
©2020 Toshiba Electronic Devices & Storage Corporation

Technical Review

Secure MCU Platform Techniques to
Ensure Security of Cyber-Physical
Systems
With the rapid spread of Internet of Things (IoT) devices as key components for the construction of cyber-physical
systems (CPS) in recent years, demand has been growing for a microcontroller unit (MCU) for IoT devices with both a
secure communication function for connecting to the network and a firmware update function to enhance integrity
and availability.
Toshiba Electronic Devices & Storage Corporation has been implementing measures to address this need through the
development and introduction of the following techniques: (1) introduction of a so�ware platform technique using
the Arm® Mbed™ OS, which is an open-source embedded operating system (OS), to its MCUs with an Arm® Cortex®-M
processor in order to achieve secure connection to the network and reduction of the burden on developers, and (2)
development of a secure firmware rotation technique using redundant flash memories for firmware updates that can
protect IoT devices against cyberattacks in order to achieve a balance between integrity and availability. We have
confirmed the e�ectiveness of the secure firmware rotation technique through experiments on functional prototype
hardware and so�ware using a field-programmable gate array (FPGA).

1. Introduction

implemented in the MCUs for embedded devices according to the Tasks that require parallel and real-time execution are

2. Application of Mbed™ OS to MCUs with a Cortex®-M processor

objectives of system developers. Therefore, embedded systems

are typically designed to run a real-time operating system (RTOS)

so as to provide a performance guarantee for task execution. There

are many RTOSs with di�erent architectures.

From these RTOSs, we have selected an RTOS called Mbed™ OS

that is optimized for MCUs with a Cortex®-M processor. Mbed™ OS

provides a useful platform that supports firmware developers in

system architecting. The following paragraphs describe Mbed™ OS

and its platform.

Mbed™ OS inherits the conventional RTOS architecture as well as

basic functions that have been provided by Arm Limited, including

inter-task communication and resource-sharing functions. To use

Mbed™ OS, firmware developers need to port Mbed™ OS to the

target board with a Cortex®-M-based MCU and the DAPLink debug

interface and obtain certification from Arm Limited. DAPLink

connects the certified board with a firmware development

platform available with Arm’s cloud services. This firmware

development platform is one of the key features of Mbed™ OS.

Another feature of Mbed™ OS is the Arm® Pelion™ IoT Platform, a

cloud service that facilitates the connection of IoT devices running

Mbed™ OS to a network. Pelion™ IoT Platform provides functions

to establish and manage the network connections of IoT devices

and to build secure communication links using Arm’s Mbed™ TLS

(Transport Layer Security) that provides cryptographic communication

functions (Figure 1). Mbed™ TLS supports the latest cryptographic

algorithms and provides basic network security functions, for

example, using communication functions compliant with the

Transmission Control Protocol/Internet Protocol (TCP/IP).

These two features play a pivotal role in the platform for secure IoT

CPS are rapidly spreading, integrating information technology (IT),

factory automation (FA) innovations, and the Internet of Things

(IoT) that have evolved separately to date. IoT devices, which serve

as an interface between the cyber and physical worlds for CPS,

should provide secure network communication and a firmware

updating function without compromising either integrity or

availability. “Integrity” means guarding against improper

modification of firmware while “availability” means ensuring that

it remains in an operable state.

In the case of conventional MCUs for embedded devices, firmware

development for motors, machine tools, sensors, and other

system functions accounts for a large proportion of the total

workload. In contrast, MCUs for IoT devices, which require network

connectivity, impose a considerable workload on appliance

vendors for the development of firmware. Furthermore, security

requirements for IoT devices include a high level of availability in

addition to the prevention of system malfunctions and the

safeguarding of confidential information.

In consideration of these requirements, Toshiba Electronic Devices

& Storage Corporation has adopted Mbed™ OS from Arm Limited

for its MCUs with a Cortex®-M processor in order to achieve secure

network connection and reduce the development workload of

appliance vendors. In addition, we have developed a secure

firmware rotation technique as a di�erentiator for the MCU

hardware that provides a secure means of firmware updating

without compromising availability. This report outlines Mbed™ OS

and the newly developed secure firmware rotation technique.

devices requiring a network connection and help to achieve a

substantial reduction in the workloads for firmware development

and system operation.

Mbed™ OS can be used with our TX and TXZ families of MCUs with

a Cortex®-M0, Cortex®-M3, or Cortex®-M4 processor that are

suitable for a wide range of applications. The TX and TXZ families

include the TMPM46BF10FG with a Cortex®-M4 processor that is

well suited to serve as a secure platform for IoT devices (Figure 2).

The security engine incorporated in the TMPM46BF10FG helps to

enhance the throughput of cryptographic communications using

Mbed™ TLS.

©2020 Toshiba Electronic Devices & Storage Corporation

Technical Review

implemented in the MCUs for embedded devices according to the Tasks that require parallel and real-time execution are

objectives of system developers. Therefore, embedded systems

are typically designed to run a real-time operating system (RTOS)

so as to provide a performance guarantee for task execution. There

are many RTOSs with di�erent architectures.

From these RTOSs, we have selected an RTOS called Mbed™ OS

that is optimized for MCUs with a Cortex®-M processor. Mbed™ OS

provides a useful platform that supports firmware developers in

system architecting. The following paragraphs describe Mbed™ OS

and its platform.

Mbed™ OS inherits the conventional RTOS architecture as well as

basic functions that have been provided by Arm Limited, including

inter-task communication and resource-sharing functions. To use

Mbed™ OS, firmware developers need to port Mbed™ OS to the

target board with a Cortex®-M-based MCU and the DAPLink debug

interface and obtain certification from Arm Limited. DAPLink

connects the certified board with a firmware development

platform available with Arm’s cloud services. This firmware

development platform is one of the key features of Mbed™ OS.

Another feature of Mbed™ OS is the Arm® Pelion™ IoT Platform, a

cloud service that facilitates the connection of IoT devices running

Mbed™ OS to a network. Pelion™ IoT Platform provides functions

to establish and manage the network connections of IoT devices

and to build secure communication links using Arm’s Mbed™ TLS

(Transport Layer Security) that provides cryptographic communication

functions (Figure 1). Mbed™ TLS supports the latest cryptographic

algorithms and provides basic network security functions, for

example, using communication functions compliant with the

Transmission Control Protocol/Internet Protocol (TCP/IP).

These two features play a pivotal role in the platform for secure IoT

devices requiring a network connection and help to achieve a

substantial reduction in the workloads for firmware development

and system operation.

Mbed™ OS can be used with our TX and TXZ families of MCUs with

a Cortex®-M0, Cortex®-M3, or Cortex®-M4 processor that are

suitable for a wide range of applications. The TX and TXZ families

include the TMPM46BF10FG with a Cortex®-M4 processor that is

well suited to serve as a secure platform for IoT devices (Figure 2).

The security engine incorporated in the TMPM46BF10FG helps to

enhance the throughput of cryptographic communications using

Mbed™ TLS.

The TMPM46BF10FG incorporates various functions necessary to create
secure IoT devices, including computing units, various input/output(I/O)
interfaces, flash memory, and a security engine.

PLL/CG : phase-locked loop/clock generator
I-OSC : internal oscillator
LVD : low-voltage detect
RTC : real-time clock
WDT : watchdog timer
MPT : multi-purpose timer
GPIO : general purpose input/output
DMAC : direct memory access controller
SRAM : static RAM
I2C : inter-integrated circuit
SIO/UART : serial input output/universal asynchronous receiver transmitter
SSP : synchronous serial port
ADC : analog-digital converter

(a) TMPM46BF10FG

(b) Block diagram

8 MHz 32 kHz

Cortex®-M4

PLL/CG

I-OSC

Debug

LVD

RTC

WDT

MPT

GPIO SRAM

DMAC

Flash memory

Flash memory
controller

12-bit ADC

I2C

SIO/UART

Full UART

SSP

16-bit timer

Security
engine

Mbed™ OS

Security
function

Device
connection

function

Device
management

function

Date
center

Figure1. Configuration of so�ware platform applying
Mbed™ OS

Application

IoT device Gateway Web server

Mbed™
client

Pelion™ IoT
platform

Pelion™ IoT
platform

Mbed™ TLS

Web
service

applications

The use of Mbed™ OS for the MCUs for IoT devices makes it possible to
improve the e�iciency of firmware development and IoT device management
in tandem with the cloud services from Arm Limited.

Figure2. Block diagram of TMPM46BF10FG MCU with
Cortex®-M4

Technical Review

©2020 Toshiba Electronic Devices & Storage Corporation

3. Overview of the secure firmware rotation technique

tampered with. This is required to eliminate the possibility that a

so�ware vulnerability might be exploited by malware to tamper

with the so�ware program in flash memory a�er an authentic

firmware update is received. The term “so�ware vulnerabilities”

collectively refers to a type of system weakness that can be

exploited for security attacks. There are various types of so�ware

vulnerabilities such as arbitrary code execution. Arbitrary code

execution is triggered when a computer receives unintended

parameters from an attacker that are not usually used, causing

such data to be executed as part of an authentic so�ware program.

The malware delivered over a network might rewrite data in a

region of the flash memory in which a firmware update is to be

written. To remove such so�ware vulnerabilities, it is necessary to

remove all the e�ects of malware prior to the execution of the

firmware update and determine that it has not been tampered

with.

It should be noted that, even in the event of an arbitrary code

execution exploit, a computer recovers from its e�ects when it is

rebooted, as long as the tampered firmware remains in a static

RAM (SRAM). However, the e�ects of the arbitrary code execution

exploit persist if it alters the firmware update in flash memory. To

counter this threat, it is important to determine when and how to

perform a final verification of the firmware update to ensure that it

is completely free from tampering.

To prevent a malfunction, if even one bit of firmware has been

altered, such firmware should not be executed. This is because this

bit might indirectly a�ect an important conditional branch if it

holds a parameter that determines whether to branch to a

di�erent code path. An appropriate use of digital signature

technology for firmware makes it possible to detect and eliminate

such tampering.

However, an attacker’s intent might be to reduce the availability of

the target computer, or in other words, to make it unusable (by

destroying so�ware). In that case, rigorous tampering verification

makes it easier for the attacker to accomplish his/her purpose. It is

therefore di�icult to realize firmware that combines high levels of

integrity and availability.

3.2 Issues and requirements for
firmware updating

This section discusses the requirements for a firmware updating

function.

As described in Section 3.1, firmware updating is necessary to

address so�ware vulnerabilities in IoT devices. In consideration of

maintainability, the first requirement is the ability to remotely

update firmware without relying on on-site service personnel.

In small IoT devices, firmware is stored in and executed from flash

memory. This means an IoT device needs to provide a mechanism

to rewrite its flash memory. Therefore, the second requirement is to

address the threat of the exploitation of this mechanism by

attackers. It is necessary to prevent not only the execution of

malware sent by attackers but also the destruction of so�ware as

described in Section 3.1.

There are also requirements that should be satisfied because of

MCU constraints. PCs generally execute a so�ware program from

dynamic RAM (DRAM) a�er it is copied from flash memory to DRAM

whereas MCUs use execute-in-place (XIP), i.e., a method of

executing firmware word by word directly from flash memory

rather than copying it into SRAM. This is because the per-bit cost of

SRAM is much higher than that of flash memory. Many kinds of

firmware are executed without an OS or as a single integrated

image of an OS kernel and an application without a filesystem.

Therefore, firmware updating involves the rewriting of a set of

system programs. This is the third requirement.

The fourth requirement is a consideration for the lack of a

sophisticated privilege control function in low-end MCUs, i.e., an

ability to switch between privileged and non-privileged modes of

operation at arbitrary timing during execution.

The fi�h requirement is to ensure that a secure state can be

recovered even in the event of a vulnerability in an old version of

firmware being exploited for malware execution. This is possible by

guaranteeing secure firmware updating compliant with the second

3.1 Security threats to and constraints
on IoT devices

As described in Section 2, the use of Mbed™ OS for an existing MCU

facilitates the development of IoT devices with a network security

function. However, there are many security issues to be addressed

regarding IoT devices, including countermeasures for so�ware

vulnerabilities. It is not enough for critical control systems to

simply use Mbed™. In-depth security protection is also important

for these systems. The workload of firmware developers can be

further reduced by incorporating such additional security

measures into an MCU as one of the elements of a platform.

Since IoT devices interact with the physical world, their

malfunctions could cause personal or property damage. Access

control and other security functions are essential to protect IoT

devices from unauthorized access and thereby a malfunction. IoT

devices also require adequate levels of availability and reliability.

However, a function to block unauthorized access should not be

added inadvertently because it might reduce the availability of IoT

devices if use cases are missed. Examples of security functions for

non-IoT devices include login lockout for PCs, a feature that locks a

PC a�er a given number of unsuccessful password attempts.

Although this feature is useful to prevent security threats arising

from the use of stolen PCs, its downside is that it reduces a PC’s

availability if the user forgets its password and enters the wrong

password several times consecutively. Therefore, a login lockout

feature must be accompanied by a mechanism to unlock the

locked PC due to failed user authentication and issue a new

password.

One of the reasons that make it di�icult for the firmware of IoT

devices to achieve high levels of integrity and availability lies in the

need to obtain firmware updates via a network. Remote firmware

updating is a fundamental requirement for IoT devices not only to

enhance their functionality and correct bugs but also to fix

so�ware vulnerabilities and thereby maintain their security over

the long term. Since there are public guidelines for firmware

updating for smart meters and PC peripherals(1)(2), they are

increasingly equipped with a firmware updating function.

For firmware updating, it is essential to use a digital signature or

other means of identification so as to verify the authenticity of the

downloaded firmware update and to determine, prior to

execution, that the program in flash memory has not been

requirement.

When firmware is remotely updated in an environment that

satisfies all the above requirements, it is essential to verify the

firmware received via a network. A simple updating method

directly rewrites the firmware in flash memory while it is being

executed. However, if an IoT device is rebooted before the firmware

updating is completed, the IoT device will not function properly

a�er reboot. In case this occurs, many IoT devices retain one or

multiple firmware backups.

3.3 Development approach

In order to satisfy the five requirements described in Section 3.2,

the newly developed secure firmware rotation technique: (1)

allocates two firmware storage regions in flash memory; (2)

provides a support so�ware program called the ROM monitor that

is specifically designed for firmware verification and contained in

the on-chip mask ROM of an MCU; and (3) uses an MCU with a

simplified hardware access mechanism(3). This technique is

characterized by the ROM monitor contained in an untamperable

ROM region and an access control method that write-protects a

storage region for the verified firmware until the ROM monitor

completes the verification of the firmware update.

Figure 3 shows an outline of the secure firmware rotation

technique. The le�-hand side of Figure 3 indicates the MCU

condition before firmware updating while the right-hand side

shows the MCU condition a�er firmware updating. The flash

memory in which firmware is stored is partitioned into two regions,

A and B. Prior to updating, firmware1 in region A is being executed.

Since region A is write-protected, firmware1 cannot be modified.

On the other hand, region B, which is reserved for firmware

updating, is write-enabled so that a firmware update can be written

freely into region B. While firmware1 is being executed, a digital

signature is received via a network to guarantee the authenticity of

the firmware update. Following appropriate verification, the

firmware update is written into region B as firmware2.

A�er this write operation is completed, firmware1 sets the Updated

flag in flash memory to issue a reset and reboot the IoT device. The

ROM monitor is invoked upon reboot. At this time, the ROM monitor

has a privilege to freely access the entire flash memory. When the

ROM monitor determines that the Updated flag is set, it verifies the

digital signature in region B for firmware updating. If the

verification of the digital signature is successful, the ROM monitor

changes the access control settings for the flash memory.

Specifically, it write-protects region B and write-enables region A to

execute firmware2, i.e., the updated version of the firmware, in

region B. The right-hand side of Figure 3 shows this state. When a

need for firmware updating arises the next time, the roles of the

two flash memory regions revert to the state shown in the le�-hand

side, rotating the regions in which the latest firmware resides.

During the firmware updating process, the ROM monitor, which is

invoked a�er a reset, controls the selection of the version of

firmware to be verified and executed. For example, even if an attack

against a so�ware vulnerability causes the firmware to malfunction

temporarily, the possibility of malware execution can be eliminated

by rebooting an IoT device. Since the ROM monitor and firmware

rotation are not executed concurrently, the secure firmware

rotation technique can be applied to low-end MCUs without

privileged modes.

Furthermore, the secure firmware rotation technique allows secure

firmware updating even in the event of a zero-day attack, i.e., an

exploit that adversely a�ects an IoT device before its vendor learns

of the vulnerability or releases a firmware update. Since the secure

firmware rotation technique uses an independent ROM monitor for

firmware verification, it is not a�ected even when the old version of

firmware is attacked. If the vulnerability is fixed in the updated

version of firmware, the vulnerability is removed once an IoT device

is rebooted following the firmware verification by the ROM monitor.

Since the firmware region containing the old version of firmware is

write-protected until successful verification of a firmware update,

the old version of firmware is protected from destruction even if it

has any vulnerabilities. The rebooting of an IoT device and the

acquisition of a firmware update can be retried any number of

times until the firmware update is successfully verified by the ROM

monitor. It is true that remote firmware updating requires a longer

time per IoT device than on-site firmware updating, particularly

under influence of a cyberattack. However, the number of on-site

firmware updates that can be processed in parallel is constrained

by the number of available servicepersons whereas the number of

remote firmware updates is constrained by the network and server

capacities. Remote firmware updating is more e�icient in cases

where numerous sensor nodes or smart meters are connected to a

network.

3.4 Functional prototyping

We created functional hardware and so�ware prototypes

incorporating the secure firmware rotation technique using a

single-chip MCU with a Cortex®-R4 processor from Arm Limited and

on-chip flash memory (Figure4). We utilized a logic synthesis tool

to map the entire hardware design, including the Cortex®-R4

processor, to a FPGA. A function equivalent to the ROM monitor and

the firmware (i.e., an RTOS and an application) were implemented

as so�ware. The ROM monitor employs digital signatures using the

RSA-2048 and SHA-256 hash functions to verify the integrity of the

firmware update. The footprint of the ROM monitor was roughly 18

Kibytes (Kibyte: kibi (210) bytes), including digital signatures and

data. Electronic devices designed for long-term use have been

increasingly adopting RSA-3072 and SHA-384 with long keys. It is

estimated that the use of these cryptosystems will cause an

increase of only a few Kibytes in the size of the ROM monitor.

The functional prototypes demonstrated that the newly developed

secure firmware rotation technique works properly.

Technical Review

©2020 Toshiba Electronic Devices & Storage Corporation

tampered with. This is required to eliminate the possibility that a

so�ware vulnerability might be exploited by malware to tamper

with the so�ware program in flash memory a�er an authentic

firmware update is received. The term “so�ware vulnerabilities”

collectively refers to a type of system weakness that can be

exploited for security attacks. There are various types of so�ware

vulnerabilities such as arbitrary code execution. Arbitrary code

execution is triggered when a computer receives unintended

parameters from an attacker that are not usually used, causing

such data to be executed as part of an authentic so�ware program.

The malware delivered over a network might rewrite data in a

region of the flash memory in which a firmware update is to be

written. To remove such so�ware vulnerabilities, it is necessary to

remove all the e�ects of malware prior to the execution of the

firmware update and determine that it has not been tampered

with.

It should be noted that, even in the event of an arbitrary code

execution exploit, a computer recovers from its e�ects when it is

rebooted, as long as the tampered firmware remains in a static

RAM (SRAM). However, the e�ects of the arbitrary code execution

exploit persist if it alters the firmware update in flash memory. To

counter this threat, it is important to determine when and how to

perform a final verification of the firmware update to ensure that it

is completely free from tampering.

To prevent a malfunction, if even one bit of firmware has been

altered, such firmware should not be executed. This is because this

bit might indirectly a�ect an important conditional branch if it

holds a parameter that determines whether to branch to a

di�erent code path. An appropriate use of digital signature

technology for firmware makes it possible to detect and eliminate

such tampering.

However, an attacker’s intent might be to reduce the availability of

the target computer, or in other words, to make it unusable (by

destroying so�ware). In that case, rigorous tampering verification

makes it easier for the attacker to accomplish his/her purpose. It is

therefore di�icult to realize firmware that combines high levels of

integrity and availability.

3.2 Issues and requirements for
firmware updating

This section discusses the requirements for a firmware updating

function.

As described in Section 3.1, firmware updating is necessary to

address so�ware vulnerabilities in IoT devices. In consideration of

maintainability, the first requirement is the ability to remotely

update firmware without relying on on-site service personnel.

In small IoT devices, firmware is stored in and executed from flash

memory. This means an IoT device needs to provide a mechanism

to rewrite its flash memory. Therefore, the second requirement is to

address the threat of the exploitation of this mechanism by

attackers. It is necessary to prevent not only the execution of

malware sent by attackers but also the destruction of so�ware as

described in Section 3.1.

There are also requirements that should be satisfied because of

MCU constraints. PCs generally execute a so�ware program from

dynamic RAM (DRAM) a�er it is copied from flash memory to DRAM

whereas MCUs use execute-in-place (XIP), i.e., a method of

executing firmware word by word directly from flash memory

rather than copying it into SRAM. This is because the per-bit cost of

SRAM is much higher than that of flash memory. Many kinds of

firmware are executed without an OS or as a single integrated

image of an OS kernel and an application without a filesystem.

Therefore, firmware updating involves the rewriting of a set of

system programs. This is the third requirement.

The fourth requirement is a consideration for the lack of a

sophisticated privilege control function in low-end MCUs, i.e., an

ability to switch between privileged and non-privileged modes of

operation at arbitrary timing during execution.

The fi�h requirement is to ensure that a secure state can be

recovered even in the event of a vulnerability in an old version of

firmware being exploited for malware execution. This is possible by

guaranteeing secure firmware updating compliant with the second

3.1 Security threats to and constraints
on IoT devices

As described in Section 2, the use of Mbed™ OS for an existing MCU

facilitates the development of IoT devices with a network security

function. However, there are many security issues to be addressed

regarding IoT devices, including countermeasures for so�ware

vulnerabilities. It is not enough for critical control systems to

simply use Mbed™. In-depth security protection is also important

for these systems. The workload of firmware developers can be

further reduced by incorporating such additional security

measures into an MCU as one of the elements of a platform.

Since IoT devices interact with the physical world, their

malfunctions could cause personal or property damage. Access

control and other security functions are essential to protect IoT

devices from unauthorized access and thereby a malfunction. IoT

devices also require adequate levels of availability and reliability.

However, a function to block unauthorized access should not be

added inadvertently because it might reduce the availability of IoT

devices if use cases are missed. Examples of security functions for

non-IoT devices include login lockout for PCs, a feature that locks a

PC a�er a given number of unsuccessful password attempts.

Although this feature is useful to prevent security threats arising

from the use of stolen PCs, its downside is that it reduces a PC’s

availability if the user forgets its password and enters the wrong

password several times consecutively. Therefore, a login lockout

feature must be accompanied by a mechanism to unlock the

locked PC due to failed user authentication and issue a new

password.

One of the reasons that make it di�icult for the firmware of IoT

devices to achieve high levels of integrity and availability lies in the

need to obtain firmware updates via a network. Remote firmware

updating is a fundamental requirement for IoT devices not only to

enhance their functionality and correct bugs but also to fix

so�ware vulnerabilities and thereby maintain their security over

the long term. Since there are public guidelines for firmware

updating for smart meters and PC peripherals(1)(2), they are

increasingly equipped with a firmware updating function.

For firmware updating, it is essential to use a digital signature or

other means of identification so as to verify the authenticity of the

downloaded firmware update and to determine, prior to

execution, that the program in flash memory has not been

requirement.

When firmware is remotely updated in an environment that

satisfies all the above requirements, it is essential to verify the

firmware received via a network. A simple updating method

directly rewrites the firmware in flash memory while it is being

executed. However, if an IoT device is rebooted before the firmware

updating is completed, the IoT device will not function properly

a�er reboot. In case this occurs, many IoT devices retain one or

multiple firmware backups.

3.3 Development approach

In order to satisfy the five requirements described in Section 3.2,

the newly developed secure firmware rotation technique: (1)

allocates two firmware storage regions in flash memory; (2)

provides a support so�ware program called the ROM monitor that

is specifically designed for firmware verification and contained in

the on-chip mask ROM of an MCU; and (3) uses an MCU with a

simplified hardware access mechanism(3). This technique is

characterized by the ROM monitor contained in an untamperable

ROM region and an access control method that write-protects a

storage region for the verified firmware until the ROM monitor

completes the verification of the firmware update.

Figure 3 shows an outline of the secure firmware rotation

technique. The le�-hand side of Figure 3 indicates the MCU

condition before firmware updating while the right-hand side

shows the MCU condition a�er firmware updating. The flash

memory in which firmware is stored is partitioned into two regions,

A and B. Prior to updating, firmware1 in region A is being executed.

Since region A is write-protected, firmware1 cannot be modified.

On the other hand, region B, which is reserved for firmware

updating, is write-enabled so that a firmware update can be written

freely into region B. While firmware1 is being executed, a digital

signature is received via a network to guarantee the authenticity of

the firmware update. Following appropriate verification, the

firmware update is written into region B as firmware2.

A�er this write operation is completed, firmware1 sets the Updated

flag in flash memory to issue a reset and reboot the IoT device. The

ROM monitor is invoked upon reboot. At this time, the ROM monitor

has a privilege to freely access the entire flash memory. When the

ROM monitor determines that the Updated flag is set, it verifies the

digital signature in region B for firmware updating. If the

verification of the digital signature is successful, the ROM monitor

changes the access control settings for the flash memory.

Specifically, it write-protects region B and write-enables region A to

execute firmware2, i.e., the updated version of the firmware, in

region B. The right-hand side of Figure 3 shows this state. When a

need for firmware updating arises the next time, the roles of the

two flash memory regions revert to the state shown in the le�-hand

side, rotating the regions in which the latest firmware resides.

During the firmware updating process, the ROM monitor, which is

invoked a�er a reset, controls the selection of the version of

firmware to be verified and executed. For example, even if an attack

against a so�ware vulnerability causes the firmware to malfunction

temporarily, the possibility of malware execution can be eliminated

by rebooting an IoT device. Since the ROM monitor and firmware

rotation are not executed concurrently, the secure firmware

rotation technique can be applied to low-end MCUs without

privileged modes.

Furthermore, the secure firmware rotation technique allows secure

firmware updating even in the event of a zero-day attack, i.e., an

exploit that adversely a�ects an IoT device before its vendor learns

of the vulnerability or releases a firmware update. Since the secure

firmware rotation technique uses an independent ROM monitor for

firmware verification, it is not a�ected even when the old version of

firmware is attacked. If the vulnerability is fixed in the updated

version of firmware, the vulnerability is removed once an IoT device

is rebooted following the firmware verification by the ROM monitor.

Since the firmware region containing the old version of firmware is

write-protected until successful verification of a firmware update,

the old version of firmware is protected from destruction even if it

has any vulnerabilities. The rebooting of an IoT device and the

acquisition of a firmware update can be retried any number of

times until the firmware update is successfully verified by the ROM

monitor. It is true that remote firmware updating requires a longer

time per IoT device than on-site firmware updating, particularly

under influence of a cyberattack. However, the number of on-site

firmware updates that can be processed in parallel is constrained

by the number of available servicepersons whereas the number of

remote firmware updates is constrained by the network and server

capacities. Remote firmware updating is more e�icient in cases

where numerous sensor nodes or smart meters are connected to a

network.

3.4 Functional prototyping

We created functional hardware and so�ware prototypes

incorporating the secure firmware rotation technique using a

single-chip MCU with a Cortex®-R4 processor from Arm Limited and

on-chip flash memory (Figure4). We utilized a logic synthesis tool

to map the entire hardware design, including the Cortex®-R4

processor, to a FPGA. A function equivalent to the ROM monitor and

the firmware (i.e., an RTOS and an application) were implemented

as so�ware. The ROM monitor employs digital signatures using the

RSA-2048 and SHA-256 hash functions to verify the integrity of the

firmware update. The footprint of the ROM monitor was roughly 18

Kibytes (Kibyte: kibi (210) bytes), including digital signatures and

data. Electronic devices designed for long-term use have been

increasingly adopting RSA-3072 and SHA-384 with long keys. It is

estimated that the use of these cryptosystems will cause an

increase of only a few Kibytes in the size of the ROM monitor.

The functional prototypes demonstrated that the newly developed

secure firmware rotation technique works properly.

Figure 3. Outline of secure firmware rotation technique
The secure firmware rotation technique uses two firmware storage regions in flash memory. One of these regions is write-protected for bootup while the other one is
write-enabled for firmware updating. The ROM monitor switches these regions only when it is determined that the firmware written into the updating region is authentic.

Firmware storage region
A

(for boot-up)

Firmware storage region
B

(for firmware updating)

Writing
of RTOSWrite-protected

MCU MCU
Write-protectedWrite-enabled Write-enabled

Hardware
(Flash memory, access control)

Firmware storage region
A

(for boot-up)

Firmware storage region
B

(for firmware updating)

Writing
of RTOS

ROM monitor
(Digital signature verification and setup change functions)

Successful verification
of code written to B

Successful verification
of code written to A

Hardware
(Flash memory, access control)

ROM monitor
(Digital signature verification and setup change functions)

Technical Review

©2020 Toshiba Electronic Devices & Storage Corporation

tampered with. This is required to eliminate the possibility that a

so�ware vulnerability might be exploited by malware to tamper

with the so�ware program in flash memory a�er an authentic

firmware update is received. The term “so�ware vulnerabilities”

collectively refers to a type of system weakness that can be

exploited for security attacks. There are various types of so�ware

vulnerabilities such as arbitrary code execution. Arbitrary code

execution is triggered when a computer receives unintended

parameters from an attacker that are not usually used, causing

such data to be executed as part of an authentic so�ware program.

The malware delivered over a network might rewrite data in a

region of the flash memory in which a firmware update is to be

written. To remove such so�ware vulnerabilities, it is necessary to

remove all the e�ects of malware prior to the execution of the

firmware update and determine that it has not been tampered

with.

It should be noted that, even in the event of an arbitrary code

execution exploit, a computer recovers from its e�ects when it is

rebooted, as long as the tampered firmware remains in a static

RAM (SRAM). However, the e�ects of the arbitrary code execution

exploit persist if it alters the firmware update in flash memory. To

counter this threat, it is important to determine when and how to

perform a final verification of the firmware update to ensure that it

is completely free from tampering.

To prevent a malfunction, if even one bit of firmware has been

altered, such firmware should not be executed. This is because this

bit might indirectly a�ect an important conditional branch if it

holds a parameter that determines whether to branch to a

di�erent code path. An appropriate use of digital signature

technology for firmware makes it possible to detect and eliminate

such tampering.

However, an attacker’s intent might be to reduce the availability of

the target computer, or in other words, to make it unusable (by

destroying so�ware). In that case, rigorous tampering verification

makes it easier for the attacker to accomplish his/her purpose. It is

therefore di�icult to realize firmware that combines high levels of

integrity and availability.

3.2 Issues and requirements for
firmware updating

This section discusses the requirements for a firmware updating

function.

As described in Section 3.1, firmware updating is necessary to

address so�ware vulnerabilities in IoT devices. In consideration of

maintainability, the first requirement is the ability to remotely

update firmware without relying on on-site service personnel.

In small IoT devices, firmware is stored in and executed from flash

memory. This means an IoT device needs to provide a mechanism

to rewrite its flash memory. Therefore, the second requirement is to

address the threat of the exploitation of this mechanism by

attackers. It is necessary to prevent not only the execution of

malware sent by attackers but also the destruction of so�ware as

described in Section 3.1.

There are also requirements that should be satisfied because of

MCU constraints. PCs generally execute a so�ware program from

dynamic RAM (DRAM) a�er it is copied from flash memory to DRAM

whereas MCUs use execute-in-place (XIP), i.e., a method of

executing firmware word by word directly from flash memory

rather than copying it into SRAM. This is because the per-bit cost of

SRAM is much higher than that of flash memory. Many kinds of

firmware are executed without an OS or as a single integrated

image of an OS kernel and an application without a filesystem.

Therefore, firmware updating involves the rewriting of a set of

system programs. This is the third requirement.

The fourth requirement is a consideration for the lack of a

sophisticated privilege control function in low-end MCUs, i.e., an

ability to switch between privileged and non-privileged modes of

operation at arbitrary timing during execution.

The fi�h requirement is to ensure that a secure state can be

recovered even in the event of a vulnerability in an old version of

firmware being exploited for malware execution. This is possible by

guaranteeing secure firmware updating compliant with the second

3.1 Security threats to and constraints
on IoT devices

As described in Section 2, the use of Mbed™ OS for an existing MCU

facilitates the development of IoT devices with a network security

function. However, there are many security issues to be addressed

regarding IoT devices, including countermeasures for so�ware

vulnerabilities. It is not enough for critical control systems to

simply use Mbed™. In-depth security protection is also important

for these systems. The workload of firmware developers can be

further reduced by incorporating such additional security

measures into an MCU as one of the elements of a platform.

Since IoT devices interact with the physical world, their

malfunctions could cause personal or property damage. Access

control and other security functions are essential to protect IoT

devices from unauthorized access and thereby a malfunction. IoT

devices also require adequate levels of availability and reliability.

However, a function to block unauthorized access should not be

added inadvertently because it might reduce the availability of IoT

devices if use cases are missed. Examples of security functions for

non-IoT devices include login lockout for PCs, a feature that locks a

PC a�er a given number of unsuccessful password attempts.

Although this feature is useful to prevent security threats arising

from the use of stolen PCs, its downside is that it reduces a PC’s

availability if the user forgets its password and enters the wrong

password several times consecutively. Therefore, a login lockout

feature must be accompanied by a mechanism to unlock the

locked PC due to failed user authentication and issue a new

password.

One of the reasons that make it di�icult for the firmware of IoT

devices to achieve high levels of integrity and availability lies in the

need to obtain firmware updates via a network. Remote firmware

updating is a fundamental requirement for IoT devices not only to

enhance their functionality and correct bugs but also to fix

so�ware vulnerabilities and thereby maintain their security over

the long term. Since there are public guidelines for firmware

updating for smart meters and PC peripherals(1)(2), they are

increasingly equipped with a firmware updating function.

For firmware updating, it is essential to use a digital signature or

other means of identification so as to verify the authenticity of the

downloaded firmware update and to determine, prior to

execution, that the program in flash memory has not been

requirement.

When firmware is remotely updated in an environment that

satisfies all the above requirements, it is essential to verify the

firmware received via a network. A simple updating method

directly rewrites the firmware in flash memory while it is being

executed. However, if an IoT device is rebooted before the firmware

updating is completed, the IoT device will not function properly

a�er reboot. In case this occurs, many IoT devices retain one or

multiple firmware backups.

3.3 Development approach

In order to satisfy the five requirements described in Section 3.2,

the newly developed secure firmware rotation technique: (1)

allocates two firmware storage regions in flash memory; (2)

provides a support so�ware program called the ROM monitor that

is specifically designed for firmware verification and contained in

the on-chip mask ROM of an MCU; and (3) uses an MCU with a

simplified hardware access mechanism(3). This technique is

characterized by the ROM monitor contained in an untamperable

ROM region and an access control method that write-protects a

storage region for the verified firmware until the ROM monitor

completes the verification of the firmware update.

Figure 3 shows an outline of the secure firmware rotation

technique. The le�-hand side of Figure 3 indicates the MCU

condition before firmware updating while the right-hand side

shows the MCU condition a�er firmware updating. The flash

memory in which firmware is stored is partitioned into two regions,

A and B. Prior to updating, firmware1 in region A is being executed.

Since region A is write-protected, firmware1 cannot be modified.

On the other hand, region B, which is reserved for firmware

updating, is write-enabled so that a firmware update can be written

freely into region B. While firmware1 is being executed, a digital

signature is received via a network to guarantee the authenticity of

the firmware update. Following appropriate verification, the

firmware update is written into region B as firmware2.

A�er this write operation is completed, firmware1 sets the Updated

flag in flash memory to issue a reset and reboot the IoT device. The

ROM monitor is invoked upon reboot. At this time, the ROM monitor

has a privilege to freely access the entire flash memory. When the

ROM monitor determines that the Updated flag is set, it verifies the

digital signature in region B for firmware updating. If the

verification of the digital signature is successful, the ROM monitor

changes the access control settings for the flash memory.

Specifically, it write-protects region B and write-enables region A to

execute firmware2, i.e., the updated version of the firmware, in

region B. The right-hand side of Figure 3 shows this state. When a

need for firmware updating arises the next time, the roles of the

two flash memory regions revert to the state shown in the le�-hand

side, rotating the regions in which the latest firmware resides.

During the firmware updating process, the ROM monitor, which is

invoked a�er a reset, controls the selection of the version of

firmware to be verified and executed. For example, even if an attack

against a so�ware vulnerability causes the firmware to malfunction

temporarily, the possibility of malware execution can be eliminated

by rebooting an IoT device. Since the ROM monitor and firmware

rotation are not executed concurrently, the secure firmware

rotation technique can be applied to low-end MCUs without

privileged modes.

Furthermore, the secure firmware rotation technique allows secure

firmware updating even in the event of a zero-day attack, i.e., an

exploit that adversely a�ects an IoT device before its vendor learns

of the vulnerability or releases a firmware update. Since the secure

firmware rotation technique uses an independent ROM monitor for

firmware verification, it is not a�ected even when the old version of

firmware is attacked. If the vulnerability is fixed in the updated

version of firmware, the vulnerability is removed once an IoT device

is rebooted following the firmware verification by the ROM monitor.

Since the firmware region containing the old version of firmware is

write-protected until successful verification of a firmware update,

the old version of firmware is protected from destruction even if it

has any vulnerabilities. The rebooting of an IoT device and the

acquisition of a firmware update can be retried any number of

times until the firmware update is successfully verified by the ROM

monitor. It is true that remote firmware updating requires a longer

time per IoT device than on-site firmware updating, particularly

under influence of a cyberattack. However, the number of on-site

firmware updates that can be processed in parallel is constrained

by the number of available servicepersons whereas the number of

remote firmware updates is constrained by the network and server

capacities. Remote firmware updating is more e�icient in cases

where numerous sensor nodes or smart meters are connected to a

network.

3.4 Functional prototyping

We created functional hardware and so�ware prototypes

incorporating the secure firmware rotation technique using a

single-chip MCU with a Cortex®-R4 processor from Arm Limited and

on-chip flash memory (Figure4). We utilized a logic synthesis tool

to map the entire hardware design, including the Cortex®-R4

processor, to a FPGA. A function equivalent to the ROM monitor and

the firmware (i.e., an RTOS and an application) were implemented

as so�ware. The ROM monitor employs digital signatures using the

RSA-2048 and SHA-256 hash functions to verify the integrity of the

firmware update. The footprint of the ROM monitor was roughly 18

Kibytes (Kibyte: kibi (210) bytes), including digital signatures and

data. Electronic devices designed for long-term use have been

increasingly adopting RSA-3072 and SHA-384 with long keys. It is

estimated that the use of these cryptosystems will cause an

increase of only a few Kibytes in the size of the ROM monitor.

The functional prototypes demonstrated that the newly developed

secure firmware rotation technique works properly.

Figure4. Block diagram of prototype MCU incorporating
secure firmware rotation technique

A prototype MCU with a Cortex®-R4 processor and on-chip flash memory was
implemented as an FPGA to verify the function of the secure firmware rotation
technique.

MCU Power-on reset

On-chip flash memory

WDT
Reset,
NMI,
destination
address
detection

Interfaces with
networks and

peripheral devices

NMI : non-maskable interrupt (interrupt that cannot be masked by so�ware)
I/F : interface

SRAM

Mode
-dependent
access control

System bus

Firmware
storage region

A

Firmware
storage region

B

ROM monitor

Register file for next boot-up region

Address decoder

CPU

Technical Review

©2020 Toshiba Electronic Devices & Storage Corporation

https://toshiba.semicon-storage.com/

4. Conclusion

This report described our initiatives for MCUs for IoT devices that

provide an interface between the cyber and physical worlds

interlinked by CPS. The application of Mbed™ OS to our existing

MCUs makes it possible to establish and manage the network

connections of IoT devices easily and securely. The secure firmware

rotation technique, a di�erentiator for the MCU hardware, enables

secure firmware updating without compromising the availability of

IoT devices. We are currently working on its commercialization.

In addition to the security of IoT devices discussed herein, digital

authentication and other trust services are important for the

realization of secure IoT devices. We have concluded a business

alliance with Cybertrust Japan Co., Ltd. that has a proven track

record in digital authentication and commenced studies toward

the establishment of a comprehensive trust service platform using

an MCU that will be newly developed as a key component(4).

To contribute to the enhancement of the security of CPS, we will

continue to develop MCU-related technologies that meet market

requirements and provide MCUs designed to protect the integrity

and availability of IoT devices.

References
(1) Japanese Electrotechnical Standards and Codes Committee. 2016. JEAG1101-2016. “Guidelines for Smart Meter System Security.”

(2) National Institute of Standards and Technology (NIST). 2018. NIST Special Publication 800-193:2018. “Platform Firmware Resiliency Guidelines.”

(3) Hashimoto, M. et al. 2016. “Security technologies for non-volatile memory in IoT devices: Mechanisms for on-chip MCU and o�-chip memory system.” IEICE
technical report. 116(240): 37‒42.

(4) Toshiba Electronic Devices & Storage Corporation, Cybertrust Japan Co., Ltd. 2019. “Toshiba Electronic Devices & Storage Corporation and Cybertrust Japan
Co., Ltd. Conclude a Deal on Trust Services for IoT Equipment (in Japanese).” News release / Products / Public Information. Accessed July 12, 2019.
https://toshiba.semicon-storage.com/jp/company/news/news-topics/2019/07/micro-20190709-1.html.

·Arm, Cortex, Mbed, and Pelion are trademarks or registered trademarks of Arm Limited (or its subsidiary) in the US and/or elsewhere.

