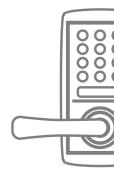
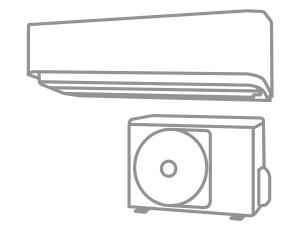
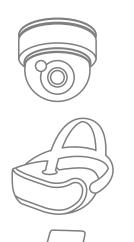
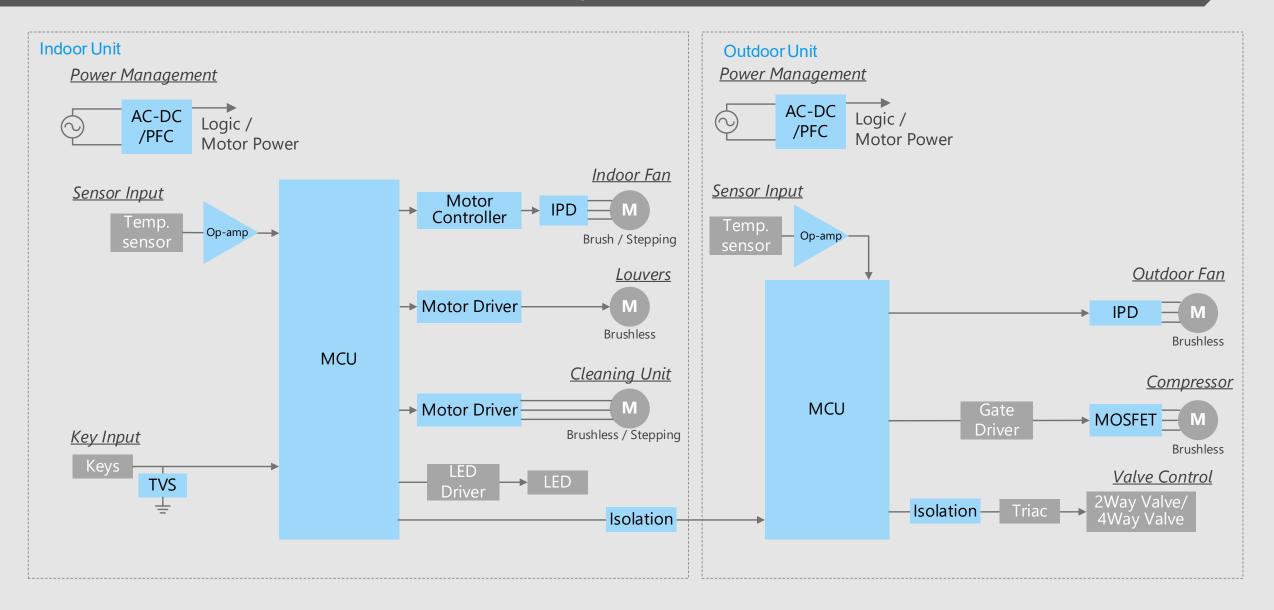

Air Conditioner

Solution Proposal by Toshiba

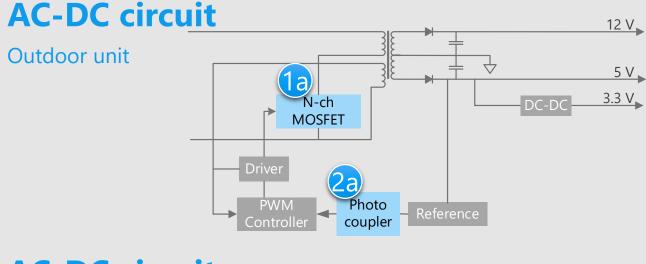








Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.



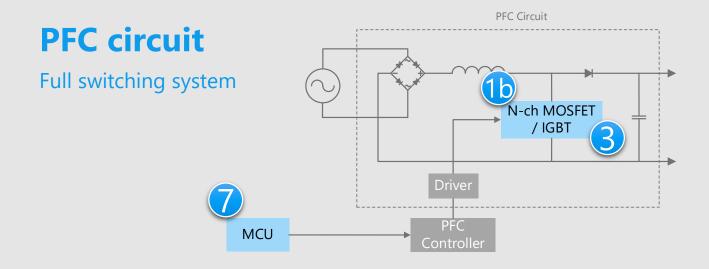
Block Diagram

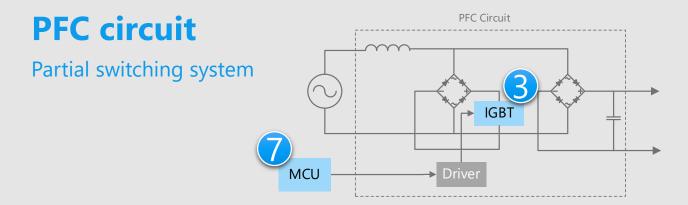
Air Conditioner Overall Block Diagram

Air Conditioner Details of AC-DC unit

Indoor unit 12 V S V N-ch MOSFET PWM Photo Controller Controller Reference Reference

**Click on the blue circled numbers above to view detailed explanations.


Criteria for device selection

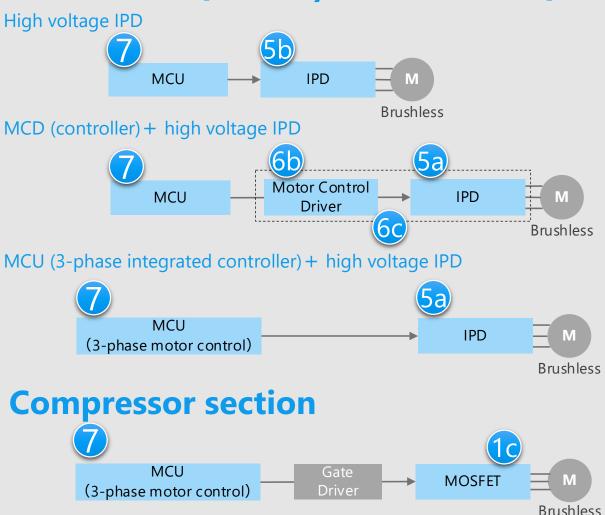

- High voltage MOSFETs are recommended for primary switching of AC-DC converters.
- Transistor output photocouplers are for output voltage feedback.

- Suitable for high efficiency voltage switching
 - π-MOSWI Series power MOSFET
- Environmentally resistant photocoupler
 Transistor output photocoupler
- Resistant to power supply noise
 Small surface mount LDO regulator

Air Conditioner Details of PFC unit

X Click on the blue circled numbers above to view detailed explanations.

Criteria for device selection


- MOSFETs are suitable for full switching solutions.
- IGBTs are good for partial switching solutions.
- MCUs can be used for PFC control.

- Suitable for high efficiency power supply switching
 - DTMOSVI Series power MOSFET
- IGBT which is suitable for high voltage and high current system
 - Discrete IGBT Silicon N-ch
- Easy software development using general purpose CPU cores
 MCU

Air Conditioner Details of fan (indoor/outdoor) and compressor unit

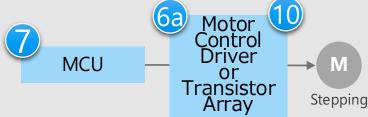
Fan section (indoor/outdoor units)

*Click on the blue circled numbers above to view detailed explanations.

Criteria for device selection

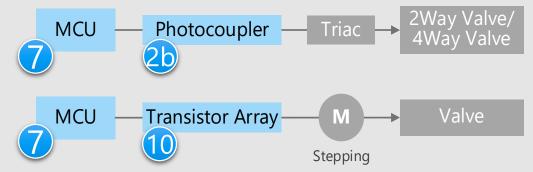
- IPD are suitable for indoor & outdoor units.
- MOSFET with reverse recovery time similar to FRD (Fast Recovery Diode) is suitable for compressors.
- Using brushless motor drivers, 3-phase brushless motors can be easily controlled.

- Suitable for inverter
 DTMOSIV (HSD) Series power MOSFET
- High voltage motor driver circuit
 High voltage IPD
- Easy control of motors
 Motor driver IC
- Easy software development using general purpose CPU cores
 MCU



Air Conditioner Details of cleaning, louver and valve control unit

Cleaning section



Louver section

Stepping or Brush

Valve control section

**Click on the blue circled numbers above to view detailed explanations.

Criteria for device selection

- Brushless motor driver allows easy control of 3-phase brushless motor using inverter control.
- Stepping motor driver enables efficient motor control by optimizing real-time current to the motor.
- Brush motor driver allows low power consumption.

- Easy motor operation
 Motor driver IC
- Environmentally resistant photocoupler
 Triac output photocoupler
- Easy software development using general purpose CPU cores
 MCU
- High efficiency and high current driver with built-in low loss DMOS FET Transistor array

Air Conditioner Details of microcontroller unit

Microcontroller section

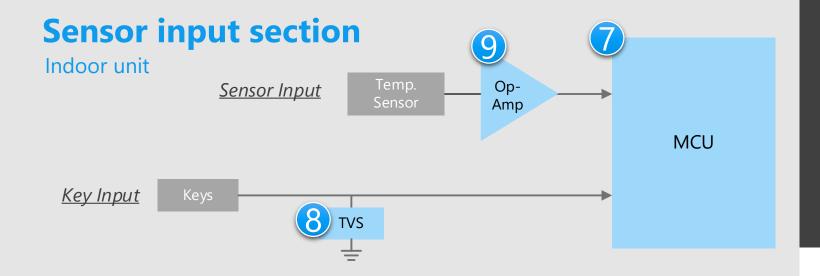
Power control block for outdoor unit

Isolation circuit

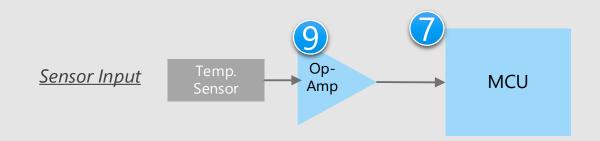
Compressor block between outdoor / indoor units

**Click on the blue circled numbers above to view detailed explanations.

Criteria for device selection


- Isolation devices such as transistor output photocouplers are effective when voltage differences exists between outdoor and indoor GND.
- MCUs are suitable for system monitoring and control.

- **Environmentally resistant photocoupler**Transistor output photocoupler
- High noise resistance
 Small surface mount LDO regulator
- General purpose CPU core allows easy software development MCU



Air Conditioner Details of sensor input unit

Outdoor unit

*Click on the blue circled numbers above to view detailed explanations.

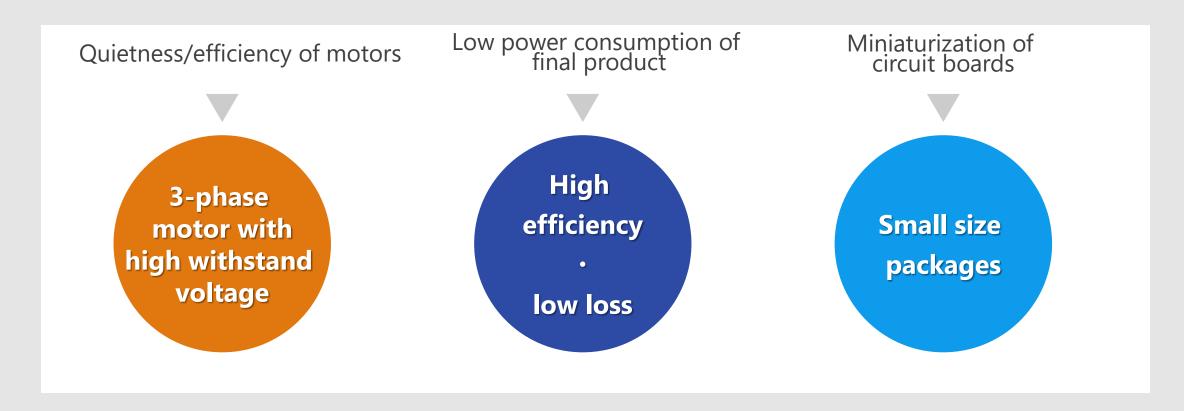
Criteria for device selection

- To achieve good usability, voice commands require fast responses.
- Stable system operation is assured by using operational amplifiers and LDO power supplies having high motor noise immunity.

Proposal from Toshiba

- General purpose CPU core allows easy software development
 MCU
- Avoid faulty circuit operation by absorbing ESD from external connectors
 TVS diode
- Accurate tracking changes in weak sensor signal

Low noise operational amplifier



Device solutions to address customer requirements

As described above, in the design of air conditioner, "Quietness/efficiency of motors", "Low power consumption of final product" and "Miniaturization of circuit boards" are important factors. Toshiba's proposals are based on these three solution perspectives.

Device solutions to address customer requirements

		3-phase motor with high withstand voltage	High efficiency . low loss	Small size packages	
1	$\pi\text{-MOSW}$ / DTMOSVI / DTMOSIV (HSD) Series power MOSFET				
2	Transistor output photocoupler / Triac output photocoupler				
3	Discrete IGBT Silicon N-ch				
4	Small surface mount LDO regulator				
5	High voltage IPD				
6	Motor driver IC				
7	MCU				
8	TVS diode				
9	Low noise operational amplifier				
10	Transistor array				

π-MOSW Series power MOSFET TK6A80E / TK10A80E / TK9J90E

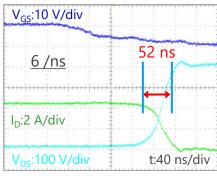
Value provided

Realizes improvement of power supply efficiency by reduction of RonA by 24 % (comparison of Toshiba's conventional products) and contributes higher miniaturization of set.

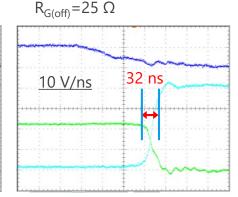
RonA reduced by 24 %

By using latest generation(*) π -MOSWI chip design, figure of merit RonA is reduced by 24 % (comparison of Toshiba's π -MOSIV products).

Q_a reduced by 23 %


By using latest generation(*) π -MOSVIII chip design, Q_q is reduced by 23 % (comparison of Toshiba's π -MOSIV products). Reduction of switching loss is expected.

Coss reduced by 18 %


By using latest generation(*) π -MOSWII chip design, C_{OSS} is reduced by 18 % (comparison of Toshiba's π -MOSIV products). Improvement for light load conditions is expected.

Turn-on waveform 2SK3878

 $R_{G(off)} = 25 \Omega$

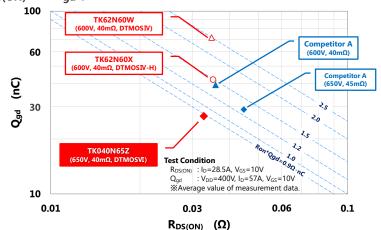
[condition] V_{DD} =400 V, I_{D} =4.5 A(I_{D} ×1/2), T_{c} =25 °C TK9J90E

Line up							
Part numb	er	TK6A80E	TK10A80E	TK9J90E			
Package		TO-	TO-3P(N)				
V _{DSS} [V]		800	800	900			
I _D [A]	I _D [A]		10	9			
$R_{DS(ON)}[\Omega]$	Тур.	1.35	0.7	1			
$R_{DS(ON)} [\Omega]$ $@V_{GS} = 10 \text{ V}$	Max	1.7	1	1.3			
Polarity		N-channel	N-channel	N-channel			

◆ Return to Block Diagram TOP

*: As of August 2021

(Note: Toshiba internal comparison)



Realizes improvement of power supply efficiency by 40 % (comparison of Toshiba's conventional products) reduction of $R_{DS(ON)} \times Q_{\alpha d}$.

R_{DS(ON)} x Q_{gd} reduced by 40 %

Using a single epitaxial process, the figure of merit $R_{DS(ON)} \times Q_{gd}$ was reduced by 40 % by optimizing the structure (comparison of DTMOS IV-H 600 V products). By realizing low $R_{DS(ON)} \times Q_{gd}$, device switching loss was reduced contributing to improvement in power supply efficiency of equipment.

■ R_{DS(ON)} vs Q_{qd} performance trend

(Note: Toshiba internal comparison)

RonA reduced by 18 %

The figure of merit RonA of the latest generation(*) DTMOS VI has been reduced by 18 % compared with the previous generation (DTMOS IV 650 V products). Achieving low on-resistance while maintaining high voltage contributes to high efficiency of equipment.

*: As of August 2021

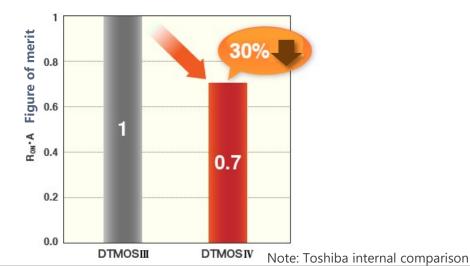
Line up							
Part number		TK065U65Z	TK040N65Z				
Package		TOLL	TO-247				
V _{DSS} [V]	V _{DSS} [V]		650				
I _D [A]		38	57				
$R_{DS(ON)}[\Omega]$	Тур.	0.051	0.033				
$\begin{array}{c} R_{DS(ON)}\left[\Omega\right] \\ @V_{GS} = 10 \; V \end{array}$	Max	0.065	0.04				
Polarity		Nch	Nch				

DTMOSIV (HSD) Series power MOSFET

Value provided

Realizes improvement of power supply efficiency by reduction of RonA by 30 % (comparison of Toshiba's conventional products) and contributes higher miniaturization of set.

RonA reduced by 30 %


Using a newly developed single epitaxial process, the figure of merit RonA was reduced by 30 % (comparison of DTMOSIII products).

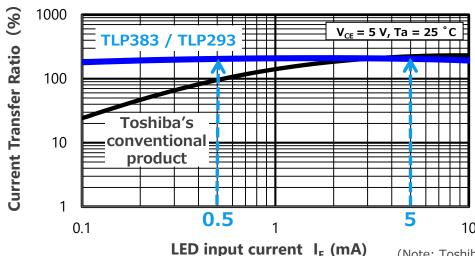
2 R_{DS(ON)} increase suppressed at high temperatures

Using a single epitaxial process, the increase in $R_{\text{DS}(\text{ON})}$ is suppressed at high temperatures.

Optimized gate switching speed

 C_{OSS} reduction (12 % compared to our earlier model) and low $R_{DS(ON)}$ (super junction DTMOS structure) allows optimized gate switching speed.

Line up							
Part number		TK20A60W5					
Package		TO-220SIS					
V _{DSS} [V]		600					
I _D [A]		20					
$R_{DS(\Omega N)}[\Omega]$	Тур.	0.15					
$R_{DS(ON)}[\Omega]$ @ $V_{GS}=10 \text{ V}$	Max	0.175					
Polarity		N-channel					



Reduction in required circuit board area and improving reliability enabling maintenance-free operation.

High current transfer ratio

The TLP383 / TLP293 is a high-isolation photocoupler that optically couples a phototransistor and high output infrared LED. Compared to Toshiba's conventional products (TLP785 / TLP385), higher CTR (Current Transfer Ratio) in low input current range (@ $I_F = 0.5$ mA) is realized.

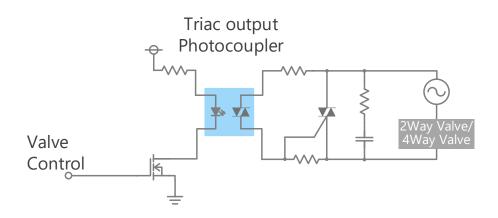
Operating temperature is expanded to 125 °C

The TLP383 / TLP293 are designed to operate under extreme conditions of ambient temperature such as inverter devices, robots, machine tools and high output power supplies.

Line up				
Part number	TLP383	TLP293	TLP785	TLP385
Package	SO6L (4pin)	SO4	DIP4	SO6L (4pin)
BV _S (Min) [Vrms]	5000	3750	5000	5000
T _{opr} [°C]	-55 to 125	-55 to 125	-55 to 110	-55 to 110

◆ Return to Block Diagram TOP

(Note: Toshiba internal comparison)



Using a triac with high dv/dt pre-driver for solenoid control suppresses false turn-on.

Low input and zero-crossing input control

This device optically couples a photo triac and a high power infrared LED, providing high isolation equivalent to an electromagnetic relay. Capable of low input operation, the photo coupler can be directly controlled by a microcontroller.

■ Example of AC switch using triac output photocoupler

High dv/dt

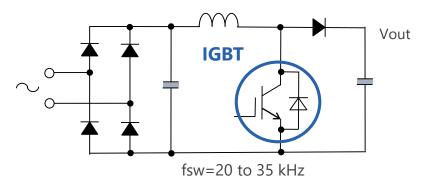
The TLP 3083 is a triac having a high dv/dt of 2000 V/ μ s (Typ.) . With a high OFF-state voltage of 800 V, it can work with a variety of AC power supply lines.

Line up								
Part number	TLP3083	TLP3073						
Package	5pin DIP6							
Output Type	Zero-crossing functionary (ZC) Non-zero-crossing functionary (NZ							
BV _S (Min) [Vrms]	5000							
T _{opr} [°C]	-40 to 100							

Switching devices for high voltage (from 600 V) and high current (from 30 A) application. Lineup of low $V_{CE \, (sat)}$ products are effective in reducing conduction loss.

High speed, low saturation voltage

By adopting a thin wafer punch-through structure, high speed turn-off characteristics and low V_{CE(sat)} characteristics are realized.


High breakdown tolerance

We offer a product line with high breakdown tolerance (short circuit withstand time t_{sc} and reverse bias safe operating area RBSOA).

3 Enhancement type

Since collector current does not flow when gate voltage is not applied for enhancement devices, handling is easy.

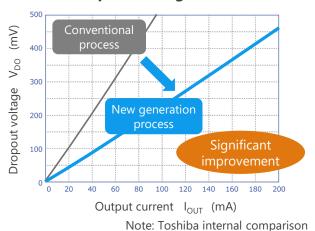
■ Full switching PFC circuit example using discrete IGBT (GT50JR22)

Line up								
Part Number			GT50JR22	GT30J122A	GT50J123			
Package				TO- 3 P(N)				
Built-i	n FRD		√ (RC structure)	✓ (RC structure)				
V _{CSS}	_s [V]		600	600	600			
I _C	[A]		50	50	50			
V _{CE(sat)} [V]	г.\/	Тур.	1.55	1.70	1.90			
V _{CE(sat)} [V] @I _C =50 A, V _{GE} =1 T _a =25 °C	5 V,	Max	2.20	2.80	2.50			
Breakdown	t,	_c [μs]	-	-	5			
tolerance	R	BSOA	-	-	120 A, 600 V (full square)			

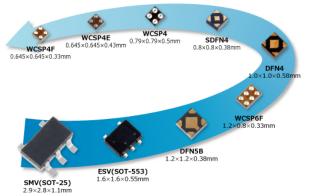
Wide line up from general purpose type to small package type are provided. Contribute to realize a stable power supply not affected by fluctuation of battery.

Low dropout voltage

The newly developed new generation process significantly improved the dropout voltage characteristics.


High PSRR Low output noise voltage

Many product series that realize both high PSRR (Power Supply Rejection Ratio) and low output noise voltage characteristics are provided. They are suitable for stable power supply for analog circuit.


3 Low current consumption

 $0.34~\mu A$ of $I_{B(ON)}$ is realized by utilizing CMOS process and unique circuit technology.

Low dropout voltage

Rich package line up

Line	up

Part number	TCR15AG Series	TCR13AG Series	TCR8BM Series	TCR5BM Series	TCR5RG Series	TCR3RM Series	TCR3U Series	TCR2L Series	TAR5 Series
	Series	Series	Series	Series	Series	Series	Series	Series	Series
Features	Low dropout voltage High PSRR				High PSRR Low noise Low curren Low current consumption			15V Input voltage Bipolar type	
I _{OUT} (Max) [A]	1.5 1.3 0.8 0		0.	.5	0.	.3		0.2	
PSRR (Typ.) [dB] @f=1 kHz	95	90	98	98	100	100	70	-	70
I _B (Typ.) [μA]	25	52	20	19	7	7	0.34	1	170

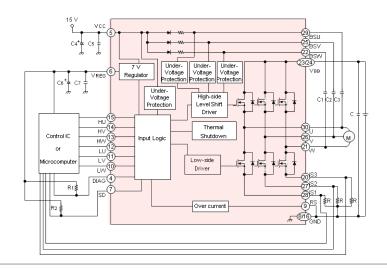
High Voltage IPD (180-degree commutation)

Value provided

High voltage brushless motors can be driven using Toshiba's proprietary high voltage IC process

Various circuits for driving the motor are included

High side driver, low side driver, and output MOSFET for level-shifting are included.


2 Pin placement separated by control and drive functions

Complexity of the wiring are eliminated by separating the high voltage/high current pins and the control pins

3 Advanced protection circuits

Over-current protection, overtemperature protection, and over-voltage protection function are built in.

TPD4204F

Line up							
Part number	TPD4204F						
Package	SSOP30						
V _{BB} [V]	600						
I _{OUT} [A]	2.5						
V _{CC} [V]	13.5 to 16.5						

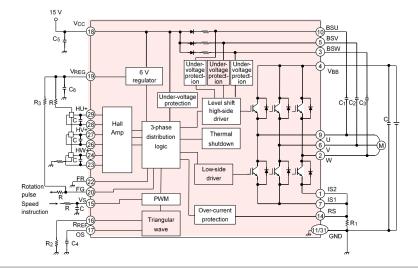
High Voltage IPD (120-degree commutation)

Value provided

High voltage brushless motors can be driven using Toshiba's proprietary high voltage IC process

3-phase controller for brushless motor included

Includes controller, PWM circuit, 3-phase distribution circuit, level shift Type high side driver and low side drivers, output IGBT and FRD


Separate pin placement for control and drive functions

Complexity of the wiring are eliminated by separating the high voltage/high current pins and the control pins

3 Advanced protection circuits

Over-current protection, overtemperature protection, and over-voltage protection function are built in.

TPD4152F

Line up							
Part number	TPD4152F						
Package	HSSOP31						
V _{BB} [V]	600						
I _{OUT} [A]	0.7						
V _{CC} [V]	13.5 to 17.5						

Support for low voltage motor driving (2.5 V (Min)) with low power consumption.

Low voltage operation

Motor driving voltage is 2.5 V (Min) for low voltage applications such as battery operation devices.

2 Low current consumption

Standby current is below 2 μ A (IC total) for power saving of devices.

Abnormality detection functions

Over current detection (ISD), Over heat detection (TSD) & Low voltage detection (UVLO) are available for safe motor driving.

TSOP16 Package (5.0 mm x 6.4 mm x 1.2 mm) QFN16 Package (3.0 mm × 3.0 mm x 0.9 mm)

Line up								
Part Number	TC78H621FNG	TC78H660FNG	TC78H660FTG					
V _M (Max) [V]	18	18	18					
I _{OUT} (Max) [A]	1.1	2.0	2.0					
$R_{on(upper and lower sum)}$ (Typ.) [Ω]	0.8	0.48	0.48					
Control Interface	PHASE inputs	IN/PHASE inputs	IN/PHASE inputs					
Step	2phase/1-2phase excitation	2phase/1-2phase excitation	2phase/1-2phase excitation					
Motor driving voltage	2.5 V min	2.5 V min. RS resister less	2.5 V min. RS resister less					
Abnormality detection function	Over heat, Over current, Low voltage	Over heat, Over current, Low voltage	Over heat, Over current, Low voltage					
Package	TSSOP16	TSSOP16	QFN16					

Three-phase brushless DC motor driver IC TC78B041FNG / TC78B042FTG

Value provided

Toshiba's proprietary technology eliminates the need for phase adjustment and achieves high efficiency for a wide range of rotation speeds

High efficiency in a wide range of rotation speeds

Toshiba's automatic lead angle control technology realizes a high efficiency drive regardless of motor speed, load torque or power supply voltage.

Motor control with low noise, and low vibration

The use of a sinusoidal drive system featuring a smooth current waveform contributes to the low noise and low vibration of the motor, as compared to a square wave drive system.

3 Small package

VQFN32 package is adopted for TC78B042FTG, which requires small space. SSOP30 package is adopted for TC78B041FNG as conventional Type.

SSOP30 Package (10.2 mm x 7.6 mm x 1.6 mm)

Line up			
Part Number	TC78B041FNG	TC78B042FTG	
Power supply voltage	6 to 16.5 V		
Drive Type	Sinusoidal		
	Auto lead angle control for optimizing voltage & current phases		
	Hall element or hall IC input		
	Forward / reverse rotation switch		
Features & Others	Motor lock detection		
	Selectable pulse number of rotation pulse signal output		
	Built-in 5 V regulator, VREF / VREF2 pins	Built-in 5 V regulator, VREF pin	
	Error detection positive / negative input	Error detection positive input	
Package	SSOP30	VQFN32	

High voltage, large current brushless motor drive using external MOSFET

Efficient motor control using auto lead angle control

In addition to fixed angle control using voltage input (32 steps), auto lead angle control using current feedback is possible.

2 Low noise, low vibration motor control

A sinusoidal drive system with a smooth current waveform contributes to low noise and low vibration of the motor compared with conventional rectangular drive systems.

Full development support

Third party evaluation boards and PSpice® data can be provided to support customer development and design.

TSOP30 package (10.2 mm x 7.6 mm x 1.6 mm)

Line up			
Part Number	TB6584FNG	TB6584AFNG	TB6634FNG
Supply voltage range	6 to 16.5 V		
Output current range	0.002 A (for MOSFET driver)		
Drive mode	Sine wave drive		
Other features	Lead angle control: Auto phase control (current feedback) Sensor input: Hall device/ Hall IC compatible Internal regulator: 5 V / 30 mA (max) Error detection: over current protection, position signal error, low voltage/current, motor constraint detection (TB6634FNG)		

1 package of motor controller & 600 V/2 A IGBT for high voltage solution

SiP: 1 package solution

1 package of sinusoidal current drive motor controller & 600 V/2 A IGBT to reduce mounting PCB space.

Motor control with low noise, and low vibration

The use of a sinusoidal drive system featuring a smooth current waveform contributes to the low noise and low vibration of the motor, as compared to a square wave drive system.

3 High heat dissipation

HDIP30 package is adopted for TB67B000AHG, which has high heat dissipation. HSSOP30 package is adopted for TB67B000AFG, which is smaller than HDIP30.

HDIP30 HSSOP34 (32.8 mm x 13.5 mm x 3.525 mm) (17.5 mm x 11.93 mm x 2.2 mm)

Line up				
Part Number	TB67B000AHG	TB67B000AFG		
Operating voltage range	Power supply for control: 13.5 to 16.5 V			
Operating voltage range	Power supply for motor drive: 50 to 450 V			
Output current		2 A		
Drive Type	Sinusoidal current drive / Pseudo sinusoidal current drive			
PWM frequency	14 kHz to 23 kHz			
Lead angle control	0 to 58 degrees 32 steps / 0 to 28 degrees 16 steps			
Speed command input voltage	Motor operation: 2.1 to 5.4 V			
	IGBT 3-Phase bridge, Oscillation circuit, Built-in bootstrap resistor, Current limit, Thermal shutdown, Low voltage monitor, Lock detection			
Package	HDIP30	HSSOP34		

Contributes to system cost reduction, higher efficiency and less development work.

Equipped with motor control co-processor

Toshiba's original co-processor vector engine (VE) for motor control reduces CPU load and allows control of multiple motors and peripherals.

2 Equipped with motor control logic circuit

Versatile three-phase PWM (Note) output with high efficiency and low noise control made possible by sense timing. The advanced encoder lightens CPU load of each PWM processing.

Equipped with analog circuit for motor control

Multiple high speed and high accuracy AD converters are integrated, allowing conversion timing and PWM output to be linked. Such as high performance operational amplifier is integrated on-chip.

(Note): Pulse Width Modulation

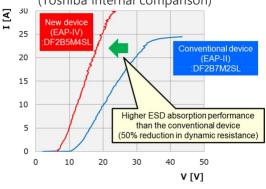
Arm® Core	Arm® Cortex®-M0	Arm® Cortex®-M3	Arm® Cortex®-M4
TXZ+™ Family Advanced Class ~ 200 MHz		TXZ+™3A Series Coming Soon M3H	TXZ+™4A <group> M4K M4M M4G M4N</group>
TXZ™ Family ∼ 160 MHz		TXZ ^{IM3} <group> M3H(1) M3H(2)</group>	TXZ [™] 4 Series
TX Family ~ 120 MHz	TX00 <group> M030 M060</group>	TX03	TX04
TXZ+™ Family Entry Class ~ 40 MHz		TXZ+™3E Coming Soon Series	
Toshiba Core	8bit	32bit	
TLCS Family TX Family	TLCS 870/C1 870/C1E Series Series	TLCS 900 Series TX19 Series	

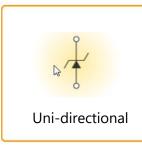
Line up		
Series	Group	Function
TX03 Series	M370 Group	Arm® Cortex®-M3, includes 1st gen VE
TX04 Series	M470 Group	Arm® Cortex®-M4, includes 3 rd gen VE
TXZ+ TM 4A Series	M4K Group	Arm® Cortex®-M4, includes 4 th gen VE

Protecting devices from static electricity and preventing circuit malfunctions

Higher ESD absorbency

Improved ESD absorption compared to Toshiba's conventional products. (50 % reduction in operating resistance) For some products, both low operating resistance and low capacitance are realized and ensures high signal protection performance and signal quality.


Suppresses ESD energy with a low clamp voltage


Thanks to proprietary technology, connected devices are firmly protected.

Suitable for high density mounting

Various packages (single to multi flow-through) are available.

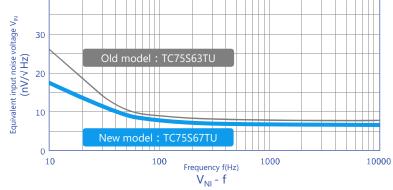
Note: This device is for ESD	protection only and cannot be used for other purposes	s such as,
but not limited to, constant	t voltage source circuits.	

Line up				
Part number	DF2B7ASL	DF2S14P1CT	DF2B5M4SL	DF2B6M4SL
Package	SL2	CST2	SL2	SL2
V _{ESD} [kV]	±30	±30	±20	±20
V _{RWM} (Max) [V]	5.5	12.6	3.6	5.5
C _t (Typ.) [pF]	8.5	40	0.2	0.2
R _{DYN} (Typ.) [Ω]	0.2	0.5	0.5	0.5

Amplifying very weak signals detected by sensors with low noise operational amplifiers

Low noise V_{NI}=6.0 [nV/√Hz] (Typ.) @f=1 kHz

This low noise CMOS operational amplifier is capable of amplifying low-level signals detected by various sensors [Note 1]. By optimizing the process, the industry's top level equivalent input noise performance was achieved [Note 2].


Low dissipation current I_{DD}=430 [μA] (Typ.)

The low current dissipation of CMOS devices enables the long battery life of small IoT equipment.

Solution Low voltage power supply

Can operate at V_{DD} =2.2 to 5.5 V

Low noise characteristics (Toshiba internal comparison)

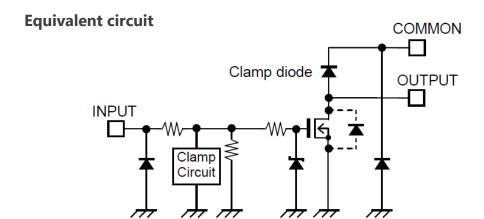
[Note 1] Sensor Typ.es: vibration sensor, shock sensor, accelerometer, pressure sensor, infrared sensor, temperature sensor, etc

[Note 2] Based on Toshiba survey on May 2017.

Line up			
Part number	TC75S67TU		
Package	UFV		
V _{DD,SS} (Max) [V]	±2.75		
V _{DD,SS} (Min) [V]	±1.1		
I _{DD} (Max) [μA]	700		
V _{NI} (Typ.) [nV/√Hz] @f=1 kHz	6		

DMOS FET is used for the output of drive circuit and realizes low loss compared to bipolar transistor output type, and CMOS input can control directly from controller's I/O etc.

Rich product line up


In addition to the listed products, we offer a wide line up of products, including packaged products such as lead-insertion DIPs, small surface mount SOLs, SOPs, HSOPs, and small SSOP types, as well as source output types.

Output clamp diode is incorporated.

Incorporated output clamp diode regenerates the back electromotive force generated by switching of an inductive load into the load power supply.

2 Large current drive is possible.

Larger currents can also be driven by connecting multiple outputs in parallel.

Note: Equivalent circuit may be simplified for explanatory purpose.

Line up			
Part number	TBD62003AFWG	TBD62083AFG	TBD62064AFG
Package	SOL16	SOP18-P-375-1.27	HSOP16
Output type	Sink	Sink	Sink
Number of channels	7ch	8ch	4ch
Input level	Н	Н	Н
I _{OUT} (Max) [mA]	500	500	1500
V _{OUT} (Max) [V]	50	50	50

If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html

Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage

- 1.This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
- 2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
- 3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
- 4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations

- 1.We reserve the right to make changes to this Reference Design without notice.
- 2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
- 3.Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".
- 4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- 5.No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
- 6.THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control

Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws

This terms of use shall be governed and construed by laws of Japan.

RESTRICTIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. **TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.**.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Product may include products using GaAs (Gallium Arsenide). GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. **TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.**

TOSHIBA

- * PSpice is a registered trademark of Cadence Design Systems, Inc.
- * Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
- * TXZ™ and TXZ+™ are trademarks of Toshiba Electronic Devices & Storage Corporation
- * All other company names, product names, and service names may be trademarks of their respective companies.