概要

TC78B011FTG は、3 相ブラシレスモーター用センサーレス PWM 駆動プリドライバー IC です。モーターの速度は PWM Duty とアナログ電圧と I2C から選択して制御できます。NVM (Nonvolatile Memory) を内蔵しており、モーターの使用方法に合わせて各種設定をすることができ、外付けマイコン不要で Closed loop 速度制御機能も実現できます。6 個の外付け N-ch パワーモスFET を用いて駆動するので、幅広い出力範囲のモーターに適用することができます。
目次

概要...1

目次..2

1. 設定方法 ...4
 1.1. VM 電源電圧設定 ...4
 1.2. VREG 端子設定 ...4
 1.3. 起動設定 ..5
 1.4. ブレーキシーケンス ..5
 1.5. 空転検出 ...6
 1.6. 加速減速 ...6
 1.7. 位置検出 ...7
 1.8. 最高回転数 ...8
 1.9. Closed loop ..8
 1.10. 出力 PWM 周波数 ..8
 1.11. 進角の設定 ...9

記載内容の留意点 ...10

使用上のご注意およびお願い事項 ..10

使用上の注意事項 ...10

使用上の留意点 ..11

製品取り扱い上のお願い ...12
表目次

表 1.1 VM 端子の電源電圧動作範囲.. 4
表 1.2 VM 端子のコンデンサー ... 4
表 1.3 VREG 端子のコンデンサー ... 4
表 1.4 強制転流周波数 ... 6
表 1.5 最大回転周波数の異常検出設定 ... 8

図目次

図 1.1 モーター動作の起動時の波形 .. 5
図 1.2 モーター動作の誘起電圧（Back-EMF）波形 .. 7
図 1.3 進角 0° モーター動作波形 .. 9
図 1.4 進角 7.5° モーター動作波形 .. 9
図 1.5 進角 15° モーター動作波形 .. 9
1. 設定方法

1.1. VM 電源電圧設定

VM 端子のノイズや変動が少なくするように必要に応じて VM と GND 間にセラミックコンデンサーや電解コンデンサーをできるだけ IC の近くに接続してください。特に電解コンデンサーと並列にセラミックコンデンサーを使用し IC 近傍に接続することで高周波数の電源電圧変動やノイズを抑えることに効果的です。

<table>
<thead>
<tr>
<th>項目</th>
<th>記号</th>
<th>最小</th>
<th>標準</th>
<th>最大</th>
<th>單位</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM 電源電圧 1</td>
<td>V<sub>(opt1)</sub></td>
<td>9</td>
<td>14.8</td>
<td>27</td>
<td>V</td>
<td>電気的特性のばらつきは大きくなり、電気的特性保証外です。ご注意ください。</td>
</tr>
<tr>
<td>VM 電源電圧 2</td>
<td>V<sub>(opt2)</sub></td>
<td>5.5</td>
<td>-</td>
<td>9</td>
<td>V</td>
<td>NVM 書き込み時 VM 電源電圧範囲</td>
</tr>
<tr>
<td>VM 電源電圧 3</td>
<td>V<sub>(opt3)</sub></td>
<td>10.8</td>
<td>14.8</td>
<td>27</td>
<td>V</td>
<td>NVM 書き込み時 VM 電源電圧範囲</td>
</tr>
</tbody>
</table>

・注意：VM 端子の絶対最大定格は 30V です。絶対最大定格を超えた時報しても超えてはならない規格です。絶対最大定格を超えると IC の破壊や劣化や損傷の原因となり、IC 以外に破壊や損傷や劣化を与える恐れがあります。いかなる動作条件でも必ず絶対最大定格を超えないように設計を行ってください。

1.2. VREG 端子設定

VREG 端子のノイズや電圧変動が少なくするように必要に応じて VREG と GND 間にセラミックコンデンサーをできるだけ IC の近くに接続してください。

<table>
<thead>
<tr>
<th>項目</th>
<th>推奨使用範囲</th>
<th>單位</th>
</tr>
</thead>
<tbody>
<tr>
<td>電解コンデンサー</td>
<td>10～1000</td>
<td>μF</td>
</tr>
<tr>
<td>セラミックコンデンサー</td>
<td>0.01～1</td>
<td>μF</td>
</tr>
</tbody>
</table>

・注意：あくまでも参考値であり、適切な容量値はモーター電流により変わりますので、推奨値の範囲外になっても電源の電圧変動やノイズが少なくなるような容量値でご使用ください。
1.3. 起動設定
本製品のセンサーレスの起動方法は、最初に直流励磁で初期位置決めをします。その後、強制転流でモーターを120°通電で同期させ回転させて、モーターの誘起電圧を発生させます。その誘起電圧からモーターの回転位置を検出してセンサーレス正弦波で回転させます。また、起動の成否は直流励磁時間と強制転流周波数と出力Duty（出力電流リミットとソフトスタート時のDuty）設定で決まりますが、設定はモーターの特性や負荷に依存しますので、実動作で確認してローターがどの位置からでも起動できるように設定ください。

また、モーターの特定の位置に不感帯などがあり、2回目の直流励磁で位置決めができない場合に、1回目の直流励磁を使用して、その位置を外して2回目の直流励磁で初期位置が決まるようにします。特にそのような位置がない場合は1回目の直流励磁を使用する必要はありません。

他にFG信号はFG_ON=0の場合はセンサーレス制御に移行した際に出力され、FG_ON=1の場合は強制転流周波数の設定値以上で出力されます。

1.4. ブレーキシーケンス
電源投入後やスタンバイ解除後の状態としてブレーキシーケンスを設定できます。ブレーキシーケンスでは、出力側の状態をショートブレーキにも設定できますので、電源投入時やスタンバイ解除時にモーターが空転しているような場合にモーターを停止させた状態から起動させることができます。特にそのような対応が必要な場合にはブレーキシーケンスを設定する必要はありません。
1.5. 空転検出
本製品はモーターが空転（順方向回転）しているような状態からでも起動できるように、空転の状態から起動させた場合は直流励磁と強制転流の制御は無くなり、最初からセンサーレス制御で回転します。
しかし、モーターが空転していなくても、外部要因によりモーターが振動などしている場合は位置検出のコンパレーターが反応して空転状態と誤検出する可能性があり、そのような場合は位置検出コンパレーターが反応しないようにヒステリシス電圧を設定してください。しかし、ヒステリシス電圧を設定することで低回転の空転を検出できなくなります。
たとえば、電源電圧15V、最高回転数3000 rpm、位置検出コンパレーターのヒステリシス電圧±100 mV（絶対値200 mV）に設定した場合、3000 rpm/200mV/15V=40 rpmなので、約40 rpm以下の回転数は空転検出されなく、停止時と同じ起動シーケンスの直流励磁から始めます。
なお、モーターの空轉が逆方向の回転の場合は停止時と同じ起動シーケンスの直流励磁から始めますので、ご注意ください。
また、ヒステリシス電圧の設定に関係なく、下記表の空転検出時間以下の回転数は停止時と同じ起動シーケンスの直流励磁から始めますので、ご注意ください。

<table>
<thead>
<tr>
<th>レジスタ設定</th>
<th>21[1:0]</th>
<th>電気角周波数</th>
<th>空転検出時間（電気角周波数）</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1.6 Hz</td>
<td>200 ms (5 Hz)</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>3.2 Hz</td>
<td>100 ms (10 Hz)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.4 Hz</td>
<td>50 ms (20 Hz)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12.8 Hz</td>
<td>25 ms (40 Hz)</td>
<td></td>
</tr>
</tbody>
</table>

1.6. 加速減速
センサーレス時に、出力Dutyの変動量を制限することで、モーターの加減速を制限します。
加速度はDuty変動量(Duty change limit)と更新時間(Duty up time)で設定します。
入力値に到達する出力Dutyの時間は下記式で示せます。

入力値に到達する出力Dutyの時間＝SPD入力設定×更新時間/(Duty変動量)

たとえば、下記の条件に設定した場合、
SPD入力（速度指令）を0%からフルDuty100%（512）に入力した場合、SPD入力設定=512
DUTYCHGLIMIT:001の設定、Duty変動量＝2/8
DUTY_UP_TIME:0の設定、更新時間＝2.7 ms

入力値に到達する出力Dutyの時間＝512×2.7 ms/(2/8)=5.5296 s
となります。
フルDuty:512の2/8が2.7 ms毎に出力Dutyを変化することになり、5.5296 s後にフルDutyとなります。
1.7. 位置検出

本製品のセンサレス制御の位置検出は出力 OFF 区間の出力 PWM タイミングでモーターの誘起電圧 (Back-EMF) を検出しています。正弦波駆動は U 相の誘起電圧の立ち上りのゼロクロスから回転位置を検出するため、その位置検出期間は OFF するように駆動しています。

従いまして、出力 PWM 周波数により位置検出の精度が変わりますので、回転周波数（1 電気角の周波数）に対して、出力 PWM 周波数が 100 倍以上に設定することを推奨します。

しかし、回転数が遅い場合に出力 PWM 周波数を高く設定すると誘起電圧が小さく、出力 PWM のパルス時間も短いため、誘起電圧を検出できない可能性があります。また、回転数が高い場合に出力 PWM 周波数を低く設定すると回転数に対して、出力 PWM のパルス数が少ないので、位置検出がずれる可能性があります。

たとえば、出力 PWM 周波数 = 23.4 kHz、1 電気角の回転周波数 = 234 Hz の場合、23.4 kHz/234 Hz = 100 となりますので、1 電気角の回転周波数 = 234 Hz までは出力 PWM 周波数 = 23.4 kHz の設定にして、234 Hz を超えるような回転周波数（〜469 Hz）は出力 PWM 周波数 = 46.9 kHz に設定します。

なお、モーターの特性や外付け FET の特性によっては出力 PWM の切り替わり時のスルーレートやクリッピングなどで出力 PWM の誘起電圧を検出するためのパルス幅が十分とれないと、モーターの位置検出できずに使用できない可能性があります。特にモーターの L 値が大きく、最大回転数も高く、出力電流が大きいようなモーターは使用できない可能性が高まることもあります。
1.8. 最高回転数
最大回転周波数の異常検出が下記表のように設定できますが、本 IC の公差などを考慮して、設定値から 10% 程度の余裕を持って設定ください。また、その最大回転周波数の異常検出設定と出力 PWM 周波数など設定からモーターの最大周波数の適用上限は 2.7 kHz 程度を推奨します。
たとえば、4 極対のモーターの場合、モーターの回転数の上限=2.7 kHz × 60 s/4 極対=40.5 krpm が適用可能なモーターの最大回転数の目安になります。

<table>
<thead>
<tr>
<th>レジスタ設定 FMAX</th>
<th>最大回転周波数</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0.75 kHz</td>
</tr>
<tr>
<td>01</td>
<td>1.5 kHz</td>
</tr>
<tr>
<td>10</td>
<td>3 kHz</td>
</tr>
<tr>
<td>11</td>
<td>無し</td>
</tr>
</tbody>
</table>

1.9. Closed loop
Kp と Ki の数値を大きくすることで、目標回転数に到達するまで時間が短縮されますが、オーバーシュートや振動する可能性がありますので、実動作上で確認した上で設定ください。
また、Kp と Ki は互いに依存しているため、片方が変化させるともう片方にも影響する可能性があります。

1.10. 出力 PWM 周波数
初期設定評価としては、FPWM レジスター111 設定（23.4 kHz～187.5 kHz）を推奨しますが、本製品の位置検出は、出力 PWM 周波数のタイミングで検出していますので、モーターの回転数や出力段の FET の特性などが影響して PWM 周波数によっては、位置検出のタイミングが変わり、最悪は位置検出ができない可能性もあります。他に出力電流のリップルなどが変化して、効率などが変化する可能性がありますので、実機で確認し設定ください。
1.11. 進角の設定
モーターの特性により進角設定で効率や騒音などが変化しますので、実機で確認し設定してください。

図 1.3 進角 0° モーター動作波形

図 1.4 進角 7.5° モーター動作波形

図 1.5 進角 15° モーター動作波形
記載内容の留意点

1. ブロック図
 ブロック図内の機能ブロック/回路/定数などは、機能を説明するため、一部省略・簡略化している場合があります。

2. 等価回路
 等価回路は、回路を説明するため、一部省略・簡略化している場合があります。

3. タイミングチャート
 タイミングチャートは機能・動作を説明するため、単純化している場合があります。

4. 応用回路例
 応用回路例は、参考例であり、量産設計に際しては、十分な評価を行ってください。
 また、工業所有権の使用の許諾を行うものではありません。

使用上のご注意およびお願い事項

使用上の注意事項

(1) 絶対最大定格は複数の定格の、どの１つの値も瞬時たりとも超えてはならない規格です。
 複数の定格のいずれに対しても超えることができません。
 絶対最大定格を超えると破壊、損傷および劣化の原因となり、破裂・燃焼による傷害を負うことがあります。

(2) デバイスの逆差し、差し違い、または電源のプラスとマイナスの逆接続はしないでください。
 電流や消費電力が絶対最大定格を超え、破壊、損傷および劣化の原因になるだけでなく、破裂・燃焼により傷害を負うことがあります。
 なお、逆差しおよび差し違いのまま通電したデバイスは使用しないでください。

(3) 過電流の発生や IC の故障の場合に大電流が流れ続けないように、適切な電源ヒューズを使用してください。
 IC は絶対最大定格を超えた使い方、誤った配線、および配線や負荷から誘起される異常パルスノイズなどが原因で破壊することがあり、この結果、IC に大電流が流れ続けることで、発煙・発火に至ることがあります。
 破壊における大電流の流出入を想定し、影響を最小限にするため、ヒューズの容量や溶断時間、挿入回路位置などの適切な設定が必要となります。

(4) モーターの駆動など、コイルのような誘導性負荷がある場合、ON 時の突入電流や OFF 時の逆起電力による負極性の電流に起因するデバイスの誤動作あるいは破壊を防止するための保護回路を接続してください。
 IC が破壊した場合、傷害を負ったり発煙・発火に至ることがあります。
 保護機能が内蔵されている IC には、安定した電源を使用してください。電源が不安定な場合、保護機能が動作しないで、IC が破壊することがあります。
 IC の破壊により、傷害を負ったり発煙・発火に至ることがあります。
使用上の留意点

(1) 過電流検出回路
過電流制限回路（通常：カレントリミッター回路）はどのような場合でもICを保護するわけではありません。動作後は、速やかに過電流状態を解除するようお願いします。絶対最大定格を超えた場合など、ご使用方法や状況により、過電流制限回路が正常に動作しなかったり、動作する前にICが破壊したりすることがあります。また、動作後、長時間過電流が流れ続けた場合、ご使用方法や状況によっては、ICが発熱などにより破壊することがあります。

(2) 放熱設計
パワーアンプ、レギュレーター、ドライバーなどの、大電流が流出入するICの使用に際しては、適切な放熱を行い、規定接合温度（Tj）以下になるように設計してください。これらのICは通常使用時においても、自己発熱をします。IC放熱設計が不十分な場合、ICの寿命の低下・特性劣化・破壊が発生することがあります。また、ICの発熱に伴い、周辺に使用されている部品への影響も考慮して設計してください。

(3) 逆起電力
モーターを逆転やストップ、急減速を行った場合に、モーターの逆起電力の影響でモーターから電源へ電流が流れ込むので、電源のSink能力が小さい場合、ICの電源端子、出力端子が定格以上に上昇する恐れがあります。逆起電力により電源端子、出力端子が定格電圧を超えないように設計してください。

・ 本資料に掲載する技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
製品取り扱い上のお願い

株式会社東芝およびその子会社ならびに関係会社を以下「当社」といいます。本資料に掲載されているハードウェア、ソフトウェアおよびシステムを以下「本製品」といいます。

- 本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- 当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合には、本製品の誤作動や故障により生命・身体・財産が侵害されることのないよう、お客様の責任において、お客様のハードウェア・ソフトウェア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報（本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど）および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器（以下“特定用途”という）に使用されることを意図されておりません。特定用途には原子力関連、航空・宇宙機器、医療機器（ヘルスケア除く）、車両・船舶機器、交通信号機器、各種安全関連機器、昇降機器、発電関連機器などが含まれますが、本資料に個別に記載する用途は除きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口まで、または当社 Web サイトのお問い合わせフォームからお問い合わせください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、複製等しないでください。
- 本資料を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- 本資料に掲載されている技術情報は、製品の代表的動作・応用を説明するためのものであるため、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様が当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも暗示的にも一切の保証（機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。）をしておりません。
- 本製品、または本資料に掲載される技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他の軍事用途の目的で使用しないでください。また、輸出に際しては、「外貨為替及び外国貿易法」、「米国輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品の RoHS 適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本製品のご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。

東芝デバイス＆ストレージ株式会社
https://toshiba.semicon-storage.com/jp/

© 2022 Toshiba Electronic Devices & Storage Corporation
12 2022-04-19
Rev.1.0