Tablet Device

Solution Proposal by Toshiba
Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
Tablet Device Details of Power supply unit

System power circuit
Method using power controller

Method without power controller

※ Click on the blue circled numbers above to view detailed descriptions.

Proposal from Toshiba

- Prevent circuit malfunctions by absorbing electrostatic discharge (ESD) from external terminals
 - TVS diodes
- Low power dissipation sets possible by means of low ON resistance
 - U-MOS series MOSFET (trench-type)
- Robust protection function

Device selection

- A low Rdyn of an electrostatic protection diode (TVS) is an important protection performance parameter.
- MOSFETs are suitable for control of USB power circuits.
- Board area reduction is possible by using small packages.
Audio circuit

- Processor
- Audio Codec
- Audio Amp.
- RC Filter
- Speaker
- Earphone
- Volume Switch
- TVS

Device selection
- A low Rdyn of an electrostatic protection diode (TVS) is an important protection performance parameter.
- Board area reduction is possible by using small packages.

Proposal from Toshiba
- Prevent circuit malfunctions by absorbing electrostatic discharge (ESD) from external terminals.
 TVS diodes

※ Click on the blue circled numbers above to view detailed descriptions.
Touch sensor circuit

Optical type

- Optical Sensor Unit
- Sensor Controller
- Processor
- TVS

Touch sensor circuit

Capacitive type

- Touch Capacitive Sensor Unit
- Sensor Controller
- Processor
- TVS

Device selection

- A low R_{dyn} of an electrostatic protection diode (TVS) is an important parameter of protection performance.
- Board area reduction is possible by using small packages.

Proposal from Toshiba

- Prevent circuit malfunctions by absorbing electrostatic discharge (ESD) from external terminals
- TVS diodes

※ Click on the blue circled numbers above to view detailed descriptions.
Display circuit

Processor

Touch Screen Controller — Display

MIPI® DSI — Interface Bridge — LVDS — Display

MIPI® DSI — Interface Bridge — DisplayPort™ — Display

Embedded DisplayPort™ — Interface Bridge — MIPI® DSI — Display

LDO — LED Backlight Controller — SBD — Display

Device selection

- A low Rdyn of an electrostatic protection diode (TVS) is an important parameter of protection performance.
- Low VF & low IR are essential for SBDs.
- Board area reduction is possible by using small packages.
- Display components can be selected without concern for interface standards.

Proposal from Toshiba

- Prevent malfunctions by absorbing external electrostatic discharge (ESD) TVS diodes
- High speed, low power Surface-mounted Schottky barrier diodes
- Resistant to power supply noise Small surface-mounted LDO regulators
- Absorb differences in interfaces Interface bridge

※ Click on the blue circled numbers above to view detailed descriptions.

MIPI is a registered trademark of MIPI Alliance, Inc.
DisplayPort™ is a trademark of Video Electronics Standards Association (VESA) in the US and other countries.

© 2019 Toshiba Electronic Devices & Storage Corporation
Device selection

- PSRR (Power Supply Rejection Ratio) is an important parameter for camera modules.
- Small, low Ct TVS diodes are suited for ESD protection.
- Board area reduction is possible by using small packages.
- Camera components can be selected without concern for interface standards.

Proposal from Toshiba

- Prevent circuit malfunctions by absorbing electrostatic discharge (ESD) from external terminals
 TVS diodes
- Resistant to power supply noise
 Small surface-mounted LDO regulators
- Absorb differences in interfaces
 Interface bridge

※ Click on the blue circled numbers above to view detailed descriptions.
Tablet Device Details of Wireless Unit

Wireless Circuit

![Diagram of Wireless Circuit](image)

- **Processor**
- **Wi-Fi/LTE/GPS Module**
- **LDO**
- **Wi-Fi/LTE/GPS Output**
- **TVS**

Device Selection

- Due to small device size, small components are required.
- Wi-Fi system requires power supply with large current capability.

Proposal from Toshiba

- Prevent circuit malfunctions by absorbing electrostatic discharge (ESD) from external terminals
- TVS diodes
- Resistant to power supply noise
- Small surface-mounted LDO regulators

※ Click on the blue circled numbers above to view detailed descriptions.
Recommended Devices
For Tablet designs, basic solutions are proposed from the three perspectives of “Board miniaturization”, “Low set power dissipation”, “Noise immunity”.

- **Board miniaturization**: Small packaging
- **Low set power dissipation**: High Efficiency, Low loss
- **Noise immunity**: Noise immunity
Device solutions to address customer needs

<table>
<thead>
<tr>
<th></th>
<th>Small packaging</th>
<th>Efficiency - Low loss</th>
<th>Noise immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TVS diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Small signal MOSFET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Schottky barrier diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Small surface mount LDO regulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Interface bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Electronic Fuse eFuse IC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TVS diode
DF2B7ASL / DF2S14P1CT / DF2B5M4SL / DF2B6M4SL

Protecs devices and prevents circuit malfunctions by absorbing ESD entering from external terminals

1 Increase ESD pulse absorption
High signal quality and protection assured by means of low operating resistance and low capacitance.

2 Suppress ESD energy by means of low clamp voltage
Using original technology, provides full protection of connected circuit components.

3 High density mounting
Wide selection of packages available (single / multi flow-through).

Note: This device is for ESD protection only and cannot be used for other purposes such as, but not limited to, constant voltage source circuits.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>DF2B7ASL</th>
<th>DF2S14P1CT</th>
<th>DF2B5M4SL</th>
<th>DF2B6M4SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SL2</td>
<td>CST2</td>
<td>SL2</td>
<td>SL2</td>
</tr>
<tr>
<td>V_{ESD} (Max) [kV]</td>
<td>±30</td>
<td>±30</td>
<td>±20</td>
<td>±20</td>
</tr>
<tr>
<td>V_{RWM} (Max) [V]</td>
<td>5.5</td>
<td>12.6</td>
<td>3.6</td>
<td>5.5</td>
</tr>
<tr>
<td>C_t (Typ.) [pF]</td>
<td>8.5</td>
<td>40</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>R_{DYN} (Typ.) [Ω]</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Note: This device is for ESD protection only and cannot be used for other purposes such as, but not limited to, constant voltage source circuits.

© 2019 Toshiba Electronic Devices & Storage Corporation
Small signal MOSFET
SSM6K513NU / SSM6N55NU / SSM6J507NU

Suitable for power management, contributes to miniaturization

1. Low voltage operation
 Operates at $V_{DS}=4.5V$

2. Low ON resistance
 By reducing source-drain ON resistance, heat radiation and power dissipation is minimized.

3. Small package
 Encapsulated in SOT-1220 (2.0x2.0mm)

SSM6K513NU equivalent circuit

<table>
<thead>
<tr>
<th>Line up</th>
<th>SSM6K513NU</th>
<th>SSM6N55NU</th>
<th>SSM6J507NU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>UDFN6B</td>
<td>UDFN6B</td>
<td>UDFN6B</td>
</tr>
<tr>
<td>V_{DSS} (Max) [V]</td>
<td>30</td>
<td>30</td>
<td>-30</td>
</tr>
<tr>
<td>I_D (Max) [A]</td>
<td>15</td>
<td>4</td>
<td>-10</td>
</tr>
<tr>
<td>$R_{DS(on)}$ [mΩ] @$V_{GS} = 4.5V$</td>
<td>Typ. 8.0</td>
<td>48</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Max 12</td>
<td>64</td>
<td>28</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>N-ch x 2</td>
<td>P-ch</td>
</tr>
</tbody>
</table>
Schottky barrier diode
CUHS20F40 / CTS05F40

Fast, low-loss, small package and ideal for many applications

1. Fast switching
For fast switching applications.

2. High reverse voltage
Reverse voltage V_R can be applied up to 40V maximum.

3. Small package
Small surface-mount packages for high-density assembly:
US2H: $2.5 \times 1.4 \times 0.6$ mm
CST2: $1.0 \times 0.6 \times 0.38$ mm

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>CUHS20F40</th>
<th>CTS05F40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>US2H</td>
<td>CST2</td>
</tr>
<tr>
<td>I_D (Max) [A]</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>V_R (Max) [V]</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>V_f (Typ.) [V]</td>
<td>0.39 @$I_f = 1.0$ A</td>
<td>0.74 @$I_f = 0.5$ A</td>
</tr>
<tr>
<td>I_R (Max) [μA] @$V_R = 40$ V</td>
<td>60</td>
<td>15</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation

Return to Block Diagram TOP
Small surface mount LDO regulator
TCR5AM / TCR15AG / TCR4DG / TCR3DG Series

For high performance requirements from general purpose to ultra small packages

1. Low dropout voltage

Dropout characteristics are greatly improved using new generation process.

2. High ripple compression

With a high ripple compression R.R, ripple is efficiently removed.

3. External ceramic capacitors

With improved dropout characteristics, it is now possible to use external ceramic capacitors.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCR5AM</th>
<th>TCR15AG</th>
<th>TCR4DG</th>
<th>TCR3DG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>DFNSB</td>
<td>WCSP6F</td>
<td>WCSP4E</td>
<td>WCSP4E</td>
</tr>
<tr>
<td>V_{IN} (Max) [V]</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>I_{OUT} (Max) [mA]</td>
<td>0.5</td>
<td>1.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Output range [V]</td>
<td>0.55 to 3.6</td>
<td>0.65 to 3.6</td>
<td>1.0 to 4.5</td>
<td>1.0 to 4.5</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Eliminating the interface gap between host and display/camera allows more freedom of component selection

1. **Wider component selection**
 Conversion of the interface allows shared procurement with other products as well as adoption of less inexpensive parts.

2. **Noise immunity**
 Converting parallel communication to serial improves noise immunity and suppresses noise generation to the surroundings.

3. **Less cabling**
 Converting from parallel communication to serial reduces total wiring the risks of wire breakage.

Display interface
- X Std.
- Y Std.

Camera interface
- X Std.
- Y Std.

MIPI® is a registered trademark of MIPI Alliance, Inc.
DisplayPort™ is a trademark of Video Electronics Standards Association (VESA) in the US and other countries.
eFuse IC (electronic fuses) can protect circuits from abnormal conditions such as overcurrent and overvoltage repeatedly.

1. Repeated use

When excessive current flows through the eFuse IC, the internal detection circuit operates and turns off the internal MOS. It is not destroyed by a single overcurrent and can be used repeatedly.

2. High-speed short-circuit protection

The cut-off time at the time of output short-circuit is 150ns (Typ.), and the output current is cut-off at high speed at the time of short-circuit detection.

3. Rich protection functions

In addition to short-circuit protection, the circuit is protected by overcurrent clamp (OCC), overvoltage clamp (OVC), Thermal shut down (TSD), inrush current suppression, Reverse current protection (optional), and other functions.

Example of reference circuit

![Diagram of eFuse IC Reference Circuit]

- **MOSFET for preventing reverse current**
- **Option**
- **Setting the limiting current**
- **EN/UVLO**
- **OUT**
- **VOUT**

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCKE800NA/NL*</th>
<th>TCKE805NA/NL</th>
<th>TCKE812NA/NL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>WSON10B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0x3.0x0.7mm</td>
<td>4.4 to 18</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>V_{IN} [V]</td>
<td>NA</td>
<td>Latch type</td>
<td></td>
</tr>
<tr>
<td>3.0x3.0x0.7mm</td>
<td>Automatic return</td>
<td>Latch type (external signal control)</td>
<td></td>
</tr>
<tr>
<td>V_{OVC} (Typ.) [V]</td>
<td>-</td>
<td>6.04</td>
<td>15.0</td>
</tr>
</tbody>
</table>

* Under development

© 2019 Toshiba Electronic Devices & Storage Corporation
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
These terms of use are made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with these terms of use. Please note that it is assumed that customers agree to any and all of the terms of use if customers download this Reference Design. We may, at our sole and exclusive discretion, change, alter, modify, add, and/or remove any part of these terms of use at any time without any prior notice. We may terminate these terms of use at any time and for any reason. Upon termination of these terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or be incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
3. Customers shall make sure that semiconductor devices do not have any faults, including but not limited to loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant information, including the precautions and conditions set forth in the “Semiconductor Reliability Handbook”.
4. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
6. This Reference Design is provided "AS IS". We (a) assume no liability whatsoever, including without limitation, indirect, consequential, special, or incidental damages or loss, including without limitation, loss of profits, loss of opportunities, business interruption and loss of data, and (b) disclaim any and all express or implied warranties and conditions related to this Reference Design, including warranties or conditions of merchantability, fitness for a particular purpose, accuracy of information, or noninfringement.

3. Export Control
Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (weapons of mass destruction). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
These terms of use shall be governed and construed by the laws of Japan.
Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which Minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMER’S PRODUCT DESIGN OR APPLICATIONS.

PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.

Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.