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Technical Review

Secure MCU Platform Techniques to 
Ensure Security of Cyber-Physical 
Systems
With the rapid spread of Internet of Things (IoT) devices as key components for the construction of cyber-physical 
systems (CPS) in recent years, demand has been growing for a microcontroller unit (MCU) for IoT devices with both a 
secure communication function for connecting to the network and a firmware update function to enhance integrity 
and availability. 
Toshiba Electronic Devices & Storage Corporation has been implementing measures to address this need through the 
development and introduction of the following techniques: (1) introduction of a so�ware platform technique using 
the Arm® Mbed™ OS, which is an open-source embedded operating system (OS), to its MCUs with an Arm® Cortex®-M 
processor in order to achieve secure connection to the network and reduction of the burden on developers, and (2) 
development of a secure firmware rotation technique using redundant flash memories for firmware updates that can 
protect IoT devices against cyberattacks in order to achieve a balance between integrity and availability. We have 
confirmed the e�ectiveness of the secure firmware rotation technique through experiments on functional prototype 
hardware and so�ware using a field-programmable gate array (FPGA). 

1. Introduction

implemented in the MCUs for embedded devices according to the Tasks that require parallel and real-time execution are 

2. Application of Mbed™ OS to MCUs with a Cortex®-M processor 

objectives of system developers. Therefore, embedded systems 

are typically designed to run a real-time operating system (RTOS) 

so as to provide a performance guarantee for task execution. There 

are many RTOSs with di�erent architectures. 

From these RTOSs, we have selected an RTOS called Mbed™ OS 

that is optimized for MCUs with a Cortex®-M processor. Mbed™ OS 

provides a useful platform that supports firmware developers in 

system architecting. The following paragraphs describe Mbed™ OS 

and its platform. 

Mbed™ OS inherits the conventional RTOS architecture as well as 

basic functions that have been provided by Arm Limited, including 

inter-task communication and resource-sharing functions. To use 

Mbed™ OS, firmware developers need to port Mbed™ OS to the 

target board with a Cortex®-M-based MCU and the DAPLink debug 

interface and obtain certification from Arm Limited. DAPLink 

connects the certified board with a firmware development 

platform available with Arm’s cloud services. This firmware 

development platform is one of the key features of Mbed™ OS. 

Another feature of Mbed™ OS is the Arm® Pelion™ IoT Platform, a 

cloud service that facilitates the connection of IoT devices running 

Mbed™ OS to a network. Pelion™ IoT Platform provides functions 

to establish and manage the network connections of IoT devices 

and to build secure communication links using Arm’s Mbed™ TLS 

(Transport Layer Security) that provides cryptographic communication 

functions (Figure 1). Mbed™ TLS supports the latest cryptographic 

algorithms and provides basic network security functions, for 

example, using communication functions compliant with the 

Transmission Control Protocol/Internet Protocol (TCP/IP). 

These two features play a pivotal role in the platform for secure IoT 

CPS are rapidly spreading, integrating information technology (IT), 

factory automation (FA) innovations, and the Internet of Things 

(IoT) that have evolved separately to date. IoT devices, which serve 

as an interface between the cyber and physical worlds for CPS, 

should provide secure network communication and a firmware 

updating function without compromising either integrity or 

availability. “Integrity” means guarding against improper 

modification of firmware while “availability” means ensuring that 

it remains in an operable state. 

In the case of conventional MCUs for embedded devices, firmware 

development for motors, machine tools, sensors, and other 

system functions accounts for a large proportion of the total 

workload. In contrast, MCUs for IoT devices, which require network 

connectivity, impose a considerable workload on appliance 

vendors for the development of firmware. Furthermore, security 

requirements for IoT devices include a high level of availability in 

addition to the prevention of system malfunctions and the 

safeguarding of confidential information. 

In consideration of these requirements, Toshiba Electronic Devices 

& Storage Corporation has adopted Mbed™ OS from Arm Limited 

for its MCUs with a Cortex®-M processor in order to achieve secure 

network connection and reduce the development workload of 

appliance vendors. In addition, we have developed a secure 

firmware rotation technique as a di�erentiator for the MCU 

hardware that provides a secure means of firmware updating 

without compromising availability. This report outlines Mbed™ OS 

and the newly developed secure firmware rotation technique. 

devices requiring a network connection and help to achieve a 

substantial reduction in the workloads for firmware development 

and system operation. 

Mbed™ OS can be used with our TX and TXZ families of MCUs with 

a Cortex®-M0, Cortex®-M3, or Cortex®-M4 processor that are 

suitable for a wide range of applications. The TX and TXZ families 

include the TMPM46BF10FG with a Cortex®-M4 processor that is 

well suited to serve as a secure platform for IoT devices (Figure 2). 

The security engine incorporated in the TMPM46BF10FG helps to 

enhance the throughput of cryptographic communications using 

Mbed™ TLS.
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objectives of system developers. Therefore, embedded systems 

are typically designed to run a real-time operating system (RTOS) 

so as to provide a performance guarantee for task execution. There 

are many RTOSs with di�erent architectures. 

From these RTOSs, we have selected an RTOS called Mbed™ OS 

that is optimized for MCUs with a Cortex®-M processor. Mbed™ OS 

provides a useful platform that supports firmware developers in 

system architecting. The following paragraphs describe Mbed™ OS 

and its platform. 

Mbed™ OS inherits the conventional RTOS architecture as well as 

basic functions that have been provided by Arm Limited, including 

inter-task communication and resource-sharing functions. To use 

Mbed™ OS, firmware developers need to port Mbed™ OS to the 

target board with a Cortex®-M-based MCU and the DAPLink debug 

interface and obtain certification from Arm Limited. DAPLink 

connects the certified board with a firmware development 

platform available with Arm’s cloud services. This firmware 

development platform is one of the key features of Mbed™ OS. 

Another feature of Mbed™ OS is the Arm® Pelion™ IoT Platform, a 

cloud service that facilitates the connection of IoT devices running 

Mbed™ OS to a network. Pelion™ IoT Platform provides functions 

to establish and manage the network connections of IoT devices 

and to build secure communication links using Arm’s Mbed™ TLS 

(Transport Layer Security) that provides cryptographic communication 

functions (Figure 1). Mbed™ TLS supports the latest cryptographic 

algorithms and provides basic network security functions, for 

example, using communication functions compliant with the 

Transmission Control Protocol/Internet Protocol (TCP/IP). 

These two features play a pivotal role in the platform for secure IoT 

devices requiring a network connection and help to achieve a 

substantial reduction in the workloads for firmware development 

and system operation. 

Mbed™ OS can be used with our TX and TXZ families of MCUs with 

a Cortex®-M0, Cortex®-M3, or Cortex®-M4 processor that are 

suitable for a wide range of applications. The TX and TXZ families 

include the TMPM46BF10FG with a Cortex®-M4 processor that is 

well suited to serve as a secure platform for IoT devices (Figure 2). 

The security engine incorporated in the TMPM46BF10FG helps to 

enhance the throughput of cryptographic communications using 

Mbed™ TLS.

The TMPM46BF10FG incorporates various functions necessary to create 
secure IoT devices, including computing units, various input/output(I/O) 
interfaces, flash memory, and a security engine.

PLL/CG : phase-locked loop/clock generator
I-OSC : internal oscillator
LVD : low-voltage detect
RTC : real-time clock
WDT : watchdog timer
MPT : multi-purpose timer
GPIO : general purpose input/output
DMAC : direct memory access controller
SRAM : static RAM
I2C : inter-integrated circuit
SIO/UART : serial input output/universal asynchronous receiver transmitter
SSP : synchronous serial port
ADC : analog-digital converter

(a) TMPM46BF10FG

(b) Block diagram
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Mbed™ OS

Application

IoT device Gateway Web server

Mbed™
client

Pelion™ IoT
platform

Pelion™ IoT
platform

Mbed™ TLS

Web
service

applications

The use of Mbed™ OS for the MCUs for IoT devices makes it possible to 
improve the e�iciency of firmware development and IoT device management 
in tandem with the cloud services from Arm Limited.

Figure2. Block diagram of TMPM46BF10FG MCU with 
Cortex®-M4
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3. Overview of the secure firmware rotation technique 

tampered with. This is required to eliminate the possibility that a 

so�ware vulnerability might be exploited by malware to tamper 

with the so�ware program in flash memory a�er an authentic 

firmware update is received. The term “so�ware vulnerabilities” 

collectively refers to a type of system weakness that can be 

exploited for security attacks. There are various types of so�ware 

vulnerabilities such as arbitrary code execution. Arbitrary code 

execution is triggered when a computer receives unintended 

parameters from an attacker that are not usually used, causing 

such data to be executed as part of an authentic so�ware program. 

The malware delivered over a network might rewrite data in a 

region of the flash memory in which a firmware update is to be 

written. To remove such so�ware vulnerabilities, it is necessary to 

remove all the e�ects of malware prior to the execution of the 

firmware update and determine that it has not been tampered 

with. 

It should be noted that, even in the event of an arbitrary code 

execution exploit, a computer recovers from its e�ects when it is 

rebooted, as long as the tampered firmware remains in a static 

RAM (SRAM). However, the e�ects of the arbitrary code execution 

exploit persist if it alters the firmware update in flash memory. To 

counter this threat, it is important to determine when and how to 

perform a final verification of the firmware update to ensure that it 

is completely free from tampering.  

To prevent a malfunction, if even one bit of firmware has been 

altered, such firmware should not be executed. This is because this 

bit might indirectly a�ect an important conditional branch if it 

holds a parameter that determines whether to branch to a 

di�erent code path. An appropriate use of digital signature 

technology for firmware makes it possible to detect and eliminate 

such tampering. 

However, an attacker’s intent might be to reduce the availability of 

the target computer, or in other words, to make it unusable (by 

destroying so�ware). In that case, rigorous tampering verification 

makes it easier for the attacker to accomplish his/her purpose. It is 

therefore di�icult to realize firmware that combines high levels of 

integrity and availability. 

3.2 Issues and requirements for 
firmware updating    

This section discusses the requirements for a firmware updating 

function. 

As described in Section 3.1, firmware updating is necessary to 

address so�ware vulnerabilities in IoT devices. In consideration of 

maintainability, the first requirement is the ability to remotely 

update firmware without relying on on-site service personnel. 

In small IoT devices, firmware is stored in and executed from flash 

memory. This means an IoT device needs to provide a mechanism 

to rewrite its flash memory. Therefore, the second requirement is to 

address the threat of the exploitation of this mechanism by 

attackers. It is necessary to prevent not only the execution of 

malware sent by attackers but also the destruction of so�ware as 

described in Section 3.1.  

There are also requirements that should be satisfied because of 

MCU constraints. PCs generally execute a so�ware program from 

dynamic RAM (DRAM) a�er it is copied from flash memory to DRAM 

whereas MCUs use execute-in-place (XIP), i.e., a method of 

executing firmware word by word directly from flash memory 

rather than copying it into SRAM. This is because the per-bit cost of 

SRAM is much higher than that of flash memory. Many kinds of 

firmware are executed without an OS or as a single integrated 

image of an OS kernel and an application without a filesystem. 

Therefore, firmware updating involves the rewriting of a set of 

system programs. This is the third requirement. 

The fourth requirement is a consideration for the lack of a 

sophisticated privilege control function in low-end MCUs, i.e., an 

ability to switch between privileged and non-privileged modes of 

operation at arbitrary timing during execution. 

The fi�h requirement is to ensure that a secure state can be 

recovered even in the event of a vulnerability in an old version of 

firmware being exploited for malware execution. This is possible by 

guaranteeing secure firmware updating compliant with the second 

3.1 Security threats to and constraints 
on IoT devices   

As described in Section 2, the use of Mbed™ OS for an existing MCU 

facilitates the development of IoT devices with a network security 

function. However, there are many security issues to be addressed 

regarding IoT devices, including countermeasures for so�ware 

vulnerabilities. It is not enough for critical control systems to 

simply use Mbed™. In-depth security protection is also important 

for these systems. The workload of firmware developers can be 

further reduced by incorporating such additional security 

measures into an MCU as one of the elements of a platform. 

Since IoT devices interact with the physical world, their 

malfunctions could cause personal or property damage. Access 

control and other security functions are essential to protect IoT 

devices from unauthorized access and thereby a malfunction. IoT 

devices also require adequate levels of availability and reliability. 

However, a function to block unauthorized access should not be 

added inadvertently because it might reduce the availability of IoT 

devices if use cases are missed. Examples of security functions for 

non-IoT devices include login lockout for PCs, a feature that locks a 

PC a�er a given number of unsuccessful password attempts. 

Although this feature is useful to prevent security threats arising 

from the use of stolen PCs, its downside is that it reduces a PC’s 

availability if the user forgets its password and enters the wrong 

password several times consecutively. Therefore, a login lockout 

feature must be accompanied by a mechanism to unlock the 

locked PC due to failed user authentication and issue a new 

password. 

One of the reasons that make it di�icult for the firmware of IoT 

devices to achieve high levels of integrity and availability lies in the 

need to obtain firmware updates via a network. Remote firmware 

updating is a fundamental requirement for IoT devices not only to 

enhance their functionality and correct bugs but also to fix 

so�ware vulnerabilities and thereby maintain their security over 

the long term. Since there are public guidelines for firmware 

updating for smart meters and PC peripherals(1)(2), they are 

increasingly equipped with a firmware updating function. 

For firmware updating, it is essential to use a digital signature or 

other means of identification so as to verify the authenticity of the 

downloaded firmware update and to determine, prior to 

execution, that the program in flash memory has not been 

requirement. 

When firmware is remotely updated in an environment that 

satisfies all the above requirements, it is essential to verify the 

firmware received via a network. A simple updating method 

directly rewrites the firmware in flash memory while it is being 

executed. However, if an IoT device is rebooted before the firmware 

updating is completed, the IoT device will not function properly 

a�er reboot. In case this occurs, many IoT devices retain one or 

multiple firmware backups. 

3.3 Development approach     

In order to satisfy the five requirements described in Section 3.2, 

the newly developed secure firmware rotation technique: (1) 

allocates two firmware storage regions in flash memory; (2) 

provides a support so�ware program called the ROM monitor that 

is specifically designed for firmware verification and contained in 

the on-chip mask ROM of an MCU; and (3) uses an MCU with a 

simplified hardware access mechanism(3). This technique is 

characterized by the ROM monitor contained in an untamperable 

ROM region and an access control method that write-protects a 

storage region for the verified firmware until the ROM monitor 

completes the verification of the firmware update. 

Figure 3 shows an outline of the secure firmware rotation 

technique. The le�-hand side of Figure 3 indicates the MCU 

condition before firmware updating while the right-hand side 

shows the MCU condition a�er firmware updating. The flash 

memory in which firmware is stored is partitioned into two regions, 

A and B. Prior to updating, firmware1 in region A is being executed. 

Since region A is write-protected, firmware1 cannot be modified. 

On the other hand, region B, which is reserved for firmware 

updating, is write-enabled so that a firmware update can be written 

freely into region B. While firmware1 is being executed, a digital 

signature is received via a network to guarantee the authenticity of 

the firmware update. Following appropriate verification, the 

firmware update is written into region B as firmware2. 

A�er this write operation is completed, firmware1 sets the Updated 

flag in flash memory to issue a reset and reboot the IoT device. The 

ROM monitor is invoked upon reboot. At this time, the ROM monitor 

has a privilege to freely access the entire flash memory. When the 

ROM monitor determines that the Updated flag is set, it verifies the 

digital signature in region B for firmware updating. If the 

verification of the digital signature is successful, the ROM monitor 

changes the access control settings for the flash memory. 

Specifically, it write-protects region B and write-enables region A to 

execute firmware2, i.e., the updated version of the firmware, in 

region B. The right-hand side of Figure 3 shows this state. When a 

need for firmware updating arises the next time, the roles of the 

two flash memory regions revert to the state shown in the le�-hand 

side, rotating the regions in which the latest firmware resides. 

During the firmware updating process, the ROM monitor, which is 

invoked a�er a reset, controls the selection of the version of 

firmware to be verified and executed. For example, even if an attack 

against a so�ware vulnerability causes the firmware to malfunction 

temporarily, the possibility of malware execution can be eliminated 

by rebooting an IoT device. Since the ROM monitor and firmware 

rotation are not executed concurrently, the secure firmware 

rotation technique can be applied to low-end MCUs without 

privileged modes.  

Furthermore, the secure firmware rotation technique allows secure 

firmware updating even in the event of a zero-day attack, i.e., an 

exploit that adversely a�ects an IoT device before its vendor learns 

of the vulnerability or releases a firmware update. Since the secure 

firmware rotation technique uses an independent ROM monitor for 

firmware verification, it is not a�ected even when the old version of 

firmware is attacked. If the vulnerability is fixed in the updated 

version of firmware, the vulnerability is removed once an IoT device 

is rebooted following the firmware verification by the ROM monitor. 

Since the firmware region containing the old version of firmware is 

write-protected until successful verification of a firmware update, 

the old version of firmware is protected from destruction even if it 

has any vulnerabilities. The rebooting of an IoT device and the 

acquisition of a firmware update can be retried any number of 

times until the firmware update is successfully verified by the ROM 

monitor. It is true that remote firmware updating requires a longer 

time per IoT device than on-site firmware updating, particularly 

under influence of a cyberattack. However, the number of on-site 

firmware updates that can be processed in parallel is constrained 

by the number of available servicepersons whereas the number of 

remote firmware updates is constrained by the network and server 

capacities. Remote firmware updating is more e�icient in cases 

where numerous sensor nodes or smart meters are connected to a 

network. 

3.4 Functional prototyping      

We created functional hardware and so�ware prototypes 

incorporating the secure firmware rotation technique using a 

single-chip MCU with a Cortex®-R4 processor from Arm Limited and 

on-chip flash memory (Figure4). We utilized a logic synthesis tool 

to map the entire hardware design, including the Cortex®-R4 

processor, to a FPGA. A function equivalent to the ROM monitor and 

the firmware (i.e., an RTOS and an application) were implemented 

as so�ware. The ROM monitor employs digital signatures using the 

RSA-2048 and SHA-256 hash functions to verify the integrity of the 

firmware update. The footprint of the ROM monitor was roughly 18 

Kibytes (Kibyte: kibi (210) bytes), including digital signatures and 

data. Electronic devices designed for long-term use have been 

increasingly adopting RSA-3072 and SHA-384 with long keys. It is 

estimated that the use of these cryptosystems will cause an 

increase of only a few Kibytes in the size of the ROM monitor. 

The functional prototypes demonstrated that the newly developed 

secure firmware rotation technique works properly.
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is completely free from tampering.  

To prevent a malfunction, if even one bit of firmware has been 

altered, such firmware should not be executed. This is because this 

bit might indirectly a�ect an important conditional branch if it 

holds a parameter that determines whether to branch to a 

di�erent code path. An appropriate use of digital signature 

technology for firmware makes it possible to detect and eliminate 

such tampering. 

However, an attacker’s intent might be to reduce the availability of 

the target computer, or in other words, to make it unusable (by 

destroying so�ware). In that case, rigorous tampering verification 

makes it easier for the attacker to accomplish his/her purpose. It is 

therefore di�icult to realize firmware that combines high levels of 

integrity and availability. 

3.2 Issues and requirements for 
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This section discusses the requirements for a firmware updating 

function. 

As described in Section 3.1, firmware updating is necessary to 

address so�ware vulnerabilities in IoT devices. In consideration of 

maintainability, the first requirement is the ability to remotely 

update firmware without relying on on-site service personnel. 

In small IoT devices, firmware is stored in and executed from flash 

memory. This means an IoT device needs to provide a mechanism 

to rewrite its flash memory. Therefore, the second requirement is to 

address the threat of the exploitation of this mechanism by 

attackers. It is necessary to prevent not only the execution of 

malware sent by attackers but also the destruction of so�ware as 

described in Section 3.1.  

There are also requirements that should be satisfied because of 

MCU constraints. PCs generally execute a so�ware program from 

dynamic RAM (DRAM) a�er it is copied from flash memory to DRAM 

whereas MCUs use execute-in-place (XIP), i.e., a method of 

executing firmware word by word directly from flash memory 

rather than copying it into SRAM. This is because the per-bit cost of 

SRAM is much higher than that of flash memory. Many kinds of 

firmware are executed without an OS or as a single integrated 

image of an OS kernel and an application without a filesystem. 

Therefore, firmware updating involves the rewriting of a set of 

system programs. This is the third requirement. 

The fourth requirement is a consideration for the lack of a 

sophisticated privilege control function in low-end MCUs, i.e., an 

ability to switch between privileged and non-privileged modes of 

operation at arbitrary timing during execution. 

The fi�h requirement is to ensure that a secure state can be 

recovered even in the event of a vulnerability in an old version of 

firmware being exploited for malware execution. This is possible by 

guaranteeing secure firmware updating compliant with the second 

3.1 Security threats to and constraints 
on IoT devices   

As described in Section 2, the use of Mbed™ OS for an existing MCU 

facilitates the development of IoT devices with a network security 

function. However, there are many security issues to be addressed 

regarding IoT devices, including countermeasures for so�ware 

vulnerabilities. It is not enough for critical control systems to 

simply use Mbed™. In-depth security protection is also important 

for these systems. The workload of firmware developers can be 

further reduced by incorporating such additional security 

measures into an MCU as one of the elements of a platform. 

Since IoT devices interact with the physical world, their 

malfunctions could cause personal or property damage. Access 

control and other security functions are essential to protect IoT 

devices from unauthorized access and thereby a malfunction. IoT 

devices also require adequate levels of availability and reliability. 

However, a function to block unauthorized access should not be 

added inadvertently because it might reduce the availability of IoT 

devices if use cases are missed. Examples of security functions for 

non-IoT devices include login lockout for PCs, a feature that locks a 

PC a�er a given number of unsuccessful password attempts. 

Although this feature is useful to prevent security threats arising 

from the use of stolen PCs, its downside is that it reduces a PC’s 

availability if the user forgets its password and enters the wrong 

password several times consecutively. Therefore, a login lockout 

feature must be accompanied by a mechanism to unlock the 

locked PC due to failed user authentication and issue a new 

password. 

One of the reasons that make it di�icult for the firmware of IoT 

devices to achieve high levels of integrity and availability lies in the 

need to obtain firmware updates via a network. Remote firmware 

updating is a fundamental requirement for IoT devices not only to 

enhance their functionality and correct bugs but also to fix 

so�ware vulnerabilities and thereby maintain their security over 

the long term. Since there are public guidelines for firmware 

updating for smart meters and PC peripherals(1)(2), they are 

increasingly equipped with a firmware updating function. 

For firmware updating, it is essential to use a digital signature or 

other means of identification so as to verify the authenticity of the 

downloaded firmware update and to determine, prior to 

execution, that the program in flash memory has not been 

requirement. 

When firmware is remotely updated in an environment that 

satisfies all the above requirements, it is essential to verify the 

firmware received via a network. A simple updating method 

directly rewrites the firmware in flash memory while it is being 

executed. However, if an IoT device is rebooted before the firmware 

updating is completed, the IoT device will not function properly 

a�er reboot. In case this occurs, many IoT devices retain one or 

multiple firmware backups. 

3.3 Development approach     

In order to satisfy the five requirements described in Section 3.2, 

the newly developed secure firmware rotation technique: (1) 

allocates two firmware storage regions in flash memory; (2) 

provides a support so�ware program called the ROM monitor that 

is specifically designed for firmware verification and contained in 

the on-chip mask ROM of an MCU; and (3) uses an MCU with a 

simplified hardware access mechanism(3). This technique is 

characterized by the ROM monitor contained in an untamperable 

ROM region and an access control method that write-protects a 

storage region for the verified firmware until the ROM monitor 

completes the verification of the firmware update. 

Figure 3 shows an outline of the secure firmware rotation 

technique. The le�-hand side of Figure 3 indicates the MCU 

condition before firmware updating while the right-hand side 

shows the MCU condition a�er firmware updating. The flash 

memory in which firmware is stored is partitioned into two regions, 

A and B. Prior to updating, firmware1 in region A is being executed. 

Since region A is write-protected, firmware1 cannot be modified. 

On the other hand, region B, which is reserved for firmware 

updating, is write-enabled so that a firmware update can be written 

freely into region B. While firmware1 is being executed, a digital 

signature is received via a network to guarantee the authenticity of 

the firmware update. Following appropriate verification, the 

firmware update is written into region B as firmware2. 

A�er this write operation is completed, firmware1 sets the Updated 

flag in flash memory to issue a reset and reboot the IoT device. The 

ROM monitor is invoked upon reboot. At this time, the ROM monitor 

has a privilege to freely access the entire flash memory. When the 

ROM monitor determines that the Updated flag is set, it verifies the 

digital signature in region B for firmware updating. If the 

verification of the digital signature is successful, the ROM monitor 

changes the access control settings for the flash memory. 

Specifically, it write-protects region B and write-enables region A to 

execute firmware2, i.e., the updated version of the firmware, in 

region B. The right-hand side of Figure 3 shows this state. When a 

need for firmware updating arises the next time, the roles of the 

two flash memory regions revert to the state shown in the le�-hand 

side, rotating the regions in which the latest firmware resides. 

During the firmware updating process, the ROM monitor, which is 

invoked a�er a reset, controls the selection of the version of 

firmware to be verified and executed. For example, even if an attack 

against a so�ware vulnerability causes the firmware to malfunction 

temporarily, the possibility of malware execution can be eliminated 

by rebooting an IoT device. Since the ROM monitor and firmware 

rotation are not executed concurrently, the secure firmware 

rotation technique can be applied to low-end MCUs without 

privileged modes.  

Furthermore, the secure firmware rotation technique allows secure 

firmware updating even in the event of a zero-day attack, i.e., an 

exploit that adversely a�ects an IoT device before its vendor learns 

of the vulnerability or releases a firmware update. Since the secure 

firmware rotation technique uses an independent ROM monitor for 

firmware verification, it is not a�ected even when the old version of 

firmware is attacked. If the vulnerability is fixed in the updated 

version of firmware, the vulnerability is removed once an IoT device 

is rebooted following the firmware verification by the ROM monitor. 

Since the firmware region containing the old version of firmware is 

write-protected until successful verification of a firmware update, 

the old version of firmware is protected from destruction even if it 

has any vulnerabilities. The rebooting of an IoT device and the 

acquisition of a firmware update can be retried any number of 

times until the firmware update is successfully verified by the ROM 

monitor. It is true that remote firmware updating requires a longer 

time per IoT device than on-site firmware updating, particularly 

under influence of a cyberattack. However, the number of on-site 

firmware updates that can be processed in parallel is constrained 

by the number of available servicepersons whereas the number of 

remote firmware updates is constrained by the network and server 

capacities. Remote firmware updating is more e�icient in cases 

where numerous sensor nodes or smart meters are connected to a 

network. 

3.4 Functional prototyping      

We created functional hardware and so�ware prototypes 

incorporating the secure firmware rotation technique using a 

single-chip MCU with a Cortex®-R4 processor from Arm Limited and 

on-chip flash memory (Figure4). We utilized a logic synthesis tool 

to map the entire hardware design, including the Cortex®-R4 

processor, to a FPGA. A function equivalent to the ROM monitor and 

the firmware (i.e., an RTOS and an application) were implemented 

as so�ware. The ROM monitor employs digital signatures using the 

RSA-2048 and SHA-256 hash functions to verify the integrity of the 

firmware update. The footprint of the ROM monitor was roughly 18 

Kibytes (Kibyte: kibi (210) bytes), including digital signatures and 

data. Electronic devices designed for long-term use have been 

increasingly adopting RSA-3072 and SHA-384 with long keys. It is 

estimated that the use of these cryptosystems will cause an 

increase of only a few Kibytes in the size of the ROM monitor. 

The functional prototypes demonstrated that the newly developed 

secure firmware rotation technique works properly.

Figure 3. Outline of secure firmware rotation technique
The secure firmware rotation technique uses two firmware storage regions in flash memory. One of these regions is write-protected for bootup while the other one is 
write-enabled for firmware updating. The ROM monitor switches these regions only when it is determined that the firmware written into the updating region is authentic.
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tampered with. This is required to eliminate the possibility that a 

so�ware vulnerability might be exploited by malware to tamper 

with the so�ware program in flash memory a�er an authentic 

firmware update is received. The term “so�ware vulnerabilities” 

collectively refers to a type of system weakness that can be 

exploited for security attacks. There are various types of so�ware 

vulnerabilities such as arbitrary code execution. Arbitrary code 

execution is triggered when a computer receives unintended 

parameters from an attacker that are not usually used, causing 

such data to be executed as part of an authentic so�ware program. 

The malware delivered over a network might rewrite data in a 

region of the flash memory in which a firmware update is to be 

written. To remove such so�ware vulnerabilities, it is necessary to 

remove all the e�ects of malware prior to the execution of the 

firmware update and determine that it has not been tampered 

with. 

It should be noted that, even in the event of an arbitrary code 

execution exploit, a computer recovers from its e�ects when it is 

rebooted, as long as the tampered firmware remains in a static 

RAM (SRAM). However, the e�ects of the arbitrary code execution 

exploit persist if it alters the firmware update in flash memory. To 

counter this threat, it is important to determine when and how to 

perform a final verification of the firmware update to ensure that it 

is completely free from tampering.  

To prevent a malfunction, if even one bit of firmware has been 

altered, such firmware should not be executed. This is because this 

bit might indirectly a�ect an important conditional branch if it 

holds a parameter that determines whether to branch to a 

di�erent code path. An appropriate use of digital signature 

technology for firmware makes it possible to detect and eliminate 

such tampering. 

However, an attacker’s intent might be to reduce the availability of 

the target computer, or in other words, to make it unusable (by 

destroying so�ware). In that case, rigorous tampering verification 

makes it easier for the attacker to accomplish his/her purpose. It is 

therefore di�icult to realize firmware that combines high levels of 

integrity and availability. 

3.2 Issues and requirements for 
firmware updating    

This section discusses the requirements for a firmware updating 

function. 

As described in Section 3.1, firmware updating is necessary to 

address so�ware vulnerabilities in IoT devices. In consideration of 

maintainability, the first requirement is the ability to remotely 

update firmware without relying on on-site service personnel. 

In small IoT devices, firmware is stored in and executed from flash 

memory. This means an IoT device needs to provide a mechanism 

to rewrite its flash memory. Therefore, the second requirement is to 

address the threat of the exploitation of this mechanism by 

attackers. It is necessary to prevent not only the execution of 

malware sent by attackers but also the destruction of so�ware as 

described in Section 3.1.  

There are also requirements that should be satisfied because of 

MCU constraints. PCs generally execute a so�ware program from 

dynamic RAM (DRAM) a�er it is copied from flash memory to DRAM 

whereas MCUs use execute-in-place (XIP), i.e., a method of 

executing firmware word by word directly from flash memory 

rather than copying it into SRAM. This is because the per-bit cost of 

SRAM is much higher than that of flash memory. Many kinds of 

firmware are executed without an OS or as a single integrated 

image of an OS kernel and an application without a filesystem. 

Therefore, firmware updating involves the rewriting of a set of 

system programs. This is the third requirement. 

The fourth requirement is a consideration for the lack of a 

sophisticated privilege control function in low-end MCUs, i.e., an 

ability to switch between privileged and non-privileged modes of 

operation at arbitrary timing during execution. 

The fi�h requirement is to ensure that a secure state can be 

recovered even in the event of a vulnerability in an old version of 

firmware being exploited for malware execution. This is possible by 

guaranteeing secure firmware updating compliant with the second 

3.1 Security threats to and constraints 
on IoT devices   

As described in Section 2, the use of Mbed™ OS for an existing MCU 

facilitates the development of IoT devices with a network security 

function. However, there are many security issues to be addressed 

regarding IoT devices, including countermeasures for so�ware 

vulnerabilities. It is not enough for critical control systems to 

simply use Mbed™. In-depth security protection is also important 

for these systems. The workload of firmware developers can be 

further reduced by incorporating such additional security 

measures into an MCU as one of the elements of a platform. 

Since IoT devices interact with the physical world, their 

malfunctions could cause personal or property damage. Access 

control and other security functions are essential to protect IoT 

devices from unauthorized access and thereby a malfunction. IoT 

devices also require adequate levels of availability and reliability. 

However, a function to block unauthorized access should not be 

added inadvertently because it might reduce the availability of IoT 

devices if use cases are missed. Examples of security functions for 

non-IoT devices include login lockout for PCs, a feature that locks a 

PC a�er a given number of unsuccessful password attempts. 

Although this feature is useful to prevent security threats arising 

from the use of stolen PCs, its downside is that it reduces a PC’s 

availability if the user forgets its password and enters the wrong 

password several times consecutively. Therefore, a login lockout 

feature must be accompanied by a mechanism to unlock the 

locked PC due to failed user authentication and issue a new 

password. 

One of the reasons that make it di�icult for the firmware of IoT 

devices to achieve high levels of integrity and availability lies in the 

need to obtain firmware updates via a network. Remote firmware 

updating is a fundamental requirement for IoT devices not only to 

enhance their functionality and correct bugs but also to fix 

so�ware vulnerabilities and thereby maintain their security over 

the long term. Since there are public guidelines for firmware 

updating for smart meters and PC peripherals(1)(2), they are 

increasingly equipped with a firmware updating function. 

For firmware updating, it is essential to use a digital signature or 

other means of identification so as to verify the authenticity of the 

downloaded firmware update and to determine, prior to 

execution, that the program in flash memory has not been 

requirement. 

When firmware is remotely updated in an environment that 

satisfies all the above requirements, it is essential to verify the 

firmware received via a network. A simple updating method 

directly rewrites the firmware in flash memory while it is being 

executed. However, if an IoT device is rebooted before the firmware 

updating is completed, the IoT device will not function properly 

a�er reboot. In case this occurs, many IoT devices retain one or 

multiple firmware backups. 

3.3 Development approach     

In order to satisfy the five requirements described in Section 3.2, 

the newly developed secure firmware rotation technique: (1) 

allocates two firmware storage regions in flash memory; (2) 

provides a support so�ware program called the ROM monitor that 

is specifically designed for firmware verification and contained in 

the on-chip mask ROM of an MCU; and (3) uses an MCU with a 

simplified hardware access mechanism(3). This technique is 

characterized by the ROM monitor contained in an untamperable 

ROM region and an access control method that write-protects a 

storage region for the verified firmware until the ROM monitor 

completes the verification of the firmware update. 

Figure 3 shows an outline of the secure firmware rotation 

technique. The le�-hand side of Figure 3 indicates the MCU 

condition before firmware updating while the right-hand side 

shows the MCU condition a�er firmware updating. The flash 

memory in which firmware is stored is partitioned into two regions, 

A and B. Prior to updating, firmware1 in region A is being executed. 

Since region A is write-protected, firmware1 cannot be modified. 

On the other hand, region B, which is reserved for firmware 

updating, is write-enabled so that a firmware update can be written 

freely into region B. While firmware1 is being executed, a digital 

signature is received via a network to guarantee the authenticity of 

the firmware update. Following appropriate verification, the 

firmware update is written into region B as firmware2. 

A�er this write operation is completed, firmware1 sets the Updated 

flag in flash memory to issue a reset and reboot the IoT device. The 

ROM monitor is invoked upon reboot. At this time, the ROM monitor 

has a privilege to freely access the entire flash memory. When the 

ROM monitor determines that the Updated flag is set, it verifies the 

digital signature in region B for firmware updating. If the 

verification of the digital signature is successful, the ROM monitor 

changes the access control settings for the flash memory. 

Specifically, it write-protects region B and write-enables region A to 

execute firmware2, i.e., the updated version of the firmware, in 

region B. The right-hand side of Figure 3 shows this state. When a 

need for firmware updating arises the next time, the roles of the 

two flash memory regions revert to the state shown in the le�-hand 

side, rotating the regions in which the latest firmware resides. 

During the firmware updating process, the ROM monitor, which is 

invoked a�er a reset, controls the selection of the version of 

firmware to be verified and executed. For example, even if an attack 

against a so�ware vulnerability causes the firmware to malfunction 

temporarily, the possibility of malware execution can be eliminated 

by rebooting an IoT device. Since the ROM monitor and firmware 

rotation are not executed concurrently, the secure firmware 

rotation technique can be applied to low-end MCUs without 

privileged modes.  

Furthermore, the secure firmware rotation technique allows secure 

firmware updating even in the event of a zero-day attack, i.e., an 

exploit that adversely a�ects an IoT device before its vendor learns 

of the vulnerability or releases a firmware update. Since the secure 

firmware rotation technique uses an independent ROM monitor for 

firmware verification, it is not a�ected even when the old version of 

firmware is attacked. If the vulnerability is fixed in the updated 

version of firmware, the vulnerability is removed once an IoT device 

is rebooted following the firmware verification by the ROM monitor. 

Since the firmware region containing the old version of firmware is 

write-protected until successful verification of a firmware update, 

the old version of firmware is protected from destruction even if it 

has any vulnerabilities. The rebooting of an IoT device and the 

acquisition of a firmware update can be retried any number of 

times until the firmware update is successfully verified by the ROM 

monitor. It is true that remote firmware updating requires a longer 

time per IoT device than on-site firmware updating, particularly 

under influence of a cyberattack. However, the number of on-site 

firmware updates that can be processed in parallel is constrained 

by the number of available servicepersons whereas the number of 

remote firmware updates is constrained by the network and server 

capacities. Remote firmware updating is more e�icient in cases 

where numerous sensor nodes or smart meters are connected to a 

network. 

3.4 Functional prototyping      

We created functional hardware and so�ware prototypes 

incorporating the secure firmware rotation technique using a 

single-chip MCU with a Cortex®-R4 processor from Arm Limited and 

on-chip flash memory (Figure4). We utilized a logic synthesis tool 

to map the entire hardware design, including the Cortex®-R4 

processor, to a FPGA. A function equivalent to the ROM monitor and 

the firmware (i.e., an RTOS and an application) were implemented 

as so�ware. The ROM monitor employs digital signatures using the 

RSA-2048 and SHA-256 hash functions to verify the integrity of the 

firmware update. The footprint of the ROM monitor was roughly 18 

Kibytes (Kibyte: kibi (210) bytes), including digital signatures and 

data. Electronic devices designed for long-term use have been 

increasingly adopting RSA-3072 and SHA-384 with long keys. It is 

estimated that the use of these cryptosystems will cause an 

increase of only a few Kibytes in the size of the ROM monitor. 

The functional prototypes demonstrated that the newly developed 

secure firmware rotation technique works properly.

Figure4. Block diagram of prototype MCU incorporating 
secure firmware rotation technique

A prototype MCU with a Cortex®-R4 processor and on-chip flash memory was 
implemented as an FPGA to verify the function of the secure firmware rotation 
technique.
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4. Conclusion 

This report described our initiatives for MCUs for IoT devices that 

provide an interface between the cyber and physical worlds 

interlinked by CPS. The application of Mbed™ OS to our existing 

MCUs makes it possible to establish and manage the network 

connections of IoT devices easily and securely. The secure firmware 

rotation technique, a di�erentiator for the MCU hardware, enables 

secure firmware updating without compromising the availability of 

IoT devices. We are currently working on its commercialization. 

In addition to the security of IoT devices discussed herein, digital 

authentication and other trust services are important for the 

realization of secure IoT devices. We have concluded a business 

alliance with Cybertrust Japan Co., Ltd. that has a proven track 

record in digital authentication and commenced studies toward 

the establishment of a comprehensive trust service platform using 

an MCU that will be newly developed as a key component(4). 

To contribute to the enhancement of the security of CPS, we will 

continue to develop MCU-related technologies that meet market 

requirements and provide MCUs designed to protect the integrity 

and availability of IoT devices.
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