Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
IH Cooking Heater Overall block diagram

200 V AC → AC-DC → DC-DC → +24 V / 0.5 A (Fan, Gate Driver)

Regulator → +5 V / 1.0 A (MCU, Amp, Display, LED, etc)

200 V AC → IH Coil

Gate Driver → IGBT

Current Sensor → Temp. Sensor

Control Buttons → MCU

MCU → Fan

LED Driver → 7seg LED

MOSFET → Status LEDs

Buzzer
IH Cooking Heater Detail of IH coil drive / fan motor drive

Criteria for device selection
- Fast switching and low saturation voltage characteristics are required for IGBT.
- Use of small package enables to reduce the circuit board area.
- Rail-to-Rail output, low voltage driving and low current consumption are required for gate driver to realize low power consumption of the set.
- Monitoring sensor, high speed data processing and heater control are needed for efficient system control.

Proposals from Toshiba
- Higher efficiency is realized
 IGBT gate driver coupler (Rail-to-Rail output type)
- Fast and high efficiency switching are realized
 Silicon N-channel discrete IGBT
- High current transfer ratio and high temperature operation makes easy to design
 Transistor output photocoupler
- Low on-resistance realizes a set with low power consumption
 U-MOS series MOSFET (Trench type)
- High efficient processing of a few input and output data
 MCU

IH coil drive circuit
Current resonance circuit

Brush motor drive circuit
Brush motor

※ Click the number in the circuit diagram to jump to the detailed description page
IH Cooking Heater
Detail of LED drive / current detector

LED drive circuit

200 V AC → Rectifier Diode → DC-DC → LDO → Status LED → MOSFET → MCU

Current detector

MCU → Gate Driver → Gate Driver → Discrete IGBT → IH Coil → Op-amp

Criteria for device selection

- Low on-resistance characteristic contributes to low loss of the set.
- Error detection of equipment is enabled by monitoring the current of the system power supply. The use of an operational amplifier which have low voltage operation, low current consumption and low offset voltage leads to high precision monitoring and low power consumption.
- Use of small package enables to reduce the circuit board area.
- Monitoring sensor, high speed data processing and heater control are needed for efficient system control.

Proposals from Toshiba

- **Low on-resistance characteristic contributes to low loss of the set.**
 U-MOS series MOSFET (Trench type)
- **Small surface mount package suitable for high density mounting**
 Rectifier diode
- **Isolated transmission of the current detection signal**
 Isolation amplifier
- **High efficient processing of a few input and output data**
 MCU

※ Click the number in the circuit diagram to jump to the detailed description page
IH Cooking Heater Detail of display and operation section

Display and operation section

- Control Buttons
- MCU
- LED Driver
- 7seg LED
- MOSFET
- Status LEDs
- Buzzer

Criteria for device selection
- Low on-resistance characteristic contributes to low loss of the set.
- Typically the display uses 3-4 digits 7 segment LEDs.
- Monitoring sensor, high speed data processing and heater control are needed for efficient system control.

Proposals from Toshiba
- Low on-resistance characteristic contributes to low loss of the set. U-MOS series MOSFET (Trench type)
- Only one external register sets LED drive current. It can reduce BOM cost. 7 segment LED driver
- High efficient processing of a few input and output data

※ Click the number in the circuit diagram to jump to the detailed description page
Recommended Devices
Device Solutions to address customer needs

As described above, in order to design IH Cooking Heater, “Compatibility with AC voltage in each country”, “Low power consumption of set” and “Miniaturization of circuit boards” are important factors. Toshiba’s proposals are based on these three solution perspectives.
Device Solutions to address customer needs

<table>
<thead>
<tr>
<th></th>
<th>High breakdown voltage</th>
<th>High efficiency - Low loss</th>
<th>Compatible with compact packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IGBT gate driver coupler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Silicon N-channel discrete IGBT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Transistor output photocoupler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>U-MOS series MOSFET (Trench type)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Rectifier diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Isolation amplifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7 segment LED driver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MCU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IGBT gate driver coupler

TLP577X / TLP575X

Value provided

Rail-to-rail output enables the system to operate safely and reduce conduction losses.

1 Rail-to-rail output

TLP577X and TLP575X generates a full-swing voltage output signal and contributes to low power consumption.

2 Small package

The mounting area of SO6L package is 50% smaller than that of DIP8. And these gate driver coupler comply with reinforced insulation class of overseas safety standards.

3 High temperature of 110 °C (ambient) operation

These photocouplers are designed to operate under severe ambient temperature conditions.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TLP577X series</th>
<th>TLP575X series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SO6L</td>
<td></td>
</tr>
<tr>
<td>I_{op} (Max) [A]</td>
<td>±1 / ±2.5 / ±4</td>
<td></td>
</tr>
<tr>
<td>t_{PHL}, t_{PLH} (Max) [ns]</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>$B_{V_{rms}}$</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>T_{opr} [°C]</td>
<td>-40 to 110</td>
<td></td>
</tr>
<tr>
<td>V_{cc} [V]</td>
<td>10 to 30</td>
<td>15 to 30</td>
</tr>
<tr>
<td>I_{FLH} (Max) [mA]</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Silicon N-channel discrete IGBT
GT50JR21 / GT50JR22

Value provided

High speed switching and low saturation voltage characteristics contribute to high efficiency.

1. High speed switching
Reduction switching loss through high speed operation contributes to higher power supply efficiency.

2. Low saturation voltage
Saturation voltage is kept low while realizing high speed switching.

3. Line up
For more suitable design, Low saturation voltage type (GT50JR21) and fast switching type (GT50JR22) are selectable.

Line up

<table>
<thead>
<tr>
<th>Part Number</th>
<th>GT50JR21</th>
<th>GT50JR22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>TO-3P(N)</td>
<td></td>
</tr>
<tr>
<td>t_f (Typ.) [μs] @I_C = 50 A, T_a = 25 °C</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>$V_{CE(sat)}$ (Typ.) [V] @I_C = 50 A, T_a = 25 °C</td>
<td>1.45</td>
<td>1.55</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
High CTR (Current Transfer Ratio) is realized even in low input current range ($I_F = 0.5$ mA).

1. High current transfer ratio ($I_F = 0.5$ mA in low input current range)

Phototransistor and GaAs/InGaAs infrared light emitting diode are optically coupled. Highly insulated photocouplers realize higher conversion efficiency than conventional electromagnetic relays or insulated transformers.

2. High temperature of 125 °C operation

It is designed to operate even under severe ambient temperature conditions, such as inverter equipment, robots, machine tools and high-output power supplies.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TLP183</th>
<th>TLP185(SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>4pin SO6</td>
<td>4pin SO6</td>
</tr>
<tr>
<td>BV_S (Min) [Vrms]</td>
<td>3750</td>
<td>3750</td>
</tr>
<tr>
<td>T_{opr} (°C)</td>
<td>-55 to 125</td>
<td>-55 to 110</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
U-MOS series MOSFET contributes to energy saving and miniaturization by improving the trade-off characteristics between on-resistance and capacitance.

1. Low on-resistance
By keeping the drain-source on-resistance low, heat generation and power consumption can be reduced and contributes to miniaturization.

2. Small gate input charge
Reducing gate input charge needed for driving MOSFET improves switching characteristic.

3. Fast switching speed
Reducing switching loss by high speed operation contributes to higher efficiency.

Trade-off characteristics of on-resistance

- **Gate switch charge** Q_{SW} [nC]
- **Drain-Source on-resistance** $R_{DS(ON)}$ [mΩ]

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>SSM3K56MFV</th>
<th>SSM6N56FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>N-ch × 2</td>
</tr>
<tr>
<td>Package</td>
<td>VESM</td>
<td>ES6</td>
</tr>
<tr>
<td>V_{DSS} [V]</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>I_D [A]</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>$R_{DS(ON)}$ [Ω] @$V_{GS} = 10$ V</td>
<td>Typ. 0.186</td>
<td>0.360</td>
</tr>
<tr>
<td></td>
<td>Max 0.235</td>
<td>0.840</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Wide range of products are provided, mainly compact package that is suitable for high-density assembly.

Surface mount / compact package

Surface Mounting: Adopting S-FLAT™ / M-FLAT™ package which is lower in height compared to the conventional lead type contributes to the space saving of the equipment.

• CRG05 forward characteristic

Wide Product Line-up

Wide Product Line-up
- Reverse voltage: 200 to 1000 V
- Average forward current: 0.5 to 3 A

Suitable product can be selected according to requirements.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>CRG05</th>
<th>CMG08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>S-FLAT</td>
<td>M-FLAT</td>
</tr>
<tr>
<td>(I_{FW} (\text{Max}) [\text{A}])</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(V_{RMS} (\text{Max}) [\text{V}])</td>
<td>800</td>
<td>600</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Isolation amplifier with low current consumption and compact package enables highly accurate current detection.

1. Low current consumption
Introduction of new digital modulation technology has reduced current consumption due to input voltage dependence.

2. Small package
Compact SO8L package contributes reducing mounting area.

3. High accuracy
This optical coupling type isolation amplifier uses ΔΣ A/D convertor with a high precision on the input side and D/A convertor with a high precision on the output side.

Current consumption characteristics

<table>
<thead>
<tr>
<th>Part number</th>
<th>TLP7820</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SO8L(LF4)</td>
</tr>
<tr>
<td>Gain accuracy [%]</td>
<td>±0.5 / ±1.0 / ±3.0 (rank selection)</td>
</tr>
<tr>
<td></td>
<td>0.00012</td>
</tr>
<tr>
<td>NL300 (Typ.) [%]</td>
<td>0.02</td>
</tr>
<tr>
<td>V0 (Typ.) [mV]</td>
<td>0.9</td>
</tr>
<tr>
<td>I0 (Typ.) [mA]</td>
<td>8.6</td>
</tr>
<tr>
<td>I0 (Typ.) [mA]</td>
<td>6.2</td>
</tr>
</tbody>
</table>

<Return to Block Diagram TOP>
LED driver which can light a 4-digit, 7-segment LED using one device

1. Suitable for 7-segment LED displays
 This driver can serially control a 4-digit 7-segment LED. Matrix drive is performed by scanning the digits at 480 Hz. The 3-wire control can also be cascaded, reducing the number of harnesses.

2. Current control possible with one external resistor
 The LED current can be set with an external resistor. No other components are needed.

3. Lead insertion type package
 We have a line-up of free-standing lead insertion packages (SDIP24) and small packages (QFN24) that can be used for the main board.

Line up

<table>
<thead>
<tr>
<th>Model</th>
<th>TB62785NG</th>
<th>TB62785FTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SDIP24</td>
<td>VQFN24</td>
</tr>
<tr>
<td>Outputs</td>
<td>4 columns x 7 outputs</td>
<td></td>
</tr>
<tr>
<td>Operating voltage</td>
<td>4 to 5.5 V</td>
<td></td>
</tr>
<tr>
<td>Internal power supply</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Max. LED power supply</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Max. output current</td>
<td>50 mA</td>
<td></td>
</tr>
<tr>
<td>Cascade connection</td>
<td>○ 16-step light control possible (total)</td>
<td></td>
</tr>
<tr>
<td>PWM control</td>
<td>○</td>
<td></td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
System control at low power consumption by using built-in timers and ADCs

1. **Built-in ARM® Cortex® -M3 CPU core**
 TMPM383FSUG implements Cortex®-M3 core with 80 MHz maximum operation frequency. Various development tool and their partners allow users many options.

2. **System cost down and development efficiency improvement**
 TMPM383FSUG executes sensing data monitoring and processing efficiently by combining built-in analog function such as ADC, and CPU system. The original NANO FLASH™ is possible to rewrite at high-speed. It reduces user software development time period.

3. **Small size package and low power consumption**
 TMPM383FSUG supports low power consumption library and stand by function. These contribute to reduce low power consumption. The package is small LQFP64.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TMPM383FSUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operation frequency</td>
<td>40 MHz</td>
</tr>
<tr>
<td>Instruction ROM</td>
<td>64 KB</td>
</tr>
<tr>
<td>RAM</td>
<td>8 KB</td>
</tr>
<tr>
<td>Thumb-2 Instruction set</td>
<td>Available</td>
</tr>
<tr>
<td>Timer</td>
<td>16 bit x 8 ch</td>
</tr>
<tr>
<td>I2C</td>
<td>1 ch</td>
</tr>
<tr>
<td>ADC</td>
<td>10 ch (10 bit)</td>
</tr>
</tbody>
</table>

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation (“We”) and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted (“this Reference Design”). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the “Semiconductor Reliability Handbook”.
4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.
5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
6. THIS REFERENCE DESIGN IS PROVIDED “AS IS”. WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control
Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
This terms of use shall be governed and construed by laws of Japan.
RESTRICTIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which Minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unauthorized Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.