Automotive LED Headlamp

Solution Proposal by Toshiba
Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
LED Headlamp Overall block diagram

- Battery (12 V)
- CAN Line
- TVS
- Power Supply
- Reverse Battery Protection / Load Switch
- DC-DC Converter
- MCU
- Driver
- Internal Control Circuit
- Signal Conditioning Circuit
- MCU Driver
- Current Monitor Circuit
- LED Lighting Circuit Part
 - Matrix Control Circuit
 - DRL, High Beam, Low Beam, Other Lights
 - Other Lighting Systems with ADAS (e.g. AFS)
Criteria for device selection
- It is necessary to select the product with the suitable current rating for each application.
- It is necessary to select a gate driver according to the performance of the switching device to be driven.
- It is necessary to select a small surface mount package suitable for miniaturization of the ECU.
- The dead time must be considered to prevent the occurrence of shoot through current.

Proposal from Toshiba
- **Low power consumption of the system is realized by low on-resistance**
 - U-MOS Series 100 V N-ch MOSFET
 - U-MOS Series 60 V N-ch MOSFET

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Criteria for device selection
- It is necessary to select the product with the suitable current rating for each application.
- It is necessary to select a gate driver according to the performance of the switching device to be driven.
- It is necessary to select a small surface mount package suitable for miniaturization of the ECU.

Proposal from Toshiba
- Low power consumption of the system is realized by low on-resistance Semi-power MOSFET

LED matrix control circuit (1)

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Low power consumption of the system is realized by low on-resistance Semi-power MOSFET

Various product lineups and small packages
Small signal bias resistor built-in transistor (BRT)

Criteria for device selection
- It is necessary to select the product with the suitable current rating for each application.
- It is necessary to select a gate driver according to the performance of the switching device to be driven.
- It is necessary to select a small surface mount package suitable for miniaturization of the ECU.

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
LED Headlamp Switch for power supply ON/OFF control and reverse connection protection (1)

Power supply ON/OFF control and reverse connection protection circuit (P-ch type)

![Circuit Diagram]

Criteria for device selection
- It is necessary to select the product with the suitable current rating for each application.
- It is necessary to select a gate driver according to the performance of the switching device to be driven.
- It is necessary to select a small surface mount package suitable for miniaturization of the ECU.

Proposals from Toshiba
- Low power consumption of the system is realized by low on-resistance U-MOS Series -40 V / -60 V P-ch MOSFET
- Various product lineups and small packages
 - General purpose small signal MOSFET
 - General purpose small signal bipolar transistor
 - Small signal bias resistor built-in transistor (BRT)
- Both device protection and signal quality are realized
 - TVS diode (for CAN communication)

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page.
LED Headlamp Switch for power supply ON/OFF control and reverse connection protection (2)

Power supply ON/OFF control and reverse connection protection circuit (N-ch type)

```
<table>
<thead>
<tr>
<th>Battery (12 V)</th>
<th>CAN Line</th>
<th>Power Supply</th>
<th>Gate Driver</th>
<th>Internal control circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Criteria for device selection
- It is necessary to select the product with the suitable current rating for each application.
- It is necessary to select a gate driver according to the performance of the switching device to be driven.
- It is necessary to select a small surface mount package suitable for miniaturization of the ECU.

Proposals from Toshiba
- **Low power consumption of the system is realized by low on-resistance**
 U-MOS Series 40 V N-ch MOSFET
- **Gate driver with protection diagnostic function**
 Gate driver (for switch)
- **Various product lineups and small packages**
 General purpose small signal MOSFET
 General purpose small signal bipolar transistor
 Small signal bias resistor built-in transistor (BRT)
- **Both device protection and signal quality are realized**
 TVS diode (for CAN communication)

* Click on the numbers in the circuit diagram to jump to the detailed descriptions page
Recommended Devices
Device solutions to address customer needs

As described above, in the design of LED headlamp, “Improvement of reliability”, “Reduction of power consumption” and “Miniaturization of circuit boards” are important factors. Toshiba’s proposals are based on these three solution perspectives.
Device solutions to address customer needs

<table>
<thead>
<tr>
<th></th>
<th>Protection and diagnosis</th>
<th>High efficiency・Low loss</th>
<th>Small size package</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U-MOS Series 100 V N-ch MOSFET</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>2</td>
<td>U-MOS Series 60 V N-ch MOSFET</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>3</td>
<td>Semi-power MOSFET</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>4</td>
<td>U-MOS Series -40 V / -60 V P-ch MOSFET</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>5</td>
<td>TVS diode (for CAN communication)</td>
<td></td>
<td>☑️</td>
</tr>
<tr>
<td>6</td>
<td>General purpose small signal bipolar transistor</td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>7</td>
<td>Small signal bias resistor built-in transistor (BRT)</td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>8</td>
<td>U-MOS Series 40 V N-ch MOSFET</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>9</td>
<td>Gate driver (for switch)</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>10</td>
<td>General purpose small signal MOSFET</td>
<td></td>
<td>✔️</td>
</tr>
</tbody>
</table>
1 Low loss (reduced on-resistance)

Using low on-resistance technology to contribute to reduced power consumption systems.
On-resistance per unit area has been reduced by 18%.
(compared to Toshiba’s U-MOS VIII-H products)

Low loss: RonA reduction trend

2 Small and high power dissipation package

The small and high power dissipation packages are developed by adopting Cu clip or Cu connector structure.
Wettable Flank (WF) package contributes to good mountability.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>Rated drain current [A]</th>
<th>On-resistance (Max) [mΩ] @VGS = 10 V</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPN1300ANC</td>
<td>30</td>
<td>13.3</td>
<td>TSON Advance(WF)</td>
</tr>
<tr>
<td>XPN2400ANC*</td>
<td>(20)</td>
<td>(23.5)</td>
<td>DPAK+</td>
</tr>
<tr>
<td>TK60S10N1L</td>
<td>60</td>
<td>6.11</td>
<td>DPAK+</td>
</tr>
<tr>
<td>XPH4R10ANB</td>
<td>45</td>
<td>6.3</td>
<td>SOP Advance(WF)</td>
</tr>
<tr>
<td>XPH6R30ANB</td>
<td>45</td>
<td>6.3</td>
<td>SOP Advance(WF)</td>
</tr>
<tr>
<td>XPW4R10ANB</td>
<td>45</td>
<td>6.3</td>
<td>SOP Advance(WF)</td>
</tr>
<tr>
<td>XPW6R30ANB</td>
<td>45</td>
<td>6.3</td>
<td>SOP Advance(WF)</td>
</tr>
<tr>
<td>XPQ1R00AQB*</td>
<td>(300)</td>
<td>(1.03)</td>
<td>L-TOGTM</td>
</tr>
</tbody>
</table>

* : Under Development (Values enclosed in parentheses are tentative specifications. The specification is subject to change without notice.)

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
Value provided

Low on-resistance contributes to reduce system power consumption.

1. Low loss (reduced on-resistance)

Using a low on-resistance technology contributes to reduce system power consumption.
The on-resistance per area is reduced by 40%.
(compared to Toshiba's U-MOS IV products)

Low loss: RonA reduction trend

Large current, small size, high power dissipation package

- DPAK+ (6.5 x 9.5 mm) Up to 90 A
- SOP Advance(WF) (5 x 6 mm) Up to 100 A
- TSON Advance(WF) (3 x 3 mm) Up to 40 A

(Note: Comparison with Toshiba products)

2. Small and high power dissipation package

By adopting a Cu connector structure, a high power dissipation package is realized.
Wettable Flank (WF) package contributes to good mountability.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>Rated drain current [A]</th>
<th>On-resistance (Max) [mΩ] @VGS = 10 V</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPN12006NC</td>
<td>20</td>
<td>12.0</td>
<td>TSON Advance(WF)</td>
</tr>
<tr>
<td>XPN6R706NC</td>
<td>40</td>
<td>6.7</td>
<td>TSON Advance(WF)</td>
</tr>
<tr>
<td>XPH3R206NC</td>
<td>70</td>
<td>3.2</td>
<td>SOP Advance(WF)</td>
</tr>
<tr>
<td>XPH2R106NC</td>
<td>110</td>
<td>2.1</td>
<td>SOP Advance(WF)</td>
</tr>
<tr>
<td>TK90S06N1L</td>
<td>90</td>
<td>3.3</td>
<td>DPAK+</td>
</tr>
</tbody>
</table>

(Wettable Flank (WF) structure)

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
Low on-resistance, small and high power dissipation packages contribute to miniaturization and low power consumption of the systems.

1. **Low loss (reduced chip resistance)**

Using low chip resistance technology to contribute to reduced power consumption systems.

2. **Small and high power dissipation package**

Small and high power dissipation packages contribute to space saving during mounting. TSOP6F (2.9 x 2.8 mm)

3. **AEC-Q101 qualified**

AEC-Q101 qualified and can be used for a wide range of automotive applications.

Power dissipation per area

- **Pw-Mini**
- **SOT-23F**
- **TSOP6F**

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>SSM6K810R</th>
<th>SSM6K809R</th>
<th>SSM6K804R</th>
<th>SSM6J808R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DS} [V]</td>
<td>100</td>
<td>60</td>
<td>40</td>
<td>-40</td>
</tr>
<tr>
<td>I_{d} [A]</td>
<td>3.5</td>
<td>6</td>
<td>12</td>
<td>-7</td>
</tr>
<tr>
<td>R_{DS(ON)} [mΩ]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@</td>
<td>V_{GDS}</td>
<td>= 4.5 V</td>
<td>65</td>
<td>36</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>N-ch</td>
<td>N-ch</td>
<td>P-ch</td>
</tr>
</tbody>
</table>

(Note: Comparison with Toshiba products)
Low on-resistance contributes to reduce system power consumption.

1. **Low loss (reduced on-resistance) and logic level drive**

Using a low on-resistance technology contributes to reduce system power consumption. A lineup of logic level drive type is supported. The on-resistance per area is reduced by 60% (compared to Toshiba’s U-MOSⅢ products).

![Low loss: RonA reduction trend](image)

<table>
<thead>
<tr>
<th>RonA @ Chip</th>
<th>Low on-resistance contributes to reduce system power consumption.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RonA @ Chip</td>
<td>Reduced on-resistance per area by 60% compared to Toshiba’s U-MOSⅢ products.</td>
</tr>
</tbody>
</table>

Large current, small size, high power dissipation package

- **DPAK+ (6.5 x 9.5 mm)**
 - Up to 90 A

- **SOP Advance(WF) (5 x 6 mm)**
 - Up to 100 A

- **TSON Advance(WF) (3 x 3 mm)**
 - Up to 40 A

2. **Small and low loss packages**

By adopting a Cu connector structure, a low loss and high power dissipation package is realized. Wettable Flank (WF) package contributes to good mountability.

![Small and low loss packages](image)

<table>
<thead>
<tr>
<th>Part number</th>
<th>Rated drain-source voltage [V]</th>
<th>Rated drain current [A]</th>
<th>On-resistance (Max) [mΩ] @VGS = -10 V</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPN9R614MC</td>
<td>-40</td>
<td>-40</td>
<td>9.6</td>
<td>TSON Advance(WF)</td>
</tr>
<tr>
<td>XPH3R114MC</td>
<td>-40</td>
<td>-100</td>
<td>3.1</td>
<td>SOP Advance(WF)</td>
</tr>
<tr>
<td>XPH8R316MC*</td>
<td>-60</td>
<td>(-90)</td>
<td>(8.3)</td>
<td></td>
</tr>
<tr>
<td>TJ90S04M3L</td>
<td>-40</td>
<td>-90</td>
<td>4.3</td>
<td>DPAK+</td>
</tr>
</tbody>
</table>

* Under development (Values enclosed in parentheses are tentative specifications. Specifications are subject to change without notice.)

[Return to Block Diagram TOP]

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
TVS diodes prevent system damage and malfunction caused by electrostatic discharge (ESD).

1. **Improve ESD pulse absorbability**

 Toshiba proprietary Zener process improves the ESD pulse absorption of TVS diodes. (Achieving both low dynamic resistance R_{DYN} and low capacitance between terminals C_t)

2. **Supports CAN, CAN FD and FlexRay**

 These are products applicable to in-vehicle LAN communication such as CAN, CAN FD and FlexRay.

3. **High ESD immunity**

 - $V_{\text{ESD}} > \pm 30 \text{ kV} @ \text{ISO 10605}$
 - $V_{\text{ESD}} > \pm 20 \text{ kV} @ \text{IEC 61000-4-2 (Level 4)}$

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>DF3D18FU</th>
<th>DF3D29FU</th>
<th>DF3D36FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaage</td>
<td>USM (SOT-323)</td>
<td>USM (SOT-323)</td>
<td>USM (SOT-323)</td>
</tr>
<tr>
<td>V_{ESD} [kV] @ISO 10605</td>
<td>±30</td>
<td>±30</td>
<td>±20</td>
</tr>
<tr>
<td>V_{RWM} (Max) [V]</td>
<td>12</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>C_t (Typ. / Max) [pF]</td>
<td>9 / 10</td>
<td>6.5 / 8</td>
<td></td>
</tr>
<tr>
<td>R_{DYN} (Typ.) [Ω]</td>
<td>0.8</td>
<td>1.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

(Note) The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted. This product is an ESD protection diode and cannot be used for purposes other than ESD protection.

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
General purpose small signal bipolar transistor
2SC2712 / 2SA1162 / 2SC4116 / 2SA1586 / TTA501 / TTC501 and others

Value provided

Extensive product lineup to meet customers’ needs.

1 Extensive lineup of packages
Various packages such as 1-in-1, 2-in-1 are provided and suitable products for circuit board design are selectable.

2 Extensive product lineup
Various product lineups, such as general purpose, low noise, low $V_{CE(sat)}$ and high current types are provided. Products can be selected in accordance with the application.

3 AEC-Q101 qualified
AEC-Q101 qualified and can be used for various automotive applications.

Characteristic examples of 2SC2712

<table>
<thead>
<tr>
<th>Classification</th>
<th>V_{CEO} [V]</th>
<th>I_C [mA]</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>General purpose</td>
<td>50</td>
<td>150</td>
<td>2SC4116</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>500</td>
<td>2SC2712</td>
</tr>
<tr>
<td>Low noise</td>
<td>120</td>
<td>100</td>
<td>2SC4117</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1700</td>
<td>2SC2195*</td>
</tr>
<tr>
<td>High current</td>
<td>50</td>
<td>2000</td>
<td>TTA501</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2500</td>
<td>TTC501</td>
</tr>
</tbody>
</table>

* indicates UFM package

© 2019-2022 Toshiba Electronic Devices & Storage Corporation 18
Extensive product lineup to meet customers’ needs.

1. **Built-in bias resistor type**
 (BRT : Bias Resistor built-in Transistor)
 The BRTs contribute to reduction of the number of components, assembly workload and mounting area of circuit boards.

2. **Extensive lineup of package and pin assignment**
 Various package lineups, such as 1-in-1, 2-in-1 and various pin assignment type are provided and suitable products for circuit board design are selectable.

3. **AEC-Q101 qualified**
 AEC-Q101 qualified and can be used for various automotive applications.

Lineup

<table>
<thead>
<tr>
<th>Package</th>
<th>Part number</th>
<th>NPN (BRT)</th>
<th>PNP (BRT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESG (SOT-563)</td>
<td>RN1907FE</td>
<td>RN2907FE</td>
<td></td>
</tr>
<tr>
<td>USG (SOT-363)</td>
<td>RN1901</td>
<td>RN2901</td>
<td></td>
</tr>
<tr>
<td>V_{CEO} [V]</td>
<td>50</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>I_C [mA]</td>
<td>100</td>
<td>-100</td>
<td></td>
</tr>
</tbody>
</table>

Return to Block Diagram TOP
The latest processes enables low on-resistance and low noise, thereby reducing power consumption.

1. **Low loss (reduced on-resistance)**

 Using low on-resistance technology to contribute to reduced power consumption systems.
 On-resistance of 44 % reduction per unit area.
 (compared to Toshiba’s U-MOSⅧ-H products)

2. **Small and low loss package**

 By adopting a Cu clip structure and a double-sided heat dissipation structure, low loss and high heat dissipation are realized.
 Wettable Flank (WF) package contributes to good mountability.

3. **Low noise (low EMI)**

 Improved chip process reduces surge voltage and ringing time.

Value provided

U-MOS Series 40 V N-ch MOSFET

XPN3R804NC / TK1R4S04PB / XPHR7904PS / TPWR7904PB / XPJ6604PB* / XPQR3004PB

Lineup

- **Part number**
- **Rated drain current [A]**
- **On-resistance (Max) [mΩ] @ VGS = 10 V**
- **Package**

<table>
<thead>
<tr>
<th>Part number</th>
<th>Rated drain current [A]</th>
<th>On-resistance (Max) [mΩ] @ VGS = 10 V</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPN3R804NC</td>
<td>40</td>
<td>3.8</td>
<td>TSON Advance(WF)</td>
</tr>
<tr>
<td>TK1R4S04PB</td>
<td>120</td>
<td>1.35</td>
<td>DPAK+</td>
</tr>
<tr>
<td>XPHR7904PB</td>
<td>150</td>
<td>0.79</td>
<td>SOP Advance(WF)</td>
</tr>
<tr>
<td>TPWR7904PB</td>
<td>150</td>
<td>0.79</td>
<td>DSOP Advance(WF)L</td>
</tr>
<tr>
<td>XPJ6604PB*</td>
<td>(200)</td>
<td>(0.66)</td>
<td>S-TOGLTM</td>
</tr>
<tr>
<td>XPQR3004PB</td>
<td>400</td>
<td>0.30</td>
<td>L-TOGLTM</td>
</tr>
</tbody>
</table>

*: Under development (Values enclosed in parentheses are tentative specifications. Specifications are subject to change without notice.)

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
A charge pump circuit for the N-ch MOSFET gate drive is built in, allowing for easy semiconductor relay configuration.

1 Built-in charge pump circuit
Built-in charge pump circuit enables N-ch MOSFET as high side switch. Easy to configure a semiconductor relay.

2 Can be controlled by logic level voltage
It is possible to be controlled directly by output signal of MCUs or CMOS logic ICs.

3 Small package
The small surface mount packages such as PS-8, SSOP16 and WSON10A contribute to the miniaturization of equipment.

Gate driver (for switch)
TPD7104AF / TPD7106F / TPD7107F

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TPD7104AF</th>
<th>TPD7106F</th>
<th>TPD7107F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>PS-8 (2.8 x 2.9 mm)</td>
<td>SSOP16 (5.5 x 6.4 mm)</td>
<td>WSON10A (3 x 3 mm)</td>
</tr>
<tr>
<td>Function</td>
<td>High side gate driver</td>
<td>High side gate driver</td>
<td>High side gate driver</td>
</tr>
<tr>
<td>Output</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Features
- Operating power supply voltage range: 5 to 18 V
- Built-in power supply reverse connection protection function
 (Protective MOSFET control with back-to-back circuitry)
- Operating power supply voltage range: 4.5 to 27 V
- Built-in power supply reverse connection protection function
 (Protective MOSFET control with back-to-back circuitry)
- Operating power supply voltage range: 5.75 to 26 V
- Current sense output
- Protective functions; overcurrent, overtemperature, GND disconnect, etc.
- Reverse battery connection
- Diagnosis output; overcurrent, load open, overtemperature, etc.

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
General purpose small signal MOSFET
SSM3K7002KF / SSM3J168F / SSM3J66MFV

Value provided

Wide lineup of small packages contribute to reduce the size and power consumption of system.

1 Small package
A lineup of various small packages such as SOT-723 (VESM 1.2 x 1.2 mm package) is available, contributing to reduce mounting area.

2 Low voltage drive
SSM3J66MFV can be driven at low gate-source voltage of 1.2 V.

3 AEC-Q101 qualified
AEC-Q101 qualified and can be used for various automotive applications.

Small signal package lineup

<table>
<thead>
<tr>
<th>Power dissipation (W)</th>
<th>Mounting area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Small packages lineup (Small signal device)

SSM3K7002KF / SSM3J168F / SSM3J66MFV

<table>
<thead>
<tr>
<th>Lineup</th>
<th>SSM3K7002KF</th>
<th>SSM3J168F</th>
<th>SSM3J66MFV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>S-Mini (SOT-346)</td>
<td>S-Mini (SOT-346)</td>
<td>VESM (SOT-723)</td>
</tr>
<tr>
<td>V_DSS [V]</td>
<td>60</td>
<td>-60</td>
<td>-20</td>
</tr>
<tr>
<td>I_D [A]</td>
<td>0.4</td>
<td>-0.4</td>
<td>-0.8</td>
</tr>
<tr>
<td>R_DSONG @[V_GS] = 4.5 V [Ω]</td>
<td>1.2 Typ.</td>
<td>1.4</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>1.75 Max</td>
<td>1.9</td>
<td>0.39</td>
</tr>
<tr>
<td>Drive voltage [V]</td>
<td>4.5</td>
<td>-4.0</td>
<td>-1.2</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>P-ch</td>
<td>P-ch</td>
</tr>
</tbody>
</table>

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation (“We”) and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted (“this Reference Design”). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage

1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. This Reference Design is for customer’s own use and not for sale, lease or other transfer.
3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations

1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the “Semiconductor Reliability Handbook”.
4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.
5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
6. THIS REFERENCE DESIGN IS PROVIDED “AS IS”. WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control

Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws

This terms of use shall be governed and construed by laws of Japan.
Restrictions on product use

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
* S-TOGL™ and L-TOGL™ are trademarks of Toshiba Electronic Devices & Storage Corporation.
* All other company names, product names, and service names may be trademarks of their respective companies.