Dual side cooling package DSOP
Advance: Thermal conductance innovation for Power-MOSFET
Dual side cooling package DSOP Advance: Thermal conductance innovation for Power-MOSFET

A new MOSFET package called DSOP Advance (Dual Side Cooling SOP 5x6mm) has been developed. That device features an innovative thermal conductance with dual side cooling realized by using a Copper (Cu) plate on the bottom and on the top package surface. Compared with the single side cooling package structure, the thermal resistance (R_{th}) could be reduced by 26% and the avalanche energy could increase as well due to the thermal conductance improvement. Also, a 25% reduction of the package electrical resistance could be achieved, due to the conductive path cross-sectional area increase.

Introduction

Low-voltage power MOSFETs are used as main switching devices in power supply systems. The power density of these systems is increasing continuously. In order to reduce the system volume and power loss, a significant improvement of the package heat radiation of the MOSFETs is necessary. The reduction of the power loss has been achieved by decreasing the device on-resistance and parasitic capacitances. However, the heat radiation performance improvement of the MOSFETs has been limited by the package structure. For example, the conventional single side cooling MOSFETs are usually mounted with cooling fins as shown in Figure 1. In such a case, the heat dissipation between the devices and the fins is blocked by the insulated mold of the package surface. Therefore, larger cooling fins are necessary for effective heat dissipation. In order to solve this problem, we have developed a new high heat dissipation MOSFET package called DSOP Advance as shown in Figure 2, which is adopting a dual cooling technology. This paper demonstrates an innovative heat radiation performance and low package electrical resistance of the DSOP Advance.

![Figure 1 – Typical implementation of the single side cooling MOSFETs.](image)

![Figure 2 – Structure of a new MOSFET package: DSOP Advance](image)
The design and electrical characteristics of the DSOP Advance

1. Package structure
The conventional single side cooling 5x6mm MOSFET called SOP Advance (Figure 1) is covered with an insulating mold. Therefore, the heat dissipation path of the package is mainly its bottom drain side cooling plate. On the other side, the DSOP Advance package has a top source side cooling plate in addition to the bottom drain side plate as shown in Figure 2. These cooling plates contribute in reducing the thermal resistance (Rth). Figure 3 shows the difference between the proposed DSOP Advance package cross-sectional view compared to competitor’s dual side cooling package and the single side cooling package (SOP Advance) [1][2]. The competition dual side cooling package has an independent Cu radiation plate on top of the Cu connector as illustrated on Figure 3. Such a structure includes therefore interfacial thermal and electrical resistances between the Cu radiation plate and the Cu connector. In comparison, the DSOP Advance package is adopting only one integrated connector. So, there are no additional interfacial thermal and electrical resistances. In addition, low manufacturing cost is expected due to the reduction of the number of components.

![Integrated connector](image1)
![Stacked connector](image2)
![Interfacial resistance](image3)

a) TOSHIBA's dual side cooling
b) Competitor's dual side cooling
c) Single side cooling

Figure 3 – Cross-sectional package structures of a) TOSHIBA’s dual side cooling, b) Competitor’s dual side cooling, c) Conventional single side cooling.

2 Thermal and electrical characteristics
The thermal resistance of the DSOP Advance and conventional single side cooling structure with heat sink were estimated. The Rth of the DSOP Advance was 26% lower compared to conventional single side cooling structure as shown in Figure 4. That is due to the thermal conductance enhancement of the top side.

We estimated the magnitude of interfacial thermal conductance between competition and DSOP Advance. Against the competition dual side cooling package a 50% lower top cooling plate Rth could be demonstrated as shown in Figure 5.

In addition, the R_{th} is reduced not only on the static R_{th} region but also in the transient short pulse region. The reduced transient R_{th} could contribute to improve avalanche energy. Figure 6 shows the avalanche energy comparison between the conventional single side cooling package and the DSOP Advance. The avalanche energy of the DSOP Advance was improved by 13% compared with the conventional single side cooling package.

Following thermal characteristics, electrical resistance was estimated. Figure 7 shows the comparison between the on-resistance of the conventional single side cooling package, DSOP Advance and the competitor. The package electrical resistance of the DSOP Advance was reduced by 25% due to the thick Cu connector of DSOP Advance. The combination of the latest generation chip (UMOSIX-H) and the DSOP Advance package achieved best in class lowest $R_{DS(ON)}$. Figure 8 shows the drain current dependence of the channel temperature without heat sink. The DSOP Advance could suppress channel temperature rise.

The difference between two curves comes from package electrical resistance difference. Figure 9 shows our $R_{DS(ON)}$ roadmap of the combination of the chips and packages. We will continue to reduce the $R_{DS(ON)}$ with both package and Si technologies.
Figure 7. $R_{DS}(\text{ON})$ ($V_{GS}=10\text{V}$) comparison among combinations of Si chips and packages.

Figure 8. Channel temperature comparison between single side cooling and dual side cooling. Reduction of package resistance contributes to reduce channel temperature.

Figure 9 – $R_{DS}(\text{ON})$ roadmap of chip generation and packages.
Summary

This paper has presented a new dual side cooling MOSFET package which is called DSOP Advance. By adopting the thick Cu connector, 26% outstanding thermal resistance reduction and 25% package electrical resistance reduction were achieved. The excellent thermal resistance of the DSOP Advance enables to reducing the size of external radiating fin. Also the best in class new power MOSFET using UMOSIX-H with DSOP Advance was presented. Such devices contribute to reducing system volume and increasing system power density.

Contact us to discuss incorporating our products and solutions into your design:
http://apps.toshiba.de/web/ContactUs/
toshiba.semicon-storage.com
Restrictions On Product Use

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as “TOSHIBA”. Hardware, software and systems described in this document are collectively referred to as “Product”.

- Toshiba reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from Toshiba. Even with Toshiba’s written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though Toshiba works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant Toshiba information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “Toshiba Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. Toshiba assumes no liability for customers’ product design or applications.

- Product is neither intended nor warranted for use in equipments or systems that require extraordinarily high levels of quality and/or reliability, and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage and/or serious public impact (“unintended use”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signalling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. If you use product for unintended use, Toshiba assumes no liability for Product. For details, please contact your Toshiba sales representative or contact us via our website.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by Toshiba for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- Absent a written signed agreement, except as provided in the relevant terms and conditions of sale for product, and to the maximum extent allowable by law, Toshiba (1) assumes no liability whatsoever, including without limitation, indirect, consequential, special, or incidental damages or loss, including without limitation, loss of profits, loss of opportunities, business interruption and loss of data, and (2) disclaims any and all express or implied warranties and conditions related to sale, use of product, or information, including warranties or conditions of merchantability, fitness for a particular purpose, accuracy of information, or noninfringement.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your Toshiba sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Toshiba assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.