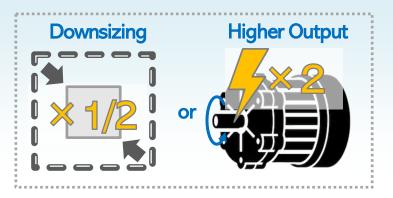
TOSHIBA

SIN Insulating Heat Dissipation Substrates

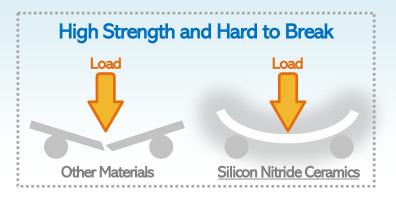

Industry highest standard heat dissipation and strength

This product is an insulation and heat dissipation substrate for semiconductor products. It boasts reliable insulation properties even with thin thickness. It has excellent strength and heat dissipation characteristics, making it ideal for high loads and high power applications.

Point 1

Downsizing · Higher Output Can be Achieved

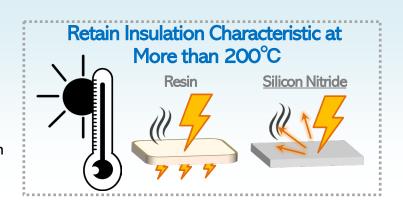
For example, if resin is replaced by silicon nitride of the existing design, heat dissipation effect can be doubled. Also, downsizing and higher output of the product can be achieved.



Point 2

Design with High Load is Possible

Silicon nitride ceramics have an excellent mechanical properties. It makes it possible to achieve items such as following which was difficult in the conventional material.


- Stack with high load
- Use under high vibration
- ·Screwing with holes etc ...

Point 3

Stable Insulation Properties Even at High Temperature

Fluctuation of characteristic value under high temperatures is small for Silicon nitride. Insulation is retained even at high temperature of more than 200°C, so it is possible to adapt to increased junction temperature of semiconductor.

Toshiba Materials Co., Ltd.

TOSHIBA

Typical values for properties of fine ceramics for electronics

Item		Measuring method			Silicon nitrides (Si₃N₄) TSN-90	
Density		JIS Z8807	RT	Mg/m³	3.35	
Thermal properties	Specificheat	JIS C2141	I I	J/kg·K	650	
	Thermal conductivity	JIS R1611		W/m·K	90	
	Coefficient of thermal expansion	JIS C2141	RT-500°C	×10 ⁻⁶ /K	3.4	
Electrical properties	Dielectricstrength	JIS C2110-1	50Hz	kV/mm	25.0	
	Volume resistivity	JIS C2141	RT	Ω·m	1×10 ¹⁵	
	Dielectric constant	JIS C2141	1MHz		8.0	
	Dielectricfactor	JIS C2141	1MHz	tanδx10⁻⁴	8.0	
_	3-point bending strength	JIS C2141	RT	MPa	680	
Mech	Fracture toughness	JIS R1607	RT	MPa·m ^{1/2}	6.5	
Mechanical properties	Young's modulus	JIS R1602	RT	GPa	300	
	Poisson's ratio	JIS R1602			0.27	
Features					High thermal conductivity High strength	
Main applications					Substrates for semiconductor assembly Radiator plates (for compression force) Heat sinks	

 $The {\it values} in the {\it table} \, are \, reference {\it values}, not \, guaranteed \, values.$

Standard design

ltem	Unit	Silicon nitride (Si₃N₄)
item	Offic	TSN-90
Outer dimensions	mm	MAX 170 x 130
outer difficults	Tolerance	±0.15 (Laser cut)
Thickness	mm	0.32
THICKHESS	Tolerance	±0.05mm
Warp	mm/mm	0.4% Under (≦50mm)
Surface area	_	Blast processing (Honing)

 $Values \, on \, the \, chart are standard \, design \, rule \, and \, not \, guaranteed \, value.$

 $Please \, contact \, us \, for \, possibility \, of \, corresponding \, to \, designs \, not \, covered \, in \, above \, chart.$