is not observed in $N_{gr} = 20 \ \mu m$ case (Fig. 4). This different behavior is due to the N_{gr} resistance difference. The resistance of N_{gr} =7 µm case is larger than 20 µm case so that the N_{gr} voltage easily drops when electron flows inside the N_{gr} . Therefore, it is assumed that the parameter R_v (N_{gr} vertical resistance) has a relation with α . Moreover, R_{NBL} , which is related to LDMOS's array size, also affects α. To analyze the

Fig. 2: Defined α (=*Insen/Idinj*) characteristics of drain-shorted, drainisolated structure (N-guard ring = 7 µm), and drain-isolated structure with widen-N-guard ring (N-guard ring = 20 µm). Distance is defined in Fig. 1(a).

Fig. 3: Simulated curves of *Isub* vs. Id_{inj} of drain-isolated structures. Nguard ring widths are 7 µm and 20 µm. Simulated conditions: $Id_{inj} = -1 \times 10^{-5}$ A ~ -1 A, $V_{Sinj} = Vn_{inj} = Vsub = Vn_{sen} = Vs_{sen} = Vd_{sen} = 0$ V. Injector and sensor gates are omitted.

Fig. 4: TCAD simulation results of eCurrent density distribution of drainisolated structures. N-guard ring widths are 7 μ m and 20 μ m. Simulated conditions: $Id_{inj} = -100 \mu$ A, -1 mA, and -10 mA, $Vs_{inj} = Vn_{inj} = Vsub = Vn_{sen}$ $= Vs_{sen} = Vd_{sen} = 0$ V. Injector and sensor gates are omitted.

Fig. 5: 1D profiles of electrostatic potential of drain-isolated structures. N-guard ring widths: (a) 7 μ m and (b) 20 μ m. The profiles describe the electrostatic potential at dashed line in x-direction as shown in Fig. 4.

impact of R_v and R_{NBL} , various LDMOS cell array layouts, shown in Fig. 6, are studied. When measuring the negative carrier injection, sensor device locates on the left of the injector devices. Fig. 7 shows measured In_{sen} vs. Id_{inj} curve of a reference layout (No.1) and Id_i is defined as $-Id_{inj}$ at $In_{sen} = 1 \mu A$. Larger Id_i indicates smaller α and leads to reduce the undesirable influence on the sensor device.

III. RESULTS AND DISCUSSIONS

A. Negative Carrier Injection

Negative carrier injection dependence on LDMOS array design layout was studied in Fig. 8. Even for the same cell size of 3600

Fig. 6: Measured LDMOS structures (3600 cell). Sensor is settled on the left side. Layout No.1 as a reference. N-guard ring widths are 7 μ m (No.11), 15 μ m (No.10), and 20 μ m (the others); and No.7 has 40 μ m - wide N-guard ring only at sensor side and the others have 20 μ m.

Fig. 7: Measured curve of Id_{inj} vs. In_{sen} of reference layout No.1. Defined Id_i as a current of $-Id_{inj}$ when $In_{sen}=1$ µA.

Fig. 8: Dependence of Id, on various LDMOS cell array layouts.

cells, each layout shows different Id_i . To understand the Id_i difference among the layouts, parameter focused on R_{NBL} is investigated, which is the maximum area of divided array (*Area_{max}*). As shown in Fig. 9, there is a correlation between Id_i and *Area_{max}*. The larger *Area_{max}* results in the higher R_{NBL} , thus the NBL potential shifts negative, which turns on *Tr*.*C* easily and leads to Id_i decrease. Although in the same *Area_{max}* case, some layouts show different Id_i . For the further investigation, *Area_N*(N_{gr} area) dependence is evaluated as shown in Fig. 10. Smaller

Fig. 9: Dependence of Id_i on *Area_{max}* (maximum area of divided array). Even though the *Area_{max}* of layout No.2, 9, 10, and 11 are equivalent, the Id_i differs among the layouts.

Fig. 11: Dependence of Id_i on the N_{factor} (Area_N/Area_{max}). Layout No.11 is the exception, which has a high resistance at N+GR/NBL connection with narrow N_{gr} .

B. ESD Events

The LDMOS also requires ESD tolerance, thus TLP measurement is studied as well (Fig. 12). As shown in Fig. 13, the TLP failure current, It_2 , tends to decrease as N_{factor} increases. Layout No.8 and 6 are the exceptions due to unbalanced division of the device array that accompanies with local current concentration. In the drain-isolated structure case, N_{gr} is open state during the TLP test, however, N_{gr} voltage (V_n) influences the Tr.E (parasitic bipolar transistor) action [3]. Fig. 14 shows It_2 dependence on V_n evaluated for similar layout No.2 and 10. When the $V_n =$ -0.3 V/0 V, both layouts show low It_2 owing to Tr.E action, which turns on when $V_n < V_s$. As for $V_n =$ 5 V, high It_2 value achieved because Tr.E does not turn on. It is noted that It_2 depends on the layout in the N_{gr} =open condition (actual TLP condition). Layout No.10 keeps the same It_2 as $V_n =$ -0.3 V/0

Fig. 14: It_2 comparison of layout No.10 and No.2, with modifying N_{gr} voltage (V_n) under TLP test. Both layouts have same *Area_{max}* and different *Area_N*. V_n = -0.3V/0V/5V and open (actual TLP condition).

Fig. 15: Dependence of Id_i ratio and It_2 ratio on total area ratio. Both values are normalized by the value of No.1 as a reference.

V case. It is considered that N_{gr} resistance is high enough in No.10 to shift V_n positive, so that the *Tr.E* does not turn on and It_2 remains higher. Lower N_{gr} resistance (higher N_{factor}) is better for Id_i , though It_2 has an inflection point. In conclusion, totally considering the Id_i , It_2 , and total area as shown in Fig. 15, layout No.10 is a suitable structure for injector, which has the sufficient

Fig. 12: Cross-sectional view of the drain-isolated 18V NchLDMOS. Measurement condition of TLP (pulse=100 ns). Parasitic bipolar transistors, *Tr.D* and *Tr.E* exist.

tolerance against both the negative carrier injection and the ESD events, which achieving minimum total area increase. Therefore, the LDMOS cell array layout has to be carefully designed by taking N_{factor} into consideration. In this study, new parameter N_{factor} is introduced and the suitable LDMOS cell array layout is proposed, which can realize the high tolerance against the negative carrier injection and the ESD events.

IV. CONCLUSIONS

Fig. 13: Dependence of It_2 on N_{factor} . Layout No.8 and 6 are the exceptions due to unbalanced division of the device array that accompanies with local current concentration.

Optimum LDMOS array layout design is proposed which is tolerant against not only the negative carrier injection but also the ESD events. Both are indispensable features of the LDMOS, however, they have trade-off relation from cell array design point of view. Both characteristics are affected by N-guard ring resistance and its smaller value is better for negative carrier injection, but worse for ESD tolerance. In this study, suitable layout has been proposed, which has increased allowable negative injection current by 40% compared to the reference structure, while TLP failure current degradation was suppressed to only 9%, and total area increase was kept to less than 15%.

ACKNOWLEDGMENT

The authors would like to thank Dr. Kenya Kobayashi for his continuous encouragement and valuable support. The authors also express the deepest appreciation to the members of Japan Semiconductor Corporation for their continuous support of wafer production for this study.

REFERENCES

[1] P. Buccella, C. Stefanucci, J. M. Sallese, and M. Kayal. IEEE Transactions on Power Electronics, 31(9):6586-6595, Sep., 2016.

- [2] M. Kollmitzer, M. Olbrich, and E. Barke, Proceeding of the 29th ISPSD, pp. 171-174, May, 2017.
- [3] K. Rajagopal, A. Concannon, P. Hower, F. Farbiz, A. Salman, J. Arch, and P. Elo, Proceeding of the IRPS, Apr., 2016.

*Company names, product names, and service names may be trademarks of their respective companies