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The double-gate drive is a remarkable gate control technique for dramatically reducing turn-off loss in Si-insulated gate bipolar transistors (IGBT)
by increasing dVCE/dt. However, no detailed analysis of the difference of turn-off mechanism according to the difference in dVCE/dt between
double-gate drive and conventional gate drive has been reported. The double-gate (DG) drive allows the dVCE/dt of IGBTs to increase beyond the
maximum dVCE/dt of 7000 V μs−1 in conventional gate drives. Furthermore, the influence of relations between gate-drive timings and dVCE/dt on
turn-off operations were confirmed in the case of three different DG IGBT structures. © 2020 The Japan Society of Applied Physics

1. Introduction

The main stream of development of Si-insulated gate bipolar
transistor (IGBT) chip technology is improvement of the
trade-off between conduction losses and switching losses.1,2)

The non-latch-up IGBT was proposed in 1984,3) and since
then the trade-off has been improved by such innovations, as
trench-gate structures,4) non punch through-structure,5) field-
stop technology,6,7) injection enhanced gate transistor8) and
carrier stored trench-gate bipolar transistor.9) These innova-
tions enabled the current density increase, which is the key to
chip miniaturization.
However, the limits of silicon have recently made it

increasingly difficult to improve the performance of Si-
IGBTs through modification of device structures alone.
Gate-control techniques have therefore attracted attention as
a means of reducing energy loss throughout the system,
including IGBTs and fast-recovery diodes10–19) or gate-drive
circuits.20–25) Double-gate (DG) IGBT technology is one such
gate-control technique.26–29) Energy loss can be reduced by
using a device with two gates controlled at different timings.
According to these reports, increasing dVCE/dt during turn-off
reduces turn-off loss. We have reported the dependence of
dVCE/dt on turn-off operations in the case of a fabricated DG
IGBT.30) In this paper, we additionally discuss the influence of
relations between gate-drive timings and dVCE/dt on turn-off
operations in the case of different DG IGBT structures.

2. Experimental methods

We fabricated 1200 V, 100 A DG IGBTs (Fig. 1) having two
gates—a main gate (MG) and a control gate (CG)—con-
nected to separate gate pads. All dummy trenches and all n+

emitter layers are connected to the emitter electrodes. Type A
is the structure having a dummy trench between MG and CG
[Fig. 1(a)]. Type B is the structure having three dummy
trenches between MG and CG [Fig. 1(b)]. Type C is the
structure having a dummy trench between MG and CG, and
n+ emitter layer is not formed at the side of CG trench
[Fig. 1(c)]. Therefore, electron injection cannot be carried out
even if a plus voltage is applied to the CG pad.
Figure 2 shows the timing chart of the gate drive during

turn-off, and Fig. 3 shows a conceptual diagram of carrier
movement during turn-off switching.

[Period 1] Period 1 is the conducting state. VMGE and VCGE

(voltage from the emitter to MG and CG) are 15 V. N channel
is formed at the surface of p base layer along MG and CG,
and electron is injected into n− base layer through n channel.
[Period 2] When –15 V is applied to CG, the n channel

formed along the CG disappears and a p channel is formed.
Holes can then be easily drained through the p channel,
regardless of the MG state (n channel is formed or not).
Further, the amount of stored carrier near the emitter side of
the n-base layer becomes smaller. Therefore, VCE becomes a
little higher than that of Period 1. The duration of Period 2 is
called the “gate delay time” (DT). In the case of DT 0 μs, the
MG and CG are simultaneously turned off. In this mode, the
operation of the DG IGBT is the same as that of a
conventional IGBT having one gate.
[Period 3] Turn-off behavior of IGBT starts when −15 V is

applied to MG. The n channel along MG also disappears and
electron injection from n+ emitter layer stops. Because the
amount of carriers in the n− base layer decreased in Period 2
and p channel along CG enhances hole drain, the depletion
region formed in the n− base layer extends rapidly in Period 3.
This causes dVCE/dt to increase and the turn-off time to shorten.
We performed switching measurements using the fabri-

cated DG IGBTs. All measurements described below were
performed at room temperature with a 600 V supply voltage
(VCC). Turn-off dVCE/dt is defined as the rate of increase in
VCE from 50% to 90% of VCC.

3. Results and discussion

3.1. Dependence of dVCE/dt with type A
We confirmed gate resistance (RG) dependence of turn-off
characteristics by varying RG from 3.9 to 82 Ω. Figure 4 shows
the relations between DT and turn-off losses at RG 3.9 Ω, 33 Ω

and 82 Ω with type A structure. When RG is 3.9 Ω, turn-off losses
decrease as DT increases, and turn-off losses are almost constant
when DT is over 5μs. This is because it takes time for stored
carriers in the n− base layer to drain because of the slow carrier
mobility and electron injection and hole drain balance over 5μs.
The reduction ratio of turn-off loss using the DG drive to that
when DT is 0μs (equivalent to conventional IGBT) is 27%, as in
previous reports.27,28) However, turn-off losses do not decrease at
higher RG. Though dVCE/dt increasing is observed at RG 3.9 Ω, it
is not observed at RG 33 Ω and 82 Ω.
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Figure 5 shows the measured relations between RG and
dVCE/dt, and Fig. 6 shows the measured relations between
dVCE/dt and turn-off loss at DT 0 μs and 5 μs. Figure 7 shows
the measured waveforms at DT 0 and 5 μs. In that figure,
VMGE is 13.5 V (the VMGE drops below 90% of 15 V) at
100 ns on the time axis. As RG decreases, the value of
dVCE/dt slightly increases, peaking at about 7000 V μs−1 in
the case of DT 0 μs as shown in Fig. 5. In the case of DT
0 μs, shorter turn-off delay time (the time from when the
VMGE drops below 90% of 15 V until the VCE reaches 10% of
VCC) is observed at RG 3.9 Ω, as shown in Fig. 7(a). dVCE/dt

increasing in comparison with that when RG is 33 Ω is not
observed. In Fig. 5, in contrast, dVCE/dt can increase to about
12 000 V μs−1 at DT 5 μs, as RG decreases. This increase in
dVCE/dt causes turn-off loss to decrease. However, compared
with the case where dVCE/dt is less than 7000 V μs−1, higher
turn-off loss is observed at DT 5 μs as shown in Fig. 6.
Then, we compared turn-off waveforms at RG 3.9 Ω, 33 Ω

and 82 Ω to explore the difference between turn-off
behaviors of DG drive and conventional drive (DT is 0 μs).
Figure 8 shows turn-off waveforms when RG is 3.9 Ω.
Shorter turn-off delay time and higher dVCE/dt are observed
at DT 5 μs than at DT 0 μs. The expected effect of turn-off
loss reduction by using a DG drive is observed. At both DT
0 μs and 5 μs, VCE increases occur after the Miller period.
This is because it takes time after electron injection stops
before the extension of the depletion region starts because
of the slow carrier mobility. Because the amount of carriers
in the n− base layer decreased in Period 2, the depletion
region extends rapidly using DG drive regardless of the
slow carrier mobility.
Figure 9 shows turn-off waveforms when RG is 33 Ω. In

this figure, VCE is 500 V at 0 ns on the time axis for

Fig. 1. (Color online) Double-gate IGBT structures (a) Type A, (b) Type B, (c) Type C.

Fig. 2. (Color online) Gate-drive method during turn-off switching.
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comparison of dVCE/dt. In the case of DT 5 μs, step-up of
VCE is observed in a range of <300 V. However, the collector
current IC decreases more rapidly than at DT 0 μs, because of
the rapid hole drain through the p channel along the CG. As a

result, turn-off losses at DT 0 μs and 5 μs are nearly equal
(8.4 and 8.3 mJ, respectively).
We performed a TCAD simulation to analyze the phenom-

enon of VCE step-up at low voltage. Figure 10 shows the

Fig. 3. (Color online) Conceptual diagram during turn-off switching with type A (a) Period 1, (b) Period 2, (c) Period 3.

Fig. 4. (Color online) Measured DT dependence of turn-off losses with type A (a) RG = 3.9 Ω, (b) RG = 33 Ω, (c) RG = 82 Ω.
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simulated turn-off waveforms when RG is 33 Ω at DT 0 and
5 μs. Figure 11 shows hole densities at 0, −50, −100, −150,
and −200 ns. In the case of DG drive at DT 5 μs, the stored
carriers rapidly drain near the emitter side surface, mainly
near CG with VMGE decreasing. This carrier decreasing
causes step-up of VCE. However, during the period VMGE

remains constant due to the Miller effect, the n channel along
MG does not disappear and electron injection continually
occurs. Extension of the depletion region does not occur
during this period, and VCE change remains slow. The
depletion region extends at almost the same speed at both
DT 0 and 5 μs after the Miller period.

Fig. 5. (Color online) Measured relations between gate resistance and
dVCE/dt with type A.

Fig. 6. (Color online) Measured relations between dVCE/dt and turn-off
loss with type A.

Fig. 7. (Color online) Measured turn-off waveforms at DT 0 μs and 5 μs
(a) DT 0 μs, (b) DT 5 μs.

Fig. 8. (Color online) Measured turn-off waveforms at RG = 3.9 Ω with
type A.

Fig. 9. (Color online) Measured turn-off waveforms at RG = 33 Ω with
type A.

Fig. 10. (Color online) Simulated turn-off waveforms with type A.
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Figure 12 shows turn-off waveforms when RG= 82 Ω. In
the case of DT 5 μs, because change of VMGE is slow towing
to higher RG, longer step-up of VCE is observed than at RG 33
Ω. This step-up of VCE causes dVCE/dt to decrease and turn-
off loss to increase.
Figure 13 shows the measured RG dependences of dVCE/dt

and dIC/dt characteristics at DT 5 μs. Here, dIC/dt is defined
as the rate of decrease in IC from 90% to 50%. As RG

decreases from 82 Ω, dVCE/dt and dIC/dt increase. dVCE/dt
increases until RG= 3.9 Ω, though dIC/dt reaches a maximum
at 33 Ω. The region over which dVCE/dt increases without
increasing dIC/dt is known as the “semi-controllable
region”.31) The IGBT behaves not like expected from
MOSFET because of a bipolar device. Hole injection occurs

Fig. 11. (Color online) Simulated hole density with type A (a) time change of hole density, (b) display area (red frame).

Fig. 12. (Color online) Measured turn-off waveforms at RG = 82 Ω with type A.

Fig. 13. (Color online) Measured behavior of dIC/dt and dVCE/dt in turn-
off at DT = 5 μs with type A.
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after electrons reach the collector electrode and hole current
continuously flows for a while after electron injection stops
due to the influence of the slow carrier mobility. As described
above, the value of dVCE/dt increases, peaking at about
7000 V μs−1 when DT is 0 μs and increases above

12 000 V μs−1 at DT 5 μs as RG decreases, as shown in
Fig. 5. We found that dVCE/dt increases of the DG IGBT
occur in this semi-controllable region. Further, surge voltage
caused by the product of parasitic inductance and dIC/dt is
also suppressed to low levels, despite the high dVCE/dt.

Fig. 14. (Color online) Measured DT dependence of turn-off losses with type A, B and C.

Fig. 15. (Color online) Simulated structures as Type B variations (a) Type B, (b) Type B′, (c) Type B″.
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3.2. Comparison between three structures
We performed turn-off measurements using the fabricated
DG IGBTs shown in Fig. 1. Figure 14 shows the measured
relations between DT and turn-off losses and the relations
between DT and turn-off dVCE/dt at RG 3.9 Ω with type A,
type B and type C structures. Type B is the structure having

three dummy trenches [Fig. 1(b)]. Type C has the CG without
formation of n+ emitter layer [Fig. 1(c)]. With type B,
dVCE/dt can increase to about 10 kV μs−1 at DT 5 μs. This
value is lower than with type A. The reduction ratio of
turn-off loss when using the DG drive to that in the case of
using a conventional drive is 20% with type B.

Fig. 16. (Color online) Simulated DT dependence of turn-off losses with type B variations (a) turn-off loss, (b) Turn-off dVCE/dt, (c) Increased loss.

Fig. 17. (Color online) Simulated hole density just before Period 3.
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We performed TCAD simulations to confirm the relation
between the effects of turn-off loss reduction using the DG
drive and the number of CGs. The structures used in TCAD
simulations are shown in Fig. 15. Type B, type B′ and type
B″ have one, two and three CGs in a unit cell, respectively.
Figure. 16 shows the simulated relations between DT and
turn-off losses and the relations between DT and turn-off
dVCE/dt at RG 3.9 Ω with the structures shown in Fig. 15.
Turn-off losses are lower in the case of a structure
having a larger number of CGs as shown in Fig. 16(a).
These results are caused by higher dVCE/dt as shown in
Fig. 16(b).
Figure 17 shows simulated hole density just before Period

3 with the structures shown in Fig. 15. The stored carriers
decrease near the emitter side surface of n− base layer is
observed and carriers decrease is more remarkable with a
structure having a larger number of CGs. This is because
more holes drain with a structure having a larger number of
CGs. However, carrier decrease near the emitter side causes
VCE to increase at Period 2 and conduction loss to increase.
This increased conduction loss is shown in Fig. 16(c).
With type C, dVCE/dt can increase to about 12 000 V μs−1

at DT 5 μs as shown in Fig. 14(b). This value is nearly equal
to the value of type A. These results suggest that DG drive
can cause dVCE/dt to increase and reduce turn-off loss
regardless of whether the structure has n+ emitter layer or
not at the side of CG trench.

4. Conclusions

We analyzed the dependence of dVCE/dt on turn-off char-
acteristics in a 1200 V DG IGBT. When dVCE/dt is less than
the maximum dVCE/dt of a conventional gate drive, using a
DG drive increased turn-off loss. The DG drive allowed
dVCE/dt of IGBT to increase beyond the maximum dVCE/dt of
the conventional gate drive. Increases in dVCE/dt by the DG
IGBT occur in the semi-controllable region, whereas in-
creases in dIC/dt are limited.
We found that turn-off losses are lower in the case of a

structure having a larger number of CGs and that DG drive
can cause dVCE/dt to increase and reduce turn-off loss
regardless of whether the structure has n+ emitter layer or
not at the side of CG trench.
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