Smart Speaker
Solution Proposal by Toshiba
Toshiba Electronic Devices & Storage Corporation provides comprehensive device solutions to customers developing new products by applying its thorough understanding of the systems acquired through the analysis of basic product designs.
Block Diagram
Smart Speaker

Overall block diagram

Up to 3.3 V: CPU/GPU, Memory
5 V: Display Driver, LED Driver, Display Power, D-AMP, etc.
Up to 3.3 V: Camera, ALS, etc.
Smart Speaker Details of power supply and Wi-Fi® / Bluetooth® section

Power supply circuit

15 V/5 V DC

TVS

eFuse IC / Gate Driver IC & N-ch MOSFET

Power Management IC

Processor

Battery

Wi-Fi / Bluetooth solution

TVS

LDO

DC/DC

TVS

TVS

※ Click the number in the circuit diagram to jump to the detailed description page

Criteria for device selection

- PSRR (Power Supply Rejection Ratio) of LDO regulator is an important parameter for wireless system.
- Small package products contribute to the reduction of circuit board area.
- A small Transient Voltage Suppressor (TVS) with low C_t is suitable for ESD protection without attenuating the antenna signal.

Proposals from Toshiba

- Supply the power with low noise
 Small surface mount LDO regulator
- Absorb Electro Static Discharge (ESD) from antennas and prevent malfunction of the circuit
 TVS diode
- Built-in protection function against short circuit, over current, over voltage, etc.
 Electronic fuse (eFuse IC)
- Small package and built-in over voltage protection function
 N-ch MOSFET gate driver IC
Smart Speaker Details of sensor / camera section

Ambient light sensor

1. LDO
2. Op-amp
3. Image Processor

Photo Diode

Camera modules

1. LDO
2. TVS
3. Image Processor

PMIC / DCDC converter
Digital I/O Camera / Image Sensor
Analog

※ Click the number in the circuit diagram to jump to the detailed description page

Criteria for device selection
- Operational amplifiers with low noise are suitable for the sensor block.
- PSRR (Power Supply Rejection Ratio) of LDO regulator is an important parameter for wireless system.
- The low C, small package transient voltage suppressor (TVS) is ideal for ESD protection.

Proposals from Toshiba
- Supply the power with low noise
 Small surface mount LDO regulator
- Absorb Electro Static Discharge (ESD) from external terminals and prevent malfunction of the circuit
 TVS diode
- Amplify the detected very small signal with low noise
 Low noise operational amplifier
Smart Speaker Detail of boost converter for LCD backlight

Criteria for device selection
- Schottky Barrier Diode (SBD) requires low V_F and low I_R.
- High voltage MOSFET is suitable for the boost converter.

Proposals from Toshiba
- **Realize a set with low power consumption by low on-resistance**
 Small signal MOSFET
- **High speed and low loss diode with a small surface mount package**
 Schottky barrier diode

※ Click the number in the circuit diagram to jump to the detailed description page
Criteria for device selection
- The low C_r, small package transient voltage suppressor (TVS) is suitable for ESD protection.

Proposals from Toshiba
- **Absorb Electro Static Discharge (ESD)** from external terminals and prevent malfunction of the circuit
 TVS diode

※ Click the number in the circuit diagram to jump to the detailed description page
Recommended
Devices
As described above, in the design of smart speakers, “Miniaturization of circuit boards”, “Low power consumption of set” and “Robust operation” are important factors. Toshiba’s proposals are based on these three solution perspectives.
Device solutions to address customer needs

<table>
<thead>
<tr>
<th></th>
<th>Small surface mount LDO regulator</th>
<th>TVS diode</th>
<th>Low noise operational amplifier</th>
<th>Small signal MOSFET</th>
<th>Schottky barrier diode</th>
<th>Electronic fuse (eFuse IC)</th>
<th>N-ch MOSFET gate driver IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>2</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>3</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>4</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>5</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>6</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>7</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>
Wide lineup from general purpose type to small package type are provided. Contribute to realize a stable power supply not affected by fluctuation of battery.

1. **Low dropout voltage**

The originally developed latest process significantly improved the dropout voltage characteristics.

2. **High PSRR**

Many product series that realize both high PSRR (Power Supply Rejection Ratio) and low output noise voltage characteristics are provided. They are suitable for stable power supply for analog circuit.

3. **Low current consumption**

0.34 μA of $I_{B(ON)}$ is realized by utilizing CMOS process and unique circuit technology. (TCR3U Series)

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCR15AG Series</th>
<th>TCR13AG Series</th>
<th>TCR8BM Series</th>
<th>TCR5BM Series</th>
<th>TCR5RG Series</th>
<th>TCR3RM Series</th>
<th>TCR3U Series</th>
<th>TCR2L Series</th>
<th>TAR5 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>Low dropout voltage</td>
<td>High PSRR</td>
<td>High PSRR</td>
<td>Low current consumption</td>
<td>15V Input voltage</td>
<td>Bipolar type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OUT} (Max) [A]</td>
<td>1.5</td>
<td>1.3</td>
<td>0.8</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR (Typ.) [dB] $@f=1$ kHz</td>
<td>95</td>
<td>90</td>
<td>98</td>
<td>98</td>
<td>100</td>
<td>100</td>
<td>70</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>I_{B} (Typ.) [μA]</td>
<td>25</td>
<td>56</td>
<td>20</td>
<td>19</td>
<td>7</td>
<td>7</td>
<td>0.34</td>
<td>1</td>
<td>170</td>
</tr>
</tbody>
</table>

Note: Toshiba internal comparison

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
Value provided

Absorbs static electricity (ESD) from external terminals, prevents circuit malfunction and protects devices.

1. High ESD pulse absorption performance

Improved ESD absorption compared to our conventional products. (50 % reduction in operating resistance) For some products, both low operating resistance and low capacitance are realized and ensures high signal protection performance and signal quality.

2. Suppress ESD energy by low clamp voltage

Protect the connected circuits/devices using Toshiba own technology.

3. Suitable for high density mounting

A variety of compact packages are available.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>DF2B6M4SL</th>
<th>DF2B6M4BSL</th>
<th>DF2B20M4SL</th>
<th>DF2B5BSL</th>
<th>DF2B5PCT</th>
<th>DF2B7PCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SL2</td>
<td>CST2</td>
<td>SL2</td>
<td>CST2</td>
<td>SL2</td>
<td>CST2</td>
</tr>
<tr>
<td>(V_{\text{ESD}}) [kV]</td>
<td>±20</td>
<td>±8</td>
<td>±15</td>
<td>±23</td>
<td>±30</td>
<td>±30</td>
</tr>
<tr>
<td>(V_{\text{RWM}}) (Max) [V]</td>
<td>5.5</td>
<td>5.5</td>
<td>18.5</td>
<td>3.3</td>
<td>3.6</td>
<td>5.5</td>
</tr>
<tr>
<td>(C_t) (Typ.) [pF]</td>
<td>0.2</td>
<td>0.12</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>(R_{\text{DYN}}) (Typ.) [Ω]</td>
<td>0.5</td>
<td>1.05</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Purpose</td>
<td>Signal line</td>
<td>Signal line</td>
<td>Signal line</td>
<td>Power line</td>
<td>Power line</td>
<td>Power line</td>
</tr>
</tbody>
</table>

(Note): This product is an ESD protection diode and cannot be used for purposes other than ESD protection.
Low noise operational amplifier
TC75S67TU

Value provided

Very small signals detected by various sensors can be amplified with very low noise.

1 Low noise

\[V_{NI} = 6.0 \text{ [nV/√Hz] (Typ.) } @ f = 1 \text{ kHz} \]

Very small signals detected by various sensors [Note 1] can be amplified with low noise using CMOS operational amplifier by optimizing the processing. We achieved low input equivalent noise voltage.

Low noise characteristic
(Toshiba internal comparison)

[Note 1] Sensor types: vibration detection sensor, shock sensor, accelerometer, pressure sensor, infrared sensor, and temperature sensor, etc.
[Note 2] Compared with Toshiba’s operational amplifier using bipolar processing

2 Low current consumption

\[I_{DD} = 430 \text{ [μA] (Typ.)} \]

The low current consumption characteristics of CMOS processing contributes to the extension of battery life of the compact IoT devices [Note 2].

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TC75S67TU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>UFV</td>
</tr>
<tr>
<td>(V_{DD,SS} \text{ (Max)} \text{ [V]})</td>
<td>±2.75</td>
</tr>
<tr>
<td>(V_{DD,SS} \text{ (Min)} \text{ [V]})</td>
<td>±1.1</td>
</tr>
<tr>
<td>(I_{DD} \text{ (Max) [μA]})</td>
<td>700</td>
</tr>
<tr>
<td>(V_{NI} \text{ (Typ.) [nV/√Hz] } @ f = 1 \text{ kHz})</td>
<td>6</td>
</tr>
</tbody>
</table>

[Note 1] Sensor types: vibration detection sensor, shock sensor, accelerometer, pressure sensor, infrared sensor, and temperature sensor, etc.
[Note 2] Compared with Toshiba’s operational amplifier using bipolar processing
Suitable for power management switches and greatly contributes to miniaturization.

1. **Low voltage operation**

 Operates down to $V_{GS} = 4.0$ V.
 (SSM3K15ACT)

2. **Low on-resistance**

 By reducing on-resistance between the source and drain, heat generation and power consumption can be kept low.

3. **Small package**

 Small package is suitable for high density mounting.

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>SSM3K341R</th>
<th>SSM6K514NU</th>
<th>SSM3K15ACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>SOT-23F</td>
<td>UDFN6B</td>
<td>CST3</td>
</tr>
<tr>
<td>Polarity</td>
<td>N-ch</td>
<td>N-ch</td>
<td>N-ch</td>
</tr>
<tr>
<td>V_{DSS} [V]</td>
<td>60</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>I_{D} [A]</td>
<td>6</td>
<td>12</td>
<td>0.1</td>
</tr>
<tr>
<td>$R_{DS(ON)}$ [mΩ] @ $V_{GS} = 4.5$ V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ.</td>
<td>36</td>
<td>11.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Max.</td>
<td>51</td>
<td>17.3</td>
<td>3.6</td>
</tr>
</tbody>
</table>

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
Schottky barrier diode with low V_F and low I_R is suitable for high efficiency diode rectification application.

1. High speed switching

Suitable for high speed switching applications.

2. Small package

Small package is suitable for high density mounting.

CTS05F40 Characteristics Curves

<table>
<thead>
<tr>
<th>Part number</th>
<th>CUS10F30</th>
<th>CTS05F40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>USC</td>
<td>CST2</td>
</tr>
<tr>
<td>Absolute maximum ratings</td>
<td>V_A [V]</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>I_0 [A]</td>
<td>1.0</td>
</tr>
<tr>
<td>V_{f} (Max) [V]</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>I_{R} (Max) [μA]</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

◆Return to Block Diagram TOP
Electronic fuse (eFuse IC) can be used repeatedly to protect circuits from abnormal conditions such as overcurrent and overvoltage.

1. Can be used repeatedly

When overcurrent flows through the electronic fuse (eFuse IC), the internal detection circuit operates and switches off the internal MOSFET. It is not destroyed by a single overcurrent and can be used repeatedly.

2. IEC 62368-1 certified

Toshiba’s eFuse ICs are certified to the international safety standard IEC 62368-1 (G9: Integrated circuit (IC) current limiters) and contribute to robust protection and simplification of circuit design.

3. Rich protection functions

TCKE8 Series: short-circuit protection, overcurrent protection, overcurrent clamp function, overvoltage clamp function, thermal shut down, inrush current suppression, backflow prevention (optional), etc.

TCKE7 Series: short-circuit protection, overcurrent protection, overvoltage protection, thermal shut down, FLAG signal output, backflow prevention (built-in), etc.

Reference circuit example of TCKE8 Series

Reference circuit example of TCKE7 Series

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>TCKE800NA/NL</th>
<th>TCKE805NA/NL</th>
<th>TCKE812NA/NL</th>
<th>TCKE712BNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>WSON10B</td>
<td>WSON10</td>
<td>WSON10</td>
<td></td>
</tr>
<tr>
<td>V<sub>IN</sub> [V]</td>
<td>4.4 to 18</td>
<td>4.4 to 13.2</td>
<td>4.4 to 13.2</td>
<td></td>
</tr>
<tr>
<td>R<sub>ON</sub> (Typ.) [mΩ]</td>
<td>28</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Return function</td>
<td>NA: Automatic return</td>
<td>NL: Latch type (external signal control)</td>
<td>Latch type (external signal control)</td>
<td></td>
</tr>
<tr>
<td>V<sub>OV</sub> (Typ.) [V]</td>
<td>NA</td>
<td>6.04</td>
<td>15.1</td>
<td></td>
</tr>
</tbody>
</table>

© 2019-2022 Toshiba Electronic Devices & Storage Corporation
N-ch MOSFET gate driver IC

TCK4xx Series

Value provided

It is N-ch MOSFET gate driver IC with OVP [Note 1] function. It contributes to reduction of power consumption and miniaturization of load switch circuit.

1 3 types of connection of N-ch MOSFET can be driven

The following types of connection of N-ch MOSFET can be driven:
- TCK40xG : Single high side connection
- Common source connection
- TCK42xG : Single high side connection
- Common drain connection

2 Wide operating voltage range and various OVLO [Note 2] threshold voltage

Operating voltage V_{opr} : 2.7 to 28 V
Maximum input voltage : 40 V
$V_{\text{IN,OVLO}}$ [Note 3] lineups suitable for 5 to 24V power supply line.

[Note 1] OVP : Over Voltage Protection

$V_{\text{IN,OVLO}}$: V_{IN} OVLO threshold

3 Small packages

It contributes to reduction of the mounting area and miniaturization of the circuit board:

- WCSP6E : 1.2 x 0.8 mm, t : 0.55 mm
- WCSP6G : 1.2 x 0.8 mm, t : 0.35 mm

Circuit example of TCK42xG with N-ch common drain connection MOSFET

![Circuit diagram](image)

- Five variations of threshold voltage
- Gate voltage 5.6 V or 10 V

Lineup

<table>
<thead>
<tr>
<th>Part number</th>
<th>$V_{\text{IN,OVLO}}$ Min / Max [V]</th>
<th>V_{GS} Typ. / Max [V]</th>
<th>N-ch MOSFET type can be driven</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCK401G</td>
<td>Over 28</td>
<td>Max 10 (V_{\text{IN}} \geq 12 V)</td>
<td>Single high side Common Source</td>
<td>WCSP6E</td>
</tr>
<tr>
<td>TCK402G</td>
<td>TCK420G</td>
<td>26.50 / 28.50</td>
<td>Single high side Common Drain</td>
<td>WCSP6G</td>
</tr>
<tr>
<td>TC422G</td>
<td>13.61 / 14.91</td>
<td>10 / 11 (V_{\text{IN}} \geq 5 V)</td>
<td>5.6 / 6.3</td>
<td></td>
</tr>
<tr>
<td>TCK423G</td>
<td>13.61 / 14.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCK424G</td>
<td>10.35 / 11.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCK425G</td>
<td>5.76 / 6.87</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Note 2] OVLO : Over Voltage Lock Out

Return to Block Diagram TOP
If you are interested in these products and have questions or comments about any of them, please do not hesitate to contact us below:

Contact address: https://toshiba.semicon-storage.com/ap-en/contact.html
Terms of use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage
1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.
2. This Reference Design is for customer's own use and not for sale, lease or other transfer.
3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.
4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations
1. We reserve the right to make changes to this Reference Design without notice.
2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.
3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the “Semiconductor Reliability Handbook”.
4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.
5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.
6. THIS REFERENCE DESIGN IS PROVIDED “AS IS”. WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control
Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws
This terms of use shall be governed and construed by laws of Japan.
RESTRICtIONS ON PRODUCT USE

- Toshiba Electronic Devices & Storage Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Although TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combusions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for a violation of any patent, copyright, or其它 intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMes NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR CONDIcITIONS OF NONINFRINGEMENT.
- Product may include products using GaAs (Gallium Arsenide). GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

© 2019-2022 Toshiba Electronic Devices & Storage Corporation