Electronic Sphygmomanometer

Solution Proposal by Toshiba
Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
Electronic Sphygmomanometer

Overall block diagram

- Adapter
- Battery
- LDO
- LDO
- EEPROM
- MCU
- MOSFET
- MOSFET
- Pressure Sensor
- Pump Motor
- Air Release Valve
- Op-amp
- Power ON/OFF
- Battery Monitor
- Input Switch
- Switch
Electronic Sphygmomanometer

Detail of power supply circuits

Surge voltage protection

1. TVS

- The power line from the DC adapter must be protected against surge voltage.
- PSRR is a key feature of microcomputers.
- A backflow prevention measure is necessary between the battery and the AC adapter.

Control MCU power supply

2. LDO

- Static electricity (ESD) from external terminals is absorbed to prevent circuit malfunction and device breakdown. TVS diode
- Optimum power supply for environments with high power supply noise
- Low forward voltage / Strong against surge current

Constant voltage supply circuit

3. SBD

- Small surface mount LDO regulator
- Low forward voltage / Strong against surge current

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Motor protection

- A small, low-on-resistance MOS FET is used to control the motors.
- Protection against flyback current by the motor is necessary.

Motor control

- Low forward voltage / Strong against surge current
 Schottky barrier diode
- Setting of low power consumption with low on-resistance
 U-MOS Series MOSFET (Trench Type)

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page.
Electronic Sphygmomanometer Detail of sensor signal detection circuit

Device selection points
- The voltage and current supplied are important for selecting the operational amplifier.
- The use of small packages reduces the board area.

Proposals from Toshiba
- **Amplify the detected small signal with low noise.**
 Low-noise operational amplifier

* Pressure sensor

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page.
Recommended Devices
Device Solutions to address customer needs

As described above, in order to design Electronic Sphygmomanometer, "Miniaturization of circuit boards", "Low power consumption of sets" and "Robust operation" are important factors. Toshiba's proposals are based on these three solution perspectives.

- **Miniaturization of circuit boards**
 - Small size Package Supported

- **Lower power consumption of the set**
 - High efficiency
 - Low loss

- **Robust operation**
 - Noise immunity
Device Solutions to address customer needs

- **TVS diode**: Small size package supported, noise immunity
- **Small surface mount LDO regulator**: Small size package supported, high efficiency, low loss
- **Schottky barrier diode**: Small size package supported, high efficiency, low loss
- **Small-signal MOSFET**: Small size package supported, high efficiency, low loss
- **Ultra-low noise operational amplifier**: Small size package supported, high efficiency, low loss, noise immunity
This absorbs static electricity (ESD) from external terminals, prevents circuit malfunction and protects devices.

1. Improved ESD absorption
Both low operating resistance and low capacitance are realized and ensures high signal protection performance and signal quality.

2. Reduce ESD energy by low clamp voltage
Steadily protect the connected circuits/devices using proprietary technology.

3. Optimal for high-density mounting
A variety of small size packages are available.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>DF2B7ASL</th>
<th>DF2B7AFU</th>
<th>DF2B20M4SL</th>
<th>DF2S14P2CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SL2</td>
<td>USC</td>
<td>SL2</td>
<td>CST2</td>
</tr>
<tr>
<td>V_{ESD} [kV]</td>
<td>±30</td>
<td>±30</td>
<td>±15</td>
<td>±30</td>
</tr>
<tr>
<td>$V_{(Max.)}$ [V]</td>
<td>5.5</td>
<td>5.5</td>
<td>18.5</td>
<td>13</td>
</tr>
<tr>
<td>C_t (Typ.) [pF]</td>
<td>8.5</td>
<td>8.5</td>
<td>0.2</td>
<td>270</td>
</tr>
<tr>
<td>R_{DYN} (Typ.) [Ω]</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Value provided

1. **TVS diode**
 - DF2B7ASL / DF2B7AFU / DF2B20M4SL / DF2S14P2CTC

2. **Improved ESD absorption**
 - This absorbs static electricity (ESD) from external terminals, prevents circuit malfunction and protects devices.

3. **Reduce ESD energy by low clamp voltage**
 - Steadily protect the connected circuits/devices using proprietary technology.

4. **Optimal for high-density mounting**
 - A variety of small size packages are available.

Part number
- DF2B7ASL
- DF2B7AFU
- DF2B20M4SL
- DF2S14P2CTC

Package
- SL2
- USC
- SL2
- CST2

V_{ESD} [kV]
- ±30 (DF2B7ASL, DF2B7AFU)
- ±15 (DF2B20M4SL)
- ±30 (DF2S14P2CTC)

$V_{(Max.)}$ [V]
- 5.5 (DF2B7ASL, DF2B7AFU)
- 18.5 (DF2B20M4SL)
- 13 (DF2S14P2CTC)

C_t (Typ.) [pF]
- 8.5 (DF2B7ASL, DF2B7AFU)
- 0.2 (DF2B20M4SL)
- 270 (DF2S14P2CTC)

R_{DYN} (Typ.) [Ω]
- 0.2 (DF2B7ASL, DF2B7AFU, DF2B20M4SL)
- 0.23 (DF2S14P2CTC)

NOTE: This product is an ESD protection diode and cannot be used for purposes other than ESD protection (including but not limited to voltage regulation diode applications).
Small size mount LDO regulator
TCR5BM / TCR3DF series

Variety of products that meet high performance requirements, from general-purpose package to ultra-small package type.

1 Low dropout voltage
New-generation process makes it possible to operate at low input voltages and achieve significant low power consumption.

2 High ripple compression
Realize stable power supply by eliminating switching noise generated in the power supply circuit.

3 Fast load transient response
Fast load transient response characteristic of our LDO regulator enables to supply a stable output voltage even for sudden current fluctuations.

Low dropout voltage

![Graph showing low dropout voltage comparison between conventional products and TCR5BM series.](image)

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCR5BM series</th>
<th>TCR3DF Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>DFNS8</td>
<td>SMV</td>
</tr>
<tr>
<td>V_{IN} (Max) [V]</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>I_{OUT} (Max) [A]</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>V_{OUT} [V]</td>
<td>0.8 to 3.6</td>
<td>1.0 to 4.5</td>
</tr>
<tr>
<td>R.R. (Typ.) [dB]</td>
<td>98</td>
<td>70</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Low loss allows it to be applied to various applications, and greatly contributes to miniaturization.

1. **Low forward voltage**
 - It is suitable for Backflow prevention with low power loss by low forward voltage.

2. **Be resistant to reverse voltage**
 - The reverse voltage V_R can be applied up to 40 V.

3. **Small package**
 - Small package is suitable for high-density mounting.

CUS10S40 Characteristics Curves

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>CUS10S40</th>
<th>CUHS15F40</th>
<th>CUS10F30</th>
<th>1SS424</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>USC</td>
<td>US2H</td>
<td>USC</td>
<td>ESC</td>
</tr>
<tr>
<td>I_0 (Max) [A]</td>
<td>1.0</td>
<td>1.5</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>V_E (Max) [V]</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>V_F (Typ.) [V]</td>
<td>0.45</td>
<td>0.49</td>
<td>0.43</td>
<td>0.42</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Value provided

Suitable for power management switches and greatly contributes to miniaturization.

1. **Low voltage drive**

 Drive at $V_{GS} = 1.8$ V.

2. **Low on-resistance**

 Heat generation and power consumption can be kept low by keeping the on-resistance between the source and drain low.

3. **Small package**

 Package line-up for SOT-23F / VESM.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>SSM3K329R</th>
<th>SSM3K324R</th>
<th>SSM3K35AMFV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SOT-23F</td>
<td>SOT-23F</td>
<td>VESM</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>N-ch</td>
<td>N-ch</td>
</tr>
<tr>
<td>V_{DSS} [V]</td>
<td>30</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>I_D [A]</td>
<td>3.5</td>
<td>4.0</td>
<td>0.25</td>
</tr>
<tr>
<td>$R_{DS(ON)}$ (Max) [Ω] @$V_{GS} = 1.5$ V</td>
<td>0.289</td>
<td>0.109</td>
<td>3.1</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Ultra-low noise operational amplifier
TC75S67TU

Value provided

Very small signals detected by various sensors can be amplified with very low noise.

1. **Ultra-low noise**
 - \(V_{NI} \) (Typ.) = 6.0 [nV/√Hz]
 - @f = 1 kHz

 Very small signals detected by various sensors [Note 1] can be amplified with low noise using CMOS Op-amp by optimizing the processing. We achieved one of the industry's lowest [Note 2] input equivalent noise voltage.

2. **Small package**
 - This is a flat lead type compact package, which contributes to the miniaturization and lower height of the printed circuit board. Packaging size: 2.0 x 2.1 x 0.7 mm

3. **Low current consumption**
 - \(I_{DD} \) (Typ.) = 430 [μA]

 The adoption of the CMOS process achieves lower current-consumption characteristics than our bipolar process operational amplifier.

Ultra-low noise characteristic

(Company Comparison)

[Note 1] Various sensors: vibration detection sensors, shock sensors, acceleration sensors, pressure sensors, infrared sensors, and temperature sensors

[Note 2] Based on our survey (as of May 2017). [Note 3] Comparison with our bipolar process operational amplifier

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TC75S67TU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>UFV</td>
</tr>
<tr>
<td>(V_{DD}) (Max) [V]</td>
<td>±2.75</td>
</tr>
<tr>
<td>(V_{DD}) (Min) [V]</td>
<td>±1.1</td>
</tr>
<tr>
<td>(I_{DD}) (Max) [μA]</td>
<td>700</td>
</tr>
<tr>
<td>(V_{NI}) (Typ.) [nV/√Hz] @f = 1 kHz</td>
<td>6</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation 15
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation (“We”) and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted (“this Reference Design”). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. This Reference Design is for customer’s own use and not for sale, lease or other transfer.
3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the “Semiconductor Reliability Handbook”.
4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.
5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
6. THIS REFERENCE DESIGN IS PROVIDED “AS IS”. WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control
Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
This terms of use shall be governed and construed by laws of Japan.
RESTRICTIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which Minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.
TOSHIBA

* Company names, product names, and service names may be trademarks of their respective companies.