IoT Sensor

Solution Proposal by Toshiba
Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
IoT Sensor Overall Block Diagram

AC adapter 5V/1A USB

RESET MCU Wireless Interface

USB

Gas Sensor Op-amp

MIC Op-amp

Humidity and Temperature Sensor

Ambient Light Sensor

MOSFET LED

MCU, RESET, AMP, Gas Sensor, Humidity and Temperature Sensor, Ambient Light Sensor, WLAN

© 2019-2020 Toshiba Electronic Devices & Storage Corporation
AC-DC flyback power

Device selection points

- VDSS ratings are critical to choosing a MOSFET. Applications that use more than a VDSS may destroy the MOSFET.
- The VDSS rating for a high MOSFET tends to be high on-resistance RDS (on).

Proposals from Toshiba

- **Optimal for high-efficiency power supply switching**
 Power MOSFET
- **Strong with efficiency figure of merit and surge current**
 SiC Schottky barrier diode
- **Optimal for high-speed gating of MOSFET**
 Bipolar power transistors
- **Photocoupler with excellent environmental resistance**
 IC output photocoupler
IoT Sensor Details of sensor signal detection unit

Gas detection

- The voltage and current supplied are important for using the operational amplifier.
- The use of small packages reduces the board area.

Proposals from Toshiba

- Support for stable sensor operation
 High noise rejection performance, low consumption, compact LDO
- Amplify the detected small signal with low noise.
 General-purpose operational amplifier
IoT Sensor Details of LED Drive unit

LED drive

Device selection points
- LED current, MCU output voltage, base-emitter voltage, and transistor DC current are important factors in selecting LED driving transistors.
- The use of small packages reduces the board area.

Proposals from Toshiba
- Compact packaging with high withstand voltage and high hFE
 Bipolar transistor

※ Click the number in the circuit diagram to jump to the detailed description page
Device selection points
- Multi-channel analog or digital interfaces are needed for monitoring various sensor output.
- High performance of data processing is required to analyze sensor data at realtime.
- Communication standard variation is needed to upload sensor data and/or its analyzation result.

Proposals from Toshiba
- High processing performance with multi-channel sensor interfaces and communication standard variety.
Recommended Devices
As described above, in the design of IoT sensors, "Miniaturization of circuit boards", "Low power consumption of sets" and "Robust operation" are important factors. Toshiba's proposals are based on three solution perspectives.
Device Solutions to address customer needs

<table>
<thead>
<tr>
<th></th>
<th>Small size packages</th>
<th>High efficiency • Low-loss</th>
<th>Noise immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power MOSFET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SiC Schottky barrier diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bipolar power transistors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IC output photocoupler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Small surface mount LDO regulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>General-purpose operational amplifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bipolar transistor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MCU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2019-2020 Toshiba Electronic Devices & Storage Corporation
Power MOSFET
TK18A50D / TK12P50W

Value provided

Suitable for switching regulators and easy to handle and greatly contributes to miniaturization.

1 Low on-resistance

By keeping the on-resistance between the source and drain low, heat generation and power consumption can be kept low.

2 Low leakage current

Drain-cut-off current $I_{DSS} = 10\mu A$ (max.) ($V_{DS} = 500V$)

3 Enhancement type

It's easy to design because it is an enhancement type in which no collector current when no gate voltage is applied.

TK18A50D Characteristics Curves

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TK18A50D</th>
<th>TK12P50W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>TO-220SIS</td>
<td>DPAK</td>
</tr>
<tr>
<td>V_{DSS} (Max) [V]</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>I_D (Max) [A]</td>
<td>18</td>
<td>11.5</td>
</tr>
<tr>
<td>P_D (Max) [W]</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>C_{iss} (Typ.) [pF]</td>
<td>2600</td>
<td>890</td>
</tr>
<tr>
<td>$R_{DS(ON)}$ (Max) [Ω]</td>
<td>0.27</td>
<td>0.34</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>N-ch</td>
</tr>
</tbody>
</table>

© 2019-2020 Toshiba Electronic Devices & Storage Corporation
SiC Schottky barrier diode

TRS4A65F / TRS4E65F

Contributing to higher efficiency and miniaturization of power supply.

1. High current surge resistance
 \[I_{FSM} = 37[A] / 39[A] \] (Note 1)
 Surge current is increased around 2 times of the first generation by using improved JBS structure.

2. Small leakage current
 \[I_R (max) = 20 [\mu A] \]
 Leak current is reduced around 30% of the first generation by using improved JBS structure.

3. Low switching loss
 \[Qcj (Typ.) = 10.4 [nC] \] (Note 2)
 Reduce the total charge amount by thinning wafer technology, switching loss is reduced around 30% of the first-generation product.

Internal Circuit

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TRS4A65F</th>
<th>TRS4E65F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>TO-220F-2L</td>
<td>TO-220-2L</td>
</tr>
<tr>
<td>(V_{RMS}) (Max) [V]</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>(I_{R(DS)}) (Max) [A]</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(I_{FSM}) (Max) [A]</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td>(I_{r}) (Typ./Max) [\mu A]</td>
<td>0.2 / 20</td>
<td>0.2 / 20</td>
</tr>
<tr>
<td>(Qc) (Typ.) [nC]</td>
<td>10.4</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Note 1: TRS4A65F / TRS4E65F product data
Note 2: \(Qc = \int C_j \times V_R \, dv \quad V_R = 0.1 \) to 400V

© 2019-2020 Toshiba Electronic Devices & Storage Corporation
Bipolar power transistor for high speed switching
HN4B101J / HN4B102J

A high-speed switching bipolar power transistor suitable for MOSFET gating.

1. High-speed switching
 - HN4B101J
 - $t_f = 45/50$ [ns] (Typ.) (PNP/NPN)
 - HN4B102J
 - $t_f = 40/45$ [ns] (Typ.) (PNP/NPN)

2. High DC current gain
 - HN4B101J, HN4B102J
 - PNP: $h_{FE} = 200$ to 500 @ $I_C = -0.12$ [A]
 - NPN: $h_{FE} = 200$ to 500 @ $I_C = 0.12$ [A]

3. Low collector-emitter saturation
 - HN4B101J
 - $V_{CE(sat)} = -0.20/0.17$ [V] (Max) (PNP/NPN)
 - HN4B102J
 - $V_{CE(sat)} = -0.20/0.14$ [V] (Max) (PNP/NPN)

HN4B101J
Circuit Configuration

<table>
<thead>
<tr>
<th>Part number</th>
<th>HN4B101J</th>
<th>HN4B102J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SMV</td>
<td>SMV</td>
</tr>
<tr>
<td>V_{CEO} (Max) [V] @Q1/Q2</td>
<td>$-30/50$</td>
<td>$30/30$</td>
</tr>
<tr>
<td>I_C (Max) [A] @Q1/Q2</td>
<td>$-1.0/1.2$</td>
<td>$-1.8/2$</td>
</tr>
<tr>
<td>h_{FE} (Min/Max)</td>
<td>$200/500$</td>
<td>$200/500$</td>
</tr>
<tr>
<td>Polarity</td>
<td>Q1:PNP + Q2:NPN</td>
<td>Q1:PNP + Q2:NPN</td>
</tr>
</tbody>
</table>

© 2019-2020 Toshiba Electronic Devices & Storage Corporation
This photocoupler combines an infrared light-emitting diode with high optical output and an integrated circuit light-receiving IC chip with high gain and high speed.

1. **Analog output**
 The output current changes in an analog manner according to the input LED current. It is suitable for power supply feedback circuits.

2. **Common-mode transient immunity 10 kV/μs**
 For applications where high dV/dt is applied to both ends of the photocoupler, high CMTI is required. Our device guarantee the CMTI of 10 kV/μs(min) by adapting shield between the input and output.

3. **High speed**
 Propagation delay time is guaranteed at 2 μs (max) in operation temperature range. The design is easier than normal photo-transistor coupler.

Internal circuit configuration
![IC output photocoupler diagram](image)

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TLP2719(LF4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SO6L(LF4)</td>
</tr>
<tr>
<td>BVf (Min) [Vrms]</td>
<td>5000</td>
</tr>
<tr>
<td>NRZ (Typ.) [Mbps]</td>
<td>1</td>
</tr>
<tr>
<td>CMH, CML (Min) [kV/μs]</td>
<td>±10</td>
</tr>
</tbody>
</table>

© 2019-2020 Toshiba Electronic Devices & Storage Corporation

Return to Block Diagram TOP
Small current LDO regulator
TCR3UG series / TCR3UM series

Value provided

Ideal LDO capable of low-power and long-life operation with low output voltage fluctuation by eliminating switching noise.

1 High ripple rejection
Our LDO regulator has a high degree of ripple compression, eliminates switching noise generated in the power supply circuit, and achieves stable power supply.

2 Low loss (low current consumption)
Our LDO regulators can minimize internal current consumption and maximize device operating time with limited batteries.

3 Optimal for high-density packaging
A wide range of small packages are available.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCR3UG Series</th>
<th>TCR3UM Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>WCSP4F</td>
<td>DFN4</td>
</tr>
<tr>
<td>I_{OUT} (Max) [mA]</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>V_{D0} (Typ.) [mV] @ I_{OUT}=300 mA</td>
<td>140</td>
<td>196</td>
</tr>
<tr>
<td>R.R. (Typ.) [dB]</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>I_{B(ON1)} (Typ.) [μA]</td>
<td>0.34</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Conventional product

TCR3U series

New product

Significant improvement

Low quiescent current

INPUT VOLTAGE V_{IN} (V)

I_{OUT} (μA)

Quiescent current

© 2019-2020 Toshiba Electronic Devices & Storage Corporation
Low-consumption, low-noise operational amplifier
TC75S55FU / TC75S67TU

Low-power-consumption type and low-noise type operational amplifiers that maximize the performance of high-performance sensors

1. **Low voltage operation**

We have a lineup of low power supply voltage-driven operational amplifiers using CMOS process for low power supply voltage-driven IoT equipment.

2. **Low current power supply (TC75S55FU) I_{DD}(typ.) =10[μA]**

CMOS processes have been used to achieve lower current dissipation. This contributes to lower power consumption and longer life of IoT equipment.

3. **Ultra low noise (TC75S67TU) V_{IN}(Typ.)=6.0 [nV/√Hz] @f=1kHz**

This CMOS operational amplifier can amplify minute signals detected by various sensors with very low noises. By optimizing the process, we have achieved the industry's top-level low equivalent input noise voltage.

TC75S55FU/TC75S67TU Internal pictorial connection diagram

TC75S67TU noise characteristic (Company comparison)

<table>
<thead>
<tr>
<th>Line up</th>
<th>Part number</th>
<th>TC75S55FU</th>
<th>TC75S67TU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>USV</td>
<td>USV</td>
<td>UFV</td>
</tr>
<tr>
<td>V_{DD}, V_{SS} [V]</td>
<td>1.8 to 7.0</td>
<td>2.2 to 5.5</td>
<td></td>
</tr>
<tr>
<td>V_{NC} (Max) [mV]</td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CMVRH (Max) [V]</td>
<td>V_{DD} - 0.9</td>
<td>V_{DD} - 1.1</td>
<td></td>
</tr>
<tr>
<td>I_{DD} (Max) [μA]</td>
<td>20</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>CMRR (Typ.) [dB]</td>
<td>70</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>f_{z} (Typ.) [MHz]</td>
<td>0.14</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

© 2019-2020 Toshiba Electronic Devices & Storage Corporation
Bipolar transistor

2SA1313

Value provided

Suitable for low-frequency, low-power amplification and greatly contributes to miniaturization.

1. High voltage

V_{CEO} can be applied up-to -50V (Max).

2. Complementary products

It is complementary to 2SC3325.

3. Larger collector current

I_C can be applied up-to -500mA (Max).

2SA1313 Characteristics

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>2SA1313</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>S-Mini</td>
</tr>
<tr>
<td>V_{CEO} (Max) [V]</td>
<td>-50</td>
</tr>
<tr>
<td>I_C (Max) [mA]</td>
<td>-500</td>
</tr>
<tr>
<td>P_C (Max) [mW]</td>
<td>200</td>
</tr>
<tr>
<td>Polarity</td>
<td>PNP</td>
</tr>
</tbody>
</table>

© 2019-2020 Toshiba Electronic Devices & Storage Corporation
Monitoring sensor at low power consumption by using built-in ADCs, Timers and various communication interfaces.

1. **Built-in ARM® Cortex®-M3 CPU core**
 TMPM368FDFG implements Cortex®-M3 core with 80MHz maximum operation frequency. It is suitable for processing sensor data at real-time. Various development tool and their partners allow users many options.

2. **System cost down and development efficiency improvement**
 TMPM368FDFG executes sensing data monitoring and processing efficiently by combining built-in analog function such as ADC, and CPU system. The original NANO FLASH™ is possible to rewrite at high-speed. It reduces user software development time period.

3. **Various communication interfaces**
 TMPM368FDFG supports major communication interfaces such as USB, CAN, UART and SPI. User can construct a communication system easily with a cloud.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TMPM368FDFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operation frequency</td>
<td>80MHz</td>
</tr>
<tr>
<td>Instruction ROM</td>
<td>512KB</td>
</tr>
<tr>
<td>RAM</td>
<td>128KB</td>
</tr>
<tr>
<td>Timer</td>
<td>16bit x 8ch</td>
</tr>
<tr>
<td>ADC</td>
<td>8ch x 12bit</td>
</tr>
<tr>
<td>USB</td>
<td>Host 1ch, Device 1ch</td>
</tr>
<tr>
<td>CAN, UART/SIO</td>
<td>1ch, 4ch</td>
</tr>
</tbody>
</table>

* Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the “Semiconductor Reliability Handbook”.
4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
6. THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control
Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
This terms of use shall be governed and construed by laws of Japan.
RESTRICTIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which Minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacture of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.