Refrigerator

Solution Proposal by Toshiba
Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Refrigerator Overall block diagram

- AC
- Surge Absorption
- Heater
- DC-DC Circuit
- LDO
- Compressor MCU
- Current Sense Op-amp
- LDO
- Compressor
- Brushless
- Compressor
- M
- LDO
- Surge Absorption
- MOSFET
- Inner Fan
- Motor Damper
- MCD
- MCD
- MCD
- MCD
- MCD
- LED Light
- LED
- Control MCU for Display Panel
- LED Driver
- Sensor
- Door switch
- Auto Icemaker
- Key
- Speaker
- M
- Stepping
- Stepping
- Stepping
- MOSFET
- Stepping
- Stepping
- Stepping
- Stepping
- Stepping
Refrigerator Details of DC-DC unit

DC-DC power supply circuits

Device selection points
- Small-signal MOSFET is optimal for DC-DC translation.
- LDO is suitable for stable power supply to MCU

Proposals from Toshiba
- **Setting of low power consumption with low on-resistance**
 U-MOS Series MOSFET (Trench Type)
- **Setting of low power consumption with low on-resistance**
 Small-signal MOSFET
- **Optimum power supply for environments with high power supply noise**
 Small surface mount LDO regulator

MCU power supply circuit
Refrigerator Details of Motor Driving unit

Compressor drive circuit

- **Compressor MCU**
- **Op-amp**
- **Shunt Resistor**
- **IPD**
- **Brushless**
- **MCD**

Device selection points
- Intelligent power devices (IPDs) are suitable for driving high-voltage motors such as compressors.
- MCDs are used for driving stepping and brushless DC motors.
- An operational amplifier is used to amplify signals such as current sensing.

Proposals from Toshiba
- **Setting of low power consumption with low on-resistance**
 - Small-signal MOSFET
- **Built-in high-voltage power MOSFET**
- **Operational amplifier with integrated phase compensation circuit**
 - General-purpose operational amplifier
- **Easy control of motors**
 - Motor driver
- **Easy software development using general-purpose CPU cores**
 - Microcontroller

Damper drive circuit

- **Central and Fan Control MCU**
- **MCD**
- **Stepping**

Fan drive circuit

- **Central and Fan Control MCU**
- **MCD**
- **Brushless**
- **P-ch MOSFET**
- **Brush**

© 2019 Toshiba Electronic Devices & Storage Corporation
Device selection points
- A phototriac coupler is the good way to control the AC load.
- Small-signal MOSFET is optimal for driving LEDs.

Proposals from Toshiba
- **Switching with low on-resistance**
 Small-signal MOSFET
- **Operational amplifier with integrated phase compensation circuit**
 General-purpose operational amplifier
- **Efficient control of AC load**
 Triac output photo couplers
- **Easy software development using general-purpose CPU cores**
 Microcontroller
Recommended Devices
Device solutions to address customer needs

As described above, in the design of refrigerators, "Low power consumption of the set", "Robust operation" and "Miniaturization of circuit boards" are important factors. Toshiba's proposals are based on these three solution perspectives.
Device solutions to address customer needs

<table>
<thead>
<tr>
<th></th>
<th>High efficiency - Low-loss</th>
<th>Noise immunity</th>
<th>Small size Package Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U-MOSVI series MOSFET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Small-signal MOSFET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>High-voltage three-phase motor driver IC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>General-purpose operational amplifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Small surface mount LDO regulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Triac output photo couplers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Motor driver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Microcontroller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suitable for power management switches and easy to handle and greatly contributes to miniaturization.

1. **Low on-resistance**

 By keeping the on-resistance between the source and drain low, heat generation and power consumption can be kept low.

2. **Low leakage current**

 Drain cut-off current $I_{DSS} = 10\mu A$ (max.) ($V_{DS} = -20$ V)

3. **Enhancement type**

 It is easy to handle because it is an enhancement type in which no collector current when no gate voltage is applied.

TPCC8136 Characteristics Curves

<table>
<thead>
<tr>
<th>Part number</th>
<th>TPCC8136</th>
<th>SSM6J501NU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>TSON</td>
<td>SOT-1220</td>
</tr>
<tr>
<td>V_{DSS} [V]</td>
<td>-20</td>
<td>-20</td>
</tr>
<tr>
<td>I_G [A]</td>
<td>-9.4</td>
<td>-8</td>
</tr>
<tr>
<td>P_D [W]</td>
<td>1.9</td>
<td>1</td>
</tr>
<tr>
<td>C_{iss} (Typ.) [pF]</td>
<td>2350</td>
<td>2500</td>
</tr>
<tr>
<td>$R_{on} (Max)$ [mΩ] @$V_{GS} = -4.5$ V</td>
<td>16</td>
<td>15.4</td>
</tr>
<tr>
<td>Polarity</td>
<td>P-ch</td>
<td>P-ch</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Small-signal MOSFET
SSM3K333R / SSM3K335R / SSM3J332R / SSM3J334R

Suitable for power management switches and greatly contributes to miniaturization.

1. Low voltage drive
 - $V_{GS} = 4.5$ V drive (SSM3K333R)
 - $V_{GS} = 1.8$ V drive (SSM6P39TU)
 - $V_{GS} = 1.2$ V drive (SSM3K35AFS)

2. Low on-resistance
 - By keeping the on-resistance between the source and drain low, heat generation and power consumption can be kept low.

3. Small package
 - Small package is suitable for high-density mounting.

<table>
<thead>
<tr>
<th>Part number</th>
<th>SSM3K333R</th>
<th>SSM3K335R</th>
<th>SSM3J332R</th>
<th>SSM3J334R</th>
<th>SSM6P39TU</th>
<th>SSM3K35AFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SOT-23F</td>
<td>UF6</td>
<td>SSM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DSS} (Min) [V]</td>
<td>30</td>
<td>30</td>
<td>-30</td>
<td>-30</td>
<td>-20</td>
<td>20</td>
</tr>
<tr>
<td>I_D (Max) [A]</td>
<td>6</td>
<td>6</td>
<td>-6</td>
<td>-4</td>
<td>-1.5</td>
<td>0.25</td>
</tr>
<tr>
<td>$R_{DS(on)}$ (Max) [Ω]</td>
<td>0.042</td>
<td>0.056</td>
<td>0.05</td>
<td>0.105</td>
<td>0.213</td>
<td>1.1</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>P-ch</td>
<td>P-ch</td>
<td>P-ch × 2</td>
<td>N-ch</td>
<td></td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
A DC-brushless motor driver with a built-in MOSFET can be driven at a variable speed by control signals from the MCU.

1. **Built-in circuitry required to drive the motor**
 It contains a level-shifting high-side driver, low-side driver, and power MOSFET.

2. **High voltage power terminals and control terminals are separated**
 High-voltage/large-current terminals and the control terminals are separated on both sides of the package, thereby eliminating the complexity of wiring.

3. **Included protection functions**
 It has built-in over-current protection, thermal shutdown, shutdown (SD) and under-voltage protection functions.

TPD4207F
Application Circuit Example

TPD4207F
Part number: SSOP30

<table>
<thead>
<tr>
<th>Part number</th>
<th>TPD4207F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SSOP30</td>
</tr>
<tr>
<td>V_{BB} (Max) [V]</td>
<td>600</td>
</tr>
<tr>
<td>I_{OUTDC} (Max) [A]</td>
<td>5.0</td>
</tr>
<tr>
<td>V_{CC} [V]</td>
<td>13.5 to 16.5</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
CMOS single-operation amplifier with a built-in phase compensator, low-voltage drive, and low-current power supply.

1. **Low voltage operation is possible.**

 Compared with bipolar general-purpose operational amplifiers, low-voltage operation is possible: $V_{DD} = \pm 0.75$ to ± 3.5 V or 1.5 to 7 V.

2. **Low-current power supply**

 $I_{DD}(\text{Typ.}) = 60[\mu\text{A}]$

 The low-current power supply characteristics of CMOS processes contribute to extend the battery life of small IoT devices. [Note 3]

3. **Built-in phase compensator circuit**

 Because the phase compensation circuit is built-in, there is no need for any external device.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TC75S51FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>USV</td>
</tr>
<tr>
<td>$V_{DD(\text{op})}$ [V]</td>
<td>± 0.75 to ± 3.5 or 1.5 to 7.0</td>
</tr>
<tr>
<td>I_{DD} (Max) [µA]</td>
<td>200</td>
</tr>
<tr>
<td>f_t (Typ.) [MHz]</td>
<td>0.6</td>
</tr>
</tbody>
</table>

[Note 1] Various sensors: vibration detection sensors, shock sensors, acceleration sensors, pressure sensors, infrared sensors, and temperature sensors.

[Note 2] Based on our survey (as of May 2017).

[Note 3] Comparison with our bipolar process operational amplifier.

© 2019 Toshiba Electronic Devices & Storage Corporation
Small surface mount LDO regulator
TCR3DF / TCR2EF series

Value provided

Variety of products that meet high performance requirements, from general-purpose products to ultra-small package type.

1. Low dropout voltage
 The newly developed new-generation process significantly improved the dropout characteristics.

2. High ripple rejection
 Our LDO regulator has a high ripple rejection characteristic, and eliminates switching noise efficiently.

3. Ceramic capacitors can be used.
 Improved drop-out characteristics have enabled the use of ceramic capacitors as external capacitors.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCR3DF Series</th>
<th>TCR2EF series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SMV</td>
<td>SMV</td>
</tr>
<tr>
<td>V_N (Max) [V]</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>I_{OUT} (Max) [A]</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>V_{OUT} [V]</td>
<td>1.0 to 4.5</td>
<td>1.0 to 5.0</td>
</tr>
</tbody>
</table>

◆ Return to Block Diagram TOP
The photocoupler consists of a non zero cross type phototriac, optically coupled to an infrared light emitting diode.

1. **Non zero cross type**
 This is suitable for the case where the operation time is short and phase control is necessary.

2. **Switching characteristic**
 It has excellent points such as high speed, low noise and silence.

3. **Miniaturization of mounting area**
 The minimum size is 3.7×7.0×2.1 mm. (SO6)

Line up

<table>
<thead>
<tr>
<th>Feature</th>
<th>TLP267J</th>
<th>TLP560J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>TLP267J</td>
<td>TLP560J</td>
</tr>
<tr>
<td>Package</td>
<td>SO6</td>
<td>DIP6</td>
</tr>
<tr>
<td>V_{DRM} (Max) [V]</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>BV_{r} (Min) [Vrms]</td>
<td>3750</td>
<td>2500</td>
</tr>
<tr>
<td>T_{on} (°C)</td>
<td>-40 to 100</td>
<td>-40 to 100</td>
</tr>
<tr>
<td>Feature</td>
<td>Non-zero-voltage turn-on</td>
<td></td>
</tr>
</tbody>
</table>

Internal connection diagram

The photocoupler consists of a non zero cross type phototriac, optically coupled to an infrared light emitting diode.

Value provided

TLP267J

Internal connection diagram

Notes:
- When a VDE approved type is needed, please designate the Option (V4).
- UL-approved: UL1577, File No.E67349
- cUL-approved: CSA Component Acceptance Service No.5A File No.E67349
- VDE-approved: EN60747-5-5, EN60065 or EN60950-1 (Note)
- CQC-approved: GB4943.1, GB8898 Thailand Factory

© 2019 Toshiba Electronic Devices & Storage Corporation
Support for low voltage motor driving (2.5V min.) with low power consumption.

1. **Low voltage operation**

 Motor driving voltage is 2.5V min. for low voltage applications such as battery operation devices.

2. **Low current consumption**

 Stand-by current is below 2uA (IC total) for power saving of devices.

3. **Abnormality detection functions**

 Over current detection (ISD), Over heat detection (TSD) & Low voltage detection (UVLO) are available for safe motor driving.

Line up

<table>
<thead>
<tr>
<th>Part Number</th>
<th>TC78H621FNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ac} (Max)</td>
<td>18</td>
</tr>
<tr>
<td>I_{OUT} (Max)</td>
<td>1.1</td>
</tr>
<tr>
<td>$R_{on,upper \ and \ lower}$</td>
<td>0.8</td>
</tr>
<tr>
<td>Control Interface</td>
<td>ENABE / PHASE inputs</td>
</tr>
<tr>
<td>Step</td>
<td>Two-phase excitation</td>
</tr>
<tr>
<td>Feature</td>
<td>Motor driving voltage: 2.5 V (Min)</td>
</tr>
<tr>
<td>Abnormality detection function</td>
<td>Over heat, Over current, Low voltage</td>
</tr>
<tr>
<td>Package</td>
<td>TSSOP16</td>
</tr>
</tbody>
</table>

TSOP16 Package (5.0mm×6.4mm×1.2mm)
Single phase brushless motor driver
TC78B002FNG/FTG

Simple fan motor drive with low noise & low vibration.

1. Suitable for small Fan motor
 Motor driving voltage is 2.5V min. for low voltage applications such as battery operation devices.

2. Low noise & low vibration
 Smooth waveform by soft switching drive realizes low noise and low vibration.

3. Small package
 Small QFN16 package with high heat dissipation.

WQFN16 Package (3mm×3mm×0.75mm)

<table>
<thead>
<tr>
<th>Line up</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VM (Max) [V]</td>
<td>18</td>
</tr>
<tr>
<td>I_{OUT} (Max) [A]</td>
<td>1.5</td>
</tr>
<tr>
<td>Drive type</td>
<td>Single phase full wave drive</td>
</tr>
</tbody>
</table>

Features & Others:
- PWM control
- Soft switching drive
- Quick start
- Hall bias circuit
- Error detection: Current limit, Thermal shutdown

© 2019 Toshiba Electronic Devices & Storage Corporation

Return to Block Diagram TOP
Microcontroller

TX03 series M370 group/TX04 series M470 group

Value provided

System cost reduction, noise reduction, higher efficiency and less development work.

1. **Equipped with motor control co-processor**

 Toshiba’s original co-processor vector engine (VE) for motor control reduces CPU load and allows control of multiple motors and peripherals.

2. **Equipped with motor control logic circuit**

 Versatile three-phase PWM output with high efficiency and low noise control made possible by sense timing. The advanced encoder lightens CPU load of each PWM processing.

3. **Equipped with analog circuit for motor control**

 Multiple high speed, high accuracy AD converter are integrated, allowing conversion timing and PWM output to be linked. External functions such as high-performance op-amps are on-chip.

TX™ Family

TX04

- Series
- ~120MHz
- for High-Efficiency Signal Processing Applications

- M440 Group
- M460 Group
- M470 Group

TX03

- Series
- ~144MHz
- for a Broad Range of Applications

- M310 Group
- M330 Group
- M340 Group
- M360 Group
- M370 Group
- M380 Group
- M390 Group

Line up

- TX03 series M370 group: Arm® Cortex®-M3, includes 1st gen VE
- TX04 series M470 group: Arm® Cortex®-M4, includes 2nd gen VE

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

© 2019 Toshiba Electronic Devices & Storage Corporation
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
This terms of use is made between Toshiba Electronic Devices and Storage Corporation (”We”) and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
 1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
 2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
 3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
 4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
 1. We reserve the right to make changes to this Reference Design without notice.
 2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
 3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the “Semiconductor Reliability Handbook”.
 4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.
 5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
 6. THIS REFERENCE DESIGN IS PROVIDED “AS IS”. WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control
 Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
 This terms of use shall be governed and construed by laws of Japan.
• Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

• This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

• Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which Minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

• PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

• Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

• Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

• The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

• ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

• GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.

• Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

• Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.
TOSHIBA

* Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
* Other company names, product names, and service names may be trademarks of their respective companies.