Automotive ADAS
Solution Proposal by Toshiba
Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
Criteria for device selection
- Employing noise resistant interfaces help to reduce position constraints of camera.
- To use under various environments, video decoders need to have enhanced visual recognition capabilities.

Proposals from Toshiba
- **Resolve differences between interfaces**
 Peripheral bridge IC
- **Built-in visual enhancement function**
 Video decoder
- **Suitable for ESD protection**
 TVS diode (for high speed communication)

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Criteria for device selection
- It is necessary to select the product with the suitable voltage and current ratings for each application.
- A small surface mount package is suitable for realizing miniaturization of the ECU.
- It is necessary to select high speed MOSFETs to prevent short through current.

Proposals from Toshiba
- Low on-resistance contributes to low power consumption of the system
U-MOS Series 40 V N-ch MOSFET

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page.
ADAS Detail of data transmission / audio output unit

CAN / FlexRay transmission section

Image Recognition Processor → Level Shifter → CAN Transceiver → CAN Line
CAN Line → FlexRay Transceiver → Level Shifter → FlexRay Line
FlexRay Line → TVS → CAN Line
CAN Line → TVS → Level Shifter → CAN Transceiver
CAN Transceiver → Level Shifter → Image Recognition Processor

Audio output section

12 V Power Line → DC-DC
DC-DC → DSP/Tuner
DSP/Tuner → Audio AMP
Audio AMP → Speaker

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page

Criteria for device selection
- The TVS diode needs to be selected according to the ESD protection characteristics and capacitance value suitable for transmission speed.

Proposals from Toshiba
- **High output power with low heat generation is realized**
 Audio power amplifier IC
- **Suitable for ESD protection**
 TVS diode (for CAN communication)
ADAS Detail of Switch for power supply ON/OFF control and reverse connection protection (1)

Power supply ON/OFF control and reverse connection protection circuit (P-ch type)

Criteria for device selection
- It is necessary to select the product with the suitable voltage and current ratings for each application.
- It is necessary to select a gate driver according to the characteristics of the switching device to be driven.
- A small surface mount package is suitable for realizing miniaturization of the ECU.

Proposals from Toshiba
- Low on-resistance contributes to low power consumption of the system
 U-MOS Series -40 V / -60 V P-ch MOSFET
- Extensive product lineup
 General purpose small signal MOSFET
 General purpose small signal bipolar transistor
 Small signal bias resistor built-in transistor (BRT)
- Suitable for ESD protection
 TVS diode (for CAN communication)

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Power supply ON/OFF control and reverse connection protection circuit (N-ch type)

- **Battery (12 V)**
- **Power Supply**
- **CAN Line**
- **MCU**
- **Gate Driver**
- **ON/OFF control switch**
- **Power supply reverse protection**
- **Internal control circuit**
- **MOSFET**
- **TVS**
- **Small signal bias resistor built-in transistor (BRT)**
- **General purpose small signal MOSFET**
- **General purpose small signal bipolar transistor**

Criteria for device selection
- It is necessary to select the product with the suitable voltage and current ratings for each application.
- It is necessary to select a gate driver according to the characteristics of the switching device to be driven.
- A small surface mount package is suitable for realizing miniaturization of the ECU.

Proposals from Toshiba
- Low on-resistance contributes to low power consumption of the system
 U-MOS Series 40 V N-ch MOSFET
- Gate driver with protection and diagnosis functions
 Gate driver (for switch)
- Extensive product lineup
 General purpose small signal MOSFET
 General purpose small signal bipolar transistor
 Small signal bias resistor built-in transistor (BRT)
- Suitable for ESD protection
 TVS diode (for CAN communication)

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Recommended Devices
Device solutions to address customer needs

As described above, in the design of ADAS, “Reduction of power supply and signal noise”, “Reduction of power consumption” and “Miniaturization” are important factors. Toshiba’s proposals are based on these three solution perspectives.
Device solutions to address customer needs

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Low noise</th>
<th>High efficiency - Low loss</th>
<th>Small size package</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Peripheral bridge IC</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Video decoder</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Audio power amplifier IC</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. U-MOS Series 40 V N-ch MOSFET</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>5. U-MOS Series -40 V / -60 V P-ch MOSFET</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>6. Gate driver (for switch)</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. General purpose small signal MOSFET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. General purpose small signal bipolar transistor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Small signal bias resistor built-in transistor (BRT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. TVS diode (for high speed communication)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. TVS diode (for CAN communication)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
Value provided

Resolve gaps of interface standard between host and peripheral devices.

1. **Increase the choice of parts**
 By using a peripheral bridge IC, it is possible to connect to various types of peripheral devices.

2. **Reduce noise**
 Converting parallel bus line to serial improves noise immunity. That also suppresses the generation of own noise.

3. **Reduce disconnection risk**
 Converting parallel bus line to serial reduces the number of wires on a board, and so reduce the risk of disconnection.

Display interface

- **X standard**
- **Y standard**

Camera interface bridge

- **X standard**
- **Y standard**

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>Camera I/F Bridge</th>
<th>Display I/F Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC9590XBG</td>
<td>P-LFBGA64-0707-0.80-002</td>
<td>P-VFBGA64-0707-0.65-002</td>
</tr>
<tr>
<td>TC9591XBG</td>
<td>P-VFBGA64-0707-0.65-001</td>
<td>P-VFBGA64-0707-0.65-001</td>
</tr>
<tr>
<td>TC9592XBG</td>
<td>P-VFBGA64-0505-0.65-001</td>
<td>P-VFBGA64-0505-0.65-001</td>
</tr>
<tr>
<td>TC9593XBG</td>
<td>P-VFBGA64-0606-0.65-001</td>
<td>P-VFBGA64-0606-0.65-001</td>
</tr>
<tr>
<td>TC9594XBG</td>
<td>P-VFBGA64-0707-0.65-001</td>
<td>P-VFBGA64-0707-0.65-001</td>
</tr>
<tr>
<td>TC9595XBG</td>
<td>P-VFBGA64-0707-0.65-001</td>
<td>P-VFBGA64-0707-0.65-001</td>
</tr>
</tbody>
</table>

Input

- HDMI™ 1.4a (1) MIPI™ CSI-2 (2) Parallel 24 bit @ 166 MHz
- MIPI DSI™ 4lanes x 1ch
- Parallel input 24 bit @ 166 MHz
- MIPI DSI™ 4lanes x 1ch / MIPI DPI™ (24bit)

Output

- MIPI CSI-2 4lanes x 1ch (1) Parallel 24 bit @ 100 MHz (2) MIPI CSI-2
- LVDS Single Link
- MIPI DSI 4lanes x 1ch
- DisplayPort™ 1.1a x 2ports / MIPI DPI (24bit)

Return to Block Diagram TOP
Built-in image enhancement functions designed for automotive cameras.

1 HDV enhancer

In addition to conventional horizontal and vertical edge emphasis, diagonal emphasis has been added, to enable stronger edge emphasis without increasing discomfort to the eyes.

2 Color management

This function emphasizes a specific selected color (saturation). Emphasizing certain color can improve visibility.

3 Dynamic YC gamma

Applying optimized YC gamma to the images reduces blackout and whiteout, and improves visibility.

<table>
<thead>
<tr>
<th>Lineup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
</tr>
<tr>
<td>Package</td>
</tr>
<tr>
<td>AD converter</td>
</tr>
<tr>
<td>New image correction</td>
</tr>
<tr>
<td>ITU-R BT.656 output</td>
</tr>
</tbody>
</table>

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
These linear amplifier ICs realize same level of power loss and heat generation the class D amplifier.

1. Proprietary high efficiency amplifier (patent registered)

Realizes equivalent efficiency to the class D amplifiers [Note1] at output of 4 W or less. Power consumption of these ICs are about 1/5 of our class AB amplifiers and about 1/2 of our high efficiency linear class KB amplifiers. [Note2]

Note:1 Based on Toshiba research (April 2020)
Note:2 Class KB = Toshiba original linear amplifier

2. Reduction of external components

Since these ICs operate without switching such as the class D amplifier, the external parts such as low pass filter or components for EMI suppression can be reduced.

3. Built-in fulltime output offset detection (patent registered)

Includes a proprietary speaker burnout prevention system that continuously checks for any abnormal output DC offset regardless of input signal presence and informs the microcomputer.

Power consumption (for 0.8 W x 4 channels)
(Toshiba internal comparison)

<table>
<thead>
<tr>
<th>Power consumption (W)</th>
<th>Conventional linear amp (Class AB)</th>
<th>Conventional high eff. Amp (Class KB)</th>
<th>New high eff. Amp (Class TB)</th>
<th>Digital amp (Class D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional linear amp (Class AB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional high eff. Amp (Class KB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New high eff. Amp (Class TB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital amp (Class D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption (W)</td>
<td>20</td>
<td>▲1/2</td>
<td>▲1/5</td>
<td>4</td>
</tr>
</tbody>
</table>

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCB701FNG</th>
<th>TCB702FNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>P-HSSOP36-1116-0.65-001</td>
<td>(36 pin)</td>
</tr>
<tr>
<td>Maximum output power</td>
<td>49 W x 4ch (VCC = 15.2 V, RL = 4 Ω)</td>
<td>45 W x 4ch (VCC = 15.2 V, RL = 4 Ω)</td>
</tr>
<tr>
<td>Total harmonic distortion (THD)</td>
<td>0.01 % (at POUT = 0.4 W)</td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>6 to 18 V</td>
<td></td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>60 μVrms (Filter = DIN AUDIO)</td>
<td></td>
</tr>
</tbody>
</table>

Note:1 Based on Toshiba research (April 2020)
Note:2 Class KB = Toshiba original linear amplifier (Toshiba internal comparison)
The latest processes enables low on-resistance and low noise, thereby reducing power consumption.

1. Low loss (reduced on-resistance)

Using low-on-resistance technology to contribute to reduced power consumption systems.

On-resistance of 61% reduction per unit area.

(compared to Toshiba’s U-MOSⅣ products)

Low loss: RonA trend

DSOP Advance(WF) double-sided cooling package

Thermal resistance is reduced by 76% @ t = 3 s, mounted on board compared to SOP Advance(WF).

VGS: 2 V / div

VDS: 5 V / div

ID: 2 A / div

t: 400 ns / div

Ringing time: 802 ns

(Note: Comparison with Toshiba products)

Low noise: Switching waveform

U-MOSX-H

U-MOSX-H I

U-MOSX-H II

S-TOGL™ & L-TOGL™ Cu clip structure

High Current & Low resistance

Low VDS peak

Short ringing time

(Note: Comparison with Toshiba products)

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>Rated drain current [A]</th>
<th>On-resistance (Max) [mΩ] @VGS = 10 V</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPN3R804NC</td>
<td>40</td>
<td>3.8</td>
<td>TSON Advance(WF)</td>
</tr>
<tr>
<td>TK1R4S04PB</td>
<td>120</td>
<td>1.35</td>
<td>DPAK+</td>
</tr>
<tr>
<td>XPHR7904PS</td>
<td>150</td>
<td>0.79</td>
<td>SOP Advance(WF)</td>
</tr>
<tr>
<td>TPWR7904PB</td>
<td>150</td>
<td>0.79</td>
<td>DSOP Advance(WF)L</td>
</tr>
<tr>
<td>XPJRF6604PB*</td>
<td>(200)</td>
<td>(0.66)</td>
<td>S-TOGL™</td>
</tr>
<tr>
<td>XPQR3004PB</td>
<td>400</td>
<td>0.30</td>
<td>L-TOGL™</td>
</tr>
</tbody>
</table>

*: Under development (Values enclosed in parentheses are tentative specifications. Specifications are subject to change without notice.)

Post (solder connection)

Cu connector

Postless

Cu clip

S-TOGL™ & L-TOGL™ Cu clip structure

High Current & Low resistance

U-MOSX-H

U-MOSX-H I

U-MOSX-H II

Return to Block Diagram TOP

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
Low on-resistance contributes to reduce system power consumption.

1. Low loss (reduced on-resistance) and logic level drive

Using a low on-resistance technology contributes to reduce system power consumption. A lineup of logic level drive type is supported. The on-resistance per area is reduced by 60% *(compared to Toshiba’s U-MOSⅢ products)*.

2. Small and low loss packages

By adopting a Cu connector structure, a low loss and high power dissipation package is realized. Wettable Flank (WF) package contributes to good mountability.

Lineup

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Rated drain-source voltage [V]</th>
<th>Rated drain current [A]</th>
<th>On-resistance (Max) [mΩ] @VGS = -10 V</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPN9R614MC</td>
<td>-40</td>
<td>-40</td>
<td>9.6</td>
<td>TSON Advance(WF)</td>
</tr>
<tr>
<td>XPH3R114MC</td>
<td>-40</td>
<td>-100</td>
<td>3.1</td>
<td>SOP Advance(WF)</td>
</tr>
<tr>
<td>XPH8R316MC*</td>
<td>-60</td>
<td>(-90)</td>
<td>(8.3)</td>
<td>DPAK+</td>
</tr>
<tr>
<td>TJ90S04M3L</td>
<td>-40</td>
<td>-90</td>
<td>4.3</td>
<td></td>
</tr>
</tbody>
</table>

Under development (Values enclosed in parentheses are tentative specifications. Specifications are subject to change without notice.)

(Note: Comparison with Toshiba products)

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
A charge pump circuit for the N-ch MOSFET gate drive is built in, allowing for easy semiconductor relay configuration.

1. **Built-in charge pump circuit**
 - Built-in charge pump circuit enables N-ch MOSFET as high side switch.
 - Easy to configure a semiconductor relay.

2. **Can be controlled by logic level voltage**
 - It is possible to be controlled directly by output signal of MCUs or CMOS logic ICs.

3. **Small package**
 - The small surface mount packages such as PS-8, SSOP16 and WSON10A contribute to the miniaturization of equipment.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TPD7104AF</th>
<th>TPD7106F</th>
<th>TPD7107F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>PS-8 (2.8 x 2.9 mm)</td>
<td>SSOP16 (5.5 x 6.4 mm)</td>
<td>WSON10A (3 x 3 mm)</td>
</tr>
<tr>
<td>Function</td>
<td>High side gate driver</td>
<td>High side gate driver</td>
<td>High side gate driver</td>
</tr>
<tr>
<td>Output</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Features</td>
<td>Operating power supply voltage range: 5 to 18 V</td>
<td>Operating power supply voltage range: 4.5 to 27 V</td>
<td>Operating power supply voltage range: 5.75 to 26 V</td>
</tr>
<tr>
<td></td>
<td>Built-in power supply reverse connection protection function (Protective MOSFET control with back-to-back circuitry)</td>
<td>Built-in power supply reverse connection protection function (Protective MOSFET control with back-to-back circuitry)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protective functions; overcurrent, overtemperature, GND disconnect, etc.</td>
<td>Protective functions; overcurrent, overtemperature, GND disconnect, etc.</td>
<td>Reverse battery connection</td>
</tr>
<tr>
<td></td>
<td>Diagnosis output; overcurrent, load open, overtemperature, etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
Wide lineup of small packages contribute to reduce the size and power consumption of system.

1. **Small package**
 - A lineup of various small packages such as SOT-723 (VESM 1.2 x 1.2 mm package) is available, contributing to reduce mounting area.

2. **Low voltage drive**
 - SSM3J66MFV can be driven at low gate-source voltage of 1.2 V. (SSM3J66MFV)

3. **AEC-Q101 qualified**
 - AEC-Q101 qualified and can be used for various automotive applications.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>SSM3K7002KF</th>
<th>SSM3J168F</th>
<th>SSM3J66MFV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>S-Mini (SOT-346)</td>
<td>S-Mini (SOT-346)</td>
<td>VESM (SOT-723)</td>
</tr>
<tr>
<td>V_{DSS} [V]</td>
<td>60</td>
<td>-60</td>
<td>-20</td>
</tr>
<tr>
<td>I_0 [A]</td>
<td>0.4</td>
<td>-0.4</td>
<td>-0.8</td>
</tr>
<tr>
<td>R_{DSS} @V_{G} [Ω]</td>
<td>1.2</td>
<td>1.4</td>
<td>0.31</td>
</tr>
<tr>
<td>Drive voltage [V]</td>
<td>4.5</td>
<td>-4.0</td>
<td>-1.2</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>P-ch</td>
<td>P-ch</td>
</tr>
</tbody>
</table>

- **Return to Block Diagram TOP**
General purpose small signal bipolar transistor
2SC2712 / 2SA1162 / 2SC4116 / 2SA1586 / TTA501 / TTC501 and others

Value provided

Extensive product lineup to meet customers’ needs.

1 Extensive lineup of packages

Various packages such as 1-in-1, 2-in-1 are provided and suitable products for circuit board design are selectable.

2 Extensive product lineup

Various product lineups, such as general purpose, low noise, low $V_{CE(sat)}$ and high current types are provided. Products can be selected in accordance with the application.

3 AEC-Q101 qualified

AEC-Q101 qualified and can be used for various automotive applications.

Characteristic examples of 2SC2712

<table>
<thead>
<tr>
<th>Classification</th>
<th>V_{CEO} (V)</th>
<th>I_{C} (mA)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>General purpose</td>
<td>50 150</td>
<td>2SC4116</td>
<td>SOT-23F</td>
</tr>
<tr>
<td></td>
<td>50 500</td>
<td>2SA1586</td>
<td>SOT-23F</td>
</tr>
<tr>
<td>Low noise</td>
<td>120 100</td>
<td>2SC4117</td>
<td>UFM (SOT-323)</td>
</tr>
<tr>
<td></td>
<td>50 1700</td>
<td>2SA1587</td>
<td>UFM (SOT-323)</td>
</tr>
<tr>
<td>High current</td>
<td>50 2000</td>
<td>2SC195</td>
<td>S-Mini (SOT-346)</td>
</tr>
<tr>
<td></td>
<td>50 2500</td>
<td>TTC501</td>
<td>S-Mini (SOT-346)</td>
</tr>
</tbody>
</table>

* indicates UFM package

Return to Block Diagram TOP
Extensive product lineup to meet customers’ needs.

1. **Built-in bias resistor type**
 (BRT: Bias Resistor built-in Transistor)
 The BRTs contribute to reduction of the number of components, assembly workload and mounting area of circuit boards.

2. **Extensive lineup of package and pin assignment**
 Various package lineups, such as 1-in-1, 2-in-1 and various pin assignment type are provided and suitable products for circuit board design are selectable.

3. **AEC-Q101 qualified**
 AEC-Q101 qualified and can be used for various automotive applications.

Internal Connections

- **Part number**
 - NPN (BRT)
 - PNP (BRT)

- **Package**
 - ESO6 (SOT-563): RN1907FE, RN2907FE
 - US6 (SOT-363): RN1901, RN2901

- **V_{CEO} [V]**
 - 50 (NPN), -50 (PNP)

- **I_C [mA]**
 - 100 (NPN), -100 (PNP)
TVS diodes prevent system damage and malfunction caused by electrostatic discharge (ESD).

1 Improve ESD pulse absorbability
Toshiba proprietary snapback technology (4th-Gen. process) improves ESD pulse absorption compared to Toshiba previous products. (50 % reduction in R_{DYN})

2 Supports Ethernet and LVDS [Note]
These are products applicable to high speed communications (Gbps orders) such as Ethernet and LVDS.

3 High ESD immunity
$V_{\text{ESD}} > \pm 30 \text{ kV} @ \text{ISO 10605}$
$V_{\text{ESD}} > \pm 20 \text{ kV} @ \text{IEC 61000-4-2} \text{ (Level 4)}$

(Note) This product is an ESD protection diode and cannot be used for purposes other than ESD protection.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>DF2S5M4FS</th>
<th>DF2S6M4FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SOD-923</td>
<td></td>
</tr>
<tr>
<td>$V_{\text{ESD}} [\text{kV}] @ \text{ISO 10605}$</td>
<td>±30</td>
<td>±30</td>
</tr>
<tr>
<td>$V_{\text{RMS}} \text{ (Max)} [\text{V}]$</td>
<td>3.6</td>
<td>5.5</td>
</tr>
<tr>
<td>$C_{\text{L}} \text{ (Typ. / Max) [pF]}$</td>
<td>0.45 / 0.55</td>
<td>0.35</td>
</tr>
</tbody>
</table>

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
TVS diodes prevent system damage and malfunction caused by electrostatic discharge (ESD).

1. Improve ESD pulse absorbability
 Toshiba proprietary Zener process improves the ESD pulse absorption of TVS diodes. (Achieving both low dynamic resistance R_{DYN} and low capacitance between terminals C_t)

2. Supports CAN, CAN FD and FlexRay
 These are products applicable to in-vehicle LAN communication such as CAN, CAN FD and FlexRay.

3. High ESD immunity
 $V_{ESD} > \pm 30$ kV @ISO 10605
 $V_{ESD} > \pm 20$ kV @IEC 61000-4-2 (Level 4)

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>DF3D18FU</th>
<th>DF3D29FU</th>
<th>DF3D36FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>USM</td>
<td>USM</td>
<td>USM</td>
</tr>
<tr>
<td>V_{ESD} [kV] @ISO 10605</td>
<td>±30</td>
<td>±30</td>
<td>±20</td>
</tr>
<tr>
<td>V_{RMM} (Max) [V]</td>
<td>12</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>C_t (Typ. / Max) [pF]</td>
<td>9 / 10</td>
<td>6.5 / 8</td>
<td></td>
</tr>
<tr>
<td>R_{DYN} (Typ.) [Ω]</td>
<td>0.8</td>
<td>1.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

(Note) The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted. This product is an ESD protection diode and cannot be used for purposes other than ESD protection.

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation (“We”) and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted (“this Reference Design”). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. This Reference Design is for customer’s own use and not for sale, lease or other transfer.
3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the “Semiconductor Reliability Handbook”.
4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.
5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
6. THIS REFERENCE DESIGN IS PROVIDED “AS IS”. WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control
Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
This terms of use shall be governed and construed by laws of Japan.
RESTRICTIONS ON PRODUCT USE

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
 1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
 2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
 3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
 4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
 1. We reserve the right to make changes to this Reference Design without notice.
 2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
 3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the “Semiconductor Reliability Handbook”.
 4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
 5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
 6. THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control
 Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
 This terms of use shall be governed and construed by laws of Japan.