Washing Machine

Solution Proposal by Toshiba
Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
Criteria for device selection
- 650 V MOSFET is suitable for switching on primary side of AC-DC converter.
- Transistor output photocoupler is for output voltage feedback.
- Stable system can be realized by using LDO that is resistant to noise generated by the motor drive unit.

Proposals from Toshiba
- Optimal for high efficiency power supply switching
 DTMOS IV series power MOSFET
- Photocoupler with excellent environmental resistance
 Transistor output photocoupler
- Resistant to power supply noise
 Small surface mount LDO regulator

※ Click the number in the circuit diagram to jump to the detailed description page.
Washing Machine Detail of PFC circuit

PFC circuit
Full switching

Criteria for device selection
- MOSFET is suitable for full switching solutions.
- IGBT is suitable for partial switching solutions.
- Transistor output photocoupler is for signal isolation.
- Microcomputer can be used for PFC control.

Proposals from Toshiba
- **Optimal for high efficiency power supply switching**
 DTMOS IV series power MOSFET
- **Photocoupler with excellent environmental resistance**
 Transistor output photocoupler
- **Controlling a system including the main motor at low power consumption and high performance**
 MCU

※ Click the number in the circuit diagram to jump to the detailed description page.
Washing Machine Detail of motor drive unit

Main motor drive unit

MCD (controller) + gate driver + IPM

MCD (controller) + gate driver + MOSFET

Water pump drive unit

MCD (controller) + high voltage IPD

 Criteria for device selection
- IPD is suitable for water pump motor drive.
- High speed MOSFET is suitable for driving the motor.
- Transistor output photocoupler is for signal isolation.
- Brushless motor driver can easily drive a three-phase brushless motor under inverter control.

Proposals from Toshiba
- Optimal for high efficiency power supply switching
 DTMOS IV series power MOSFET
- Photocoupler with excellent environmental resistance
 Transistor output photocoupler
- Motor drive circuit with high voltage can be realized
 High voltage IPD
- Easy to drive the motor
 Motor driver
- Controlling a system including the main motor at low power consumption and high performance
 MCU

※ Click the number in the circuit diagram to jump to the detailed description page.
Washing Machine Detail of communication unit / sensor input unit

Communication unit

Criteria for device selection
- Low $R_{\text{d,y}}$ characteristic of ESD protection diode (TVS) is significant indicator of ESD protection performance.
- Stable system can be realized by using an operational amplifier that is resistant to noise generated by the motor drive unit.

Proposals from Toshiba
- **Absorb static electricity (ESD)** from external terminals and prevent circuit malfunction
- **Accurately capturing changes of consumption current**, etc.
 Ultra low noise operational amplifier
- **Controlling a system including the main motor** at low power consumption and high performance

Sensor input unit

※ Click the number in the circuit diagram to jump to the detailed description page.
Washing Machine Detail of operation unit

Criteria for device selection
- Typically an LED type display uses over 4 digits 7 segment LEDs.
- White LEDs for LCD back light uses LED drivers capable of large output current.
- An MCU controls a main motor digitally which changes the torque complexity and drastically.

Proposals from Toshiba
- Only one external register sets LED drive current. It can reduce BOM cost.
 7 segment LED driver
- 1ch type LED driver is suitable for a small LCD back light.
 Step up type LED driver
- Controlling a system including the main motor at low power consumption and high performance
 MCU

Operation unit (example of Key/LED)

Operation unit (example of LCD)

※ Click the number in the circuit diagram to jump to the detailed description page.
Recommended Devices
Device solutions to address customer needs

As described above, in order to design Washing Machine, “Quieter and more efficient motors”, “Lower power consumption of the set” and “Miniaturization of circuit boards” are important factors. Toshiba’s proposals are based on these three solution perspectives.

- Quieter and more efficient motors
 - High voltage three-phase motor driving

- Lower power consumption of the set
 - High efficiency
 - Low loss

- Miniaturization of circuit boards
 - Compatible with compact packages
Device solutions to address customer needs

<table>
<thead>
<tr>
<th></th>
<th>Device</th>
<th>High voltage three-phase motor driving</th>
<th>High efficiency</th>
<th>Low loss</th>
<th>Compatible with compact packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DTMOS IV series power MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Transistor output photocoupler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Small surface mount LDO regulator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Intelligent power devices (IPDs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Motor driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TVS diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ultra low noise operational amplifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7 segment LED driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LED driver for LCD backlight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Motor control MCU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **High voltage three-phase motor driving**
2. **High efficiency**
3. **Low loss**
4. **Compatible with compact packages**
The performance index RonA is reduced by 30 % (compared with conventional products) to improve power efficiency, which greatly contributes to miniaturization.

1. 30 % reduction of RonA

The newly developed single epitaxial process has reduced the RonA by 30 %. (Comparison of DTMOSIII products : Our Comparison)

2. Reduction of on-resistance rise at high temperature

Single epitaxial process reduces the on-resistance rise at high temperatures.

3. Optimization of gate switching speed

The gate switching speed has been optimized by reducing Coss (12 % : compared with conventional products) and by reducing on-resistance (super junction structural DTMOS).

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TK31N60W</th>
<th>TK28A65W</th>
<th>TK20A60W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>TO-247</td>
<td>TO-220SIS</td>
<td>TO-220SIS</td>
</tr>
<tr>
<td>V_{DS} [V]</td>
<td>600</td>
<td>650</td>
<td>600</td>
</tr>
<tr>
<td>I_D [A]</td>
<td>30.8</td>
<td>27.6</td>
<td>20</td>
</tr>
<tr>
<td>R_{DS(ON)} [Ω] @V_{GS} = 10 V</td>
<td>Typ. 0.073</td>
<td>0.094</td>
<td>0.15</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>N-ch</td>
<td>N-ch</td>
</tr>
</tbody>
</table>
Transistor output photocoupler
TLP383 / TLP293 / TLP785 / TLP385

Value provided

Reduction in required circuit board area and improving reliability enabling maintenance-free operation.

1 High conversion efficiency ($I_F = 0.5$ mA)

The TLP383/TLP293 is a high-isolation photocoupler that optically couples a phototransistor and high-output infrared LED. Compared to conventional electromagnetic relays and insulating transformers, it provides low-input current and higher conversion efficiency.

Industrial equipment
General-purpose inverter
Servo amplifier
Robot
Machine Tool
High-output power supply
Security equipment
Semiconductor tester
PLC (Programmable Logic Controller)

High level of insulation and noise blocking

2 High temperature operation guarantee

The TLP383/TLP293 is designed to operate under severe conditions of ambient temperature environment, such as inverters, robots, machinery, and high-output power supplies.

<table>
<thead>
<tr>
<th>Part number</th>
<th>TLP383</th>
<th>TLP293</th>
<th>TLP785</th>
<th>TLP385</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SO6L (4pin)</td>
<td>SO4</td>
<td>DIP4</td>
<td>SO6L (4pin)</td>
</tr>
<tr>
<td>BV_{CC} (Min) [Vrms]</td>
<td>5000</td>
<td>3750</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>T_{op} [°C]</td>
<td>-55 to 125</td>
<td>-55 to 125</td>
<td>-55 to 110</td>
<td>-55 to 110</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Small surface mount LDO regulator
TCR3DF / TCR2EF series

Value provided

Wide range of products that meet high performance requirements are provided from general purpose products to ultra compact packages.

1. **Low dropout voltage**

 Even if the input voltage is reduced to a certain level, such as when the power supply quality is unstable, output can be stable and heat loss is also reduced. These contribute to higher power supply quality.

2. **High ripple rejection**

 Ripple rejection ratio R.R, which indicates fluctuation of power supply voltage is high and ripples can be rejected efficiently.

3. **Can be used with ceramic capacitors**

 Improved dropout characteristics have enabled the use of ceramic capacitors as external capacitors.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCR3DF series</th>
<th>TCR2EF series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SMV</td>
<td>SMV</td>
</tr>
<tr>
<td>V_{IN} (Max) [V]</td>
<td>5.5</td>
<td>4.4</td>
</tr>
<tr>
<td>I_{OUT} (Max) [mA]</td>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>Output voltage range [V]</td>
<td>1.0 to 4.5</td>
<td>1.0 to 5.0</td>
</tr>
</tbody>
</table>

[Return to Block Diagram TOP]
This product has a built-in output power MOSFET and can directly drive a brushless DC motor with an output power of 60 W or less.

1 Various built-in circuits required to drive the motor

A level shifting high side driver, low side driver and power MOSFET for output are built-in. The brushless DC motor can be driven directly by a control signal from the PWM controller IC.

2 Various built-in circuits required to drive the motor

This IPD can be applied to AC 200 V input system even in areas where commercial power supply quality is unstable and voltages are increased to 450 V.

3 Small package

The compact package SSOP30 enables to realize smaller and thinner control board. This contributes to improvement of degree of freedom in design and the reduction of motor case size.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TPD4204F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SOP30</td>
</tr>
<tr>
<td>(V_{BB}) [V]</td>
<td>600</td>
</tr>
<tr>
<td>(I_{OUT}) [A]</td>
<td>2.5</td>
</tr>
<tr>
<td>(V_{CC}) [V]</td>
<td>13.5 to 16.5</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Toshiba's proprietary technology makes it unnecessary to adjust the lead angle and realizes high efficiency over a wide motor speed range.

1 High efficiency motor control over a wide motor speed range is realized

Toshiba’s proprietary lead angle control technology provides high efficiency motor control regardless of motor speed, load torque and power supply voltage.

2 Low noise, low vibration motor control

Sine wave drive with smooth current waveforms contributes to lower motor noise and vibration compared to conventional rectangular wave drive.

3 Low loss, low heat generation

The built-in MOSFET has a low output on-resistance of 0.23 Ω (Typ.). Loss and heat generated by the IC during motor operation can be reduced.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TC78B016FTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage (operating range) [V]</td>
<td>6 to 30</td>
</tr>
<tr>
<td>Output current (operating range) [A]</td>
<td>3</td>
</tr>
<tr>
<td>Drive system</td>
<td>Sine wave drive system</td>
</tr>
</tbody>
</table>
| Other / Features | Lead angle control: Optimum voltage/current phase control
Sensor input: Hall element/Hall IC compatible
Speed control input: PWM signal input/analog voltage input
Abnormality detection function: Overheat detection, Overcurrent detection, Motor lock detection
Output on-resistance (vertical sum): 0.23 Ω (Typ.) |

WQFN36 package (5 × 5 × 0.8 mm)

© 2019 Toshiba Electronic Devices & Storage Corporation
Value provided

This absorbs static electricity (ESD) from external terminals, prevents circuit malfunction, and protects devices.

1. **Improved ESD pulse absorption**

 Both low operating resistance and low capacitance are realized and ensures high signal protection performance and signal quality.

2. **Reduce ESD energy by low clamp voltage**

 Steadily protect the connected circuits / devices using proprietary technology.

3. **Optimal for high-density mounting**

 A variety of small size packages are available.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>DF2B7ASL</th>
<th>DF2S6P1CT</th>
<th>DF2B5M4SL</th>
<th>DF2B6M4SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SL2</td>
<td>CST2</td>
<td>SL2</td>
<td>SL2</td>
</tr>
<tr>
<td>V_{ESD} [kV]</td>
<td>±30</td>
<td>±30</td>
<td>±20</td>
<td>±20</td>
</tr>
<tr>
<td>V_{RMN} (Max) [V]</td>
<td>5.5</td>
<td>5.5</td>
<td>3.6</td>
<td>5.5</td>
</tr>
<tr>
<td>C_t (Typ.) [pF]</td>
<td>8.5</td>
<td>90</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>R_{DYN} (Typ.) [Ω]</td>
<td>0.2</td>
<td>0.23</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

NOTE: This product is an ESD protection diode and cannot be used for purposes other than ESD protection (including but not limited to voltage regulation diode applications).
Ultra low noise operational amplifier
TC75S67TU

Value provided

Very small signals detected by various sensors can be amplified with very low noise.

1. **Ultra-low noise**
 \[V_{IN} \text{ (Typ.)} = 6.0 \text{ [nV/} \sqrt{\text{Hz}}] \]
 \[@f = 1 \text{ kHz} \]

 Very small signals detected by various sensors[Note 1] can be amplified with low noise using CMOS Op-amp by optimizing the processing. We achieved one of the industry’s lowest[Note 2] input equivalent noise voltage.

2. **Low current consumption**
 \[I_{DD} \text{ (Typ.)} = 430 \text{ [} \mu\text{A}] \]

 The low current consumption characteristics of CMOS processing contributes to the extension of battery life of the compact IoT devices[Note 3].

3. **Low supply voltage operation**
 \[V_{DD} = 2.2 \text{ to } 5.5 \text{ V} \]

[Note 1] Sensor types: vibration detection sensor, shock sensor, accelerometer, pressure sensor, infrared sensor, and temperature sensor
[Note 2] Based on Toshiba data (as of May 2017)
[Note 3] Compared with Toshiba’s Op-amp using bipolar processing

Ultra low noise characteristic
(Company Comparison)

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TC75S67TU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>UFV</td>
</tr>
<tr>
<td>(V_{DD}) (Max) [V]</td>
<td>±2.75</td>
</tr>
<tr>
<td>(V_{DD}) (Min) [V]</td>
<td>±1.1</td>
</tr>
<tr>
<td>(I_{DD}) (Max) [\mu A]</td>
<td>700</td>
</tr>
<tr>
<td>(V_{IN}) (Typ.) [nV/\sqrt{Hz}] @f = 1 kHz</td>
<td>6</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation 19

◆Return to Block Diagram TOP
7-segment LED driver
TB62785NG / FTG

Value provided

LED driver which can light a 4-digit, 7-segment LED using one device

1 Suitable for 7-segment LED displays
This driver can serially control a 4-digit 7-segment LED. Matrix drive is performed by scanning the digits at 480 Hz. The 3-wire control can also be cascaded, reducing the number of harnesses.

2 Current control possible with one external resistor
The LED current can be set with an external resistor. No other components are needed.

3 Lead insertion type package
We have a line-up of free-standing lead insertion packages (SDIP24) and small packages (QFN24) that can be used for the main board.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TB62785NG</th>
<th>TB62785FTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SDIP24</td>
<td>VQFN24</td>
</tr>
<tr>
<td>Outputs</td>
<td>4 columns × 7 outputs</td>
<td></td>
</tr>
<tr>
<td>Operating voltage</td>
<td>4 to 5.5 V</td>
<td></td>
</tr>
<tr>
<td>Internal power supply</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Max. LED power supply</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Max. output current</td>
<td>50 mA</td>
<td></td>
</tr>
<tr>
<td>Cascade connection</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>PWM control</td>
<td>○ 16-step light control possible (total)</td>
<td></td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Step up type LED drivers for a white LED

1ch drive TB62763FMG, 4ch drive TB62771FTG

Value provided

Driving series connection Hi-current type white LEDs. There are 1ch and 4ch drive type drivers.

1 Suitable driving a white LED for an LCD back light

Line up are 1ch and 4ch type drivers. 1ch type is suitable for mobile LCD and 4ch one is for small LCD PC.

2 Capable driving series connection white LEDs

1ch type maximum driving number of series connection LED is 6, 4ch one is 9/ch. Built-in step up type power supply adjusts LED driving voltage according to the LED V_f.

3 PWM dimming function

Minimum high level time period is 330 ns about 4ch PWM control based on constant current power supply. 1ch type is possible to dim by few kHz PWM.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TB62763FMG</th>
<th>TB62771FTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SON8</td>
<td>WQFN24</td>
</tr>
<tr>
<td>Driving ch number</td>
<td>1 ch</td>
<td>4 ch</td>
</tr>
<tr>
<td>Maximum LED driving number</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>Operation voltage</td>
<td>2.8 to 5.5 V</td>
<td>4.75 to 40 V</td>
</tr>
<tr>
<td>LED driving current</td>
<td>\sim80 mA</td>
<td>\sim150 mA</td>
</tr>
<tr>
<td>Built-in constant current power supply</td>
<td>N/A</td>
<td>Available</td>
</tr>
<tr>
<td>Built-in FET for stepping up power supply</td>
<td>Available</td>
<td>N/A</td>
</tr>
</tbody>
</table>

© 2019 Toshiba Electronic Devices & Storage Corporation
Built-in Toshiba original vector engine (VE) hardware contributes high accuracy and low power consumption motor control

1. Built-in ARM® Cortex®-M3 CPU core
 TMPM37AFSQG implements Cortex®-M3 core with 80 MHz maximum operation frequency. Various development tool and their partners allow users many options.

2. Suitable as a motor control MCU
 Built-in Toshiba original vector engine (VE) hardware contributes high accuracy and low power consumption motor control

3. System cost down and development efficiency improvement
 TMPM37AFSQG executes sensing data monitoring and processing efficiently by combining built-in analog function such as ADC and comparator, and CPU system. The original NANO FLASH™ is possible to rewrite at high-speed. It reduces user software development time period.

Line up

<table>
<thead>
<tr>
<th>Part number</th>
<th>TMPM37AFSQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operation frequency</td>
<td>80 MHz</td>
</tr>
<tr>
<td>Instruction ROM</td>
<td>64 KB</td>
</tr>
<tr>
<td>RAM</td>
<td>4 KB</td>
</tr>
<tr>
<td>3 phase PWM output</td>
<td>1 ch</td>
</tr>
<tr>
<td>UART / SIO</td>
<td>1</td>
</tr>
<tr>
<td>I2C</td>
<td>1</td>
</tr>
<tr>
<td>ADC</td>
<td>5 ch (12 bit)</td>
</tr>
</tbody>
</table>

* Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".
4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
6. THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control
Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
This terms of use shall be governed and construed by laws of Japan.
RESTRICTIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which Minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.