Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
Criteria for device selection
- LDO regulators with low drop-out characteristics are required to perform voltage conversion in a compact and efficient manner.
- The use of small packages reduces the circuit board area.
- Ultra-low noise operational amplifiers enable high-precision sensing.

Proposals from Toshiba
- **Small LDO regulator capable of applying a large current**
 Small surface mount LDO regulator
- **Processing analog signals with low noise**
 Ultra-low noise operational amplifier
- **Built-in analog input interface at low power consumption and efficient software development**
 MCU
Power supply circuit

- The transistor coupler is for signal isolation.
- Low power consumption can be realized by using a MOSFET with low on-resistance and high heat dissipation efficiency.
- The use of small packages reduces the circuit board area.

Proposals from Toshiba

- **MOSFET with low on-resistance and high heat dissipation**
 - π-MOSVII series MOSFET (planar type)

- **Contributing to higher efficiency and miniaturization of power supply**
 - SiC Schottky barrier diode

- **Optimal for MOSFET gate control**
 - Bipolar power transistors

- **Photocoupler with excellent environmental resistance**
 - Transistor output photocoupler

- **Realize a set with low power consumption by low on-resistance**
 - Small-signal MOSFET

※ Click the number in the circuit diagram to jump to the detailed description page
Criteria for device selection
- Low power consumption can be realized by using a MOSFET with low on-resistance and high heat dissipation efficiency.
- The use of small packages reduces the circuit board area.

Proposals from Toshiba
- Realize a set with low power consumption by low on-resistance
Small-signal MOSFET
Criteria for device selection
- The use of photorelays instead of mechanical relays eliminates the life limitation caused by contact wear and welding at the contact points, enabling long life and quieter operation.
- The use of small packages reduces the circuit board area.

Proposals from Toshiba
- **Optimal for replacing mechanical relays**
 - Photorelay
- **Built-in analog input interface at low power consumption and efficient software development**
 - MCU

※ Click the number in the circuit diagram to jump to the detailed description page
Panel display system

Criteria for device selection
- Driving series connection Hi-current type white LEDs for an LCD back light
- Data processing of various sensing data and feedback control of a system within very short time period

Proposals from Toshiba
- 1ch type LED driver is suitable for a small LCD for its back light.

Step up type LED driver
- Built-in analog input interface at low power consumption and efficient software development

MCU
Recommended Devices
As described above, in the design of thermostat, “Miniaturization of circuit boards”, “Low power consumption of the set” and “Robust operation” are important factors. Toshiba’s proposals are based on these three solution perspectives.
Device solutions to address customer needs

<table>
<thead>
<tr>
<th></th>
<th>Device Type</th>
<th>Compatible with compact packages</th>
<th>High efficiency - Low loss</th>
<th>Noise immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Small surface mount LDO regulator</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>2</td>
<td>Ultra-low noise operational amplifier</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>3</td>
<td>π-MOSVII series MOSFET (planar type)</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>4</td>
<td>SiC Schottky barrier diode</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>5</td>
<td>Bipolar power transistor</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>6</td>
<td>Transistor output photocoupler</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>7</td>
<td>Small-signal MOSFET</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>8</td>
<td>Photorelay</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>9</td>
<td>LED driver</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>10</td>
<td>MCU</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
Small surface mount LDO regulator
TCR2EF / TAR5SB series

Value provided

To meet high-performance demands with optimum products, we offer from general-purpose to ultra small package devices.

1. **Low dropout voltage**
 The newly developed new-generation process significantly improved the dropout characteristics.

2. **High ripple rejection ratio**
 “High ripple rejection ratio” remove the ripple effectively.

3. **Can be used with ceramic capacitors**
 With improved dropout characteristics, it is possible to use ceramic capacitors as external capacitors.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCR2EF</th>
<th>TAR5SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SMV</td>
<td>SMV</td>
</tr>
<tr>
<td>V_{IN} (Max) [V]</td>
<td>5.5</td>
<td>15</td>
</tr>
<tr>
<td>I_{OUT} (Max) [mA]</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Output voltage lineup [V]</td>
<td>1.0 to 5.0</td>
<td>1.5 to 5.0</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Ultra-low noise operational amplifier

TC75S67TU

Value provided

Very small signals detected by various sensors can be amplified with very low noise.

1. **Ultra-low noise**
 - $V_{NI} \text{ (Typ.)} = 6.0 \, [nV/\sqrt{Hz}]$
 - @f = 1 kHz

 Very small signals detected by various sensors [Note 1] can be amplified with low noise using CMOS Op-amp by optimizing the processing. We achieved one of the industry's lowest [Note 2] input equivalent noise voltage.

2. **Low current consumption**
 - $I_{DD} \text{ (Typ.)} = 430 \, [\mu A]$

 The low current consumption characteristics of CMOS processing contributes to the extension of battery life of the compact IoT devices [Note 3].

3. **Enhancement type**

 It is easy to handle because it is an enhancement type in which no drain current flows when no gate voltage is applied.

Ultra-low noise characteristic

Conventional products: TC75S63TU

New product: TC75S67TU

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TC75S67TU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>UFV</td>
</tr>
<tr>
<td>$V_{DD(SS)} \text{ (Max)} , [V]$</td>
<td>±2.75</td>
</tr>
<tr>
<td>$V_{DD(SS)} \text{ (Min)} , [V]$</td>
<td>±1.1</td>
</tr>
<tr>
<td>$I_{DD} \text{ (Max)} , [\mu A]$</td>
<td>700</td>
</tr>
<tr>
<td>$V_{NI} \text{ (Typ.)} , [nV/\sqrt{Hz}]$ @f = 1 kHz</td>
<td>6</td>
</tr>
</tbody>
</table>

[Note 1] Various sensors: vibration detection sensors, shock sensors, acceleration sensors, pressure sensors, infrared sensors, and temperature sensors

[Note 2] Based on our survey (as of May 2017).

[Note 3] Comparison with our bipolar process operational amplifier

© 2019 Toshiba Electronic Devices & Storage Corporation

14
This MOSFET is suitable for switching regulators and is easy to handle and greatly contributes to miniaturization.

1. **Low on-resistance**

 By keeping the on-resistance between the source and drain low, heat generation and power consumption can be kept low.

2. **Low leakage current**

 \[I_{DSS} = 10 \mu A \text{ (Max)} \] @ \[V_{DS} = 500 \text{ V} \]

3. **Enhancement type**

 It is easy to handle because it is an enhancement type in which no collector current flows when no gate voltage is applied.
Contributing to higher efficiency and miniaturization of power supply.

1. **High current surge resistance**
 \[I_{FSM} = 37 / 39 \text{ A} \text{ [Note 1]} \]
 Surge current is increased around 2 times of the first generation by using improved JBS structure.

2. **Small leakage current**
 \[I_R \text{ (Max)} = 20 \text{ μA} \text{ [Note 1]} \]
 Leak current is reduced around 30% of the first generation by using improved JBS structure.

3. **Low switching loss**
 \[Q_{cj} \text{ (Typ.)} = 10.4 \text{ nC} \text{ [Note 1][Note 2]} \]
 Reduce the total charge amount by thinning wafer technology, switching loss is reduced around 30% of the first-generation product.

Line up

<table>
<thead>
<tr>
<th>Product name</th>
<th>TRS4A65F</th>
<th>TRS4E65F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>TO-220F-2L (Isolation type)</td>
<td>TO-220-2L</td>
</tr>
<tr>
<td>(V_{BRM} \text{ (Max)} \text{ [V]})</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>(I_{RDC} \text{ (Max)} \text{ [A]})</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(I_{FSM} \text{ (Max)} \text{ [A]})</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td>(I_{MAX} \text{ (Max)} \text{ [μA]})</td>
<td>0.2 / 20</td>
<td>0.2 / 20</td>
</tr>
<tr>
<td>(Q_{cj} \text{ (Typ.)} \text{ [nC]})</td>
<td>10.4</td>
<td>10.4</td>
</tr>
</tbody>
</table>

[Note 1]: TRS4A65F / TRS4E65F product data
[Note 2]: \(Q_{cj} = \int C_j \times V_R \text{d}V \) \(V_R = 0.1 \text{ to } 400 \text{ V} \)
Bipolar power transistor for high-speed switching applications, suitable for MOSFET gate control.

1. Fast switching time
 - HNB4B101J
 - PNP: $t_f = 45$ ns (Typ.)
 - NPN: $t_f = 50$ ns (Typ.)

2. High h_{FE}
 - HNB4B101J
 - $h_{FE} = 200 \sim 500$ A @ $I_C = -0.12$ A

3. Low collector-emitter saturation voltage
 - HNB4B101J
 - PNP: $V_{CE(sat)} = -0.20$ V (Max)
 - NPN: $V_{CE(sat)} = 0.17$ V (Max)

HN4B101J
Internal connection diagram

<table>
<thead>
<tr>
<th>Line up</th>
<th>HN4B101J</th>
<th>HN4B102J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SMV</td>
<td>SMV</td>
</tr>
<tr>
<td>V_{CEO} (Q1/Q2) (Max) [V]</td>
<td>-30 / 30</td>
<td>30 / -30</td>
</tr>
<tr>
<td>I_C (Q1/Q2) (Max) [A]</td>
<td>-1.0 / 1.2</td>
<td>2 / -1.8</td>
</tr>
<tr>
<td>h_{FE}</td>
<td>200 to 500</td>
<td>200 to 500</td>
</tr>
<tr>
<td>Polarity</td>
<td>PNP + NPN</td>
<td>NPN + PNP</td>
</tr>
</tbody>
</table>

Return to Block Diagram TOP

© 2019 Toshiba Electronic Devices & Storage Corporation
High conversion efficiency ($I_F = 0.5 \text{ mA}$)

The TLP383/TLP293 is a high-isolation photocoupler that optically couples a phototransistor and high-output infrared LED. Compared to conventional electromagnetic relays and insulating transformers, it provides low-input current and higher conversion efficiency.

High temperature operation guarantee

The TLP383/TLP293 is designed to operate under severe conditions of ambient temperature environment, such as inverters, robots, machinery, and high-output power supplies.

Industrial equipment

- General-purpose inverter
- Servo amplifier
- Robot
- Machine Tool
- High-output power supply
- Security equipment
- Semiconductor tester
- PLC (Programmable Logic Controller)

High level of isolation and noise blocking

<table>
<thead>
<tr>
<th>Part number</th>
<th>TLP383</th>
<th>TLP293</th>
<th>TLP785</th>
<th>TLP385</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SO6L (4pin)</td>
<td>SO4</td>
<td>DIP4</td>
<td>SO6L (4pin)</td>
</tr>
<tr>
<td>BV$_V$ (Min) [Vrms]</td>
<td>5000</td>
<td>3750</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>T_{op} [°C]</td>
<td>-55 to 125</td>
<td>-55 to 125</td>
<td>-55 to 110</td>
<td>-55 to 110</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Value provided

Suitable for power management switches and greatly contributes to miniaturization.

1 Low voltage drive
Drive at $V_{GS} = 1.5$ V.

2 Low on-resistance
Heat generation and power consumption can be kept low by keeping the on-resistance between the source and drain low.

3 Small package
UDFN6B type packages.

SSM6J501NU
Equivalent circuit diagram

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>SSM6J501NU</th>
<th>SSM6K513NU</th>
<th>SSM6K514NU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>UDFN6B</td>
<td>UDFN6B</td>
<td>UDFN6B</td>
</tr>
<tr>
<td>Polarity</td>
<td>P-ch</td>
<td>N-ch</td>
<td>N-ch</td>
</tr>
<tr>
<td>V_{DSS} [V]</td>
<td>-20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>I_D [A]</td>
<td>-10</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>$R_{DS(ON)}$ (Max) [mΩ] @$V_{GS} = 4.5$ V</td>
<td>15.3</td>
<td>8</td>
<td>11.2</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Photorelay consists of an infrared light emitting diode optically coupled to a photo-MOSFET and is suitable for replacing mechanical relays.

1. Low on-resistance R_{ON}

 On-resistance $R_{ON} = 0.04 \, \Omega$ (Typ.)

 (TLP3103: A connection)

2. Wide current range I_{ON}

 The range of on-state current I_{ON} is wide and suitable for power-line control.

 $I_{ON} = 0.6 \, \text{A (Max)}$

 (TLP3103: A connection)

3. Package

 Packages to reduce the size of the set and improve the degree of freedom for design are provided.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>Package</th>
<th>TLP3103</th>
<th>TLP3107</th>
<th>TLP3109</th>
<th>TLP3555A</th>
<th>TLP3823</th>
<th>TLP3825</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.54 SOP6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I_{ON} (Max) [A]	2.3	3.3	2.0	2.5	3.0	1.5
V_{OFF} (Max) [V]	60	60	100	60	100	200
R_{ON} (Typ.) [mΩ]	70	60	70	120	150	500
BVs (Max) [Vrms]	1500	1500	1500	1500	1500	1500

Safety Standards

UL approved: UL1577, File No.E67349

cUL approved: CSA Component Acceptance Service No. 5A, File No.E67349

© 2019 Toshiba Electronic Devices & Storage Corporation
Driving series connection Hi-current type white LEDs. There are 1ch and 4ch drive type drivers.

1 Suitable driving a white LED for an LCD back light
Line up are 1ch and 4ch type drivers. 1ch type is suitable for mobile LCD and 4ch one is for small LCD PC.

2 Capable driving series connection white LEDs
1ch type maximum driving number of series connection LED is 6, 4ch one is 9/ch. Built-in step up type power supply adjusts LED driving voltage according to the LED Vf.

3 PWM dimming function
Minimum high level time period is 330 ns about 4ch PWM control based on constant current power supply. 1ch type is possible to dim by few kHz PWM.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TB62763FMG</th>
<th>TB62771FTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SON8</td>
<td>WQFN24</td>
</tr>
<tr>
<td>Driving ch number</td>
<td>1 ch</td>
<td>4 ch</td>
</tr>
<tr>
<td>Maximum LED driving number</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>Operation voltage</td>
<td>2.8 to 5.5 V</td>
<td>4.75 to 40 V</td>
</tr>
<tr>
<td>LED driving current</td>
<td>~ 80 mA</td>
<td>~ 150 mA</td>
</tr>
<tr>
<td>Built-in constant current power supply</td>
<td>N/A</td>
<td>Available</td>
</tr>
<tr>
<td>Built-in FET for stepping up power supply</td>
<td>Available</td>
<td>N/A</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
System cost down, high efficiency system, development efficiency improvement

1. **Built-in ARM® Cortex®-M0 CPU core**

 Built-in Arm Cortex®-M0 core with Thumb instruction set improves energy efficiency. Various development tool and their partners allow users many options.

2. **Suitable for sensing analog signal**

 Built-in multi-channel ADC and CPU system executes sensing data processing efficiently at low cost.

3. **Small package and very low power consumption**

 Cortex®-M0 and original NANO Flash™ technology bring to the small package and low power consumption. They contribute footprint and power consumption reduction.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TMPM036FWFG</th>
<th>TMPM037FWUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operation frequency</td>
<td>20 MHz</td>
<td>20 MHz</td>
</tr>
<tr>
<td>Instruction ROM</td>
<td>128 KB</td>
<td>128 KB</td>
</tr>
<tr>
<td>RAM</td>
<td>16 KB</td>
<td>16 KB</td>
</tr>
<tr>
<td>Timer</td>
<td>14 ch</td>
<td>10 ch</td>
</tr>
<tr>
<td>UART / SIO</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>I2C</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ADC</td>
<td>8 ch (10 bit)</td>
<td>8 ch (10 bit)</td>
</tr>
</tbody>
</table>

* Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".
4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
6. THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control
Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
This terms of use shall be governed and construed by laws of Japan.
RESTRICTIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which Minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.