Uninterruptible Power Supply
Solution Proposal by Toshiba
Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
UPS Overall block diagram of standard system (power supply)

- **AC Power Supply**
 - Normal Power Supply
 - Power Supply at Peak Cut etc.

- **DC-AC**
 - PFC

- **Bi-directional DC-DC**
 - DC bus line 300 V to 400 V
 - Discharge Charging

- **Battery (48 V)**

- **Solar Power**
 - Wind Power
 - Generator

- **Power Conditioner**

- **Application**
 - (AC input)
 - Application (DC input)
UPS Overall block diagram of interactive DC-DC

- Gate Drivers
- MOS FETs
- ISO Amps
- MAIN MCU
- Communication MCU
- Display
- USB
- CAN
- RS-232C
- RS-422/485
- 300 V to 400 V
- 30 V to 60 V
UPS Overall block diagram of PFC converter

AC Input → PFC Controller → MOSFET → MAIN MCU → DC 300 V to 400 V
Criteria for device selection
- To protect the USB signal line, it is necessary to use a TVS diode with a low capacitance between terminals.
- Low-dynamic resistivity (Rdyn) is a key feature that determines the protective tolerance.
- It is important to protect not only the exterior but also the interior of the set.

Proposals from Toshiba
- The absorbs static electricity (ESD) and prevents circuit malfunction and device breakdown.

TVS diode

※ Click the number in the circuit diagram to jump to the detailed description page.
Criteria for device selection
- It is necessary to isolate the DC-DC converter and the control MCU.
- It is also necessary to isolate the MCU for control and the MCU for communication from each other.
- Protection against high voltage is required to protect the IC used internally.

Proposals from Toshiba
- **Photocoupler with excellent environmental resistance**
 IC output photocoupler
- **Photocoupler suitable for analog signal transmission**
 Isolation amplifier
- **Major interface standards support**
 Main MCU

※ Click the number in the circuit diagram to jump to the detailed description page.
Criteria for device selection
- A high-voltage (normal 600V) MOSFET with high-speed recovery diodes is used for PFCs and DC-DC converters.
- SiC type Schottky barrier diodes are suitable for PFC circuits.
- Both high-voltage MOSFET and low-voltage MOSFET are used for power DC-DC converters.

Proposals from Toshiba
- Optimal for high-efficiency power supply switching
 DTMOSIV series MOSFET
 U-MOSVIII-H series MOSFET
- Strong with efficiency figure of merit and surge current
 SiC Schottky barrier diode
- Photocoupler with excellent environmental resistance
 IC output photocoupler
- Built-in 3-pashe PWM output for inverter control
 Main MCU

※ Click the number in the circuit diagram to jump to the detailed description page.
The motion analysis

Criteria for device selection
- PSRR features are key features of radio systems.
- MIMO systems require a power supply that can supply large currents.
- New WiGig systems also require a power supply that can supply large currents.

Proposals from Toshiba
- Compact surface mounting that is resistant to power supply noise
 LDO regulator
- Built-in 3-pashe PWM output for inverter control
 Main MCU

※ Click the number in the circuit diagram to jump to the detailed description page.
Recommended Devices
As described above, in order to design UPS, "Miniaturization of circuit boards", "Low power consumption of sets" and "Robust operation" are important factors. Toshiba’s proposals are based on these three solution perspectives.
Device Solutions to Solve Customer Problems

<table>
<thead>
<tr>
<th></th>
<th>Small size Package Supported</th>
<th>High efficiency・Low-loss</th>
<th>Noise immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TVS diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MOSFET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SiC Schottky barrier diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IC output photocoupler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Isolation amplifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Small surface mount LDO regulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Main MCU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This absorbs static electricity (ESD) from external terminals, prevents circuit malfunction, and protects devices.

1. Improved ESD pulse absorption
 It achieves both low operating resistance and low capacitance, and ensures high signal protection performance and signal quality.

2. Reduce ESD energy by low clamp voltage
 Steadily protect the connected circuits/devices using proprietary technology.

3. Optimal for high-density packaging
 This compact package is useful for high-density printed circuit boards such as mobile devices.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>DF2B6M4SL</th>
<th>DF2B7ASL</th>
<th>DF2B20M4SL</th>
<th>DFS2S14P2CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SL2</td>
<td>SL2</td>
<td>SL2</td>
<td>CST2</td>
</tr>
<tr>
<td>V_{ESD} [kV]</td>
<td>±20</td>
<td>±30</td>
<td>±15</td>
<td>±30</td>
</tr>
<tr>
<td>V_{BRM} (Max) [V]</td>
<td>5.5</td>
<td>5.5</td>
<td>18.5</td>
<td>13</td>
</tr>
<tr>
<td>C_t (Typ.) [pF]</td>
<td>0.2</td>
<td>8.5</td>
<td>0.2</td>
<td>270</td>
</tr>
<tr>
<td>R_{DYN} (Typ.) [Ω]</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.23</td>
</tr>
</tbody>
</table>

(Note): This product is designed for ESD protection purpose and cannot be used for purposes other than ESD protection (including but not limited to voltage regulation applications).

Return to Block Diagram TOP
Wide range of lineups ranging from low-voltage to high-voltage, which greatly contributes to improved power efficiency and miniaturization.

1 RonA 30 % reduction

In DTMOSIV, the performance index RonA has been reduced by 30 % through the use of a newly developed single epitaxial process. (Comparison of DTMOSIII)

2 Optimization of gate switching speed

In DTMOSIV, we have optimized the gate switching speed by reducing Coss (12 % compared with conventional products) and by reducing on-resistance.

3 Enhancement type

This is an enhancement type that is easy to handle.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TK25A60X</th>
<th>TK16A60W5</th>
<th>TK100E10N1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>TO-220SIS</td>
<td>TO-220SIS</td>
<td>TO-220</td>
</tr>
<tr>
<td>V_DSS [V]</td>
<td>600</td>
<td>600</td>
<td>100</td>
</tr>
<tr>
<td>I_D [A]</td>
<td>25</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>R_D(S) [Ω]</td>
<td>Typ. 0.105</td>
<td>0.18</td>
<td>0.0028</td>
</tr>
<tr>
<td></td>
<td>Max 0.125</td>
<td>0.23</td>
<td>0.0034</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>N-ch</td>
<td>N-ch</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
SiC Schottky barrier diode
TRS4A65F / TRS4E65F

Value provided

Can be applied to power factor correction circuits and a wide range of power supply control applications, and greatly contributes to miniaturization.

1. High surge tolerance
 The surge peak forward current $I_{FSM} = 39$ A (Max)

2. Second-generation chip design
 The figure of merit $(V_F \times Q_c)$ (Note1) is improved by 30% and the surge peak forward current (I_{FSM}) is improved, thereby contributing to higher efficiency of the power supply.

3. Small package
 Provided in TO-220 through-hole type package.

Comparison between the first and second generations

Note1: The $V_F \times Q_c$ (product of forward voltage and total charge) is an index representing the loss performance of the SiC SBD. When comparing the products with the same current rating, the smaller the index, the lower the loss.
Combines an infrared light-emitting diode with high optical output and an integrated circuit light-receiving IC chip with high gain and high speed.

1. **High noise immunity**
 - The products have internal Faraday shield that provides a guaranteed common-mode transient immunity.

2. **High isolation voltage**
 - The isolation voltage \(BV_S\) is 5000 [Vrms] (Min).

3. **Ambient temperature of 125 °C is guaranteed**
 - The products are designed to operate even under severe ambient temperature conditions, such as inverters, robots, machinery, and high-output power supplies. (For TLP2761/2768A)

Value Provided

- **High efficiency**
- **Low-loss**
- **Noise immunity**

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TLP5214</th>
<th>TLP5754</th>
<th>TLP2761</th>
<th>TLP2768A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SO16</td>
<td>SO6L</td>
<td>SO6L</td>
<td>SO6L</td>
</tr>
<tr>
<td>(BV_S) (Min) [Vrms]</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>(T_{op}) [°C]</td>
<td>-40 to 110</td>
<td>-40 to 110</td>
<td>-40 to 125</td>
<td>-40 to 125</td>
</tr>
<tr>
<td>Output type</td>
<td>IC output</td>
<td>Totem-pole Output</td>
<td>Totem-pole Output</td>
<td>Open collector Output</td>
</tr>
</tbody>
</table>

Note 1: When a VDE approved type is needed, please designate the Option (D4).
This is the most suitable isolation amplifier for current / voltage detection of motors and inverters.

1. **High insulation capacity**
 This optical coupling type isolation amplifier has a high-precision ΔΣ AD conversion circuit on the input side and a high-precision DA conversion circuit on the output side.

2. **Support for common mode**
 Common-mode transient elimination is provided with $\text{CMTI} = 15 \, \text{kV/μs (Min)}$.

3. **5 V system power supply voltages**
 - Input power supply voltage $V_{DD1} = 4.5$ to $5.5 \, \text{V}$
 - Output Power Supply Voltage $V_{DD2} = 3.0$ to $5.5 \, \text{V}$

Internal circuit configuration

Note: A 0.1-μF bypass capacitor must be connected between 1 and 4 pins and between 5 and 8 pins.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TLP7820</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SO8L</td>
</tr>
<tr>
<td>BV_S (Min) [Vrms]</td>
<td>5000</td>
</tr>
<tr>
<td>T_{opr} [°C]</td>
<td>-40 to 105</td>
</tr>
<tr>
<td>CMTI (Min) [kV/μs]</td>
<td>15</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Small surface mount LDO regulator
TCR5AM / TCR13AG / TCR4DG / TCR3DG series

Value provided

Variety of products that meet high performance requirements, from general-purpose package to ultra-small package type.

1. **Low dropout voltage**
 The newly developed new-generation process significantly improved the dropout characteristics.

2. **High ripple compression**
 Our LDO regulator has a high ripple rejection characteristic, and eliminates switching noise efficiently.

3. **Ceramic capacitors can be used.**
 Improved drop-out characteristics have enabled the use of ceramic capacitors as external capacitors.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCR5AM</th>
<th>TCR13AG</th>
<th>TCR4DG</th>
<th>TCR3DG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>DFN5B</td>
<td>WCSP6F</td>
<td>WCSP4E</td>
<td>WCSP4E</td>
</tr>
<tr>
<td>V_{IN} (Max) [V]</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>I_{OUT} (Max) [mA]</td>
<td>0.5</td>
<td>1.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Output range [V]</td>
<td>0.55 to 3.6</td>
<td>0.65 to 3.6</td>
<td>1.0 to 4.5</td>
<td>1.0 to 4.5</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
System control MCU
TX03 series M360 group TMPM369FDFG / TMPM369FDXBG

Built-in 3-phase PWM and Ethernet function execute inverter control and internal system communication at low power consumption

1 Built-in ARM® Cortex®-M3 CPU core

TMPM369 implements Cortex®-M3 core with 80MHz maximum operation frequency. It is suitable for controlling Mega solar system. Various development tool and their partners allow users many options.

2 3-phase PWM output

TMPM369 has 2ch of 3-phase PWM output in it. It is suitable for controlling inverter system. The original NANO FLASH™ is possible to rewrite at high-speed. It reduces user software development time period.

3 Various communication interfaces

TMPM369 supports various communication standards. They can construct internal system communication easily.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TMPM369FDFG/FDXBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operation frequency</td>
<td>80MHz</td>
</tr>
<tr>
<td>Instruction ROM</td>
<td>512KB</td>
</tr>
<tr>
<td>RAM</td>
<td>128KB</td>
</tr>
<tr>
<td>3-phase PWM output</td>
<td>2ch</td>
</tr>
<tr>
<td>Ethernet MAC</td>
<td>1ch</td>
</tr>
<tr>
<td>USB2.0</td>
<td>Host 1ch, Device 1ch</td>
</tr>
<tr>
<td>CAN, UART</td>
<td>1ch, 4ch</td>
</tr>
</tbody>
</table>

* Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".
4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
6. THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control
Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
This terms of use shall be governed and construed by laws of Japan.
RESTRICTIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which Minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENT OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.