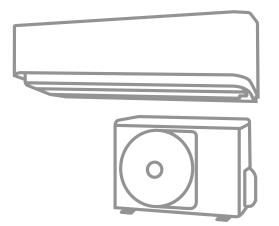
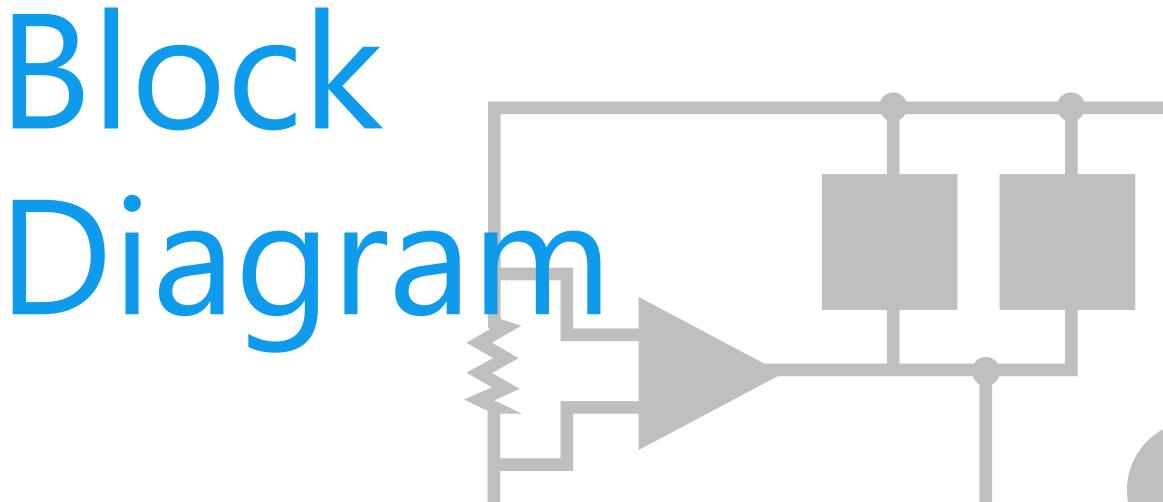
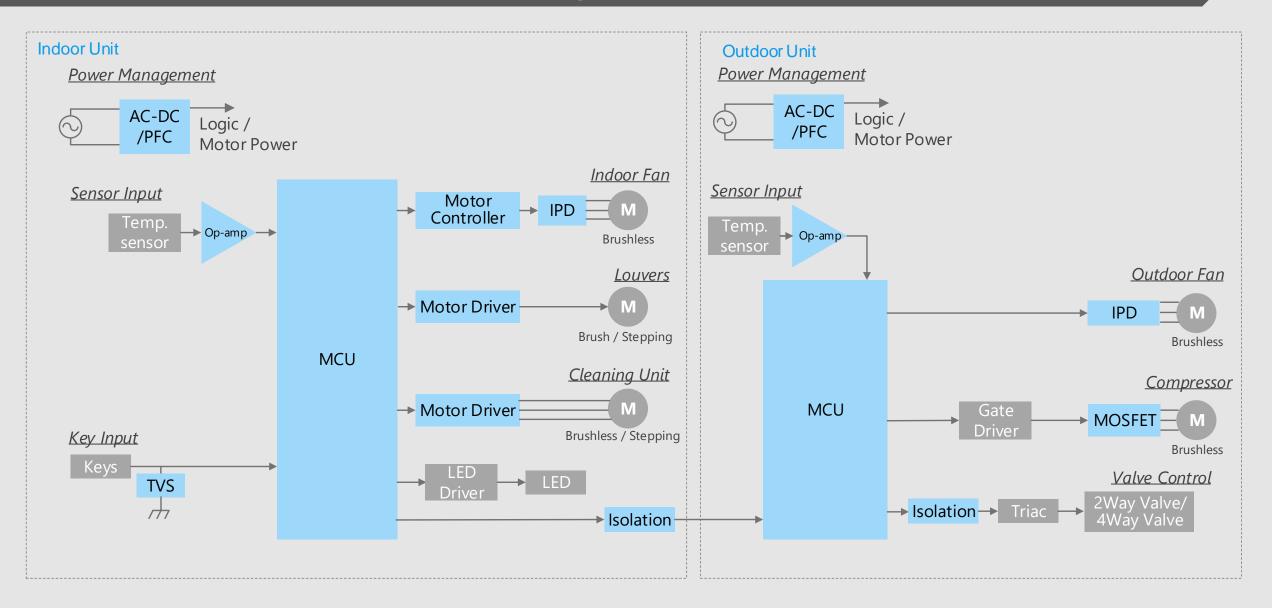


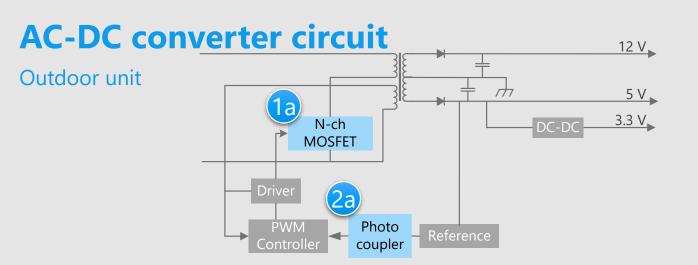
Air Conditioner

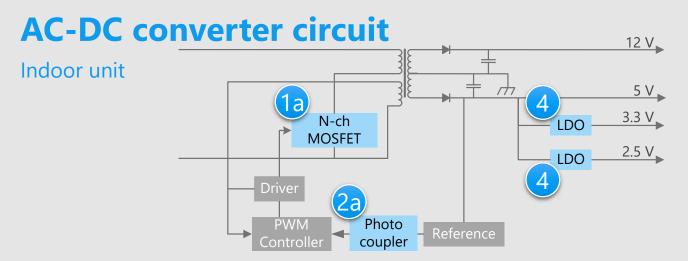

Solution Proposal by Toshiba


R21



Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.




© 2019-2022 Toshiba Electronic Devices & Storage Corporation

Air Conditioner Overall Block Diagram

Air Conditioner Details of AC-DC converter unit

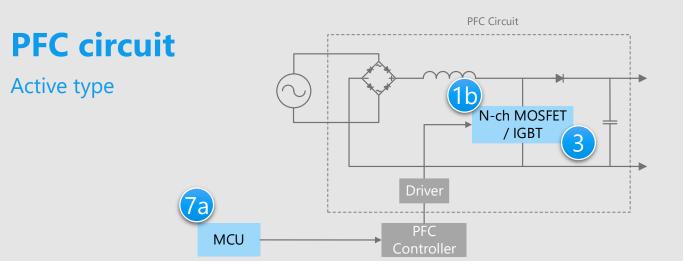
*Click on the blue circled numbers above to view detailed explanations.

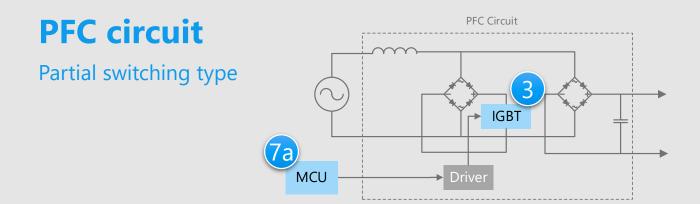
Criteria for device selection

- High voltage MOSFETs are suitable for primary switching of AC-DC converters.
- Photocoupler with high current transfer ratio even in the low input current range contributes to higher power supply efficiency.

Proposal from Toshiba

- Suitable for high efficiency voltage switching
 - π-MOSVIII Series MOSFET
- High current transfer ratio and high temperature operation makes easy to design.


(1a)


2a)

Transistor output photocoupler

- Supply the power with low noise Small surface mount LDO regulator

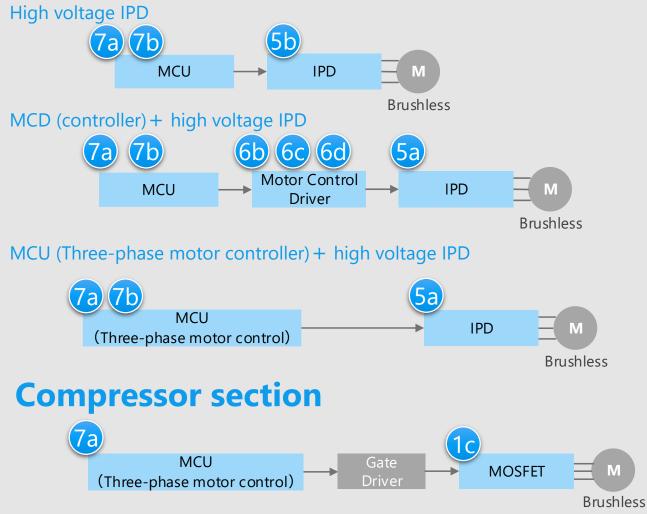
Air Conditioner Details of PFC unit

X Click on the blue circled numbers above to view detailed explanations.

Criteria for device selection

- MOSFETs with high speed switching and low on-resistance are suitable for active type PFC circuit.
- IGBTs with low collector-emitter saturation voltage are suitable for partial switching type PFC circuit.

Proposal from Toshiba


- Suitable for high efficiency power supply switching
 - DTMOSVI Series MOSFET
- IGBT which is suitable for high voltage and high current system
 Discrete IGBT

1b)

Suitable for PFC and motor control MCU

Air Conditioner Details of fan (indoor/outdoor) and compressor unit

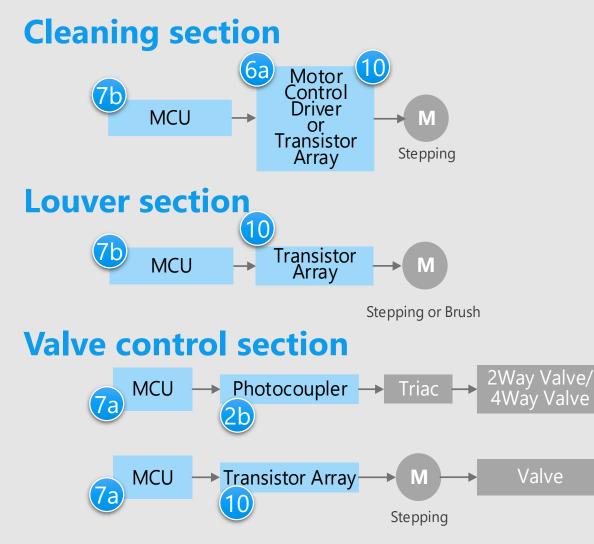
Fan section (indoor/outdoor units)

*Click on the blue circled numbers above to view detailed explanations.

Criteria for device selection

- IPDs are suitable for fan motor drive in indoor
 & outdoor units.
- MOSFET with short reverse recovery time is suitable for compressors.
- By using brushless motor drivers, three-phase brushless DC motors can be controlled easily.

Proposal from Toshiba


- Suitable for inverter DTMOSIV(HSD) [Note] Series MOSFET
- High voltage motor driver circuit High voltage IPD
- Easy motor drive Motor driver
- Suitable for PFC and motor control MCU
- Easy software development using general purpose CPU cores MCU

6d)

7a)

6C

Air Conditioner Details of cleaning, louver and valve control unit

*Click on the blue circled numbers above to view detailed explanations.

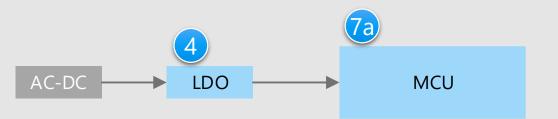
Criteria for device selection

- By using brushless DC motor drivers, threephase brushless DC motors can be controlled easily.
- Stepping motor driver enables efficient motor control by optimizing real-time current to the motor.
- Brushed DC motor driver allows motor driving with low power consumption.

Proposal from Toshiba

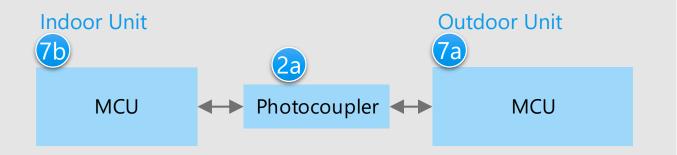
- Easy motor drive Motor driver
- Triac driver for high dv/dt Triac output photocoupler
- Suitable for PFC and motor control MCU
- Easy software development using general purpose CPU cores MCU
- High efficiency and high current driver with built-in low loss DMOS FET Transistor array

6a)


2b)

7a)

Air Conditioner Details of microcontroller and isolation unit


Microcontroller section

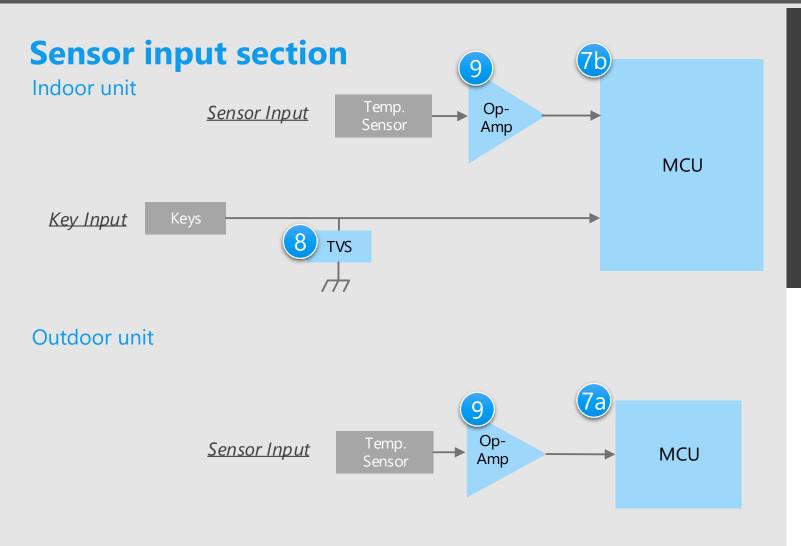
Power control block for outdoor unit

Isolation circuit

Compressor block between outdoor / indoor units

*Click on the blue circled numbers above to view detailed explanations.

Criteria for device selection


- Isolation devices such as transistor output photocouplers are effective when voltage difference exists between outdoor and indoor GNDs.
- MCUs are suitable for system monitoring and control.

Proposal from Toshiba

- High current transfer ratio and high
 temperature operation makes easy to design.
 Transistor output photocoupler
- Supply the power with low noise Small surface mount LDO regulator
- Suitable for PFC and motor control MCU
- Easy software development using general purpose CPU cores MCU

(7a)

Air Conditioner Details of sensor input unit

%Click on the blue circled numbers above to view detailed explanations.

Criteria for device selection

- To achieve good usability, voice commands require fast responses.
- LDO regulators are suitable for power supply circuits with low ripple noise and stable voltage.

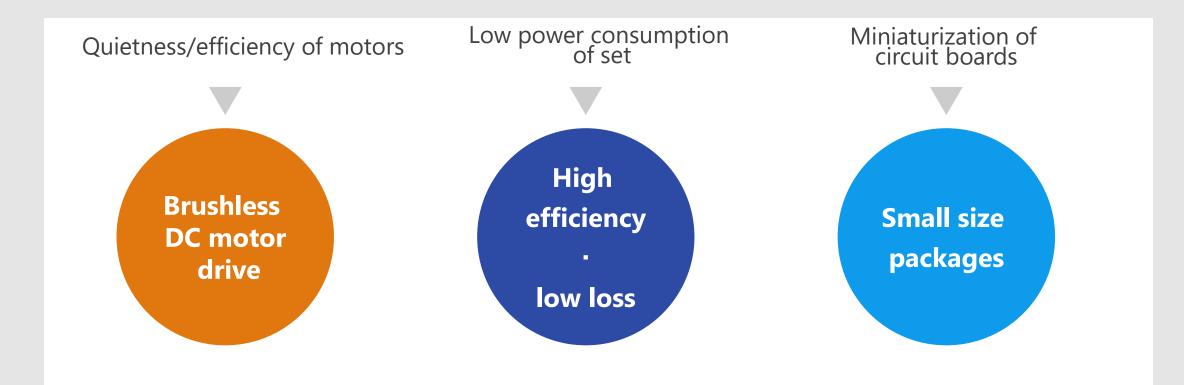
Proposal from Toshiba

- Suitable for PFC and motor control MCU
- Easy software development using general purpose CPU cores MCU

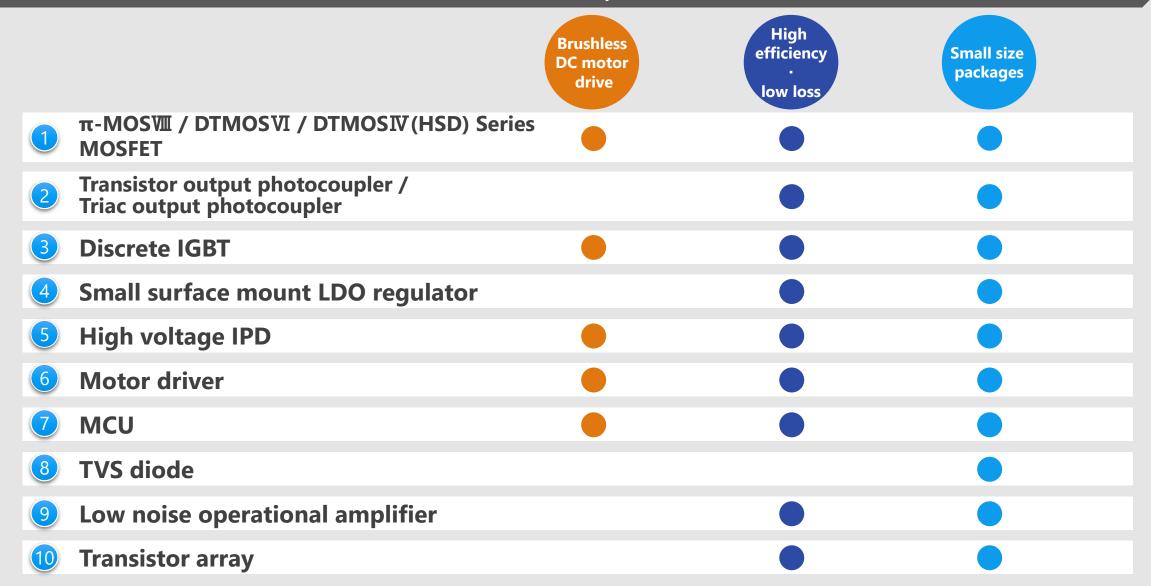
(7a)

7b)

8


- Absorb static electricity (ESD) to prevent malfunction of the circuit
 - TVS diode
- Amplifies signals from various sensors with low noise

Low noise operational amplifier


Recommended Devices

Device solutions to address customer requirements

As described above, in the design of air conditioner, "Quietness/efficiency of motors", "Low power consumption of set" and "Miniaturization of circuit boards" are important factors. Toshiba's proposals are based on these three solution perspectives.

Device solutions to address customer requirements

High Brushless Small size efficiencv **DC motor** packages drive low loss

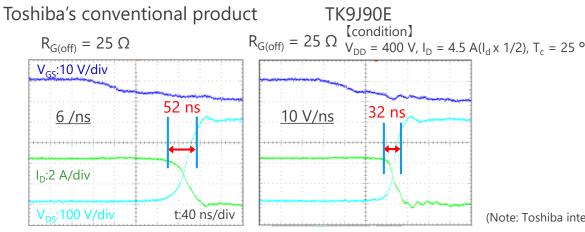
Value provided

Realizes improvement of power supply efficiency by reduction of RonA by 24 % (comparison of Toshiba's conventional products) and contributes miniaturization of set.

RonA reduced by 24 %

By using π -MOSVIII chip design, figure of merit RonA is reduced by 24 % (comparison of Toshiba's π -MOSIV products).

By using π -MOSVIII chip design, Q_a is reduced by 23 % (comparison of Toshiba's π -MOSIV products).


Reduction of switching loss is expected.

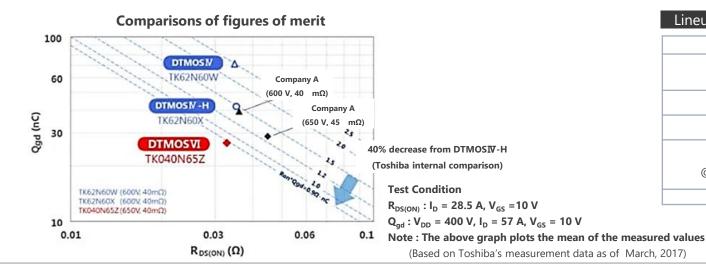
C_{oss} reduced by 18 %

By using π -MOSVII chip design, C_{OSS} is reduced by 18 % (comparison of Toshiba's π -MOSIV products). Improvement for light load conditions is expected.

Turn-on waveform

	Lineup				
	Part numbe	er	TK6A80E	TK10A80E	TK9J90E
°C	Package		TO-2	TO-3P(N)	
	V _{DSS} [V]		800	800	900
	I _D [A]		6	10	9
	$ \begin{array}{c} R_{DS(ON)} \left[\Omega \right] \\ @V_{GS} = 10 \text{ V} \end{array} \end{array} \begin{array}{c} \text{Typ.} \\ \text{Max} \end{array} $		1.35	0.7	1
			1.7	1	1.3
	Polarity		N-ch	N-ch	N-ch

(Note: Toshiba internal comparison)


Brushless DC motor drive low loss Small size packages

Value provided

Realizes improvement of power supply efficiency by 40 % (comparison of Toshiba's conventional products) reduction of $R_{DS(ON)} \times Q_{gd}$.

 $R_{DS(ON)} \ x \ Q_{gd}$ reduced by 40 %

Using a single epitaxial process, the figure of merit $R_{DS(ON)} \times Q_{gd}$ was reduced by 40 % by optimizing the structure (comparison of Toshiba's DTMOS IV-H 600 V products). By realizing low $R_{DS(ON)} \times Q_{gd}$, device switching loss was reduced contributing to improvement in power supply efficiency of equipment.

RonA reduced by 18 %

The figure of merit RonA of the latest generation [Note] DTMOS VI has been reduced by 18 % compared with the previous generation (Toshiba's DTMOS IV 650 V products). Achieving low on-resistance while maintaining high voltage contributes to high efficiency of equipment.

[Note] As of August 2021

Lineup			
Part number		TK065U65Z	TK040N65Z
Package		TOLL	TO-247
V _{DSS} [V]		650	650
I _D [A]		38	57
$R_{DS(ON)}[\Omega]$	Тур.	0.051	0.033
$\begin{array}{l} R_{DS(ON)}\left[\Omega\right]\\ @V_{GS}=10 \;V \end{array}$	Max	0.065	0.04
Polarity	-	N-ch	N-ch

Brushless DC motor drive low loss Small size packages

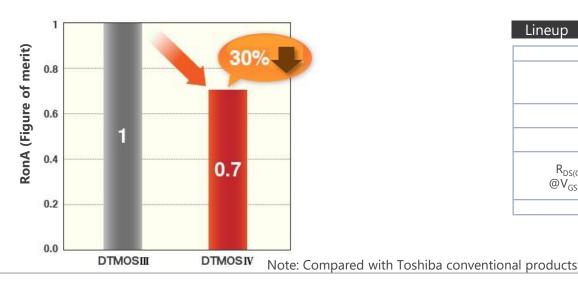
Value provided

The figure of merit RonA (compared with Toshiba conventional products) has been reduced by 30%, then contribute to improve efficiency of power supply.

RonA 30 % reduction

Adoption of newly developed singleepitaxial process to reduce the figure of merit RonA by 30 %. (Compared with Toshiba DTMOSIII products)

Reduction of on-resistance increase at high temperature

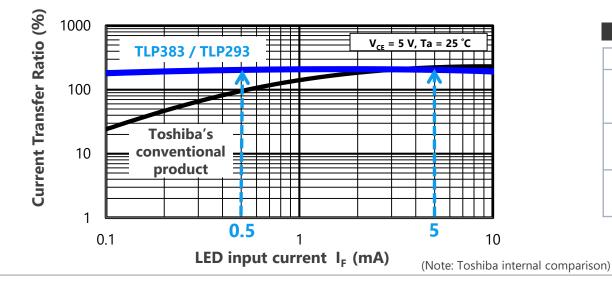

The single epitaxial process reduces the on-resistance increase at high temperature.

Optimization of switching

speed

Optimization of switching speed has been achieved by reduction of C_{OSS} (by 12 %, compared with Toshiba conventional products) and others.

Lineup				
Part numbe	r	TK20A60W5		
Package		TO-220SIS		
V _{DSS} [V]		600		
I _D [A]		20		
$R_{DS(ON)}[\Omega]$	Тур.	0.15		
$\begin{array}{l} R_{DS(ON)}\left[\Omega\right]\\ @V_{GS}=10 \ V \end{array}$	Max	0.175		
Polarity		N-ch		



High CTR (Current Transfer Ratio) is realized even in low input current range ($I_F = 0.5$ mA).

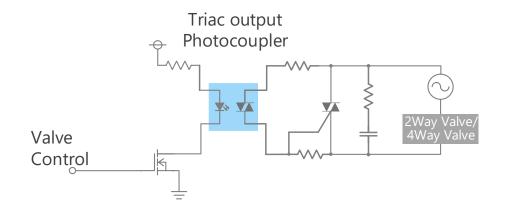
High current transfer ratio

The TLP383 / TLP293 is a high-isolation photocoupler that optically couples a phototransistor and high output infrared LED. Compared to Toshiba's conventional products (TLP385), higher CTR (Current Transfer Ratio) in low input current range (@ $I_F = 0.5 \text{ mA}$) is realized.

High temperature operation

The TLP383 / TLP293 are designed to operate even under severe ambient temperature conditions.

Lineup			
Part number	TLP383	TLP293	TLP385
Package	SO6L (4pin)	SO4	SO6L (4pin)
BV _s [Vrms]	5000	3750	5000
T _{opr} [°C]	-55 to 125	-55 to 125	-55 to 110



Using a triac with high dv/dt pre-driver for solenoid valve control suppresses false turn-on.

Low input and zero-crossing input control

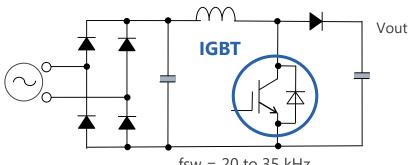
This device optically couples a photo triac and a high power infrared LED, providing high isolation equivalent to an electromagnetic relay. Capable of low input operation, the photo coupler can be directly controlled by a microcontroller.

Example of AC switch using triac output photocoupler

High dv/dt

The TLP 3083 is a triac having a high dv/dt of 2000 V/ μ s (Typ.). With a high OFF-state voltage of 800 V, it can work with various AC power supplies.

Lineup				
Part number	TLP3083	TLP3073		
Package	5pin DIP6			
Output Type	Zero-crossing functionary (ZC)	Non-zero-crossing functionary (NZC)		
BV _s [Vrms]	50	00		
T _{opr} [°C]	-40 to 100			



Switching devices for high voltage (600 V or more) and high current (30 A or more) application. Lineup of low V_{CE(sat)} products are effective in reducing conduction loss.

High speed, low saturation voltage

By adopting a thin wafer punch-through structure, high speed turn-off characteristics and low V_{CE(sat)} characteristics are realized.

> Active type PFC circuit example using discrete IGBT (GT50JR22)

fsw = 20 to 35 kHz

High breakdown tolerance

Toshiba has a lineup of products with high breakdown tolerance (short circuit withstand time t_{sc} and reverse bias safe operating area RBSOA).

Enhancement type

Brushless

DC motor

drive

High

efficiencv

low loss

Small size

packages

Since collector current does not flow when gate voltage is not applied for enhancement devices, handling is easy.

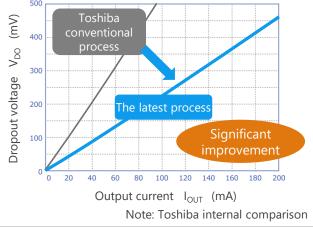
Lineup					
Part N	umber		GT50JR22	GT30J122A	GT50J123
Pacl	Package		TO-3P(N)		
Built-i	n FWD		✓ (RC structure)	-	-
V _{CES}	_s [V]		600	600	600
I _C	[A]		50	30	59
V _{CE(sat)} [V]	15.1/	Тур.	1.55	1.70	1.90
$V_{CE(sat)}$ [V] @I _C = 50 A, V _{GE} = T _a = 25 °C	15 V,	Max	2.20	2.80	2.50
Breakdown		_c [μs]	-	-	5
tolerance	R	BSOA	-	-	120 A, 600 V (full square)

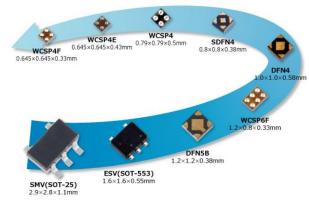
Wide line up from general purpose type to small package type are provided. Contribute to realize a stable power supply not affected by fluctuation of battery.

Low dropout voltage

The originally developed latest process significantly improved the dropout voltage characteristics.

Low output noise voltage


Many product series that realize both high PSRR (Power Supply Rejection Ratio) and low output noise voltage characteristics are provided. They are suitable for stable power supply for analog circuit.


Low current consumption

0.34 μ A of I_{B(ON)} is realized by utilizing CMOS process and unique circuit technology. (TCR3U Series)

Rich package lineup

Lineup

Part number	TCR15AG Series	TCR13AG Series	TCR8BM Series	TCR5BM Series	TCR5RG Series	TCR3RM Series	TCR3U Series	TCR2L Series	TAR5 Series
Features	Low dropout voltage High PSRR						urrent nption	15 V Input voltage Bipolar type	
I _{OUT} (Max) [A]	1.5	1.3	0.8	0	.5	0.	3		0.2
PSRR (Typ.) [dB] @f = 1 kHz	95	90	98	98	100	100	70	-	70
Ι _в (Тур.) [μΑ]	25	56	20	19	7	7	0.34	1	170

◆ Return to Block Diagram TOP

Small size

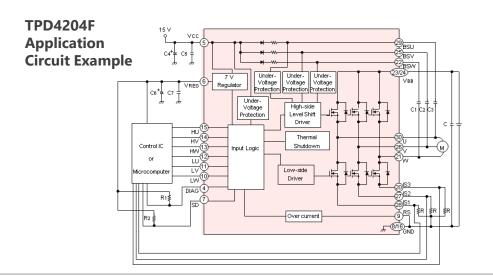
packages

Brushless DC motor drive low loss Small size packages

Value provided

A brushless DC motor driver with a built-in MOSFET can be driven at a variable speed by control signals from the MCU.

Built-in circuitry required to drive the motor


It contains a level shifting high side driver, low side driver and MOSFET. Motor drive terminals and control terminals are separated

High voltage/large current terminals and the control terminals are separated on both sides of the package, thereby eliminating the complexity of wiring.

Included protection functions

Over current and under voltage protection, shutdown (SD) and thermal shutdown functions are available.

Lineup	
Part number	TPD4204F
Package	SSOP30
V _{BB} [V]	600
I _{out} [A]	2.5
V _{cc} [V]	13.5 to 16.5

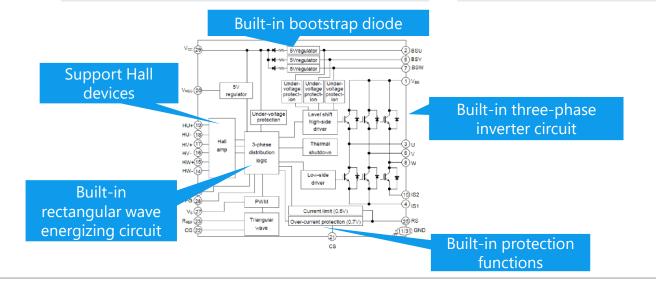
Brushless DC motor drive low loss Small size packages

Value provided

This product optimizes for brushless DC motor driving and has the functions required for motor driving into one package.

Contributing to low power consumption

The power consumption can be reduced by replacing from the AC motor to a brushless DC motor.


Contributing to reducing the number of parts

Built-in functions and protection functions required for inverter operation can reduce the number of parts.

Contributing to reduction of circuit board area

The use of small surface mount packages contributes to the reduction of circuit board area.

Lineup	
Part number	TPD4162F
Package	HSSOP31
V _{BB} [V]	600
I _{out} [A]	0.7
V _{CC} (Max) [V]	17.5
Protective function	Current limitation, Overcurrent protection, Thermal shutdown, Under voltage protection

Support low voltage motor drive (2.5 V (Min)) and contributes to the power saving of set.

Low voltage operation

Motor driving voltage is 2.5 V (Min) for low voltage applications such as battery operation devices.

Standby current is 2 μ A or less (IC total) for power saving of devices.

Lineun

Abnormality detection functions

Over current detection (ISD), thermal shutdown (TSD) and under voltage lockout (UVLO) are available.

TSSOP16 Package (5.0 x 6.4 x 1.2 mm)

VQFN16 Package (3.0 × 3.0 x 0.9 mm)

Ellieup			
Part Number	TC78H621FNG	TC78H660FNG	TC78H660FTG
V _M [V]	18	18	18
I _{OUT} [A]	1.1	2.0	2.0
$R_{on(upper and lower sum)}$ (Typ.) [Ω]	0.8	0.48	0.48
Control Interface	PHASE inputs	IN/PHASE inputs	IN/PHASE inputs
Step	2phase/1-2phase excitation	2phase/1-2phase excitation	2phase/1-2phase excitation
Motor driving voltage	2.5 V (Min)	2.5 V (Min) RS resister less	2.5 V (Min) RS resister less
Abnormality detection function	ISD, TSD, UVLO	ISD, TSD, UVLO	ISD, TSD, UVLO
Package	TSSOP16	TSSOP16	VQFN16

Brushless DC motor drive High efficiency low loss Small size packages

Value provided

Toshiba's proprietary technology eliminates the need for phase adjustment and achieves high efficiency for a wide range of rotation speeds.

High efficiency in a wide range of rotation speeds

Toshiba's automatic lead angle control technology realizes a high efficiency drive regardless of motor speed, load torque or power supply voltage.

Sine wave drive system with smooth current waveforms contributes to lower motor noise and vibration compared to conventional square wave drive system ^[Note].

[Note] Comparison with Toshiba products

Small package

VQFN32 package is adopted for TC78B042FTG, which requires small space. SSOP30 package is adopted for TC78B041FNG as conventional Type.

SSOP30 Package (10.2 x 7.6 x 1.6 mm)

VQFN32 Package (5 x 5 x 1 mm)

Lineup					
Part Number	TC78B041FNG	TC78B042FTG			
Power supply voltage	6 to 16.5 V (operating	range)			
Drive Type	Sine wave				
	Auto lead angle control for optimizing voltage & current phases				
	Hall element or hall IC input				
	Forward / reverse rotation switch				
Features	Motor lock detection				
	Selectable pulse number of rotation pulse signal output				
	Built-in 5 V regulator (VREF / VREF2 pins)	Built-in 5 V regulator (VREF pin)			
	Error detection positive / negative input	Error detection positive input			
Package	SSOP30	VQFN32			

High voltage and high current brushless DC motor driving can be implemented by external MOSFET.

High efficient motor control by automatic phase control

Automatic phase controller by current feedback is integrated adding conventional fixed phase voltage input (32 steps).

Sine wave drive system with smooth current waveforms contributes to lower motor noise and vibration compared to conventional square wave drive system [Note].

[Note] Comparison with Toshiba products

Sufficient development support

Various supports such as 3rd party evaluation board and PSpice® data for development and design are prepared.

TB6584FNG, TB6584AFNG

SSOP30 package (10.2 x 7.6 x 1.6 mm)

Lineup				
Part Number	TB6584FNG	TB6584AFNG	TB6634FNG	
Supply voltage range	6 to 16.5 V (operating range) 0.002 A (for MOSFET driver) (operating range) Sine wave drive system Lead angle control: Auto phase control (current feedback) Sensor input: Hall device/ Hall IC compatible Internal regulator: 5 V / 30 mA (max) Error detection: overcurrent protection, abnormal position signal proundervoltage lockout, motor restrained detection (TB6634FNG)			
Output current range				
Drive mode				
Features				

Brushless DC motor drive low loss Small size packages

Value provided

A motor control IC and IGBTs are integrated into one package, contributing to the miniaturization of circuit boards.

A motor control IC and IGBTs

A motor control IC with sine wave PWM drive function and IGBTs with 600 V / 2 A characteristics are integrated into one package.

Sine wave drive system with smooth current waveforms contributes to lower motor noise and vibration compared to conventional square wave drive system ^[Note].

[Note] Comparison with Toshiba products

High heat dissipation

HDIP30 package is adopted for TB67B000AHG, which has high heat dissipation. HSSOP34 package is adopted for TB67B000AFG, which is smaller than HDIP30.

HDIP30 (32.8 x 13.5 x 3.525 mm)

HSSOP34 (17.5 x 11.93 x 2.2 mm)

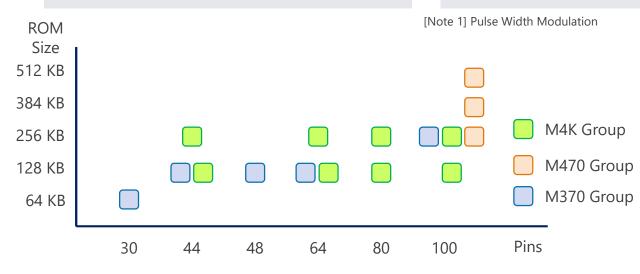
npar	ison	with	Iosniba	
	1	0011	-	

Part Number	TB67B000AHG	TB67B000AFG	
Operating voltage range	Power supply for control: 13.5 to 16.5 V		
Operating voltage range	Power supply for motor drive: 50 to 450 V		
Output current	2 A		
Drive Type	Sine wave PWM drive / Wide angle commutation		
Lead angle control	0 to 58 degrees 32 steps / 0 to 28 degrees 16 steps		
Speed command input voltage	Motor operation: 2.1 to 5.4 V		
Features	GBT Three-phase bridge, Oscillator circuit, Built-in bootstrap diode, Overcurrent protection, Thermal shutdown, Undervoltage lockout, Motor lock detection		
Package	HDIP30	HSSOP34	

System cost reduction, higher efficiency and less development work.

Equipped with motor control co-processor

Toshiba's original co-processor vector engine (VE) for motor control reduces CPU load and allows control of multiple motors and peripherals.



Versatile three phase PWM ^[Note 1] output and sensing timing make both high efficiency and low noise possible. The advanced encoder reduces CPU load of each PWM processing.

Equipped with analog circuit for motor control

Multiple high speed and high accuracy AD converters are integrated, allowing conversion timing and PWM output to be linked. Such as high performance operational amplifier is integrated on-chip.^[Note 2]

[Note 2] The number of AD converter units and the built-in operational amplifier differ depending on the product.

Lineup		
Series	Group	Function
TXZ+™4A Series	M4K Group	Arm [®] Cortex [®] -M4, 160 MHz operation 4.5 to 5.5 V, 3motor control (Max), Data Flash
TX04 Series	M470 Group	Arm [®] Cortex [®] -M4, 120 MHz operation 4.5 to 5.5 V, 2motor control (Max)
TX03 Series	M370 Group	Arm [®] Cortex [®] -M3, 80 MHz operation 4.5 to 5.5 V, 2motor control (Max)

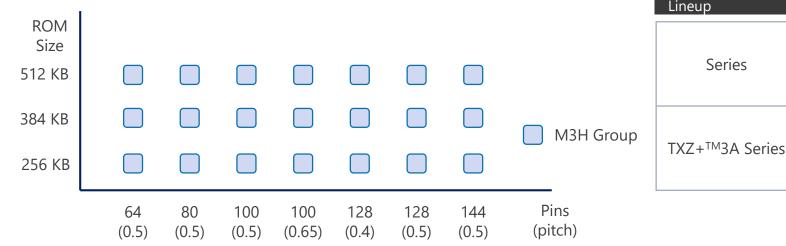
Brushless DC motor drive Iow loss

Value provided

MCU is equipped with many peripheral functions. MCU contributes to higher functionality as a system control MCU.

Built-in Arm[®] Cortex[®]-M3 CPU core

MCU is equipped with Arm Cortex-M3 core. Maximum operation frequency is 120 MHz. Various lineup of built-in memories and packages


M3H group integrates both 512 KB code and 32 KB data flash memories which support 100,000 write cycle endurance, and has a wide lineup of package from 64 to 144 pins.

Equipped with many peripheral functions

M3H Group have many peripheral functions such as UART, SPI, I²C, 12bit AD converter, 8 bit DA converter, PMD, ENC and digital LCD driver ^[Note], etc.

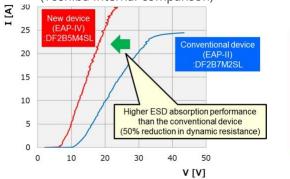
[Note] 64 pins product isn't equipped with digital LCD driver.

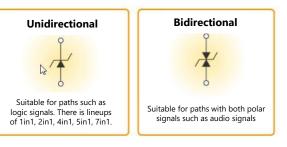
Lineup Series Group		Function	
TXZ+™3A Series	M3H Group	Arm [®] Cortex [®] -M3, 120 MHz operation, 2.7 to 5.5 V	

Absorbs static electricity (ESD) from external terminals, prevents circuit malfunction and protects devices.

High ESD pulse absorption performance

Improved ESD absorption compared to Toshiba's conventional products. (50 % reduction in operating resistance) For some products, both low operating resistance and low capacitance are realized and ensures high signal protection performance and signal quality. 2 Suppress ESD energy by low clamp voltage


Protect the connected circuits/devices using Toshiba own technology.



Suitable for high density mounting

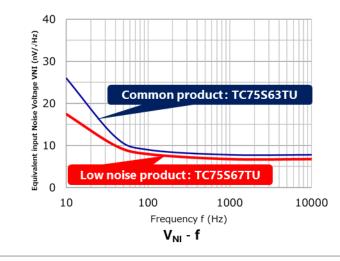
A variety of small packages are available.

(Note) This product is an ESD protection diode and cannot be used for purposes other than ESD protection.

Lineup

Part number	DF2B7BSL	DF2B5M4SL	DF2B6M4SL
Package	SL2	SL2	SL2
V _{ESD} [kV]	±30	±20	±20
V _{RWM} (Max) [V]	5.5	3.6	5.5
С _t (Тур.) [pF]	12	0.2	0.2
R _{DYN} (Typ.) [Ω]	0.2	0.5	0.5

Very small signals detected by various sensors can be amplified with very low noise.


Low noise V_{NI} = 6.0 [nV/√Hz] (Typ.) @f = 1 kHz

Very small signals detected by various sensors ^[Note] can be amplify with low noise using CMOS operational amplifier by optimizing the processing. We achieved low input equivalent noise voltage. **Low dissipation current** I_{DD} = 430 [μA] (Typ.)

Low current consumption characteristics are realized by using the CMOS process.

[Note] Sensor Typ.es: vibration sensor, shock sensor, accelerometer, pressure sensor, infrared sensor, temperature sensor, etc

Noise characteristics (Toshiba internal comparison)

Lineup			
Part number	TC75S67TU		
Package	UFV V		
V _{DD,SS} (Max) [V]	±2.75		
V _{DD,SS} (Min) [V]	±1.1		
Ι _{DD} (Typ.) [μΑ]	430		
V _{NI} (Typ.) [nV/√Hz] @f = 1 kHz	6		

DMOS FET is used for the output of drive circuit and realizes low loss. And CMOS input can control directly from controller's I/O, etc.

Rich product lineup

In addition to the listed products, we have lineup of various packaged products (such as DIP, SOL, SOP, SSOP, etc.) and source output type products.

Built-in output clamp diodes regenerates the back electromotive force generated by switching of an inductive.

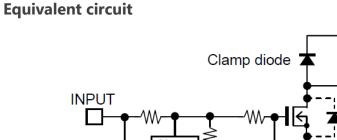
Higher current drive is possible.

Brushles

DC motor

drive

High


efficiencv

low loss

Small size

packages

The load can be driven with higher current by connecting multiple outputs in parallel.

OUTPUT Clamp Circui

COMMON

(Note) Equivalent circuit may be simplified for explanatory purpose.

Lineup			
Part number	TBD62003AFWG	TBD62083AFG	TBD62064AFAG
Package	P-SOP16-0410-1.27-002	SOP18-P-375-1.27	P-SSOP24-0613-1.00-001
Output type	Sink	Sink	Sink
Number of channels	7ch	8ch	4ch
Input level	Н	Н	Н
l _{OUT} [mA/ch]	500	500	1,500
V _{OUT} [V]	50	50	50

If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html

Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers, shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage

1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.

2. This Reference Design is for customer's own use and not for sale, lease or other transfer.

3.Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.

4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations

1.We reserve the right to make changes to this Reference Design without notice.

2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.

- 3.Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".
- 4.When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- 5.No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
- 6.THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control

Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws

This terms of use shall be governed and construed by laws of Japan.

RESTRICTIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. **TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.**
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Product may include products using GaAs (Gallium Arsenide). GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. **TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.**

TOSHIBA

* PSpice[®] is a registered trademark of Cadence Design Systems, Inc.

* Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

* TXZ+[™] is a trademark of Toshiba Electronic Devices & Storage Corporation

* All other company names, product names, and service names may be trademarks of their respective companies.