Silicon Carbide MOSFETs # 650V and 1200V 3rd Generation SiC MOSFETs Toshiba's latest Silicon Carbide (SiC) MOSFETs provide a selection of both 650V and 1200V voltage products. The 3rd generation SiC MOSFETs include a built-in Schottky Barrier Diode (SBD) with a low forward voltage V_F of -1.35V (typ.) placed in parallel with the junction PN diode of the SiC MOSFET to suppress fluctuation in $R_{DS(on)}$. Furthermore, Toshiba's advanced SiC process has greatly improved the on-resistance per unit area $R_{DS(on)}^*$ A and the performance index $R_{DS(on)}^*$ which indicates switching characteristics, compared to 2nd generation products. #### **Applications** - Power supplies & DC/DC converters for - Server - Telecom - Industrial equipment - UPS - Energy storage system - EV- quick charger (off board) - Solar-Inverter - Industrial motor drive #### **Features** - Low R_{DS(on)}*Q_{gd} index - Built-in SiC SBD structure with low $V_F 1.35V$ - 40% reduction of R_{DS(on)} *A versus 2nd Gen SiC-MOSFET - TO-247 3-Pin standard and 4-Pin package with Kelvin source - Wide V_{GSS} range -10V to +25V; high V_{th} of 3V (min.) to 5V (max.) #### **Advantages** - 80% reduced R_{DS(on)}*Q_{gd} compared to 2nd generation products for better switching performance - Suppressing R_{DS(on)} fluctuation - Reduction of chip size combined with improved performance - Kelvin source offers reduced switching loss, E_{ON} & E_{OFF} compared to 3 pin solution - Facilitating the gate drive circuit design and prevent malfunction due to switching noise #### **Benefits** - Lower power consumption, less heat system costs - Increased reliability - SiC allows reduced bill of materials (BOM) costs by needing smaller passive components - Further increased efficiency, allows higher power density - Simplified design-in for faster time to market and product launch #### Built-in Schottky barrier diode Low V_F Schottky diode integrated; V_F : 1.35V (typ.). Integrated SBD improves reliability as it suppresses $R_{DS(on)}$ fluctuation over time and temperature. SBD on Die ## Low R_{DS(on)} * Q_{gd} index Greatly improved $R_{DS(on)} * Q_{gd}$ performance index can enable lower switching losses depending on the circuit design. Reduced R_{DS(on)}*A compared to previous generation. ### High noise immunity, easy to use Wide V_{GSS} range from -10V ~ 25V (recommended: 18V) enabling simplified gate driving. High V_{th} from 3V (min.) to 5V (max.) to prevent malfunction due to switching noise. A wide V_{GSS} range and a high V_{th} allows an easy gate circuit design. # SiC MOSFET 3rd generation line-up | V _{DSS} : 650V | | | V _{DSS} : 1200V | | | |---------------------------|-----------|-----------|---------------------------|------------|------------| | R _{DS(on)} (typ) | TO-247 | TO-247-4L | R _{DS(on)} (typ) | TO-247 | TO-247-4L | | | - | ** | | - | 1 | | 15m $Ω$ | TW015N65C | TW015Z65C | 15mΩ | TW015N120C | TW015Z120C | | $27 m\Omega$ | TW027N65C | TW027Z65C | 30mΩ | TW030N120C | TW030Z120C | | 48mΩ | TW048N65C | TW048Z65C | 45mΩ | TW045N120C | TW045Z120C | | 83mΩ | TW083N65C | TW083Z65C | 60mΩ | TW060N120C | TW060Z120C | | 107mΩ | TW107N65C | TW107Z65C | 140mΩ | TW140N120C | TW140Z120C |