

32Bit TX System RISC
TX19A Family

Architecture

Rev１.0

Semiconductor Company

• The information contained herein is subject to change without notice. 021023_D

• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress.
It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in
making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc. 021023_A

• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer,
personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These
TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high
quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended
Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments,
transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types
of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the
customer’s own risk. 021023_B

• The products described in this document shall not be used or embedded to any downstream products of which
manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q

• The information contained herein is presented only as a guide for the applications of our products. No responsibility
is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its
use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or the third
parties. 021023_C

• The products described in this document are subject to foreign exchange and foreign trade control laws. 060925_E

• MIPS16,Application Specific Extensions ＆ R3000A are trademarks of MIPS Group , a division of Silicon
Graphics, Inc.

i

Preface
This manual describes the architecture of the Toshiba TX19A family.

Contents
Chapter 1: Introduction

Outline of TX19A
Chapter 2: CPU Architecture Overview

-Data load in the CPU registers and memory
-Overview of the functionality of the registers

Chapter 3: 32-Bit ISA Summary and Programming Tips
-Summary of the 32-bit instruction set architecture (ISA)

Chapter 4: 16-Bit ISA Summary and Programming Tips
-Summary of the 16-bit ISA

Chapter 5: CPU Pipeline
-Information about the instruction pipeline

Chapter 6: Memory Management
-The virtual and physical address spaces and these mapping manners

Chapter 7: Internal I/O Bus Operation
-Outlines of the Harvard architecture and the protocols for internal bus transactions

Chapter 8: System Control Coprocessor (CP0) Registers
-A group of registers associated with system configuration and exception processing

Chapter 9: CPU Exception Processing
-The events that cause exceptions and the sequences to be handled

Chapter 10: Power Consumption Management
-The methods of dynamically controlling power consumption during operation

Appendix A: 32-Bit ISA Details
-Detailed description of each instruction available in 32-bit ISA mode

Appendix B: 16-Bit ISA Details
-Detailed description of each instruction available in 16-bit ISA mode

Appendix C: Programming Restrictions
-The restrictions need to be observed in writing assembly-language programs

Appendix D: Compatibility Among TX19, TX19A and TX39 Architectures
-Provides comparisons among the three RISC processor families

Appendix E: 32-Bit ISA Instruction Bit Encoding
-The opcode bit encoding for the 32-bit ISA

Appendix F: 16-Bit ISA Instruction Bit Encoding
-the opcode bit encoding for the 16-bit ISA
 March.2007

ii

Readers
This manual is written for software and hardware developers who want to develop products using
TX19A processors and controllers.
RISC processors including TX19A have a number of features that make them stand out from CISC
processors. If you are unfamiliar with RISC architecture, Chapter 1 should be useful for you. Please
note that RISC processors have a small instruction set. There are no complex instructions such as
LDIR (block transfer), CPIR (block search), BS1B (bit scan). Since RISC has very few instructions,
a programmer or a compiler needs to implement additional instructions by using available RISC
instructions.
Chapter 2, the architecture overview, should help programmers who can use a high-level language
such as C in developing software.
Assembly language programmers must be well versed in the intricacies of the machine architecture.
The performance of software systems is drastically affected by how well software designers
understand the basic hardware technologies at work in a system. Therefore, we recommend
assembly language programmers to read the entire manual that gives a detailed description of the
TX19A architecture for overall understanding.

Related Document
Semiconductor Reliability Handbook (Integrated Circuits)
This book describes the methodology used by Toshiba to achieve robust semiconductor designs
before market introduction and to ensure high quality and reliability in volume production phase.

 Chapter 1 Introduction

Chapter 1 Introduction
This chapter provides the features of the TX19A and a general description of how the TX19A RISC
design differs from CISC processors such as the Toshiba 900/L1.
1.1 Processor General Features
The TX19A, a high quality 32-bit RISC processor, is created based on MIPS Technologies Inc.’s
R3000A architecture that contains reduced code size of 16 bit architecture “MIPS16e-TX”. The
instruction set of the TX19A includes the 32-bit instructions of the TX39 as a subset. Thus the
TX19A software preserves upward compatibility with TX39 and TX19.
The TX19A family of integrated processors and controllers is built on the TX19A core processor,
an on-chip bus and a selection of intelligent peripherals appropriate for specific applications. The
TX19A is available as an ASIC-ready core and a family of standard ASSP products.

Instruction sets of MIPS 16e-TX and MIPS S32

 MIPS16e-TX instruction sets are object-code compatible with MIPS16 ASE except for the area
that Toshiba extended MIPS16 ASE with permission of MIPS Technologies, Inc.
Note: The TX19A does not provide support for MIPS16 ASE instructions for 64-bit operations.

 The 32-bit instructions are object-code compatible with the high-performance TX39 family.
-Switchable run-time between 16-bit and 32-bit ISA modes through an instruction. These
conditions are respectively called as 16 bit ISA mode and 32 bit ISA mode.
-Hardware interlocks enables to send an instruction to refer the data loaded in register
immediately after the load instruction. This eliminates the need to insert a NOP (No Operation)
instruction.
-Branch-likely instructions allow the processor to execute the instruction at the target location
immediately after the branch instruction. This eliminates the need to insert a NOP instruction.

High Performance
 Single clock cycle execution for most instructions
 3-operand computational instructions
 Full 32-bit operations: Contains 32-bit general-purpose registers and a 32-bit program counter.
 8 sets of 32 general-purpose registers (shadow register sets): Automatically switched on entry

to an interrupt, based on its priority level.
 5-stage pipeline
 Independent on-chip instruction and data memory with an access time of one clock cycle

applicable
 An on-chip write buffer applicable
 Harvard architecture

The TX19A uses separate buses for code and data operands. In the TX19A, there are four sets of
buses: a data bus for carrying data (operands) in and out of the processor core, an address bus for

 1-1

Chapter 1 Introduction

accessing data operands, a bus to carry the opcodes and an address bus to access the opcodes. The
ability to access code and data simultaneously through separate buses increases instruction
throughput.

 Nonblocking loads function enables to execute the subsequent instruction in a load delay slot in
case a large latency appeared during data loading from external memory.

 On-chip multiplier/accumulator (MAC): Executes a (32-bit x 32-bit + 64-bit) and (64-bit –
32-bit x 32-bit) operations in a single clock cycle.

 4-Gbyte virtual address space
 Integrated coprocessor: The TX19A contains the system control coprocessor (CP0) for system

configuration, exception handling and memory management.

Low Power
 Power-optimized design

Programmable power management modes (Halt and Doze): In Doze mode, the processor senses
external bus requests.

 1-2

 Chapter 1 Introduction

Real-Time Interrupt Response
 Distinct starting locations for each interrupt service routine
 Automatically generated vectors for each interrupt source: Interrupt priorities are resolved upon

reading the exception vector. Interruption exception is executed when its priority level is higher
than the current one. It makes the TX19A effective for quick response to an interrupt request
that needs immediate action.

 On an interrupt, register sets are automatically switched based on its priority level.

Processor Core for System ASIC Applications
 Unified manufacturing process and development environment as ASIC
 Compact core design
 The processor core can be directly connected to the G-Bus, the standard on-chip bus for the TX

series.

System Development Environments

 Language tools: C compilers and assemblers
Both Toshiba’s proprietary and third-party tools are offered.

 Real-time operating systems
Both Toshiba’s proprietary (⎧ITRON) and third-party real-time operating systems are offered.

 Debug support systems
-Both Toshiba’s proprietary and third-party real-time emulators are offered to support
source-level debugging.

-Support for utility software to insert debug support unit (DSU) circuitry into an ASIC design.

 1-3

Chapter 1 Introduction

1.2 What Is RISC?
Until the early 1980s, all CPUs followed the complex instruction set computer (CISC) design
philosophy. To preserve compatibility with the existing pool of software, CISC processors evolved
by adding new types of machine instructions and more intricate operations. Generally, CISC refers
to CPUs with hundreds of instructions designed for every possible situation. Designing CPUs with
hundreds of instructions not only requires many transistors but is also very complicated, timing
consuming and expensive.
In the early 1980s, a controversy broke out in the computer design community. Proponents of a new
type of computer design argued that no one was using so many instructions. As it was developed, it
came to be known as reduced instruction set computer (RISC). RISC concepts emerged by
statistical analysis of how software actually uses the resources of a processor. According to
experiments, many of the complex instructions were never used by programmers and compilers.
The huge costs of implementing numerous instructions made some designers think of streamlining
the instruction set.

 Feature 1 Simple instructions

RISC processors have a small instruction set. For example, there are no such complex instructions
as block transfer, block search, bit scan and so forth.
Additionally, RISC uses the load/store architecture. In CISC processors, data can be manipulated
while it is still in memory. For example, “ADD A, (1000H)” contained in 16-bit CISC processor
TLCS-900/L1, is an instruction to bring the contents memory location 1000H into the CPU, sum it
up with data in register A and store the total in A. RISC did away with this kind of instructions. In
RISC, a single instruction can either load from memory into a register or store from a register into
memory. In other words, all operations are performed on operands held in CPU registers.
Since CISC processors have a large number of instructions, each with so many different addressing
modes, microcode is used to implement all of them. This feature of CISC makes the job of
programmers easy and helps to reduce code size. However, the implementation of microcode
requires more space on chip, creating a bottleneck in an effort to improve processor performance.

 Feature 2 Fixed instruction size

RISC processors have a fixed instruction size. In a CISC microprocessor, instructions can be 1, 2 or
even 7 bytes at the maximum. This variable instruction size makes the task of the instruction
decoder very complicated since the size of the incoming instruction can never be known. In the
TX19A microprocessor, the instruction size is fixed at 32 bits. The fixed instruction size enables the
CPU to decode instructions quickly.

 1-4

 Chapter 1 Introduction

 Feature 3 Heavily pipelined

Since RISC has only a limited number of simple instructions, most of the instructions can be
executed in one clock cycle. Therefore, RISC is easier to pipeline than CISC that requires a
different number of clock cycles for each instruction in pipeline. Generally, RISC processors are
heavily pipelined.

1.3 Features of the TX19A

The previous section provided an overview of the RISC features which are different from CISC
processors. In this section, we explore how the instruction set architecture (ISA) is implemented in
the TX19A in comparison to the 870/X and the 900/L1, 8-bit and 16-bit CISC processors from
Toshiba.
The TX19A has two ISA modes, 16-bit and 32-bit. The condition that each mode is executed is
respectively called as 16 bit ISA mode and 32 bit ISA mode. It provides for efficient run-time
switching between 16-bit and 32-bit ISA modes through an instruction. The 16-bit instruction set
(MIPS16e+) is not a separate instruction set indeed but a 16-bit extension of the full 32-bit MIPS
architecture. The 32-bit ISA has 103 instructions, the 16-bit ISA 128 instructions. Programs will
consist of procedures in 16-bit mode for density or in 32-bit mode for performance.
On the other hand, the 870/X and the 900/L1 are both CISC processors having nearly 1000 types of
instructions and many addressing modes. CISC processors are, in general, excel in code efficiency.

1.3.1 Instruction Set Architecture

 The TX19A did away with complex instructions.

The TX19A has only the basic instructions such as load, store, add, subtract, multiply, divide, AND, OR,

XOR, shift, jump and branch. There are no complex instructions like LDIR (block transfer) and CPIR

(block search) available with the 900/L1. It is the responsibility of the compiler (or the programmer) to

generate software routines to perform complex instructions that are done in hardware by CICS

processors. As exceptions, are the multiply-and-add (MADD and MADDU) and multiply-and-subtract

(MSUB and MSUBU) instructions that require very fast processing are included in instruction sets

(these instructions are executed by the dedicated MAC circuitry.)

 The TX19A did away with instructions that can be implemented by some other
instructions

To reduce the size of the instruction set, the TX19A aggressively eliminated the instructions that
can be implemented using other instructions. For example, the TX19A does not have the NOP (No
Operation), INC (Increment) and DEC (Decrement) instructions. Instead of NOP, a shift instruction
can be used as shown below for TX19A processors:

SLL r0,r0,0

In the TX19A, register r0 is hardwired to a constant value of 0. The above instruction actually shifts
the contents of r0 by zero bits and places the result back in r0. (The assembler permits NOP as a

 1-5

Chapter 1 Introduction

pseudoinstruction for program readability; however, it turns NOP into a shift instruction.)
A register increment can be implemented by using the ADDIU (Add Immediate Unsigned)
instruction as shown below:

ADDIU rt,rs,1

In this condition, rt and rs are the target and source registers respectively. Likewise, a register
decrement can be implemented as follows:

ADDIU rt,rs,-1

 The TX19A discarded instructions synthesizable from two or more simple instructions

 The TX19A further pared down the instruction set by discarding the instructions that can be
performed by two or more simple instructions. For example, the TX19A does not have the POP and
the PUSH instructions for accessing the stack. In CISC processors, as a PUSH instruction is
executed, the contents of a register is saved on the stack and the stack pointer register is
decremented by the amount of the register size. In the TX19A, one of the 32 general-purpose
registers is used as a stack pointer; pushing onto the stack is accomplished by executing an add
instruction on the stack pointer and a store instruction.

 The TX19A uses the load/store architecture

In CISC processors such as the 870/X and the 900/L1, data can be manipulated while it is still in
memory, like ADD A, (1000H). The TX19 did away with this kind of instructions; in the TX19, the
load and store instructions are the only instructions that move data between memory and CPU
general registers. However, the TX19A enhanced the capability of the TX19 by adding a group of
instructions that manipulate a specific bit in memory or add an immediate to a value in memory.

 The TX19A has only a few memory addressing modes
The 900/L1 and the 870/X1 have seven or more addressing modes for memory accesses. For example,

there are register indirect, register indirect with autoincrement, indexed relative, based indexed

relative, etc. These versatile addressing modes are very useful for assembly language programmers and

contribute to a reduction in code size.

In contrast, in 32-bit ISA mode, the TX19A has only one addressing mode for accessing memory
locations in order to simplify hardware implementation: i.e., based relative. In 16-bit ISA
mode, the TX19A has three more addressing modes called PC-relative, SP-relative and FP-relative;
only three 16-bit instructions can use PC-and SP-relative addressing modes, however.

 1-6

 Chapter 1 Introduction

 The TX19A has three-operand computational instructions 3

In the TX19A, many computational instructions use triadic format. In triadic instruction format,
there are two source registers and one destination register. An example of triadic format is:

ADD rd,rs1,rs2

This instruction adds the contents of two source registers, rs1 and rs2, and stores the results in rd.
On the other hand, the 900/L1 adds the contents of XWA and XBC and puts the result in XWA.

ADD XWA,XBC

 The TX19A does not have a flag register

The TX19A does not have a dedicated flag register with the carry, overflow and sign bits. For example,

in the 900/L1, the carry flag is used to indicate whether or not there was a carry from an addition or a

borrow as a result of subtraction. It is widely used in multibyte additions and subtractions. The 900/L1

has the ADC instruction to add the carry bit to the sum of two registers.

On the other hand, the TX19A can perform 32-bit additions at a time; so the flag bit is rarely
needed. To perform an add-with-carry, a routine must first explicitly determine whether the addition
has resulted in a carry, and then record the occurrence of a carry in a register. When doing
multiword additions, two different code sequences are required: one for adding with a carry-in and
one for adding without a carry-in.
Additionally, the 900/L1 CP (compare) instruction uses the carry flag to indicate whether or not
there was a borrow as a result of subtraction. In the TX19A, the result of compare instructions such
as SLT (Set On Less Than) is placed into a general register.

1.3.2 Instruction Format

The TX19A has two ISA modes, 16-bit and 32-bit. All the instructions for the 32-bit ISA mode, as
the name suggests, consist of 32 bits. All the instructions for the 16-bit ISA mode consist of 16 bits,
with a few exceptions. The 870/C instructions have the variable length: 1, 2, 3, 4, 5 and 6 bytes.
Furthermore, the 900/L1 covers 7 byte-instruction as the longest. This variable instruction length
is useful to reduce code size; however, it makes the task of the instruction decoder very complicated
and slow.
1.3.3 Instruction Pipelines

The TX19A has a five-stage pipeline. The five-stage pipeline divides the execution of each
instruction into five discrete portions and executes up to five instructions simultaneously. Each
stage takes one clock cycle.
The major characteristics of the TX19A is that the execution of most instructions requires a uniform
number of clock cycles; thus the TX19A is relatively easy to pipeline. The TX19A achieves an
instruction execution rate approaching one instruction per clock cycle.

 1-7

Chapter 1 Introduction

If the instruction stream includes a variety of different instruction lengths as in CISC processors,
pipeline management becomes very complicated. Moreover, such a varied, complex instruction
stream makes it almost impossible for a compiler to schedule instructions to reduce or eliminate
pipeline stalls.

 1-8

 Chapter 2 CPU Architecture Overview

Chapter 2 CPU Architecture Overview
This chapter outlines the TX19A architecture, data formats, programming model, ISA modes,
coprocessors, instruction pipeline and memory management.

2.1 Data Formats
This section describes the organization of data in registers and memory and how operands are
signor zero-extended for operations.

2.1.1 Byte Ordering
The TX19A supports many data types including 8-bit, 16-bit, 32-bit and 64 bit. A byte is defined as
8 bits. A halfword is two bytes, or 16 bits. A word is four bytes, or 32 bits. A doubleword is two
words, or 64 bits.
For multibyte data types, the TX19A supports both big-endian and little-endian formats. Byte
ordering (endianness) can be set through the ENDIAN input pin during a reset sequence. (In some
TX19A components, byte ordering is fixed to either big-endian or little-endian.)
Figure 2-1 shows the ordering of bytes in a word for big-endian and little-endian formats. The
TX19A processor uses a byte addressing. The big-endian ordering assigns the lowest address to the
highest-order (leftmost) byte. The little-endian ordering assigns the lowest address to the
lowest-order (rightmost) byte. Notice that, in the little-endian format, each byte of a multibyte
integer is placed in the same memory location regardless of whether the integer is defined as a
halfword or a word in size.

MemoryRegister

Lower
Address

Higher
Address

Halfword Access Word Access

(b) Little-Endian

Bit 31 Bit 0

0x67
0x45
0x23
0x01

67 45 23 01

Halfword Access Word Access

0x01
0x23
0x45
0x67

Byte

(a) Big-Endian

0x45
0x67

0x67
0x45

Halfword

Word

Lower
Address

Higher
Address

Byte

Figure 2-1 Byte Ordering

2-1

Chapter 2 CPU Architecture Overview

2.1.2 Aligned and Misaligned Accesses
The TX19A uses byte addressing for byte, halfword and word accesses. The address of a multibyte
data item is the address of the lowest memory location for that data item; i.e. the address of the
most-significant byte on a big-endian configuration and the address of the least-significant byte on a
little-endian configuration.
Memory access instructions have a natural alignment boundary equal to the operand length (see fig.
2-2). In other words, the natural address of an operand is an integer multiple of the operand length.
A memory operand is aligned if its address is a multiple of two for halfword accesses or a multiple
of four for word accesses.

Lower Address

Higher Address

(a) Memory Accesses

(b) Data Alignment

0

Memory

Operand

Address

Halfword Boundaries Word Boundaries

Byte

Halfword Access Word Access Byte Access

Byte Byte

1

4
3
2

5
6
7

Figure 2-2 Aligned Data Items

Most instructions require their memory operands to be aligned because alignment affects
performance. Special instructions are provided for addressing words that cross a boundary between
two words: LWL (Load Word Left), LWR (Load Word Right), SWL (Store Word Left) and SWR
(Store Word Right). These instructions are used in pairs. Figure 2-3 illustrates how a word of
aligned and misaligned data is loaded from memory into a CPU register.

 2-2

 Chapter 2 CPU Architecture Overview

+1 +2 +3+0

Register r8

0x400
0x404

(a) Aligned Access (Big-Endian)

+1 +2 +3+0

Register r8

0x400

0x404

(b) Misaligned Access (Big-Endian)

LWR r8 6(r9)
LW r8 0(r9) LWL r 8 3(r9)

Figure 2-3 Aligned and Misaligned Accesses

2.1.3 Data Extensions

Figure 2-4 illustrates sign extension and zero extension. In signed numbers, the most-significant bit
is the sign and the remaining bits are set aside for the magnitude of the number. Sign extension
copies the most-significant bit (i.e., sign bit) of a 16-bit immediate or the loaded byte or halfword
into the upper bits. Zero extension fills unused bits in a word with zeros irrespective of the value of
the most-significant bit of a 16-bit immediate or the loaded byte or halfword.

 15

Sign Bit 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

 15

Sign Bit 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

31

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

(a) 16-Bit to 32-Bit Sign Extension

The upper bits are always padded with zeros.

 15
1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

31

15

2-3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

(b) 16-Bit to 32-Bit Zero Extension

Figure 2-4 Sign Extension and Zero Extension

Chapter 2 CPU Architecture Overview

Sign extension is typically used to avoid problems associated with arithmetic operations. For
example, the ADDI (Add Immediate Signed) instruction only can take a 16-bit immediate. The
instruction "ADDI r3, r1, 0x1234" sign extends 0x1234 and adds it to the contents of register r1 to
form a 32-bit result. The result is placed into register r3.
The TX19A also applies sign extension to such instructions as LB (Load Byte), LBU (Load Byte
Unsigned) LH (Load Halfword), LHU (Load Halfword Unsigned) LW (Load Word), SB (Store
Byte), SH (Store Halfword), SW (Store Word) since the only addressing mode supported is base
register plus 16-bit immediate (i.e., offset). For example, the instruction "LB r9, 4(r8)" sign-extends
the offset (4 or binary 0100) and adds it to the contents of the base address held in r8 to form an
effective address. The word in the addressed memory location is loaded into r9.
To load byte data and halfword data in register, sign extension or zero extension is selected depend
on the instructions. Therefore, the LB and LH instructions sign- extend the loaded byte and put it in
the target register; the LBU instruction zero-extends the loaded byte.
Additionally, there are two types of logical AND and logical OR instructions each, AND/ANDI and
OR/ORI. The AND and OR instructions perform AND and OR operations with word data whereas
the ANDI (AND Immediate) and ORI (OR Immediate) perform AND and OR operations with word
data and halfword data. ANDI and ORI zero-extends a 16-bit immediate and combine it with the
contents of a general register in a bitwise logical AND or OR operation.

2.2 Programming Model
The TX19A programming model consists of two groups of registers: CPU registers and system
control coprocessor (CP0) registers.

2.2.1 CPU Registers

Figure 2-5 shows the CPU registers. The TX19A has eight sets of 32 general-purpose registers
(GPRs) called shadow sets for a total of 256 GPRs, a program counter (PC) register and two special
registers (HI/LO) that hold the results of integer multiply and divide operations. All CPU registers
are 32 bits in length.

 2-4

 Chapter 2 CPU Architecture Overview

 (a) General-Purpose Registers (b) Multiply/Divide Registers

Shadow 0 1 2 3 4 5 6 7 HI

Register r0

Set No. r26 (k0) LO

 r27 (k1)

 r28 (gp)

 r29 (sp) r29 (sp)

 r1 (at) r1 (at) r1 (at) r1 (at) r1 (at) r1 (at) r1 (at) r1 (at) (c) Program Counter

 r2 (v0) r2 (v0) r2 (v0) r2 (v0) r2 (v0) r2 (v0) r2 (v0) r2 (v0)

 r3 (v1) r3 (v1) r3 (v1) r3 (v1) r3 (v1) r3 (v1) r3 (v1) r3 (v1) PC

 r4 (a0) r3 (a0) r4 (a0) r4 (a0) r4 (a0) r4 (a0) r4 (a0) r4 (a0)

 r5 (a1) r5 (a1) r5 (a1) r5 (a1) r5 (a1) r5 (a1) r5 (a1) r5 (a1)

 r6 (a2) r6 (a2) r6 (a2) r6 (a2) r6 (a2) r6 (a2) r6 (a2) r6 (a2)

 r7 (a3) r7 (a3) r7 (a3) r7 (a3) r7 (a3) r7 (a3) r7 (a3) r7 (a3)

 r8 (t0) r8 (t0) r8 (t0) r8 (t0) r8 (t0) r8 (t0) r8 (t0) r8 (t0)

 r9 (t1) r9 (t1) r9 (t1) r9 (t1) r9 (t1) r9 (t1) r9 (t1) r9 (t1)

 r10 (t2) r10 (t2) r10 (t2) r10 (t2) r10 (t2) r10 (t2) r10 (t2) r10 (t2)

 r11 (t3) r11 (t3) r11 (t3) r11 (t3) r11 (t3) r11 (t3) r11 (t3) r11 (t3)

 r12 (t4) r12 (t4) r12 (t4) r12 (t4) r12 (t4) r12 (t4) r12 (t4) r12 (t4)

 r13 (t5) r13 (t5) r13 (t5) r13 (t5) r13 (t5) r13 (t5) r13 (t5) r13 (t5)

 r14 (t6) r14 (t6) r14 (t6) r14 (t6) r14 (t6) r14 (t6) r14 (t6) r14 (t6)

 r15 (t7) r15 (t7) r15 (t7) r15 (t7) r15 (t7) r15 (t7) r15 (t7) r15 (t7)

 r16 (s0) r16 (s0) r16 (s0) r16 (s0) r16 (s0) r16 (s0) r16 (s0) r16 (s0)

 r17 (s1) r17 (s1) r17 (s1) r17 (s1) r17 (s1) r17 (s1) r17 (s1) r17 (s1)

 r18 (s2) r18 (s2) r18 (s2) r18 (s2) r18 (s2) r18 (s2) r18 (s2) r18 (s2)

 r19 (s3) r19 (s3) r19 (s3) r19 (s3) r19 (s3) r19 (s3) r19 (s3) r19 (s3)

 r20 (s4) r20 (s4) r20 (s4) r20 (s4) r20 (s4) r20 (s4) r20 (s4) r20 (s4)

 r21 (s5) r21 (s5) r21 (s5) r21 (s5) r21 (s5) r21 (s5) r21 (s5) r21 (s5)

 r22 (s6) r22 (s6) r22 (s6) r22 (s6) r22 (s6) r22 (s6) r22 (s6) r22 (s6)

 r23 (s7) r23 (s7) r23 (s7) r23 (s7) r23 (s7) r23 (s7) r23 (s7) r23 (s7)

 r24 (t8) r24 (t8) r24 (t8) r24 (t8) r24 (t8) r24 (t8) r24 (t8) r24 (t8)

 r25 (t9) r25 (t9) r25 (t9) r25 (t9) r25 (t9) r25 (t9) r25 (t9) r25 (t9)

 r30 (fp) r30 (fp) r30 (fp) r30 (fp) r30 (fp) r30 (fp) r30 (fp) r30 (fp)

 r31 (ra) r31 (ra) r31 (ra) r31 (ra) r31 (ra) r31 (ra) r31 (ra) r31 (ra)

Figure 2-5 CPU Registers

2-5

Chapter 2 CPU Architecture Overview

 General-Purpose Registers

The TX19A core processor contains eight sets of general-purpose registers known as the “Shadow
Register Sets” numbered 0 to 7. Each shadow set consists of 32 registers (r0 to r31), except that all
the shadow sets have r0, r26, r27 and r28 in common and that shadow sets 1 to 7 have r29 in
common. All the other general-purpose registers are available in each shadow set. Switching to a
new shadow set is automatically done by processor hardware via interrupt or can be done with an
instruction (MTC0).
The 32-bit ISA instructions can use any of the general-purpose registers shown in Figure 2-5. The
general registers are numbered from r0 to r31. The general registers except r0 have symbol names
(software names) like v0-v1, a0-a3, and so on that are used by an assembler. The 32-bit ISA
instructions treat the general registers symmetrically, with the exception of r0 and r31. r0 is
hardwired to a value of 0. As such, r0 can be used by any instruction as a target register when the
result of an operation is to be discarded or as a source register when a zero value is necessary. r31
(ra: return address) is a link register used by Jump-and-Link, Branch-and-Link and Branch-Likely
and-Link instructions. These instructions are to store an address, which shows the restarting point
after a subroutine has been executed, in r31.
In the 16-bit instructions, only eight of the 32 general-purpose registers are normally visible, r2 to
r7, r16 and r17. Since the processor includes the full 32 registers of the 32-bit ISA mode,
MIPS16e+ contains move instructions to copy values between the eight MIPS16e+ registers and the
remaining 24 registers of the full MIPS architecture. Additionally, specific instructions implicitly
reference r24 (t8), r28 (gp), r29 (sp), r30 (fp) and r31 (ra). r24 serves as a special condition code
register for handling compare results. r28 is the global pointer register. r29 maintains the program
stack pointer. r30 is the frame pointer register. r31 is the link register.

Note: Please do not use r1 while programming since r1 is reserved as a register for assembler.

 2-6

 Chapter 2 CPU Architecture Overview

HI and LO Registers

The HI and LO registers hold the results of integer multiply, divide, multiply-and-add and
multiply-and-subtract operations. Integer multiply, multiply-and-add and multiply-and-subtract
operations store the doubleword, 64-bit result, in the HI and LO registers. Integer divide operations
store the quotient in the LO register and the remainder in the HI register. The MFHI, MFLO, MTHI
and MTLO instructions are used to move data between the HI and the LO registers and the general
registers.

 Program Counter (PC)

The least-significant bit of the program counter is the ISA mode bit that determines the ISA mode
instructions: 0 means 32-bit ISA and 1 means 16-bit ISA. ISA mode bit is not considered as a part
of the address. The address of the on-going instruction is the total value of the entire 32 bit after
erasing the least-significant bit.

2.2.2 System Control Coprocessor (CP0) Registers

The system control coprocessor, CP0, is an integral part of the TX19A processor. It has 17
user-accessible registers shown in Figure 2-6.

BadVAddr Register

Config Register

DEPC Register Debug Register

General

Exception
Processing

Debug Exception
Processing

Cause Register

Status Register

IER Register

PRId Register

EPC Register

System
Configuration

Config2 Register

Config1 Register

Config3 Register

Count Register

Compare Register SSCR Register

DESAVE Register

ErrorEPC Register

 Figure 2-6 System Control Coprocessor (CP0) Registers

The CP0 registers are classified into three groups: system configuration registers, general exception
handling registers and debug exception handling registers. When the processor is in Kernel mode,
the system control coprocessor instructions can always use the CP0 registers regardless of the
setting of the CU0 bit in the Status register. If the processor is in User mode, the CP0 registers are
accessible only when the CU0 bit is 1. Operating modes are explained in Section 2.7, Memory
management Summary.

2-7

Chapter 2 CPU Architecture Overview

Table 2-1 System Configuration Register

Register Name Description

Comfit､Config1､
Config2､Config3 System configurations, such as EJTAG and 16-bit ISA mode and cache configurations.

Table 2-2 General Exception Handling Registers

Register Name Description

BadVAddr
Bad virtual address that caused a virtual-to-physical address translation error.
Read-only

Status Processor status, e.g., operating mode (User/Kernel), interrupt enable and other states.

Cause Cause of the last exception

EPC
Exception program counter. Upper 31 bits of the address of the exception-causing
instruction combined with the ISA mode bit.

ErrorEPC
Similar to the EPC register, except that ErrorEPC is used on Reset and NMI
exceptions.

Count Acts as a timer, incrementing at 1/2 the rate of CPUCLK.

Compare Maintains a constant value compared against the Count register value.

PRId Processor revision identifier. Read-only

IER Manipulates the interrupt enable/disable bit in the Status register.

SSCR Indicates the previous and current shadow register sets.

Table 2-3 Debug Exception Handling Registers

Register Name Description

Debug Cause and current status of a debug exception

DEPC
Debug exception program counter. Upper 31 bits of the address of the instruction that
caused a debug exception, combined with the ISA mode bit.

DESAVE Scratchpad register to save one of the general-purpose registers for context-switching

2.3 32-Bit and 16-Bit ISA Modes
The TX19A has two ISA modes, 16-bit and 32-bit. These operating conditions are respectively
called as 16 bit ISA mode and 32 bit ISA mode. It provides an efficient run-time switching between
16-bit and 32-bit ISA modes through an instruction. Programs will consist of procedures in 16-bit
mode for density or in 32-bit mode for performance.
The least-significant bit of the program counter (PC) is the ISA mode bit that determines the width
of instructions: 0 means 32-bit ISA and 1 means 16-bit ISA. The JALX, JR, JRC or JALRC
instructions can be used to switch from 32-bit mode to 16-bit mode or vice versa.

 2-8

 Chapter 2 CPU Architecture Overview

When an exception occurs while the processor is in 16-bit mode, the processor automatically
switches to 32-bit mode and saves the return address together with the ISA mode bit to the EPC,
ErrorEPC or the DEPC register. The ERET instruction is used to jump back to the return address
contained in the EPC or ErrorEPC register. In case of a debug exception, the DERET instruction is
used to jump back to the return address contained in the DEPC register.

The instruction set can be divided into the groups shown in Figure 2-7.

Load and Store

Computational

Jump and Branch

Coprocessor

System Control Coprocessor (CP0)

Special

Load Instructions
Store Instructions
SYNC Instructions

Jump Instructions

ALU Immediate Instructions

Branch Instructions

Register-register Instructions
Shift Instructions

Branch-likely Instructions

Multiply and Divide Instructions
Multiply-and-Add and
Multiply-and-Subtract Instructions

Load and Store
Load Instructions
Store Instructions

32 Bit ISA 16-Bit ISA

Signed, Unsigned

SYNC Instructions*

Computational

Jump and Branch

Special

Jump Instructions

ALU Immediate Instructions

Branch Instructions

Register-register Instructions
Shift Instructions
Multiply and Divide Instructions

Signed, Unsigned

Saturate Instructions*
Multiply-and-Add Instructions*
MAX and MIN Instructions *
Sign-Extend and Zero-Extend Instructions*
Bit-Field Instructions*
Bit Search Instructions*

Bit Manipulation*

System Control Coprocessor (CP0)*

* New instructions in the TX19A

SYSCALL
BREAK
SDBBP
Trap Instructions

SAVE・RESTORE

Figure 2-7 32-Bit and 16-Bit Instructions

All the instruction length of 32-bit ISA is set as 32 bit. As a general rule, the instruction length of 16-bit

ISA is set as 16 bit; however, it can be changed into 32 bit with a EXTEND instructions. The
EXTEND instructions, of which bit size is 16, are consist of 5-bit opcodes and 11-bit immediate.
In some cases, the 11-bit immediate field is replaced with an opcode. The EXTEND does not

2-9

Chapter 2 CPU Architecture Overview

generate a MIPS machine instruction on its own, but16-bit immediate can be used by concatenating
its immediate and an immediate of a subsequent instruction.
The 16-bit ISA instruction with 32-bit instruction length is called EXTENDed instructions. The
SYNC, ERET, DERET, WAIT, BS1F, MAX and MIN instructions are EXTENDed instructions
and have no 16-bit equivalents.

2.4 Coprocessors
Coprocessors are secondary processors used to speed up operations by handling some of workload
of the main CPU.
The TX19A contains a system control coprocessor, CP0, which handles system configuration,
exception handling and memory management. The basic capabilities of CP0 are incorporated into
the processor core and the extended capabilities into the memory management unit (MMU).
The CU0 bit in the Status register controls the usability of CP0 instructions in User mode.
Coprocessor Unusable exception occurs due to CP0 instruction execution during a user-mode
program when the CU0 bit is cleared. In Kernel and Debug modes, all CP0 instructions can be
executed regardless of the setting of the CU0 bit.
The CU [3:1] bits in the Status register control accesses to the respective coprocessors in User mode
or in Kernel mode. Attempted execution of a coprocessor instruction causes a Coprocessor
Unusable exception when its CU bit is cleared.
The system control coprocessor (CP0) provides 17 user-visible registers. Chapter 8 gives a
complete description of them.

2.5 Pipeline Architecture
The TX19A has a five-stage pipeline. That is, the execution of each instruction consists of five
primary stages. Each stage takes approximately one clock cycle; thus the execution of each
instruction takes at least five cycles. (The JAL and JALX instructions in the 16-bit ISA mode take
longer.) The five-stage pipeline divides the execution of each instruction into five discrete portions
and executes up to five instructions simultaneously, as shown in Figure 2-8. The five pipe stages are
Fetch (F), Decode (D), Execute (E), Memory Access (M) and Register Write-back (W). The
TX19A achieves an instruction execution rate approaching one instruction per clock cycle.

 2-10

 Chapter 2 CPU Architecture Overview

F D E M W
Instruction

Fetch
Decode Execute

Memory
Access

Register
Write-back

 #1 F D E M W
 #2 F D E M W
 #3 F D E M W
 #4 F D E M W
 #5 F D E M W

Time

1 Clock
Cycle

Current CPU Cycle

Figure 2-8 TX19A Pipeline

2.6 Write Buffer
A write buffer is a FIFO buffer with 4 entries. As explained in the previous chapter, each pipeline
stage takes one clock cycle if the ongoing instruction requires writing areas other than the on-chip
memory. Bus cycle for writing to the area other than the on-chip memory not always takes only one
clock. The write buffer function can improve performance during the program operation by
coordinate the speed differences.

2.6.1 Instructions for Write Buffer
Here are the instructions for the write buffer which generates write bus cycle to memory.

・ All the store instructions
32ISA: SW / SH / SB / SWL / SWR
16ISA: SW / SH / SB

・ A part of bit computational instructions, memory operand addition
32ISA: none
16ISA: BCLR / BSET / BINS

・ Others
32ISA: none
16ISA: ADDMIU / SAVE

Note: Please refer to Appendix A”32-Bit ISA Details” and Appendix B “16-Bit ISA Details” for further details.

2-11

Chapter 2 CPU Architecture Overview

2.6.2 Instruction Procedure

At the execution of the instruction to use the write buffer, a bus operation required for executing the
instruction is placed in the write buffer. We call it as “entry in the write buffer”. The entry in the
write buffer is executed in the order corresponding to instruction execution.

When the write buffer has free space, it enters the bus operation if the instruction to use the write
buffer is in the Execute (E) stage. The bus cycle and the entry in the write buffer starts
simultaneously if there is no bus cycle executed in operand bus at that time, which means operand
bus has free space. When the write buffer has no free space, the instruction stalls in the E stage until
it gains appropriate free space.

The earlier the operation is entered in the write buffer, the earlier it is executed when there is a free
operand bus. The order will never be changed in the write buffer. The write bus cycle cannot be
executed when there is no free operand bus. In case a subsequent instruction such as the LOAD
requests the read bus cycle, the instruction stalls in the E stage until all the operations entered in the
write buffer are completed.

Figure 2-9 shows the procedure of the write buffer instruction. In this case, the third one is the
LOAD instruction. Therefore the read bus cycle caused by the LOAD will not be executed as long
as the write cycle during the write buffer operation is completed.

STORE 1

STORE 1 sw r10,0x0000(r16) F
STORE 2 sw r11,0x0004(r16)

LOAD 3 lw r20,0x0008(r16)

D E M W

F D E M W

F D

Bus cycle

Write cycle

STORE 2 LOAD 3

Write buffer

Read cycle Write cycle

Es

Stall cycle

Es Es Es E M W--

Figure 2-9 The procedure of the write buffer instruction

2.6.3 Bit Computational Instructions/ ADDMIU Instructions

The instructions accompanied by an operand read such as a bit computational or an ADDMIU
instructions initiate the operand read bus cycle. The read bus cycle and the write bus cycle are
always executed in succession since these cycles must be united as a read modify write operation.

In this case, the write cycle of the bit computation gets priority over the subsequent instructions.

Figure 2-10 shows the procedure of the bit computational instruction.

 2-12

 Chapter 2 CPU Architecture Overview

Instruction 1 bset 0x00(fp),0 F

Instruction 2 lw r20,0x0004(r22)

D E M W

F D Es M

Bus cycle

Read cycle
Instruction 1 Instruction 2

Write buffer

Write cycle Read cycle

Es Es Es E W

Stall cycle

--

Figure 2-10 The procedure of the bit computational instruction

2.6.4 SAVE Instruction

The SAVE instruction can generate multiple stores. The write buffer starts to enter the save
instructions from the earlier store. In the meantime, the SAVE instruction can occupy the execution
stage; that is to say no operation caused by other instructions will be entered in the write buffer.

2.6.5 SYNC Instructions

With the SYNC instruction, all the write bus operations entered in the write buffer to maintain the
consistency of memory data are executed. The SYNC instruction is effective to synchronize the
condition of memory or IO with the instruction operation since this instruction stalls until all the
bus cycle caused by the entered operations are completed.

The contents in the write buffer are never automatically flashed when Interrupt/ Exception takes
place or bus is opened. Consistency must be maintained by the SYNC instruction depend on the
situation.

2-13

Chapter 2 CPU Architecture Overview

2.7 Memory Management Summary
The TX19A has two modes of operation, User mode and Kernel mode. The TX19A enters Kernel
mode whenever an exception is taken. Since a reset exception occurs when a system is reset, the
TX19A wakes up in Kernel mode. The processor switches to User mode when the ERET
(Exception Return) or DERET (Debug Exception Return) instruction is executed.

User Mode

•

2-14

Application Programs

Kernel Mode

• System

• Operating System Routine

• General Exception Handler

• Debug Exception Handlers, etc

 Programs

s

s

Exception

Return from Exception

• ERET instruction
• DERET instruction

(Debug Processing)

Figure 2-11 Operating Modes

The operating mode determines the addresses, registers and instructions that are available to a
program. Kernel mode has higher privileges than User mode. Kernel-mode programs are permitted
to use all addresses, registers and instructions, but a User-mode program’s use of them are restricted.
Operating system routines, general exception handlers and debug exception handlers are executed
in Kernel mode. This scheme allows the kernel to protect system resources from uncontrolled
access.

Note: TX19A only allows using Kernel mode.

 Chapter 2 CPU Architecture Overview

The TX19A does not contain a translation lookaside buffer (TLB). Instead, the memory
management unit (MMU) of the TX19A uses the direct segment mapping method. The mapping of
virtual addresses to physical addresses is shown in Figure 2-12. The virtual address space is
partitioned into four, fixed-size segments. kuseg is designed to be used by User-mode programs
while it is accessible in Kernel mode. The other three segments, kseg0, kseg1 and kseg2, are
available only to Kernel-mode programs. Chapter 6 describes the memory management features in
greater details.

Virtual Address Space Physical Address Space

2-15

16 MB Reserved

Kernel Segment 2
kseg2

Kernel Segment 1

kseg1

Kernel Segment 0

kseg0

Kernel/User Segment
kuseg

16 MB Reserved

Kernel Segment 2

kseg2 (1 GB)

Kernel/User Segment
kuseg (2 GB) 16 MB Reserved

16 MB Reserved

0xFFFF_FFFF

0xC000_0000

0xA000_0000

0x8000_0000

0x0000_0000

0xFFFF_FFFF

0xC000_0000

0x4000_0000

0x2000_0000

0x0000_0000
512 MB

Unavailable

Figure 2-12 Virtual-to-Physical Address Mapping

 Chapter 3 32-Bit ISA Summary and Programming
Tips

Chapter 3 32-Bit ISA Summary and Programming Tips
This chapter gives an overview of the instructions and addressing modes supported by the TX19A in
32-bit ISA mode. This chapter also presents many programming tips using 32-bit instructions.
Instructions are grouped into the following categories:

 Load and store instructions
 Computational instructions
 Jump, branch and branch-likely instructions
 System control coprocessor (CP0) instructions
 Special instructions

3.1 Instruction Formats
All TX19A instructions for the 32-bit ISA mode are 32-bits wide. There are three instruction formats
as shown in Figure 3-1. Limiting instruction formats to these three dramatically simplifies instruction
decoding. More complex instructions are synthesized by the compiler. All the 32-bit instructions
must be aligned on a word boundary.

I-Type (Immediate)

31 26 25 2120 16 15 0
op rs rt immediate

J-Type (Jump)

31 26 25 0
op target

R-Type (Register)

31 26 25 2120 16 15 11 10 6 5 0
op rs rt rd shamt funct

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target register specifier or branch condition

immediate 16-bit immediate, or branch or address displacement (offset)

target 26-bit jump target address

rd 5-bit destination register specifier

shamt 5-bit shift amount

funct 6-bit function code

Figure 3-1 Instruction Formats

3-1

Chapter 3 32-Bit ISA Summary and Programming Tips

3.2 Load and Store Instructions
Load and store instructions move data between memory and CPU general registers. Load and store
instructions can only load from memory into registers or store registers into memory locations. There
is no direct way of doing arithmetic or logical operations between registers and the contents of
memory.

3.2.1 Load and Store Address Calculation

In 32-bit ISA mode, all load and store instructions are encoded as I-type instructions. They generate
effective addresses using register indirect with offset addressing mode, as shown in Figure 3-2. The
16-bit immediate is sign-extended to 32 bits and added to the contents of a general-purpose register to
generate the effective address. For example, in the instruction
LW r9,4(r8)

4 (binary 0100) is the offset, r8 is a general-purpose register containing the base address, and r9 is the
target register.
This addressing mode shown in figure 3-2 can be used to implement immediate addressing using r0 as
the base register or register direct addressing using an offset value of zero.

Memory

16-Bit Offset
16-Bit

 Sign Extension

Base Register
32-Bit Address

+

Figure 3-2 Register Indirect with Offset Addressing

3.2.2 Load and Store Instructions for Aligned Accesses

Table 3-1 gives the load and store instructions to perform byte, halfword and word accesses. The LB
and LH instructions sign-extend the loaded byte and halfword. The LBU and LHU instructions,
which have the “U” (unsigned) suffix, zero-extend the loaded byte and halfword.

 3-2

 Chapter 3 32-Bit ISA Summary and Programming
Tips

Table 3-1 Load and Store Instructions for Aligned Accesses

Data Type Unsigned Load Signed Load Store

Byte LBU LB SB

Halfword LHU LH SH

Word LW — SW

3.2.3 Load and Store Instructions for Misaligned Accesses

An Address Error exception occurs when an instruction to load or store halfword or word that is not
aligned on the natural alignment boundary is executed. Table 3-2 gives the instructions to perform
loads and stores when the bytes in a word cross the natural boundary between two words. The LWL
(Load Word Left) and LWR (Load Word Right) instructions are used in a pair. Likewise, the SWL
(Store Word Left) and SWR (Store Word Right) instructions are used in a pair. These instructions
provide a more efficient way of dealing with misaligned data than using a sequence of load/store and
shift operations. They are useful for reusing old programs written for 8- and 16-bit machines.

Table 3-2 Load and Store Instructions for Misaligned Accesses

 Signed Load Store

Left (Upper Bytes) LWL SWL

Right (Lower Bytes) LWR SWR

3.2.4 Memory Synchronization Instruction

The memory synchronization instruction, SYNC, guarantees the sequence of memory references by
interlocking the instruction pipeline until loads, stores and instruction fetches performed prior to the
present instruction are completed before loads or stores after this instruction are allowed to start.

3.2.5 32-Bit Address Generation

In 32-bit ISA mode, load and store instructions can only take a 16-bit signed immediate as an offset.
The most-significant bit is the sign. A total of 15 bits designate the magnitude. This gives a range of
-32768 to +32767. If the offset is outside this range, you must put it in a general register prior to the
load or store instruction. Three examples are given below.

 Example 1: Base address + 32-bit offset
In the example below, the ADDU (Add Unsigned) instruction is used to add the offset held in register
r5 to the base address in register r4. The result is placed back into r4. Then the LW instruction uses r4
as the base register to address a memory location.

3-3

Chapter 3 32-Bit ISA Summary and Programming Tips

ADDU r4,r4,r5

LW r6,0(r4)

 Example 2: Base address + 32-bit offset
In the example below, the LUI (Load Upper Immediate) instruction loads the 16-bit immediate (in
this case, the upper 16 bits of the offset) into the upper 16 bits of register r5. The lower 16 bits of r5
are filled with zeros. Then ADDU (Add Unsigned) instruction is used to add r5 to the base address in
r4. This way, the LW instruction can address a desired memory location by only using the lower 16
bits of the offset.

LUI r5,0x12

ADDU r4,r4,r5

LW r6,0x3454(r4)

 Example 3: Arbitrary 32-bit absolute address
In the example below, the LUI (Load Upper Immediate) instruction loads the 16-bit immediate into
the upper 16 bits of register r4. The ADDIU (Add Immediate Unsigned) instruction adds r4 to the
lower 16 bits of the offset, 0x3456. The LW instruction can then use r4 to directly address the desired
memory location, with an offset of zero.

LUI r4,0x12

ADDIU r4,r4,0x3456

LW r6,0(r4)

LUI r4,0x12

ADDIU

0 0 1 2 0 0 0 0

0 0 0 0 3 4 5 6

0 0 1 2 3 4 5 6

3.3 Computational Instructions
This section describes the computational instructions available in the 32-bit ISA. Section 3.3.1
provides a category of computational instructions. Section 3.3.2 discusses computations that involve
the use of 32-bit constants. Section 3.3.3 gives program examples to illustrate how to perform 64-bit
addition and subtraction. In Section 3.3.4, we observe how to detect the integer overflow without
using exception. In Section 3.3.5, we look at ways to execute a 64-bit x 64-bit multiply operation.
Section 3.3.6 describes how to implement rotate operations using available instructions.

 3-4

 Chapter 3 32-Bit ISA Summary and Programming
Tips

3.3.1 Overview of Computational Instructions

Computational instructions in the 32-bit ISA are categorized into five groups shown in Table 3-3.
They consist of arithmetic, compare, logical, shift, multiply, divide and multiply-and-add instructions.
Computational instructions use I-type format in which one operand is a 16-bit immediate or R-type
format which take two or three register operands.

Table 3-3 Computational Instructions

Category Instructions Opcode

ALU Immediate Add ADDI・ADDIU

 Set On Less Than SLTI・SLTIU

 Logical AND ANDI

 Logical OR ORI

 Logical XOR XORI

 Load Upper Immediate LUI

2- and 3-Operand Add ADD・ADDU

Register-Type Subtract SUB・SUBU

 Set On Less Than SLT・SLTU

 Logical AND AND

 Logical OR OR

 Logical XOR XOR

 Logical NOR NOR

 Count CLO・CLZ

 Conditional Move MOVN・MOVZ

Shift Logical Shift SLL・SLLV・SRL・SRLV

 Arithmetic Shift SRA・SRAV

Multiply and Divide Multiply MULT・MULTU・MUL

 Divide DIV・DIVU

 Move From/To HI/LO MFHI・MFLO・MTHI・MTLO

Multiply-and-Add and Multiply-and-Subtract MADD・MADDU・MSUB・MSUBU

In ALU immediate instructions, the source operands are a general-purpose register and a 16-bit
signed immediate. For example, the Add Immediate instruction, "ADDI rd, rs, immediate," adds the
contents of the source register (rs) and the sign-extended immediate, then places the result into the
destination register (rd).

Two- and three-operand Register-type instructions manipulate the values held in two general purpose
registers and place the result into a general-purpose register.

Shift instructions shift the contents of a general-purpose register right or left by the specified

3-5

Chapter 3 32-Bit ISA Summary and Programming Tips

number of bits. There are two kinds of shift: logical and arithmetic. The Shift Variable instructions
(SLLV, SRLV, and SRAV) do not have the shift amount (shamt) field; instead they specify a general
purpose register containing a desired shift amount.

Multiply and divide instructions operate on integer values in two general-purpose registers and place
the result into special registers HI and LO. Generally, CPU instructions do not have access to the HI
and LO registers. In the MIPS architecture, the MFHI, MFLO, MTHI and MTLO instructions are
always required to move data between a general-purpose register and the HI or LO register. However,
the TX19A provides an extension to the MIPS architecture to allow the lower 32 bits of the product to
be placed into both the LO register and a general-purpose register at a time. Section 3.3.5, 64-Bit x
64-Bit Multiplication, presents an application example of this extension.

Multiply-and-add and multiply-and-subtract instructions multiply two 32-bit numbers, followed by
the addition/subtraction of this product to/from the 64-bit value in the HO/LO registers. The lower 32
bits of the result can be optionally copied into a general-purpose register simultaneously. The MAC
unit executes the integer multiply-and-add and multiply-and-subtract operations at an accelerated
speed. It is designed to provide a common set of digital signal processing (DSP) operations.

3.3.2 32-Bit Constants

The immediate field in the I-type instructions is only 16-bits long. If the immediate value is greater
than 16 bits, you need to use two instructions to create a 32-bit constant and put it in a general register
temporarily. In the example below, the LUI (Load Upper Immediate) instruction loads the immediate
value into the upper 16 bits of r4 and fills the lower 16 bits with zeros. The ORI (OR Immediate)
instruction zero-extends the immediate value, logical-ORs it with the contents of r4 and places the
result back into r4.

LUI r4,0x12

ORI r4,r4,0x3456

LUI r4,0x12

ORI

0 0 1 2 0 0 0 0

0 0 0 0 3 4 5 6

0 0 1 2 3 4 5 6

The following is an example of adding a 32-bit constant to the contents of a general register. The LUI
instruction loads the upper 16 bits of r5 with 0x1234 and sets the lower 16 bits to 0x0000. Adding it to
0x5678 with the ADDIU (Add Immediate Unsigned) instruction gives 0x12345678 that is placed
back into r5. Finally, the ADDU (Add Unsigned) instruction adds the contents of r4 and r5 together

 3-6

 Chapter 3 32-Bit ISA Summary and Programming
Tips

and puts the result in r6.
LUI r5,0x1234

ADDIU r5,r5,0x5678

ADDU r6,r4,r5

Note: The ADDI and SLTI instructions sign-extend the immediate value to 32 bits. Although ADDIU
and SLTIU stand for Add Immediate Unsigned and Set On Less Than Immediate Unsigned, they also
sign-extend the immediate value to 32 bits. The only difference between the ADDI and ADDIU
instructions is that ADDIU never causes an overflow exception. Therefore, you can use the ADDIU
instruction to add a negative number to the contents of a general register without being worried about
a possible overflow. It is useful since there is no Subtract Immediate instruction in the instruction set.
The only difference between the SLTI and SLTIU instructions is that SLTI compares two values (rs
and sign-extended immediate) as signed integers while SLTIU compares two values (rs and
sign-extended immediate) as unsigned integers.

3.3.3 64-Bit Addition and Subtraction

In some cases, the numbers being added or subtracted can be more than 32-bits long. Since general
purpose registers are only 32-bits wide, it is the job of the programmer (or the compiler) to write the
code to break down large numbers into smaller chunks to be processed by the CPU. Figure 3–3
illustrates this. In Figure 3–3, r3 contains the upper 32 bits of a 64-bit constant, and r2 contains the
lower 32 bits of that 64-bit constant. Likewise, r5 and r4 together contain a 64-bit constant.

r3 r2 ± r5 r4 r11 r10

Figure 3-3 64-Bit Addition and Subtraction

Add with Carry

Below is an example of code to add two 64-bit constants together:
ADDU r10,r2,r4 # r10 ← r2 + r4

SLTU r11,r10,r2 # r11=1 if r10 (sum) is less than r2

ADD(U) r11,r11,r3 # r11 ← r11 (carry) + r3

ADD(U) r11,r11,r5 # r11 ← r11 + r5

The first ADDU instruction adds the lower 32 bits of two constants together and puts the result in r10.
The TX19A architecture does not provide a flag bit to indicate whether an arithmetic operation results
in a carry-out. Therefore, it is necessary to somehow record an occurrence of a carry-out resulting
from an addition. In the case of two positives together, a carry-out occurred if the sum is less than one
of the operands added. Then the next SLTU (Set on Less Than Unsigned) instruction sets r11 to 1 if
r10 is less than r2. The following two ADD(U) instructions add the carry-out bit (1 or 0) and the upper

3-7

Chapter 3 32-Bit ISA Summary and Programming Tips

32 bits of the two 64-bit constants.

The last two instructions can be either ADD or ADDU. The only difference between these two
instructions is that ADDU (Add Unsigned) never causes an integer overflow exception. When you
use the ADDU instruction, you need to write the code to explicitly test for an occurrence of the
overflow condition. This is discussed in the next section.

 Subtract with Borrow

In 64-bit subtraction, the code must take care of the borrow of the lower operand. The technique for
performing subtract-with-borrow is quite similar to add-with-carry. Below is an example of code to
subtract a 64-bit constant from a 64-bit constant.

SLTU r8,r2,r4 # r8=1 if r2 is less than r4

SUBU r10,r2,r4 # r10 ← r2 – r4

SUB(U) r11,r3,r5 # r11 ← r3 – r5

SUB(U) r11,r11,r8 # r11 ← r11 - r8 (borrow)

First of all, the SLTU instruction checks if r2 (minuend) is smaller than r4 (subtrahend). If it is, r8 is
set to 1. That is, if there is a borrow resulting from the subtraction of the lower 32 bits, its occurrence
is recorded in r8. The content of r8 is subtracted in the last SUB(U) instruction.
Again, the only difference between the SUB and SUBU instructions is that SUBU (Subtract
Unsigned) never causes an integer overflow exception.

3.3.4 Testing for an Integer Overflow
As explained in the previous section, the signed add and subtract instructions, ADD and SUB,
generate an overflow exception if the addition/subtraction resulted in a two’s-complement overflow.
On the other hand, the unsigned add and subtract instructions, ADDU and SUBU, never cause an
overflow exception. If it is necessary to detect signed overflow without using exceptions or to detect
overflow for unsigned operations, you need to write a software routine to check for overflow.
It should be observed that, during addition, overflow occurs if the signs of the operands are the same
and the sign of the sum is different. Below is an example of code that checks for overflow resulting
from signed addition:

ADDU r2,r3,r4 # r2 ← r3 + r4, no exception

XOR r5,r3,r4 # Compare signs of r3 and r4; if different,

no overflow (r5 < 0)

BLTZ r5, No_Ov # Branch on less than zero

XOR r5,r2,r3 # Compare signs of sum and operand; if different,

overflow occurred (r5 < 0)

BLTZ r5,Ov # Branch on less than zero

No_Ov:

 3-8

 Chapter 3 32-Bit ISA Summary and Programming
Tips

During subtraction, overflow occurs if the signs of the operands are not the same and the sign of the
remainder is not the same as the sign of the minuend. Below is an example of code that checks for
overflow resulting from signed subtraction:

SUBU r2,r3,r4 # r2 ← r3 – r4

XOR r5,r3,r4 # Compare signs of r3 and r4; if same, no

overflow occurred

BGEZ r5,No_Ov # Branch on greater than or equal to zero

XOR r5,r2,r3 # Compare signs of remainder and minuend; if

different, overflow occurred

BLTZ r5,Ov # Branch on less than zero

No_Ov:

3.3.5 64-Bit x 64-Bit Multiplication

In multiplying two integer numbers in the TX19A, they must be in general-purpose registers. In
doubleword-by-doubleword multiplication, each 64-bit operand takes two registers since all general
purpose registers are only 32-bits wide.
In Figure 3-4, the upper 32 bits of the multiplicand is placed in r3 and the lower 32 bits of it is in r2.
Likewise, the multiplier is put in r5 and r4.

r3 r2 × r5 r4 r11 r10

×

r2 r3

r4 r5

r4 × r2 (Low)

r11 r10

r4 × r3 (High)

r5 × r2 (High)

r5 × r3 (High) r5 × r3 (Low)

r4 × r2 (High)

r4 × r3 (Low)

r5 × r2 (Low)

Figure 3-4 64-Bit x 64-Bit Multiplication

The following shows an example of code that performs 64-bit by 64-bit multiplication. Although the
product can be a maximum of 128-bits long, the code below only deals with the lower two words of the
product for the sake of simplicity.

MULTU r10,r2,r4 # r4 x r2, Copy low word of product to r10

MFHI r11 # Copy high word of product to r11

MULTU r9,r3,r4 # r3 x r4, Copy low word of product to r9

ADDU r11,r11,r9 # r11 ← r11 + r9

3-9

Chapter 3 32-Bit ISA Summary and Programming Tips

MULTU r9,r2,r5 # r5 x r1, Copy low word of product to r9

ADDU r11,r11,r9 # r11 ← r11 + r9

Note that there is a slight difference in the functionality of the MULTU (Multiply Unsigned)
instruction between the MIPS and the TX19A architectures. In the MIPS processor, MULTU is a
two-operand instruction that specifies two source registers holding the multiplicand and the
multiplier. The 64-bit doubleword product is placed into the HI and LO registers. In the TX19A,
however, the MULTU can take a third operand. In the TX19A, MULTU can optionally copy the
low-order word of the product to a general-purpose register. This eliminates the need to use the
MFLO (Move From LO) instruction to move the contents of the LO register to a general register.
The MFHI (Move From HI) instruction moves the contents of the HI register, i.e., the high-order
word of the product, to a general register.

3.3.6 Rotate Instructions

In the TX19A, there are no rotate instructions at the machine level although it has the shift
instructions instead. In shift left, bits that exit the left end (the right end in the case of shift right) are
discarded and zeros are supplied to the vacated bits on the right (on the left in the case of shift right).
In rotate left, as bits are shifted from right to left (from left to right in the case of rotate right), they exit
from the left end, MSB, and enter the right end, LSB, (the left end in the case of rotate right).
In the TX19A, a rotate operation must be implemented using shift and logical-OR instructions.
Figure 3-5illustrates how to do this.

SLL r9,r8,6

SRL r8,r8,(32-6)

OR r8,r8,r9

r8

r9

r8

00 0000

0000 0000 0000 0000 0000 0000 00

Rotate left six bits

r8

Figure 3-5 Rotate Left by 6 Bits

In Figure 3-5, the SLL (Shift Left Logical) instruction shifts the contents of r8 left by six bits and puts
the result in r9. The low-order bits are filled with zeros. Next, the SRL (Shift Right Logical)
instruction is used to shift r8 right by 26 (32-6) bits. Finally, the OR instruction logical-ORs the
contents of r8 and r9 and puts the result back in r8. The outcome is equivalent to rotating r8 by six
bits.

 3-10

 Chapter 3 32-Bit ISA Summary and Programming
Tips

3.4 Jump, Branch and Branch-Likely Instructions
It is often necessary to transfer program control to a different location in the sequence of
instructions. There are many instructions to achieve this. The TX19A provides jump, branch and
branch-likely instructions. Section 3.4.1 overviews these instructions. Section 3.4.2 describes the
addressing modes supported by the jump, branch and branch-likely instructions. Section 3.4.3
explains how to switch from 32-bit ISA mode to 16-bit ISA mode, or vice versa. In Section 3.4.4,
the differences between regular branch instructions and branch-likely instructions are explained.
Section 3.4.5 provides programming tips for branching on arithmetic comparisons. Section 3.4.6
describes a technique for jumping to 32-bit addresses. Section 3.4.7 describes subroutine calls and
returns.

3.4.1 Overview of Jump, Branch and Branch-Likely Instructions
In the TX19A, jump instructions are used to unconditionally transfer program control to the target
location whereas branch and branch-likely instructions are what many microprocessors call
conditional jumps and are used to transfer control to a new location only when a certain condition is
met. Table 3-4 and Table 3-5 show the opcodes of the jump, branch and branch-likely instructions in
the 32-bit ISA.

Table 3-4 Jump Instructions (32-Bit ISA)

Opcode Name Addressing Format

J Jump Paged absolute I-type

JAL Jump And Link Paged absolute I-type

JALX Jump And Link exchange Paged absolute I-type

JR Jump Register Register indirect R-type

JALR Jump And Link Register Register indirect R-type

3-11

Chapter 3 32-Bit ISA Summary and Programming Tips

Table 3-5 Branch and Branch-Likely Instructions (32-Bit ISA)

Opcode Name Condition Addressing Format

B Unconditional Branch always PC-relative I-type

BAL Branch And Link always PC-relative I-type

BEQ(L) Branch On Equal (Likely) rs = rt PC-relative I-type

BNE(L) Branch On Not Equal (Likely) rs ≠ rt PC-relative I-type

BGTZ(L) Branch On Greater Than Zero (Likely) rs > 0 PC-relative I-type

BGEZ(L) Branch On Greater Than or Equal To Zero (Likely) rs ≥ 0 PC-relative I-type

BLTZ(L) Branch On Less Than Zero (Likely) rs < 0 PC-relative I-type

BLEZ(L) Branch On Less Than or Equal To Zero (Likely) rs ≤ 0 PC-relative I-type

BLTZAL(L) Branch On Less Than Zero And Link (Likely) rs < 0 PC-relative I-type

BGEZAL(L) Branch On Greater Than or Equal To Zero And Link (Likely) rs ≥ 0 PC-relative I-type

Jump-and-link instructions and branch-and-link instructions save a return address in register r31.
They are typically used for subroutine calls.
With the jump and regular branch instructions, the instruction immediately following the jump or
branch is always executed while the target instruction is being fetched from memory. This is true to
all regular branch instructions regardless of whether the branch is to be taken or not. On the other
hand, branch-likely instructions execute the instruction in the delay slot only when the branch is
taken; if the branch is not taken, the instruction in the delay slot is nullified. For the jump and
branch delay slots, see Chapter 5, CPU Pipeline.

3.4.2 Jump and Branch Address Calculation
As shown in Table 3-4 and Table 3-5, jump, branch and branch-likely instructions compute the
effective address of the next instruction using the following addressing modes.

 Paged absolute
 Register indirect
 PC-relative with offset

Paged Absolute Addressing

The J, JAL and JALX instructions unconditionally transfer program control to a target address using
paged absolute addressing. They generate the next instruction address by shifting the 26-bit
immediate operand by two bits and merging the resultant value with the four most-significant bits of
the program counter (PC). Figure 3-6 shows how the jump target address is generated by paged
absolute addressing. The target address for a jump is computed from the
address of the instruction immediately following the jump instruction, i.e., the address of the jump
delay slot. The four most-significant bits of the PC indicate a specific page in a 16-page address
space.

 3-12

 Chapter 3 32-Bit ISA Summary and Programming
Tips

Jump Target Address

Jump Instruction
Jump Delay Slot

26-Bit Immediate

4 Bits

 0026-Bit Immediate

Figure 3-6 Paged Absolute Addressing (32-Bit ISA Mode)

 Register Indirect Addressing

The JR and JALR instructions unconditionally transfer program control to a target address using a
32-bit absolute address held in a general-purpose register. The effective address is generated by
clearing the least-significant bit of the specified target register to zero. Since instructions must be
word-aligned, the JR and JALR instructions must specify a target register of which two
least-significant
bits are zero.

Jump Target AddressTarget Register 0

Figure 3-7 Register Indirect Addressing (32-Bit ISA Mode)

 PC-Relative with Offset Addressing

All the branch and branch-likely instructions transfer program control to a target address using a
PC-relative address. They generate the next instruction address by sign-extending and appending
b’00 to the 16-bit immediate displacement (offset) operand, and adding the resultant value to the
contents of the program counter (PC). Figure 3-8 shows how the branch target address is generated.
The target address for a branch is computed from the address of the instruction immediately
following the branch instruction, i.e., the address of the branch delay slot.

00

16-Bit Offset

16-Bit Offset

Branch Target Address

Branch Instruction

Branch Delay Slot
Program Counter (PC)

+ Sign Extension

Figure 3-8 PC-Relative with Offset Addressing (32-Bit ISA Mode)

3-13

Chapter 3 32-Bit ISA Summary and Programming Tips

3.4.3 Run-Time Switching of the ISA Modes

The TX19A has two ISA modes, 16-bit ISA and 32-bit ISA. The TX19A provides for efficient
runtime switching between 16-bit and 32-bit ISA modes through the JALX, JR and JALR
instructions.
The least-significant bit of the program counter (PC) is the ISA mode bit: 0 for the 32-bit ISA and 1
for the 16-bit ISA. The JALX instruction unconditionally toggles the ISA mode bit (the
least-significant bit) of the PC to switch to the other ISA. The JR and JALR instructions set the ISA
mode bit from the least-significant bit of the register containing the jump address; a jump address is
generated by masking off the ISA mode bit to zero.

In 32-bit ISA mode, instructions must be word-aligned. Thus, when switching from 16-bit ISA
mode to 32-bit ISA mode, the JR and JALR instructions must specify a target register of which two
least-significant bits are zero. If these bits are one-zero (10), an Address Error exception will occur
when the jump target instruction is fetched.
In a jump delay slot of the JRLX, JR or JALR instruction, the instruction in the previous ISA mode
is executed.

Link instructions save the return address in either register r31 (ra) or another destination register (rd)
specified. Its least-significant bit keeps the ISA mode in which processing resumes after a subroutine
has been executed. Then the same ISA mode as the one prior to the subroutine is set after returning
from subroutine.

 3-14

 Chapter 3 32-Bit ISA Summary and Programming
Tips

3.4.4 Branch-Likely Instructions

All the jump and branch instructions occur with a delay of one instruction (two pipeline cycles)
before the program flow can change because the processor must calculate the effective destination
of the jump or branch and fetch that instruction. This delay is called jump or branch delay. The
TX19A architecture gives responsibility of dealing with delay slots to software. The compiler or the
assembler makes an attempt to reorder instructions to execute the instruction immediately following

the jump or branch while the target instruction is being fetched from
memory.

There is no problem in the case of jump instructions since jumps "always" transfer program control
to the target instruction; the instruction immediately following the jump can always fill the delay
slot. However, with branch instructions, the processor never knows whether the branch will be taken
or not; so the instruction in the delay slot must be the one that logically precedes the branch
instruction. If the delay slot can not be filled with any useful instruction, a NOP (No Operation)
instruction must be inserted to keep the instruction pipeline filled. (NOP is a pseudoinstruction
accepted by the assembler; the assembler actually turns it into a shift instruction to r0 register with a
shift amount of zero as described in Chapter 1.)

The code in Figure 3-9 implements the task of setting register r2 to 1 or 0, depending on whether the
value of r8 is equal to 0 or not. Because the ADDI instruction can not logically precede the BEQ
instruction, a NOP instruction is required immediately following BEQ.

Branch Not Taken Branch Taken

1

2

3
4

1

2

3

4

5

6

BEQ r8,r0,L0

NOP

ADDI r2,r0,1

J L1

NOP

L0:

ADD r2,r0,0

L1:

Figure 3-9 Regular Branch Instruction

Contrast this to the code in Figure 3-10 in which the branch-likely version of Branch On Equal
(BEQL) is used instead of BEQ. If a branch-likely is taken, the instruction in the delay slot is
executed. If a branch-likely is not taken, the instruction in the delay slot is nullified, or killed. This
eliminates the need to insert a NOP instruction in the delay slot, and thus helps to reduce code size
and speed up branch processing.

3-15

Chapter 3 32-Bit ISA Summary and Programming Tips

1

2

3

1

2

3

BEQL r8,r0,L0

ADDI r2,r0,0

ADDI r2,r0,1

L0:

Branch Not Taken Branch Taken

Figure 3-10 Branch-Likely Instruction

3.4.5 Branching on Arithmetic Comparisons

The Branch On Equal (BEQ) and Branch On Not Equal (BNE) instructions, and their branch-likely
versions (BEQL/BNEL) are the branch instructions that execute a branch based on the
magnitude of two values in registers. For example,

BEQ r2,r3,Equal

compares the contents of registers r2 and r3 and branches to Equal if they are equal. However, there
is no instruction to branch based on whether r2 is greater than r3. To perform such an arithmetic
comparison on a pair of registers or between a register and an immediate value, you must use a
sequence of two instructions. Three examples are given below: set-on-less-than instructions
comparing two registers or a register and an immediate and a comparison between a register and an
immediate. (Some assemblers provide macro instructions for branching on arithmetic comparisons.
The assembler expands macro instructions into a sequence of machine instructions.)

 Example 1: Branch if r6 ε r7
The following sequence of instructions checks if the contents of r6 is equal to or greater than the
contents of r7. If the contents of r6 is less than that of r7, the SLT (Set On Less Than) instruction sets
r24 to 1.
Otherwise, r24 is set to 0. The BEQ instruction branches for magnitude relation by detecting r24
value with BEC instruction (Remember r0 is
hardwired to a constant value of zero).

SLT r24,r6,r7

BEQ r24,r0,Label

 Example 2: Branch if r7 ε 0x1234
The following sequence of instructions checks if the contents of r7 is equal to or greater than
0x1234 or not. In this example, the SLTI (Set On Less Than Immediate) instruction is used to
compare the contents of a register against an immediate value.

SLTI r24,r7,0x1234

BEQ r24,r0,Label

 3-16

 Chapter 3 32-Bit ISA Summary and Programming
Tips

 Example 3: Branch if r7 ⎯ 0x1234
The following sequence of instructions checks the equality of the contents of a register and an
immediate value. In this example, the ORI (OR Immediate) instruction temporarily loads r10
with 0x1234. Then the BEQ instruction compares the contents of r10 and the contents of
r7.

ORI r10,r0,0x1234

BEQ r10,r7,Label

3.4.6 Jumping to 32-Bit Addresses

As explained in Section 3.4.2, in paged absolute addressing, the J, JAL and JALX instructions can
only take a 26-bit immediate. Since it is shifted left by two bits, the address of the target must be
within a 256M byte segment. To jump to an arbitrary 32-bit address, load the desired address into a
register by using a sequence of the LUI and ORI instructions and then use the JR (Jump Register)
instruction. The following code transfers program control to address 0x76543210.

LUI r8,0x7654

ORI r8,0x3210

JR r8

3.4.7 Subroutine Calls

In the 32-bit ISA, there are Jump-And-Link (JAL, JALX, JALR), Branch-And-Link (BLTZAL,
BGEZAL) and Branch-Likely-And-Link (BLTZALL, BGEZALL) instructions. These are typically
used as subroutine calls, where the subroutine return address is stored into register r31 (ra). The
JALR (Jump-And-Link Register) instruction can use any general-purpose register (rd) as the link

register.

All the above instructions place the address of the instruction following the delay slot into r31 (ra)
or rd. Jump-And-Link instructions set the ISA mode in the least-significant bit of r31 or rd.

To return from a subroutine, use the JR instruction. The ISA mode bit (i.e., the least-significant bit
of the PC) is restored from the least-significant bit of the link register.

When subroutines are nested, the calling subroutine must save the return address in the link register
onto the stack before making the call so that it can be overwritten by the callee.

3-17

Chapter 3 32-Bit ISA Summary and Programming Tips

(3)

 (2)

Running Program

JR r31

Subroutine

r31

PC(1)

(4)

(6)

(5) Return from Subroutine

Subroutine Call

Delay Slot

Return Point

Entry Address

Return Address

Figure 3-11 Subroutine Calls and Returns

Jump, branch and branch-likely instructions with link except JAL and JALX have a source register
(rs) field. For example, in the instruction

BGEZAL r8,PSUB

r8 is the source register; BGEZAL checks if the value in r8 is greater than or equal to zero.

An exception or interrupt could prevent the completion of a legal instruction in the jump or branch
delay slot. If that happens, the address of the jump, branch or branch-likely instruction that precedes
it is set to the Exception Program Counter (EPC) register. After the exception or interrupt handler
routine has been executed, processing restarts with the jump, branch or branch-likely instruction. To
permit this, they must be restartable. Therefore, r31 (ra) must not be used as a source register. See
Chapter 9 for the exception handling mechanism.

3.5 Coprocessor Instructions
The system control coprocessor (CP0) is implemented as an integral part of the TX19A. No other
coprocessor such as CP1 and CP2 can be connected to the TX19A.

Attempts to execute coprocessor instructions (except CP0 instructions) defined in the MIPS32 cause
either the Reserved Instruction or Coprocessor Unusable exception. If the corresponding CU bit in
the Status register is cleared, a Coprocessor Unusable exception is taken. If the CU bit is set, a
Reserved Instruction exception is taken.

The Load Word To Coprocessor (LWCz) and Store Word From Coprocessor (SWCz) instructions
available with the 32 bit ISA are not supported by the TX19A. Attempts to execute these
load/store instructions cause a Reserved Instruction exception.

 3-18

 Chapter 3 32-Bit ISA Summary and Programming
Tips

System control coprocessor (CP0) instructions perform operations on the CP0 registers to
manipulate the system configuration, memory management and exception handling. Therefore, CP0
is given somewhat protected status. The CU0 bit in the Status register controls the usability of CP0
instructions in User mode. Attempts by a User-mode program to execute a CP0 instruction when the
CU0 bit is cleared causes a Coprocessor Unusable exception. In Kernel and Debug modes, all CP0
instructions can be executed, regardless of the setting of the CU0 bit. Table 3-7 shows the CP0
instructions.

Table 3-7 System Control Coprocessor (CP0) Instructions

Name Opcode

Move To/From CP0 MTC0・MFC0

Exception Return ERET

Debug Exception Return DERET

Enter Standby Mode WAIT

The TX19A performs direct segment mapping of virtual to physical addresses. It does not provide
support for a table lookaside buffer (TLB).

3.6 Special Instructions
Special instructions allow software to initiate exceptions, i.e., to test for a particular condition in a
running program. All special instructions are R-type. Special instructions include SYSCALL
(System Call), BREAK (Breakpoint), SDBBP (Software Debug Breakpoint) and a set of trap
instructions. Special instructions transfer program control to an appropriate exception handler. For
details on exception processing, see Chapter 9.

3-19

Chapter 3 32-Bit ISA Summary and Programming Tips

Instruction Summary

This section provides an overview of the instructions in the 32-bit ISA.

 Notational Conventions

In this section, all variable fields in an instruction format are shown in italicized lowercase letters,
like rt, rs, rd, immediate and sa (shift amount). For the sake of clarity, an alias is sometimes used to
refer to a field in the formats of specific instructions. For example, base and offset are used instead
of rs and immediate in the formats of load and store instructions. HI and LO are the special registers
that hold the results of integer multiply and divide operations.

 Extensions

There are several instructions in the TX19A that are not part of the TX19 or TX39 architecture. For
a complete list of differences in the instruction set between the TX19A, the TX19 and the TX39, see
Appendix D.

 3-20

 Chapter 3 32-Bit ISA Summary and Programming
Tips

Table 3-8 Load and Store Instructions (32-Bit ISA)

Instruction Format Operation

Load Byte LB rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The byte in memory addressed by the EA is
sign-extended and loaded into rt.

Load Byte Unsigned LBU rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The byte in memory addressed by the EA is zero
extended and loaded into rt.

Load Halfword LH rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The halfword in memory addressed by the EA is
sign-extended and loaded into rt.

Load Halfword
Unsigned

LHU rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The halfword in memory addressed by the EA is
zero-extended and loaded into rt.

Load Word LW rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The word in memory addressed by the EA is loaded
into rt.

Load Word Left LWL rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The left portion of rt is loaded with the appropriate
part of the high-order word in memory addressed by the EA.

Load Word Right LWR rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The right portion of rt is loaded with the appropriate
part of the low-order word in memory addressed by the EA.

Store Byte SB rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The least-significant byte in rt is stored in memory
addressed by the EA.

Store Halfword SH rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The low-order halfword in rt is stored in memory
addressed by the EA.

Store Word SW rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. rt is stored in memory addressed by the EA.

Store Word Left SWL rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The left portion of rt is stored into the appropriate part
of high-order word of memory addressed by the EA.

Store Word Right SWR rt, offset(base) The effective address is the sum base + offset. The 16-bit offset is
sign-extended. The right portion of rt is stored into the appropriate
part of low-order word of memory addressed by the EA.

Sync SYNC The instruction pipeline is interlocked until any load or store fetched
before the current instruction is completed.

3-21

Chapter 3 32-Bit ISA Summary and Programming Tips

Table 3-9 ALU Immediate Instructions (32-Bit ISA)

Instruction Format Operation

Add Immediate ADDI rt, rs, immediate The sum rs + immediate is placed into rt. The 16-bit immediate is
sign-extended. Exceptions on 2’s-complement overflow.

Add Immediate
Unsigned

ADDIU rt, rs, immediate The sum rs + immediate is placed into rt. The 16-bit immediate is
sign-extended. Does not cause exception on 2’s-complement
overflow.

Set On Less Than
Immediate

SLTI rt, rs, immediate rt = 1 if rs is less than immediate; otherwise rt = 0. The 16-bit
immediate is sign-extended. Two values are compared as signed
integers.

Set On Less Than
Immediate Unsigned

SLTIU rt, rs, immediate rt = 1 if rs is less than immediate; otherwise rt = 0. The 16-bit
immediate is sign-extended. Two values are compared as unsigned
integers.

AND Immediate ANDI rt, rs, immediate The contents of rs is ANDed with immediate and the result is placed
into rt. The 16-bit immediate is zero-extended.

OR Immediate ORI rt, rs, immediate The contents of rs is ORed with immediate and the result is placed
into rt. The 16-bit immediate is zero-extended.

Exclusive-OR
Immediate

XORI rt, rs, immediate The contents of rs is exclusive-ORed with immediate and the result is
placed into rt. The 16-bit immediate is zero-extended.

Load Upper
Immediate

LUI rt, immediate The 16-bit immediate is shifted left by 16 bits and concatenated to 16
bits of zeros. The result is placed into rt.

Table 3-10 Two- and Three-Operand Register-Type Instructions (32-Bit ISA)

Instruction Format Operation

Add ADD rd, rs, rt The sum rs + rt is placed into rd. Exceptions on 2’s-complement
overflow.

Add Unsigned ADDU rd, rs, rt The sum rs + rt is placed into rd. Does not cause exception on
2’s-complement
overflow.

Subtract SUB rd, rs, rt The remainder rs - rt is placed into rd. Exceptions on 2’s-complement
overflow.

Subtract Unsigned SUBU rd, rs, rt The remainder rs - rt is placed into rd. Does not cause exception on
2’scomplement
overflow.

Set On Less Than SLT rd, rs, rt rd = 1 if rs is less than rt; otherwise rd = 0. Two values are compared
as signed integers.

Set On Less Than
Unsigned

SLTU rd, rs, rt rd = 1 if rs is less than rt; otherwise rd = 0. Two values are compared
as unsigned integers.

AND AND rd, rs, rt The contents of rs is ANDed with the contents of rt and the result is
placed into rd.

OR OR rd, rs, rt The contents of rs is ORed with the contents of rt and the result is
placed into rd.

Exclusive-R XOR rd, rs, rt The contents of rs is exclusive-ORed with the contents of rt and the
result is placed into rd.

NOR NOR rd, rs, rt The contents of rs is NORed with the contents of rt and the result is
placed into rd.

* Count Leading
Ones in Word

CLO rd, rs rs scanned from bit 31 to bit 0. The number of leading ones is
counted and the result is placed into rd.

* Count Leading
Zeros in Word

CLZ rd, rs rs scanned from bit 31 to bit 0. The number of leading zeros is
counted and the result is placed into rd.

 3-22

 Chapter 3 32-Bit ISA Summary and Programming
Tips
* Ｍover Conditional

on Not Zero
ＭOVN rd, rs, rt If rt ≠ 0, the contents of rs is placed into rd.

* Move Conditional
on Zero

ＭOVZ rd, rs, rt If rt = 0, the contents of rs is placed into rd.

* Enhancements from the TX19 to the TX19A

3-23

Chapter 3 32-Bit ISA Summary and Programming Tips

Table 3-11 Shift Instructions (32-Bit ISA)

Instruction Format Operation

Shift Left Logical SLL rd, rt, sa The contents of rt is shifted left by sa bits. Zeros are supplied to the
vacated positions on the right. The result is placed into rd.

Shift Left Logical
Variable

SLLV rd, rt, rs The contents of rt is shifted left by the number of bits specified by the
five least-significant bits of rs. Zeros are supplied to the vacated
positions on the right. The result is placed into rd.

Shift Right Logical SRL rd, rt, sa The contents of rt is shifted right by sa bits. Zeros are supplied to the
vacated positions on the left. The result is placed into rd.

Shift Right Logical
Variable

SRLV rd, rt, rs The contents of rt is shifted right by the number of bits specified by the
five least-significant bits of rs. Zeros are supplied to the vacated
positions on the left. The result is placed into rd.

Shift Right Arithmetic SRA rd, rt, sa The contents of rt is shifted right by sa bits. The sign bit is copied to
the vacated positions on the left. The result is placed into rd.

Shift Right Arithmetic
Variable

SRAV rd, rt, rs The contents of rt is shifted right by the number of bits specified by the
five least-significant bits of rs. The sign bit is copied to the vacated
positions on the left. The result is placed into rd.

Table 3-12 Multiply and Divide Instructions (32-Bit ISA)

Instruction Format Operation

* Multiply MUL rd, rs, rt The multiplicand is the signed value of rs. The multiplier is the signed
value of rt. The low-order 32 bits of the product is placed into rd. The
values of registers HI and LO become undefined.

Multiply MULT (rd,) rs, rt The multiplicand is the signed value of rs. The multiplier is the signed
value of rt. The 64-bit product rs * rt is placed into registers HI and
LO. The low-order 32 bits of the product can be optionally copied into
rd.

Multiply Unsigned MULTU (rd,) rs, rt The multiplicand is the unsigned value of rs. The multiplier is the
unsigned value of rt. The 64-bit product rs * rt is placed into registers
HI and LO. The low-order 32 bits of the product can be optionally
copied into rd.

Divide DIV rs, rt The dividend is the signed value of rs. The divisor is the signed value
of rt. The quotient is placed into register LO and the remainder is
placed into register HI.

Divide Unsigned DIVU rs, rt The dividend is the unsigned value of rs. The divisor is the unsigned
value of rt. The quotient is placed into register LO and the remainder
is placed into register HI.

Move From HI MFHI rd The contents of register HI is copied to rd.
Move From LO MFLO rd The contents of register LO is copied to rd.
Move To HI MTHI rs The contents of rs is copied to register HI.
Move To LO MTLO rs The contents of rs is copied to register LO.

* Enhancement from the TX19 to the TX19A

 3-24

 Chapter 3 32-Bit ISA Summary and Programming
Tips

Table 3-13 Multiply-and-Add Instructions (32-Bit ISA)

Instruction Format Operation

Multiply and Add MADD (rd,) rs, rt The multiplicand is the signed value of rs. The multiplier is the signed
value of rt. The 64-bit product rs * rt is added to the contents of
registers HI and LO and the result is placed back into HI and LO. The
low-order 32 bits of the result can be optionally copied to rd.

Multiply and Add
Unsigned

MADDU (rd,) rs, rt The multiplicand is the unsigned value of rs. The multiplier is the
unsigned value of rt. The 64-bit product rs * rt is added to the
contents of registers HI and LO and the result is placed back into HI
and LO. The low-order 32 bits of the result can be optionally copied
to rd.

* Multiply and
Subtract

MSUB (rd,) rs, rt The multiplicand is the signed value of rs. The multiplier is the signed
value of rt. The 64-bit product rs * rt is subtracted from the contents
of registers HI and LO and the result is placed back into HI and LO.
The low-order 32 bits of the result can be optionally copied to rd.

* Multiply and
Subtract Unsigned

MSUBU (rd,) rs, rt The multiplicand is the unsigned value of rs. The multiplier is the
unsigned value of rt. The 64-bit product rs * rt is subtracted from the
contents of registers HI and LO and the result is placed back into HI
and LO. The low-order 32 bits of the result can be optionally copied
to rd.

* Enhancements from the TX19 to the TX19A

Table 3-14 Jump Instructions (32-Bit ISA)

Instruction Format Operation

Jump J target The program jumps to the address computed using paged absolute
addressing, i.e., by shifting the 26-bit target left by two bits and
combining it with the four most-significant bits of PC + 4.

Jump And Link JAL target The program jumps to the address computed using paged absolute
addressing, i.e., by shifting the 26-bit target left by two bits and
combining it with the four most-significant bits of PC + 4. The
address of the instruction following the delay slot is saved in r31.

Jump And Link
exchange

JALX target The program jumps to the address using paged absolute addressing,
i.e., by shifting the 26-bit target left by two bits and combining it with
the four most-significant bits of PC + 4. The address of the instruction
following the delay slot is saved in r31. The ISA mode bit in the PC
toggles.

Jump Register JR rs The program jumps to the address specified by rs, with the
least-significant bit cleared. The least-significant bit of rs is interpreted
as the ISA mode specifier.

Jump And Link
Register

JALR (rd,) rs The program jumps to the address specified by rs, with the
least-significant bit cleared. The least-significant bit of rs is interpreted
as the ISA mode specifier. The address of the instruction following the
delay slot is saved in rd. If rd is omitted, the default is r31.

3-25

Chapter 3 32-Bit ISA Summary and Programming Tips

Table 3-15 Branch and Branch-Likely Instructions (32-Bit ISA)

Instruction Format Operation

Branch On Equal
(Likely)

BEQ(L) rs, rt, offset If rs = rt, the program branches to the target address specified as a
16-bit offset relative to PC + 4 (i.e., the address of the branch delay
slot).

Branch On Not Equal
(Likely)

BNE(L) rs, rt, offset If rs ≠ rt, the program branches to the target address specified as a
16-bit offset relative to PC + 4 (i.e., the address of the branch delay
slot).

Branch On Greater
Than Zero (Likely)

BGTZ(L) rs, offset If rs > 0, the program branches to the target address specified as a
16-bit offset relative to PC + 4 (i.e., the address of the branch delay
slot).

Branch On Greater
Than or Equal to
Zero (Likely)

BGEZ(L) rs, offset If rs ≥ 0, the program branches to the target address specified as a
16-bit offset relative to PC + 4 (i.e., the address of the branch delay
slot).

Branch On Less
Than Zero (Likely)

BLTZ(L) rs, offset If rs < 0, the program branches to the target address specified as a
16-bit offset relative to PC + 4 (i.e., the address of the branch delay
slot).

Branch On Less
Than or Equal to
Zero (Likely)

BLEZ(L) rs, offset If rs ≤ 0, the program branches to the target address specified as a
16-bit offset relative to PC + 4 (i.e., the address of the branch delay
slot).

Branch On Less
Than Zero And Link
(Likely)

BLTZAL(L) rs, offset If rs < 0, the program branches to the target address specified as a
16-bit offset relative to PC + 4 (i.e., the address of the branch delay
slot). The address of the instruction following the delay slot is saved
in r31.

Branch On Greater
Than or Equal to
Zero And Link
(Likely)

BGEZAL(L) rs, offset If rs ≥ 0, the program branches to the target address specified as a
16-bit offset relative to PC + 4 (i.e., the address of the branch delay
slot). The address of the instruction following the delay slot is saved
in r31.

* Unconditional
Branch

B offset The program unconditionally branches to the target address
specified as a 16-bit offset relative to PC + 4 (i.e., the address of the
branch delay slot).

* Branch And Link BAL offset The program unconditionally branches to the target address
specified as a 16-bit offset relative to PC + 4 (i.e., the address of the
branch delay slot). The address of the instruction following the delay
slot is saved in r31.

* Enhancements from the TX19 to the TX19A
✝ The "L" suffix in the opcodes indicates a branch-likely instruction.

Table 3-16 System Control Coprocessor (CP0) Instructions (32-Bit ISA)

Instruction Format Operation

Move To CP0 MTC0 rt, rd The contents of general register rt is copied into CP0 register rd.
Move From CP0 MFC0 rt, rd The contents of CP0 register rt is copied into general register rd.
* Exception Return ERET If the ERL bit in the Status register is 1, the processor returns from

an exception and then program execution continues at the address
held in the Error EPC register. If the ERL bit is 0, the processor
returns from an exception and then program execution continues at
the address held in the EPC register.

Debug Exception
Return

DERET Program control is transferred back to a User program from a debug
exception handler. The return address in the DEPC register is
restored into the PC.

* Enter Standby
Mode

WAIT The processor enters either HALT or DOZE mode, depending on the
setting of the PR bit in the Status register.

* Enhancements from the TX19 to the TX19A

 3-26

 Chapter 3 32-Bit ISA Summary and Programming
Tips

Table 3-17 Special Instructions (32-Bit ISA)

Instruction Format Operation

System Call SYSCALL code A system call exception occurs, immediately and unconditionally
transferring control to the exception handler.

Breakpoint BREAK code A breakpoint exception occurs, immediately and unconditionally
transferring control to the exception handler.

Software Debug
Breakpoint Exception

SDBBP code A debug breakpoint exception occurs, immediately and
unconditionally transferring control to the exception handler.

Trap If Equal TEQ rs, rt If rs = rt, a Trap exception occurs.
* Trap If Equal

Immediate
TEQI rs, immediate If rs = immediate, a Trap exception occurs. The 16-bit immediate is

sign-extended. Two values are compared as signed integers.

* Trap If Greater
Than or Equal

TGE rs, rt If rs ≥ rt, a Trap exception occurs. Two values are compared as
signed integers.

* Trap If Greater
Than or Equal
Immediate

TGEI rs, immediate If rs ≥ immediate, a Trap exception occurs. The 16-bit immediate is
sign-extended. Two values are compared as signed integers.

* Trap If Greater
Than or Equal
Immediate
Unsigned

TGEIU rs, immediate If rs ε immediate, a Trap exception occurs. The 16-bit immediate is
sign-extended. Two values are compared as unsigned integers.

* Trap If Greater
Than or Equal
Unsigned

TGEU rs, rt If rs ≥ rt, a Trap exception occurs. Two values are compared as
unsigned integers.

* Trap If Less Than TLT rs, rt If rs < rt, a Trap exception occurs. Two values are compared as
signed integers.

* Trap If Less Than
Immediate

TLTI rs, immediate If rs < immediate, a Trap exception occurs. The 16-bit immediate is
sign-extended. Two values are compared as signed integers.

* Trap If Less Than
Immediate
Unsigned

TLTIU rs, immediate If rs < immediate, a Trap exception occurs. The 16-bit immediate is
sign-extended. Two values are compared as unsigned integers.

* Trap If Less Than
Unsigned

TLTU rs, rt If rs < rt, a Trap exception occurs. Two values are compared as
unsigned integers.

* Trap If Not Equal TNE rs, rt If rs ≠ rt, a Trap exception occurs.
* Trap If Not Equal

Immediate
TNEI rs, immediate If rs ≠ immediate, a Trap exception occurs. The 16-bit immediate is

sign-extended. Two values are compared as signed integers.

* Enhancements from the TX19 to the TX19A

3-27

 Chapter 4 16-Bit ISA Summary and Programming Tips

Chapter 4 16-Bit ISA Summary and Programming Tips
This chapter gives an overview of the instructions and addressing modes supported by the TX19A
in 16-bit ISA mode. This chapter also presents many programming tips using 16-bit ISA instructions.
Instructions are grouped into the following categories. Branch-likely instructions are not supported
by the 16-bit ISA.

 Load and store instructions
 Computational instructions
 Jump and branch instructions
 Bit manipulation instructions
 SAVE and RESTORE instructions
 System control coprocessor (CP0) instructions
 Special instructions

Doubleword instructions available in the MIPS16 ASE are not implemented in the TX19A.

To the 16-bit ISA, only eight of the 32 general-purpose registers are normally visible, r2 to
r7, r16 and r17. Since the processor includes the full 32 registers of the 32-bit ISA mode, the 16-bit
ISA includes MOVE instructions to copy values between the eight 16-bit-ISA registers and the
remaining 24 registers of the full 32-bit architecture. Additionally, specific instructions implicitly
reference r24 (t8), r28 (gp), r29 (sp), r30 (fp) and r31 (ra). r24 serves as a special condition code
register for handling compare results. r28 is the global pointer register. r29 maintains the program
stack pointer. r30 is the frame pointer register. r31 is the link register. Multiply and divide
instructions use the special registers HI and LO.

4.1 Instruction Formats
There are 21 instruction formats shown in Figure 4-1 for the 16-bit instructions. There are 20
instruction formats shown in Figure 4-2 for the 32-bit instructions.

To fit within the 16-bit limit, immediate fields in the 16-bit instructions are only 3 to 11 bits. Thus,
the 16-bit ISA provides a way to extend its shorter immediates into the full width of immediates in
the 32-bit ISA mode. The EXTEND instruction in the 16-bit ISA is not really an instruction and
does not generate a machine instruction on its own. It provides a prefix to be prepended to any 16-
bit instruction with an address or immediate field. Therefore, EXTENDing typical 16-bit
instructions to 32 bits gives several more instruction formats shown in Figure 4-2. For example, the
EXTENDed version of the I-type format is called EXT-I.
Additionally, the 16-bit ISA has several 32-bit instructions prepended with the EXTEND code. In
such instructions, the 11-bit immediate field in the EXTEND code is replaced with an opcode.

4-1

Chapter 4 16-Bit ISA Summary and Programming Tips

op 5-bit operation code

rx 3-bit source/destination register specifier

ry 3-bit source/destination register specifier
immediate, imm or
ximm3

3-, 4-, 5-, 8- or 11-bit immediate, or branch or address displacement
(offset)

rz 3-bit source/destination register specifier

F 1-, 2-, 3- or 5-bit function code

r32 32-bit ISA general-purpose register specifier

ra r31 register

s0 r16 register

s1 r17 register

pos3 Bit number of a specific bit of a memory byte

cpr32 Coprocessor register

hase fp, sp, gp or r0 register

xsregs Registers saved or restored

aregs Registers saved or restored

framesize Size of frame required
<< 16-Bit Instructions >>

I Type 15 11 10 0
 op imm

op: B

RI Type 15 11 10 8 7 0
 op rx imm

op: ADDIU8・ADDIUPC・ADDIUSP・BEQZ・BNEZ・CMPI・LI・LWPC・LWSP・SLTI・SLTIU SWSP

RR Type 15 11 10 8 7 5 4 0
 RR rx ry F

RRI Type 15 11 10 8 7 5 4 0
 op rx ry imm

op: LB・LBU・LH・LHU・LW・SB・SH・SW

RRR Type 1 15 11 10 8 7 5 4 2 1 0
 RRR rx ry rz F

RRR Type 2 15 11 10 8 7 6 2 1 0
 op ry F imm F

op: SLL・SRL・SRA

RRR Type 3 15 11 10 8 7 6 2 1 0
 op imm F cpr32 F

op: AC0IU

RRR Type 4 15 11 10 8 7 6 2 1 0
 op rx F 00000 F

op: MTHI・MTLO

 4-2

 Chapter 4 16-Bit ISA Summary and Programming Tips

RRI-A Type 15 11 10 8 7 5 3 0
 RRI-A rx ry F imm

SHIFT Type 1 15 11 10 8 7 5 4 2 1 0

 SHIFT rx ry SA F
SA: The 3-bit sa field can specify a shift amount in the range of 1 to 8. The 16-bit ISA defines the value

0 in the sa field to mean a shift of 8 bits.

SHIFT Type 2 15 11 10 8 7 3 2 0
 op rx/ry cpr32 F

op: MTC0・MFC0

I8 Type 15 11 10 8 7 0
 I8 F imm

F: BTEQZ・BTNEZ・SWRASP・ADJSP・MOV32R・MOVR32・ADJFP

I8_MOVR32 Type 15 11 10 8 7 5 4 0
 I8 F ry r32[4:0]

I8_MOV32R Type 15 11 10 8 7 3 2 0
 I8 F r32[2:0, A4:3] rz

r32: The r32 field uses special bit encoding. For example, encoding of register r7 (00111) is 11100 in the

r32 field.

I8_SVRS Type 15 11 10 7 6 5 4 3 0
 I8 F ra s0 s1 imm

FP-B、SP-B Type 15 11 10 8 7 6 0

 op rx F imm

FP-SP-H Type 15 11 10 8 7 6 1 0
 op rx F imm F

SPECIAL_SWFP、 15 11 10 8 7 5 4 0
SPECIAL_LWFP

Type
op F ry imm

op: SWFP・LWFP

SPECIAL_BIT Type 15 11 10 8 7 5 4 0
 op F pos3 imm

op: BTST・BEXT・BCLR・BSET・BINS

SPECIAL_BAL Type 15 11 10 8 7 0
 op F imm

op: BAL

RRR_INT Type 15 11 10 9 8 7 6 2 1 0
 op 00 F 0000 F

op: EI・DI

Figure 4-1 16-Bit Instruction Formats

4-3

Chapter 4 16-Bit ISA Summary and Programming Tips

<< 32-Bit Instructions >>

JAL・JALX Type
31 27 26 25 21 20 16 15 0

JAL X TAR[20:16] TAR[25:21] TAR[15:0]
X=0: JAL instruction, X=1: JALX instruction

EXT-I Type

31 27 26 21 20 16 15 11 10 9 8 7 6 5 4 0
EXTEND imm[10:5] imm[15:11] op 0 0 0 0 0 0 imm[4:0]

EXT-RI Type

31 27 26 21 20 16 15 11 10 8 7 6 5 4 0
EXTEND imm[10:5] imm[15:11] op rx 0 0 0 imm[4:0]

EXT-RRI Type

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND imm[10:5] imm[15:11] op rx ry imm[4:0]

EXT-RRI-A Type

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0
EXTEND imm[10:4] imm[14:11] RRI-A rx ry F imm[3:0]

EXT-SHIFT Type

31 27 26 22 21 20 19 18 17 16 15 11 10 8 7 5 4 3 2 1 0
EXTEND SA[4:0] 0 0 0 0 0 0 SHIFT rx ry 0 0 0 F

EXT-I8 Type

31 27 26 21 20 16 15 11 10 8 7 6 5 4 0
EXTEND imm[10:5] imm[15:11] I8 F 0 0 0 imm[4:0]

EXT-FP-B、EXT-SP-B Type

31 27 26 21 20 16 15 11 10 8 7 6 5 4 0
EXTEND imm[10:5] imm[15:11] op rx F 00 imm[4:0]

EXT-FP-SP-H Type

31 27 26 21 20 16 15 11 10 8 7 6 5 4 1 0
EXTEND imm[10:5] imm[15:11] op rx F 00 imm[4:1] F

EXT-SPECIAL-SWFP, EXT-SPECIAL-LWFP Type

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND imm[10:5] imm[15:11] op F ry imm[4:0]

EXT-SPECIAL-BIT Type

31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0
EXTEND imm[10:5] base imm[13:11] op F pos3 imm[4:0]

EXT-SPECIAL- BAL Type

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND imm[10:5] imm[15:11] op F 000 imm[4:0]

EXT-ADDIU8 Type

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND imm[10:5] imm[15:11] op ry F imm[4:0]

op: ANDI・ORI・XORI・LUI

EXT-ADDMIU Type
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND imm[10:5] base imm[13:11] op ximm3 F imm[4:0]

 4-4

 Chapter 4 16-Bit ISA Summary and Programming Tips

EXT-I8-SVRS Type

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 0
EXTEND xsregs framesize aregs I8 SVRS F ra s0 s1 framesize

EXT-RR Type

31 27 26 25 24 16 15 11 10 5 4 0
EXTEND 0 1 000000000 11101 000000 op2

op2: ERET・DERET・WAIT

EXT-RR-SYSCALL Type
31 27 26 22 21 16 15 11 10 5 4 0

EXTEND imm[10:6] imm[16:11] 11101 000000 01100

EXT-RR-BSIF Type
31 27 26 25 16 15 11 10 8 7 5 4 0

EXTEND 1 0000000000 op ry rx 00111

EXT-RR-BFINS Type
31 27 26 25 21 20 16 15 11 10 8 7 5 4 0

EXTEND 0 bit2 bit1 op ry rx 00111

EXT-RR-MAX/MIN Type
31 27 26 25 24 23 19 18 16 15 11 10 8 7 5 4 0

EXTEND M 00 00000 ry op rz rx 00101
M=0: MAX Instruction, M=1: MIN Instruction

Figure 4-2 32-Bit Instruction Formats

4.2 Load and Store Instructions
In the 16-bit ISA, there are no load/store instructions for misaligned data. In the 16-bit ISA, the
biggest saving in the instruction length comes from restrictions on the size of immediate values
expressible. All 16-bit load and store instructions are restricted to 5 to 8 bits of unsigned values. To
overcome this restriction, the 16-bit ISA contains a mechanism to EXTEND an address or offset
field to 16 bits. For details on the EXTEND instruction, see Section 4.5, Special Instructions. To
further address the supply of constants, the 16-bit ISA has new addressing modes.

Section 4.2.1 describes the addressing modes supported by the 16-bit load and store instructions.
Section 4.2.2 gives an overview of the load and store instructions. Section 4.2.3 explains how to get
32-bit addresses using an addressing mode newly added to TX19A. Section 4.2.4 describes the
SYNC instruction.

4-5

Chapter 4 16-Bit ISA Summary and Programming Tips

4.2.1 Load and Store Address Calculation

In the 16-bit ISA, there are four addressing modes supported by load and store instructions:
 Register indirect with offset
 SP-relative with offset
 FP-relative with offset
 PC-relative with offset

Register Indirect with Offset Addressing
In 16-bit ISA mode, most load and store instructions use register indirect with offset addressing.
Instructions using this addressing mode is the RRI (register-register-immediate) type and include a
base register and an unsigned 5-bit offset field. These instructions generate the target address by
zero-extending the 5-bit offset and adding it to the contents of the base register. The base register
can be any of the general-purpose registers visible to the 16-bit ISA (r2 to r7, r16, r17). In the 16-bit
ISA, load and store offsets are shifted left until they are aligned to the data type being loaded or
stored. This is done to provide a greater offset range. In the case of word accesses, the offset is left
shifted by two bits. In the case of halfword accesses, the offset is left shifted by one bit.

5-Bit Offset

Shifted left by 1 or 2 bits

Zero Extension

Base Register

32-Bit Address

Memory

Effective Address

+0
00

Figure 4-3 Register Indirect with Offset Addressing (16-Bit ISA)

 SP-Relative with Offset Addressing

In the 32-bit ISA, there is no hardware-designated stack pointer. Although r29 is conventionally
used to maintain the program stack pointer, any general-purpose register (except r0) can be used
from the point of view of hardware. In the 16-bit ISA, however, one of the general-purpose
registers, r29, serves as a stack pointer and is called sp. The 16-bit ISA references r29 implicitly
through a special function code, thereby eliminating the base register field. This made it possible to
expand the offset field to eight bits. The instruction format is the RI (register-immediate) type. In
SP-relative addressing, the effective address is formed from a eight-bit offset (shifted left by two

 4-6

 Chapter 4 16-Bit ISA Summary and Programming Tips

bits) relative to the sp register. The LBU, LHU, LW, SB, SH and SW instructions can use this
addressing mode. These instructions can address a range of 1 Kbytes (210) of memory without the

need to EXTEND the instruction.

Memory

Effective Address

8-Bit Offset

Shifted Left by 1 or 2 bits
Zero Extension

Stack Pointer Register (sp)

32-Bit Address

+00

Figure 4-4 SP-Relative Addressing (16-Bit ISA))

4-7

Chapter 4 16-Bit ISA Summary and Programming Tips

 FP-Relative with Offset Addressing

In the 16-bit ISA, r30 serves as a frame pointer (fp) register. The 16-bit ISA references r30
implicitly through a special function code, thereby eliminating the base register field. This made it
possible to expand the offset field to five bits. The instruction format is the RI (register-immediate)
type. For example, for 32-bit word access, the effective address is formed from a five-bit offset
(shifted left by two bits) relative to the fp register with the zero extended value. The LBU, LHU, LW,
SB, SH and SW instructions can use this addressing mode. These instructions can address a range of
128 bytes (27) of memory without the need to EXTEND the instruction.

Memory

Effective Address

5-Bit Offset

Shifted Left by 1 or 2 bits
Zero Extension

Frame Pointer (fp)

32-Bit Address

+00

Figure 4-5 FP-Relative with Offset Addressing (16-Bit ISA, Word Access)

 PC-Relative with Offset Addressing

PC-relative with offset addressing is supported by the Load Word (LW) instruction. In PC-relative
with offset addressing, the effective address is formed by shifting the eight-bit offset left by two bits
with the zero extended value and adding the resultant value to the PC with the lower two bits cleared.
A 32-bit constant is then loaded into a register from the addressed memory location. 32-bit constants
can be embedded in the code segment to get the maximum benefit from this addressing mode.

Memory

Effective Address

8-Bit Offset

Shifted Left by 2 bits
Zero Extension

Program Counter (PC)

+00

Figure 4-6 PC-Relative with Offset Addressing (16-Bit ISA)

 4-8

 Chapter 4 16-Bit ISA Summary and Programming Tips

4.2.2 Overview of Load and Store Instructions

Table 4-7 and Table 4-8 give the load and store instructions to perform byte, halfword and word
accesses. The LB and LH instructions sign-extend the loaded byte and halfword respectively. The
LBU and LHU instructions, which have the “U” (unsigned) suffix, zero-extend the loaded byte and
halfword respectively and placed the result in the register.

Table 4-7 Load Instructions

Data Type Unsigned Load Signed Load Addressing

Byte LBU LB
Register-Indirect, SP-Relative,

FP-Relative

Halfword LHU LH
Register-Indirect, SP-Relative,

FP-Relative

Word LW —
Register-Indirect, SP-Relative,

FP-Relative, PC-Relative

Table 4-8 Store Instructions

Data Type Opcode Addressing

Byte SB
Register-Indirect, SP-Relative,

FP-Relative

Halfword SH
Register-Indirect, SP-Relative,

FP-Relative

Word SW
Register-Indirect, SP-Relative,

FP-Relative, PC-Relative

4.2.3 32-Bit Address Generation

In 16-bit ISA mode, the offset field is restricted to only 5 to 8 bits. However, EXTENDing an
instruction to 32 bits allows the same order of offset value magnitude as is available in the 32-bit
ISA (-32768 to 32767). If the offset is outside this range, you must put it in a general register prior
to the load or store instruction. Alternatively, for word loads, you can use PC-relative with offset
addressing. Three examples are given below.

 Example 1: Base address + 32-bit offset
In the example below, the ADDU (Add Unsigned) instruction is used to add the offset held in
register r5 to the base address in register r4. The result is placed back into r4. Then the LW
instruction uses r4 as the base register to address a memory location.

ADDU r4,r4,r5

LW r6,0(r4)

4-9

Chapter 4 16-Bit ISA Summary and Programming Tips

 Example 2: Base address + 32-bit offset
For offsets greater than 16 bits, the 32-bit ISA uses the LUI (Load Upper Immediate) instruction
to load the upper 16 bits of a register, followed by a concatenation with the lower 16 bits using
a logical OR instruction. Since the previous TX19 does not have the LUI instruction, a 32-bit
offset is embedded in code and loaded from memory using PC-relative addressing. On the other
hand, the TX19A now provides the LUI and ORI instructions, enabling the same coding as for the
32-bit ISA.

– TX19: Code efficient – TX19A
LW r5,16(pc) LUI r5,0x0008

ADDU r4,r4,r5 ORI r5,0x0234

LW r6,0(r4) ADDU r4,r4,r5
LW r6,0(r4)

 Example 3: Arbitrary 32-bit absolute address
In the example below, the first LW instruction loads a 32-bit absolute address from memory
using PC-relative addressing. Then the second LW instruction can address a desired memory
location, with an offset of zero.

LW r4,16(pc)

LW r6,0(r4)

The LUI and ORI instructions can also be used in combination to form a 32-bit absolute
address:

LUI r4,0x0008

ORI r4,0x0234

4.2.4 SYNC Instruction

The memory synchronization instruction, SYNC, guarantees the sequence of memory references by
interlocking the instruction pipeline until loads, stores and instruction fetches which performed prior
to the present instruction are completed before loads or stores after this instruction are allowed to
start.

4.3 Computational Instructions
This section describes the computational instructions available in the 16-bit ISA. Section 4.3.1
provides a category of computational instructions and an overview of the newly added instructions.
Section 4.3.2 discusses computations that involve the use of 32-bit constants. For 64-bit arithmetic
and rotate operations, see Chapter 3, 32-Bit ISA Summary and Programming Tips, since the same
instructions can be used to implement them in both the 32-bit and 16-bit ISA modes.

 4-10

 Chapter 4 16-Bit ISA Summary and Programming Tips

4.3.1 Overview of Computational Instructions

Computational instructions in the 16-bit ISA are categorized into four groups shown in Table 4-9.
They consist of arithmetic, compare, logical, shift, multiply, divide and multiply-and-add
instructions. Multiply-and-subtract instructions are not available in the 16-bit ISA. The 16-bit ISA
does not support MIPS16 instructions for 64-bit, doubleword arithmetic and shift operations.

Table 4-9 Computational Instructions

Category Instruction Opcode

ALU Immediate Add ADDIU

 Set On Less Than SLTI・SLTIU

 Compare CMPI

 Load Immediate LI・LUI

 Logical AND ANDI

 Logical OR ORI

 Logical XOR XORI

Add ADDU 2-and 3-Operand
Register Type Subtract SUBU

 Saturate SADD・SSUB

 Set On Less Than SLT・SLTU

 Compare CMP

 Negate NEG

 Logical AND AND

 Logical OR OR

 Logical XOR XOR

 NOT NOT

 MOVE MOVE

 Bit Search BS1F

 Bit Field BFINS

 MAX/MIN MAX・MIN

 Sign- and Zero-Extend SEB・SEH・ZEB・ZEH

Shift Logical Shift SLL・SLLV・SRL・SRLV

 Arithmetic Shift SRA・SRAV

Multiply and Divide Multiply and Multiply-and-Add MULT・MULTU・MADD・MADDU

 Divide DIV・DIVU・DIVE・DIVEU

 Move From/To HI/LO MFHI・MFLO・MTHI・MTLO

4-11

Chapter 4 16-Bit ISA Summary and Programming Tips

In ALU immediate instructions, the source operands are a general-purpose register and a 4- or 8-bit
immediate. The new instructions, ANDI, ORI, XORI and LUI, are 32 bits in length, prepended with
the EXTEND code. There are no 16-bit codes for these instructions; as such, they have a 16-bit
immediate that is zero-extended and treated as a 32-bit unsigned operand (except the LUI
instruction). Except for the ADDIU and LUI instructions, the 8-bit immediate in ALU immediate
instructions are zero-extended. However, when EXTENDed, the immediate in the ADDIU, SLTI
and SLTIU instructions are treated as a 16-bit signed integer (in the same manner as for the 32-bit
ISA), and the immediate in other instructions are treated as a 16-bit unsigned integer.

Register-type instructions manipulate the values held in two general-purpose registers and place the
result into a general-purpose register. The 16-bit ISA provides the CMP, NEG and NOT
instructions. CMP compares the values in two registers. NEG performs two’s complement of a
value in a register. The NOT instruction performs one’s complement of a value in a register.
Additionally, the 16-bit ISA has the MOVE instruction to copy values between the eight registers
plus the fp register and the remaining 24 registers of the full 32-bit architecture.
The 16-bit ISA has the Compare (CMP), Negate (NEG) and Not (NOT) instructions since these
operations can not be synthesized from other instructions using r0 as a source. Compare instructions
(CMP, CMPI) and set-on-less-than instructions (SLTI, SLTIU, SLT, SLTU) implicitly use register t8
(r24) as the destination.

The 16-bit ISA provides the same set of shift instructions as the 32-bit ISA. In the previous TX19,
the sa field is only 3-bits wide; thus the shift amount is restricted to 1 to 8 (000 is defined as a shift
of 8 bits). EXTEND enlarges the 3-bit sa field into 5 bits for a shift of 0 to 31 as in the 32-bit ISA.
Additionally, the TX19A has also new instructions with a 5-bit sa field for a shift of 1 to 31 bits (the
sa value of 00000 is undefined).

Multiply, divide and multiply-and-add instructions in the 16-bit ISA perform the same functionality
as those in the 32-bit ISA. The multiply and multiply-and-add instructions in the 16-bit ISA can
place the lower 32 bits of the result into a general-purpose register. The 16-bit ISA also provides the
MTHI, MTLO, MFHI and MFLO instructions to access the HI and LO registers.

The TX19A offers new divide instructions (DIVE and DIVEU). The signed divide instruction
(DIVE) generates an Integer Overflow exception when divide-by-zero or overflow conditions are
detected, whereas the unsigned divide instruction (DIVEU) generates an Integer Overflow exception
when a divide-by-zero condition is detected.

The TX19A provides the ZEB, ZEH, SEB and SHE instructions, new instructions that zero-extend
or sign-extend a byte or halfword into 32 bits.

 4-12

 Chapter 4 16-Bit ISA Summary and Programming Tips

Additionally, the TX19A has saturate instructions (SADD and SSUB). For example, the SADD
instruction adds the contents of general-purpose registers rx and ry; saturation clamps results to the
largest representable positive number (0x7FFF_FFFF) on overflow and to the smallest representable
negative number (0x8000_0000) on underflow. If overflow or underflow does not occur, the sum of
rx and ry is placed into ry.

The new instructions MIN and MAX perform an arithmetic comparison on a pair of registers (rx
and ry). The MIN instruction, for example, places the value of register rx into register rz if rx is less
than ry, and otherwise, the value of ry into rz.

The bit field instruction (BFINS) helps the C compiler improve code density. C programs often deal
with bit fields; the BFINS instruction copies a bit field from one register into another register with a
single instruction. Also, the bit search instruction (BS1F) is convenient for scanning through an
operand for a set bit, for example, for the purpose of key scanning in embedded control systems.

4.3.2 32-Bit Constants

With the previous TX19, even EXTEND can enlarge immediate fields in computational instructions
to only 16 bits.

Since the 16-bit ISA of the TX19A has the LUI and ORI instructions, you can deal with 32-bit
constants in the same manner as for the 32-bit ISA. Following is an example of adding a 32-bit
constant to the contents of a general-purpose register:

LUI r5,0x8000

ORI r5,0x1234

ADDU r6,r6,r5

For code density, 32-bit constants can be embedded in the code segment, typically between
subroutine bodies, in the previous TX19 way. Then the LW instruction can reference those 32-bit
constants using PC-relative addressing. Even with the overhead of the constant storage, this is more
compact than using a pair of the LUI and ORI instructions.

In the following example, the LW instruction loads a 32-bit constant into register r5 from memory.
Then, the ADDU instruction adds the contents of r4 and r5 together and puts the results in r6.

LW r5,offset(pc)

ADDU r6,r4,r5

4-13

Chapter 4 16-Bit ISA Summary and Programming Tips

Zero Value

Generally, the 16-bit ISA does not have direct access to r0. When a value of zero is necessary, use
the following LI (Load Immediate) instruction which zero-extends and loads the immediate value (0)
into rx.

LI rx,0

Alternatively, you can use the MOVE instruction to get a value of zero. Since the MOVE instruction
can move values between the eight registers visible to the 16-bit ISA and the remaining 24 registers
of the full 32-bit architecture, the following gives you a value of zero:

MOVE ry,r0

4.4 Jump and Branch Instructions
This section describes the jump and branch instructions available in the 16-bit ISA, focusing on the
differences from the 32-bit instructions. Section 4.4.1 gives an overview of jump and branch
instructions. Section 4.4.2 provides programming tips for branching on arithmetic comparisons.
Section 4.4.3 describes a technique to jump to 32-bit addresses.

4.4.1 Overview of Jump and Branch Instructions

The 16-bit ISA has no branch instruction that compares two registers and then branches, such as
BEQ, BNE, BGEZ, BGTZ, BLEZ and BLTZ. To compensate for the loss of these instructions, the
16-bit ISA includes compare instructions (CMP, CMPI) to test if two registers or a register and an
immediate are equal. Since these compare instructions and all set-on-less-than instructions set
register t8, the 16-bit ISA provides branch instructions to test t8 and branch based on the zero or
non-zero state of t8. The TX19A has a new branch-and-link instruction (BAL).
Even in 16-bit ISA mode, the JAL and JALX instructions are 32-bit wide to provide a large enough
address field to jump to far procedures. Table 4-10 and Table 4-11 show the opcodes of the jump and
branch instructions in the 16-bit ISA.

 4-14

 Chapter 4 16-Bit ISA Summary and Programming Tips

Table 4-10 Jump Instructions (16-Bit ISA)

Opcode Name Addressing

JAL Jump And Link Paged Absolute
JALX Jump And Link Exchange Paged Absolute
JR Jump Register Register Indirect
JRC Jump Register, Compact Register Indirect
JALR Jump And Link Register Register Indirect
JALRC Jump And Link Register, Compact Register Indirect

Table 4-11 Branch Instructions (16-Bit ISA)

Opcode Name Condition Addressing

BEQZ Branch On Equal to Zero rx = 0 PC-relative
BNEZ Branch On Not Equal Zero rx ≠ 0 PC-relative
BTEQZ Branch On T8 Equal To Zero t8 > 0 PC-relative
BTNEZ Branch On T8 Not Equal To Zero t8 ≠ 0 PC-relative
B Unconditional Branch ⎯ PC-relative
BAL Branch And Link ⎯ PC-relative

Jump-and-link and BAL instructions save a return address in register r31. They are typically used
for subroutine calls.

Branch instructions in the 16-bit ISA use the same addressing mode as those in the 32-bit ISA.
However, since instructions are 16-bits wide, the branch address is shifted by one bit, not by
two bits. The offset immediate is either 8-bits or 11-bits wide.

 Delayed Branch

In the 16-bit ISA, there is no delayed branch. Branches always take effect before the next
instruction. Therefore, there is no restriction on the instructions that follow a branch instruction.
Instructions following a branch are executed only when the branch is not taken.

As in the 32-bit ISA mode, jump instructions in the 16-bit ISA have a delay slot, except the JRC
and JALRC instructions, new compact versions of JR and JALR.

 Run-Time Switching of the ISA Modes

As shown in Table 4-1, the 16-bit ISA includes the JALX, JR, JALR, JRC and JALRC instructions.
These instructions can be used in 16-bit ISA mode to toggle the ISA mode bit in the PC and switch
to the other ISA mode. See Section 3.4.3, Run-Time Switching of the ISA Modes, for details on this.

 Subroutine Calls

The 16-bit ISA has jump-and-link instructions (JALX, JALR) and a branch-and-link instruction
(BAL). See Section 3.4.7, Subroutine Calls, for details on subroutine calls.

4-15

Chapter 4 16-Bit ISA Summary and Programming Tips

4.4.2 Branching on Arithmetic Comparisons

As mentioned in the previous section, the 16-bit ISA did away with instructions that compare two
registers and branch like "BEQ r10, r7, Equal". Also, set-on-less-than instructions (SLT, SLTU) in
the 16-bit ISA are two-register instructions instead of three. In the 16-bit ISA, the SLT and SLTU
instructions implicitly set register t8 based on the equality of the values in two registers. Because of
this, the 16-bit ISA has new instructions, BTEQZ and BTNEZ, to test the t8 register to see if it is
zero or not.

As explained in Section 3.4.5, Branching on Arithmetic Comparisons, in 32-bit ISA mode, ORI and
BEQ (or BNE) are used in pair to compare the contents of a register and an immediate:

ORI r10,r0,0x1234

BEQ r10,r7,Label

Since the TX19A now has the LUI and ORI instructions, the 16-bit ISA routine can use the same
sequence of instructions to branch on an arithmetic comparison. Also, the 16-bit ISA provides the
CMPI instruction that compares a register and an immediate and sets t8 based on their equality.

The following gives three examples of compare and branch in 16-bit ISA mode.

 Example 1: Branch if r6 ≥ r7
The following sequence of instructions checks if the contents of r6 is equal to or greater than the
contents of r7. If r6 is less than r7, the SLT (Set On Less Than) instruction sets t8 to one.
Otherwise, t8 is set to zero. The BTEQZ instruction branches to Label if t8 is zero.

SLT r6,r7

 BTEQZ Label

 Example 2: Branch if r7 ≥ 0x1234
The following sequence of instructions checks if the contents of r7 are equal to or greater than
0x1234. In this example, the SLTI (Set On Less Than Immediate) instruction implicitly sets t8
based on the magnitude of r7 and 0x1234. Then the BTEQZ instruction branches to Label if t8
is equal to zero.

SLTI r7,0x1234

BTEQZ Label

 Example 3: Branch if r7 = 0x1234
The following sequence of instructions checks the equality of the contents of a register and an
immediate value. In this example, the CMPI (Compare Immediate) instruction compares the
contents of r7 to 0x1234 and sets t8 to 0 if they are equal. (CMPI actually exclusive-ORs two
values.)

CMPI r7,0x1234

BTEQZ Label

 4-16

 Chapter 4 16-Bit ISA Summary and Programming Tips

4.4.3 Jumping to 32-Bit Addresses

Since the 16-bit ISA of the TX19A has the LUI and ORI instructions, you can deal with 32-bit
addresses in the same manner as for the 32-bit ISA. For code density, 32-bit constants can be
embedded in the code segment, typically between subroutine bodies, in the previous TX19 way;
then the LW instruction can reference those 32-bit constants using PC-relative addressing.

– For code density – For execution speed
LW r4,0(pc) LUI r4,0x0008

JR r4 ORI r4,0x0234

JR r4

There is also an instruction (ADDIU, rx, pc, immediate) to calculate a PC-relative address and place
it in a register.

4.5 Bit Manipulation Instructions
The TX19A provides bit manipulation instructions that test or modify a bit in memory. The previous
TX19 not only requires multiple instructions to manipulate a bit in memory, but also may need
additional instructions to disable interrupts during a bit manipulation operation. The TX19A
performs memory bit manipulation with one instruction, helping to decrease code size and increase
execution speed.

Table 4-12 Bit Manipulation Instructions

Opcode Name Destination

BTST Bit Test t8register
BEXT Bit Extract t8register
BCLR Bit Clear Memory
BSET Bit Set Memory
BINS Bit Insert Memory
ADDMIU Add Immediate to Memory Word Memory

4-17

Chapter 4 16-Bit ISA Summary and Programming Tips

4.6 SAVE and RESTORE Instructions
The TX19A provides the SAVE and RESTORE instructions for stack operations. The SAVE
instruction saves a set of CPU registers to memory stack with one instruction. The RESTORE
instruction restores a set of CPU registers from memory stack with one instruction. These
instructions help to decrease code size, as compared to the TX19 that require multiple instructions
for stack operations.

Table 4-13 SAVE and RESTORE Instructions

Opcode Name Registers Saved or Restored

SAVE Save Registers and
Set up Stack Frame r4-r7, r16, r17, r18-r23, r30, r31

RESTORE Restore Registers and Deal
locate Stack Frame r4-r7, r16, r17, r18-r23, r30, r31

4.7 System Control Coprocessor (CP0) Instructions
The previous TX19 does not have CP0 instructions; it requires that the ISA mode be switched to 32-
bit ISA (with the JALX instruction, etc.) in order to access the system control coprocessor (CP0).
The 16-bit ISA of the TX19A now provides CP0 instructions, with the restriction that the IER,
Config1, Config2 and Config3 registers are inaccessible in 16-bit ISA mode.
For example, in 32-bit ISA mode, the Interrupt Enable (IE) bit in the Status register can be modified
by writing a zero or non-zero value to the IER register. However, in 16-bit ISA mode, the CP0
instruction can not access the IER register, ; to compensate for this restriction, the 16-bit ISA
provides the EI and DI instructions that sets or clears the IE bit.

Table 4-14 System Control Coprocessor (CP0) Instructions

Opcode Name

MFC0 Move from Coprocessor 0
MTC0 Move to Coprocessor 0
AC0IU Add Coprocessor 0 Immediate Unsigned.

 4-18

 Chapter 4 16-Bit ISA Summary and Programming Tips

4.8 Special Instructions
Special instructions include the BREAK (Breakpoint) and SDBBP (Software Debug Breakpoint)
instructions as well as the new EI (Enable Interrupt), DI (Disable Interrupt), SYSCALL (System
Call), SYNC (Synchronize), ERET (Exception Return), DERET (Debug Exception Return) and
WAIT (Enter Standby Mode) instructions.

The 16-bit ISA provides an instruction called EXTEND. The purpose of the EXTEND instruction is
twofold. First, the EXTEND instruction consists of a 5-bit opcode and an 11-bit immediate value. In
this case, EXTEND does not generate a MIPS machine instruction on its own, but instead
contributing the 11-bit immediate to be concatenated with the immediate data carried in the
following 16-bit instruction. This way, EXTEND extends a 16-bit instruction to 32 bits, providing
large immediate values, as shown in Table 4-9. Second, the 16-bit ISA has several 32-bit
instructions prepended with the EXTEND code. In such instructions, the 11-bit immediate field is
replaced with an opcode. The new SYNC, ERET, DERET, WAIT, BS1F, MAX and MIN
instructions are EXTENDed instructions and have no 16-bit equivalents.

Table 4-15 EXTENDable Instructions

Immediate Bit Size
16-Bit Instruction

Before EXTENDed After EXTENDed
LB・LBU 5 (or 7) 16
LH・LHU 5 (or 6) 16
LW 5 (or 8) 16
SB 5 (or 7) 16
SH 5 (or 6) 16

Load/Store

SW 5 (or 8) 16
4 15 ADDIU
8 16

SLTI・SLTIU 8 16
CMPI 8 16
LI 8 16
LUI ⎯ 16
SLL 3 5
SRL 3 5
SRA 3 5
ANDI ⎯ 16
ORI ⎯ 16
XORI ⎯ 16
LUI ⎯ 16

C
om

putational

ADDMIU ⎯ 14

4-19

Chapter 4 16-Bit ISA Summary and Programming Tips

Immediate Bit Size
16-Bit Instruction

Before EXTENDed After EXTENDed
BEQZ 8 16
BNEZ 8 16
BTEQZ 8 16
BTNEZ 8 16
B 11 16

Branch

BAL 8 16
BTST 5 14
BEXT 5 14
BCLR 5 14
BSET 5 14

B
it M

anipulation BINS 5 14
SAVE 4 8 SAVE・

RESTORE RESTORE 4 8
Bit

Field BFINS ⎯ 5

EXTEND does not need to start on a word boundary. There is one restriction on the use of
EXTEND; it may not be placed in a jump delay slot since its outcome is undefined. You do not need
to explicitly place EXTEND before a 16-bit instruction with an immediate field. If
you specify an immediate longer than permitted in the 16-bit ISA, the assembler will automatically
break it down to smaller immediates using EXTEND. For example, the instruction:

ADDIU r3,0x1234

is an RI (register-immediate) type instruction, and the immediate field is only 8-bits long. Thus, this
instruction is EXTENDed to 32 bits using the EXT-RI instruction format. This is illustrated in
Figure 4-16.

RI Type

15 1110 8 7 0
ADDIU8
01001

rx
011 imm

EXT-RI Type

31 27 26 21 16 15 11 10 8 7 5 4 0
EXTEND

11110
imm[10:5]

01000
imm[15:11]

00010
ADDIU8
01001

rx
011

000

imm[4:0]
10010

Figure 4-16 RI Format vs. EXT-RI Format

"ADDIU, ry, rx, immediate" has a 4-bit immediate field. Since EXTEND can only supply 11 more
bits, it enlarges the immediate only to 15 bits.
Also, even when EXTENDed, the SLL, SRL and SRA instructions have a 5-bit immediate; the bit
manipulation instructions have a 14-bit immediate; and the BFINS instruction has a 5-bit immediate
(see Table 4-15).

 4-20

 Chapter 4 16-Bit ISA Summary and Programming Tips

4.9 Instruction Summary
This section provides an overview of the instructions in the 16-bit ISA.

 Notational Conventions

In this section, all variable fields in an instruction format are shown in italicized lowercase letters,
like rx, ry, rz, immediate and sa (shift amount). For the sake of clarity, an alias is sometimes used to
refer to a field in the formats of specific instructions. For example, base and offset are used instead
of rx and immediate in the formats of load and store instructions. Certain instructions can use r24
(t8), r28 (gp), r29 (sp), r30 (fp) and r31 (ra) for specific purposes. These registers are shown as t8,
gp, sp, fp and ra. HI and LO are the special registers that hold the results of integer multiply and
divide operations.

 Instructions Not Implemented in the TX19A

The TX19A does not provide support for the MIPS16eASE instructions that manipulate 64-bit
doubleword operands. See Appendix D for a list of complete comparisons among the TX19A, the
TX19 and the MIPS16.

Table 4-17 Load and Store Instructions (16-Bit ISA)

Instruction Format Operation

Load Byte LB ry, offset(base) The 5-bit offset is zero-extended and added to base to form an
effective address. The byte in memory addressed by the EA is
sign-extended and loaded into ry.

LBU ry, offset(base) The 5-bit offset is zero-extended and added to base to form an
effective address. The byte in memory addressed by the EA is
zero-extended and loaded into ry.

* LBU ry, offset(sp) The 7-bit offset is zero-extended and added to sp to form an effective
address. The byte in memory addressed by the EA is zero-extended
and loaded into ry.

Load Byte Unsigned

* LBU ry, offset(fp) The 7-bit offset is zero-extended and added to fp to form an effective
address. The byte in memory addressed by the EA is zero-extended
and loaded into ry.

Load Halfword LH ry, offset(base) The 5-bit offset is shifted left by one bit, zero-extended and added to
base to form an effective address. The halfword in memory
addressed by the EA is sign-extended and loaded into ry.

LHU ry, offset(base) The 5-bit offset is shifted left by one bit, zero-extended and added to
base to form an effective address. The halfword in memory
addressed by the EA is zero-extended and loaded into ry.

* LHU ry, offset(sp) The 6-bit offset is shifted left by one bit, zero-extended and added to
sp to form an effective address. The halfword in memory addressed
by the EA is zero-extended and loaded into ry.

Load Halfword
Unsigned

* LHU ry, offset(fp) The 6-bit offset is shifted left by one bit, zero-extended and added to
fp to form an effective address. The halfword in memory addressed
by the EA is zero-extended and loaded into ry.

* Enhancements from the TX19 to the TX19A

4-21

Chapter 4 16-Bit ISA Summary and Programming Tips

Instruction Format Operation

LW ry, offset(base) The 5-bit offset is shifted left by two bits, zero-extended and added to
base to form an effective address. The word in memory addressed by
the EA is loaded into ry.

LW rx, offset(pc) The 8-bit offset is shifted left by two bits, zero-extended and added to
the masked PC value (i.e., PC value with the lower two bits cleared)
to form an effective address. The word in memory addressed by the
EA is loaded into rx.

LW rx, offset(sp) The 8-bit offset is shifted left by two bits, zero-extended and added to
sp to form an effective address. The word in memory addressed by
the EA is loaded into rx.

Load Word

* LW ry, offset(fp) The 5-bit offset is shifted left by two bits, zero-extended and added to
fp to form an effective address. The word in memory addressed by
the EA is loaded into ry.

SB ry, offset(base) The 5-bit offset is zero-extended and added to base to form an
effective address. The least-significant byte in ry is stored in memory
addressed by the EA.

* SB ry, offset(sp) The 7-bit offset is zero-extended and added to sp to form an effective
address. The least-significant byte in ry is stored in memory
addressed by the EA.

Store Byte

* SB ry, offset(fp) The 7-bit offset is zero-extended and added to fp to form an effective
address. The least-significant byte in ry is stored in memory
addressed by the EA.

SH ry, offset(base) The 5-bit offset is shifted left by one bit, zero-extended and added to
base to form an effective address. The low-order halfword in ry is
stored in memory addressed by the EA.

* SH ry, offset(sp) The 6-bit offset is shifted left by one bit, zero-extended and added to
sp to form an effective address. The low-order halfword in ry is stored
in memory addressed by the EA.

Store Halfword

* SH ry, offset(fp) The 6-bit offset is shifted left by one bit, zero-extended and added to
fp to form an effective address. The low-order halfword in ry is stored
in memory addressed by the EA.

Store Word SW ry, offset(base) The 5-bit offset is shifted left by two bits, zero-extended and added to
base to form an effective address. ry is stored in memory addressed
by the EA.

 SW rx, offset(sp) The 8-bit offset is shifted left by two bits, zero-extended and added to
sp to form an effective address. rx is stored in memory addressed by
the EA.

 SW ra, offset(sp) The 8-bit offset is shifted left by two bits, zero-extended and added to
sp to form an effective address. ra is stored in memory addressed by
the EA.

 * SW ry, offset(fp) The 5-bit offset is shifted left by two bits, zero-extended and added to
fp to form an effective address. ry is stored in memory addressed by
the EA.

* Enhancements from the TX19 to the TX19A

 4-22

 Chapter 4 16-Bit ISA Summary and Programming Tips

Table 4-18 ALU Immediate Instructions (16-Bit ISA)

Instruction Format Operation

Add Immediate ADDIU ry, rx, immediate The 4-bit immediate is sign-extended and added to rx. The result is
placed into ry. Does not cause an exception on 2’s-complement
overflow.

 ADDIU rx, immediate The 8-bit immediate is sign-extended and added to rx. The result is
placed back into rx. Does not cause an exception on 2’s-complement
overflow.

 ADDIU sp, immediate The 8-bit immediate is shifted left by three bits and sign-extended.
The resultant value is added to sp and the sum is placed back into
sp. Does not cause an exception on 2’s-complement overflow.

 * ADDIU fp, immediate The 8-bit immediate is shifted left by two bits and sign-extended.
The resultant value is added to fp and the sum is placed back into
fp. Does not cause an exception on 2’s-complement overflow.

 ADDIU rx, pc, immediate The 8-bit immediate is shifted left by two bits and zero-extended.
The resultant value is added to the masked PC value (i.e., PC value
with the lower two bits cleared) and the sum is placed into rx. Does
not cause an exception on 2’s-complement overflow.

 ADDIU rx, sp, immediate The 8-bit immediate is shifted left by two bits and zero-extended.
The resultant value is added to sp and the sum is placed into rx.
Does not cause an exception on 2’s-complement overflow.

Set On Less Than
Immediate

SLTI rx, immediate t8 = 1 if rx is less than immediate; otherwise t8 = 0. The 8-bit
immediate is zero-extended. Two values are compared as signed
integers.

Set On Less Than
Immediate Unsigned

SLTIU rx, immediate t8 = 1 if rx is less than immediate; otherwise t8 = 0. The 8-bit
immediate is zero-extended. Two values are compared as unsigned
integers.

Compare Immediate CMPI rx, immediate t8 = 0 if rx = immediate; otherwise t8 ⎯ 0. The 8-bit immediate is
zero-extended.

Load Immediate LI rx, immediate The 8-bit immediate is zero-extended and loaded into rx.
* Logical AND

Immediate
ANDI ry, immediate The contents of ry is ANDed with immediate and the result is placed

back into ry. The 16-bit immediate is zero-extended.

* Logical OR
Immediate

ORI ry, immediate The contents of ry is ORed with immediate and the result is placed
back into ry. The 16-bit immediate is zero-extended.

* Logical
Exclusive_OR
Immediate

XORI ry, immediate The contents of ry is exclusive-ORed with immediate and the result
is placed back into ry. The 16-bit immediate is zero-extended.

* Load Upper
Immediate

LUI ry, immediate The 16-bit immediate is shifted left by 16 bits and concatenated to
16 bits of zeros. The result is placed into ry.

* Enhancements from the TX19 to the TX19A

4-23

Chapter 4 16-Bit ISA Summary and Programming Tips

Table 4-19 Register-Type Instructions (16-Bit ISA)

Instruction Format Operation

Add Unsigned ADDU rz, rx, ry The sum rx + ry is placed into rz. Does not cause an exception on
2’s-complement overflow.

Subtract Unsigned SUBU rz, rx, ry The remainder rx - ry is placed into rz. Does not cause an exception on
2’scomplement overflow.

Set On Less Than SLT rx, ry t8 = 1 if rx is less than ry; otherwise t8 = 0. Two values are compared
as signed integers.

Set On Less Than
Unsigned

SLTU rx, ry t8 = 1 if rx is less than ry; otherwise t8 = 0. Two values are compared
as unsigned integers.

Compare CMP rx, ry t8 = 0 if rx is equal to ry; otherwise t8 = 0.
Negate NEG rx, ry rx = 0 - ry (2’s-complement)
AND AND rx, ry The contents of rx is ANDed with the contents of ry and the result is

placed back into rx.
OR OR rx, ry The contents of rx is ORed with the contents of ry and the result is

placed back into rx.
Exclusive-OR XOR rx, ry The contents of rx is exclusive-ORed with the contents of ry and the

result is placed back into rx.
Not NOT rx, ry ry is inverted bitwise and the result is placed into rx. (1’scomplement)
Move MOVE ry, r32 The contents of r32 is copied into ry.
 MOVE r32, rz The contents of rz are copied into r32.
 * MOVE fp, r32 The contents of r32 is copied into fp.
* Bit Search One

Forward
BS1F ry, rx rx is searched for the first set bit, starting from bit 0 towards bit 31. If

a set bit is found in rx, its bit position (bit number plus 1) is placed
into ry. If no set bit is found in rx, the value written to ry is 0.

* Bit Field Insert BFINS ry, rx, bit2, bit1 A bit field indicated by [(bit2 – bit1):0] in rx is copied into a location
indicated by (bit2:bit1) in ry.

* Maximum Signed MAX rz, rx, ry The contents of rx is compared to the contents of ry as signed
values. If rx is greater than ry, the value of rx is written to rz.
Otherwise, the value of ry is written to rz.

* Minimum Signed MIN rz, rx, ry The contents of rx is compared to the contents of ry as signed
values. If rx is less than ry, the value of rx is written to rz. Otherwise,
the value of ry is written to rz.

* Sign-Extend Byte SEB rx The least-significant byte in rx is sign-extended. The result is placed
back into rx.

* Sign-Extend
Halfword

SEH rx The low-order halfword in rx is sign-extended. The result is placed
back into rx.

* Zero-Extend Byte ZEB rx The least-significant byte in rx is zero-extended. The result is placed
back into rx.

* Zero-Extend
Halfword

ZEH rx The low-order halfword in rx is zero-extended. The result is placed
back into rx.

* Saturated
Additional

SADD ry, rx, ry The contents of rx are added to the contents of ry. The sum saturates
to the largest representable positive number (0x7FFF_FFFF) on
overflow and to the smallest representable negative number
(0x8000_0000) on underflow. The result is placed into ry. If overflow
or underflow does not occur, the sum of rx and ry is placed into ry.

* Saturated
Subtraction

SSUB ry, rx, ry The contents of ry are subtracted from the contents of rx. On overflow,
the remainder saturates to the largest representable positive number
(0x7FFF_FFFF) if rx is zero or a positive number and to the smallest
representable negative number (0x8000_0000) if rx is a negative
number. The result is placed into ry. If overflow does not occur, the
remainder is placed into ry.

* Enhancements from the TX19 to the TX19A

 4-24

 Chapter 4 16-Bit ISA Summary and Programming Tips

Table 4-20 Shift Instructions (16-Bit ISA)

Instruction Format Operation

SLL rx, ry, sa The contents of ry are shifted left by sa bits. Zeros are supplied to the
vacated positions on the right. The 32-bit result is placed into rx.

Shift Left Logical

* SLL ry, sa The contents of ry are shifted left by sa bits. Zeros are supplied to the
vacated positions on the right. The 32-bit result is placed back into
ry.

Shift Left Logical
Variable

SLLV ry, rx The contents of ry is shifted left the number of bits specified by the
five least-significant bits of rx. Zeros are supplied to the vacated
positions on the right.

SRL rx, ry, sa The contents of ry are shifted right by sa bits. Zeros are supplied to the
vacated positions on the left. The 32-bit result is placed into rx.

Shift Right Logical

* SRL ry, sa The contents of ry are shifted right by sa bits. Zeros are supplied to the
vacated positions on the left. The 32-bit result is placed back into ry.

Shift Right Logical
Variable

SRLV ry, rx The contents of ry is shifted right the number of bits specified by the
five least-significant bits of rx. The 32-bit result is placed back into ry.

SRA rx, ry, sa The contents of ry are shifted right by sa bits. The sign bit is copied to
the vacated positions on the left. The 32-bit result is placed into rx.

Shift Right Arithmetic

* SRA ry, sa The contents of ry are shifted right by sa bits. The sign bit is copied to
the vacated positions on the left. The 32-bit result is placed back into
ry.

Shift Right Arithmetic
Variable

SRAV ry, rx The contents of ry is shifted right the number of bits specified by the
five least-significant bits of rx. The sign bit is copied to the vacated
positions on the left.

* Enhancements from the TX19 to the TX19A

Table 4-21 SAVE and RESTORE Instructions (16-Bit ISA)

Instruction Format Operation

SAVE reg_list3,
framesize4

A set of registers indicated by reg_list3 is saved to memory, and the
contents of sp are adjusted by framesize4.

* SAVE

SAVE reg_list3,
xsregs, aregs,
framesize8

A set of registers indicated by reg_list3, xsregs and aregs is saved to
memory, and the contents of sp are adjusted by framesize8.

RESTORE reg_list3,
framesize4

A set of registers indicated by reg_list3 is restored from memory, and
the contents of sp are adjusted by framesize4.

* RESTORE

RESTORE reg_list3,
xsregs, aregs,
framesize8

A set of registers indicated by reg_list3, xsregs and aregs is restored
from memory, and the contents of sp is adjusted by framesize8.

* Enhancements from the TX19 to the TX19A

4-25

Chapter 4 16-Bit ISA Summary and Programming Tips

Table 4-22 Multiply and Divide Instructions (16-Bit ISA)

Instruction Format Operation

MULT rx, ry The multiplicand is the signed value of rx. The multiplier is the signed
value of ry. The 64-bit product rx * ry is placed into registers HI and
LO.

Multiply

* MULT ry, rx, ry The multiplicand is the signed value of rx. The multiplier is the signed
value of ry. The 64-bit product rx * ry is placed into registers HI and
LO. The low-order 32 bits of the product are copied into ry.

MULTU rx, ry The multiplicand is the unsigned value of rx. The multiplier is the
unsigned value of ry. The 64-bit product rx * ry is placed into
registers HI and LO.

Multiply Unsigned

* MULTU ry, rx, ry The multiplicand is the unsigned value of rx. The multiplier is the
unsigned value of ry. The 64-bit product rx * ry is placed into
registers HI and LO. The low-order 32 bits of the product are copied
into ry.

* Multiply And Add MADD rx, ry The multiplicand is the signed value of rx. The multiplier is the signed
value of ry. The 64-bit product rx * ry is added to the contents of
registers HI and LO and the result is placed back into HI and LO.

* Multiply And Add
Unsigned

MADDU rx, ry The multiplicand is the unsigned value of rx. The multiplier is the
unsigned value of ry. The 64-bit product rx * ry is added to the
contents of registers HI and LO and the result is placed back into HI
and LO.

Divide DIV rx, ry The dividend is the signed value of rx. The divisor is the signed value
of ry. The quotient is placed into register LO and the remainder is
placed into register HI.

Divide Unsigned DIVU rx, ry The dividend is the unsigned value of rx. The divisor is the unsigned
value of ry. The quotient is placed into register LO and the remainder
is placed into register HI.

* Divide Exception DIVE rx, ry The dividend is the signed value of rx. The divisor is the signed value
of ry. The quotient is placed into register LO and the remainder is
placed into register HI. An Integer Overflow exception occurs if
divide-by-zero or overflow conditions are detected.

* Divide Exception
Unsigned

DIVEU rx, ry The dividend is the unsigned value of rx. The divisor is the unsigned
value of ry. The quotient is placed into register LO and the remainder
is placed into register HI. An Integer Overflow exception occurs if a
divide-by-zero condition is detected.

Move From HI MFHI rx The contents of register HI is copied to rx.
Move From LO MFLO rx The contents of register LO are copied to rx.
* Move to HI MTHI rx The contents of rx are copied to register HI.
* Move to LO MTLO rx The contents of rx are copied to register LO.

* Enhancements from the TX19 to the TX19A

 4-26

 Chapter 4 16-Bit ISA Summary and Programming Tips

Table 4-23 Bit Manipulation Instructions (16-Bit ISA)

Instruction Format Operation

BTST offset(base3),
pos3

A bit specified by pos3 in a memory byte is negated and placed into
the least-significant bit (LSB) of t8. The upper 31 bits of t8 are filled
with zeros. The effective address is computed by zero-extending the
14-bit offset and adding the resultant value to the contents of base3.

BTST offset(r0), pos3 A bit specified by pos3 in a memory byte is negated and placed into
the least-significant bit (LSB) of t8. The upper 31 bits of t8 are filled
with zeros. The effective address is computed by sign-extending the
14-bit offset and adding the resultant value to the contents of r0.

* Bit Test

BTST offset(fp), pos3 A bit specified by pos3 in a memory byte is negated and placed into
the least-significant bit (LSB) of t8. The upper 31 bits of t8 are filled
with zeros. The effective address is computed by zero-extending the
5-bit offset and adding the resultant value to the contents of fp.

BEXT offset(base3),
pos3

A bit specified by pos3 in a memory byte is copied into the
least-significant bit (LSB) of t8. The upper 31 bits of t8 are filled with
zeros. The effective address is computed by zero-extending the 14-bit
offset and adding the resultant value to the contents of base3.

BEXT offset(r0), pos3 A bit specified by pos3 in a memory byte is copied into the
least-significant bit (LSB) of t8. The upper 31 bits of t8 are filled with
zeros. The effective address is computed by sign-extending the 14-bit
offset and adding the resultant value to the contents of r0.

* Bit Extract

BEXT offset(fp), pos3 A bit specified by pos3 in a memory byte is copied into the
least-significant bit (LSB) of t8. The upper 31 bits of t8 are filled with
zeros. The effective address is computed by zero-extending the 5-bit
offset and adding the resultant value to the contents of fp.

BCLR offset(base3),
pos3

A bit specified by pos3 in a memory byte is cleared. The effective
address is computed by zero-extending the 14-bit offset and adding
the resultant value to the contents of base3.

BCLR offset(r0), pos3 A bit specified by pos3 in a memory byte is cleared. The effective
address is computed by sign-extending the 14-bit offset and adding
the resultant value to the contents of r0.

* Bit Clear

BCLR offset(fp), pos3 A bit specified by pos3 in a memory byte is cleared. The effective
address is computed by zero-extending the 5-bit offset and adding
the resultant value to the contents of fp.

BSET offset(base3),
pos3

A bit specified by pos3 in a memory byte is set. The effective address
is computed by zero-extending the 14-bit offset and adding the
resultant value to the contents of base3.

BSET offset(r0), pos3 A bit specified by pos3 in a memory byte is set. The effective address
is computed by sign-extending the 14-bit offset and adding the
resultant value to the contents of r0.

* Bit Set

BSET offset(fp), pos3 A bit specified by pos3 in a memory byte is set. The effective address
is computed by zero-extending the 5-bit offset and adding the
resultant value to the contents of fp.

4-27

Chapter 4 16-Bit ISA Summary and Programming Tips

Instruction Format Operation

BINS offset(base3),
pos3

The least-significant bit (LSB) of t8 is copied into a bit position
indicated by pos3 in a memory byte. The effective address is
computed by zero-extending the 14-bit offset and adding the
resultant value to the contents of base3.

BINS offset(r0), pos3 The least-significant bit (LSB) of t8 is copied into a bit position
indicated by pos3 in a memory byte. The effective address is
computed by sign-extending the 14-bit offset and adding the resultant
value to the contents of r0.

* Bit Insert

BINS offset(fp), pos3 The least-significant bit (LSB) of t8 is copied into a bit position
indicated by pos3 in a memory byte. The effective address is
computed by zero-extending the 5-bit offset and adding the resultant
value to the contents of fp.

ADDMIU offset(base3),
imm

The 14-bit offset is shifted left by two bits, zero-extended, then added
to the contents of base3 to form an effective address (EA). The value
indicated by imm is added to the memory word addressed by the EA,
and the sum is written back to the EA.

* Add Immediate to
Memory Word

ADDMIU offset(r0), imm The 14-bit offset is shifted left by two bits, sign-extended, then added
to the contents of r0 to form an effective address (EA). The value
indicated by imm is added to the memory word addressed by the EA,
and the sum is written back to the EA.

* Enhancements from the TX19 to the TX19A

Table 4-24 System Control Coprocessor (CP0) Instructions (16-Bit ISA)

Instruction Format Operation

* Move To
Coprocessor 0

MTC0 rx, cp0rd32 The contents of rx are loaded into CP0 register cp0rd32.

* Move From
Coprocessor 0

MFC0 ry, cp0rs32 The contents of CP0 register cp0rs32 is loaded into ry.

* Add Coprocessor 0
Immediate
Unsigned

AC0IU cp0rt32,
immediate

The value indicated by immediate is added to the contents of CP0
register cp0rt32. The result is placed back into cp0rt32.

* Enhancements from the TX19 to the TX19A

 4-28

 Chapter 4 16-Bit ISA Summary and Programming Tips

Table 4-25 Jump Instructions (16-Bit ISA)

Instruction Format Operation

Jump And Link JAL target The program jumps to the address computed using paged absolute
addressing, i.e., by shifting the 26-bit target left by two bits and
combining it with the four most-significant bits of PC + 4. The
address of the instruction following the delay slot is saved in r31.

Jump And Link
exchange

JALX target The program jumps to the address using paged absolute addressing,
i.e., by shifting the 26-bit target left by two bits and combining it with
the four most-significant bits of PC + 4. The address of the instruction
following the delay slot is saved in r31. The ISA mode bit in the PC
toggles.

JR rx The program jumps to the address specified by the upper 31 bits of
rx. The least-significant bit of rx is interpreted as the ISA mode
specifier.

Jump Register

JR ra The program jumps to the address specified by the upper 31 bits of
ra. The least-significant bit of ra is interpreted as the ISA mode
specifier.

JRC rx The program jumps to the address specified by the upper 31 bits of
rx. The least-significant bit of rx is interpreted as the ISA mode
specifier. This instruction does not have a delay slot.

* Jump Register,
Compact

JRC ra The program jumps to the address specified by the upper 31 bits of
ra. The least-significant bit of ra is interpreted as the ISA mode
specifier. This instruction does not have a delay slot.

Jump And Link
Register

JALR ra, rx The program jumps to the address specified by the upper 31 bits of
rx. The least-significant bit of rx is interpreted as the ISA mode
specifier. The address of the instruction following the delay slot is
saved in ra.

* Jump And Link
Register, Compact

JALRC ra, rx The program jumps to the address specified by the upper 31 bits of
rx. The least-significant bit of rx is interpreted as the ISA mode
specifier. The address of the instruction following the delay slot is
saved in ra. This instruction does not have a delay slot.

* Enhancements from the TX19 to the TX19A

Table 4-26 Branch Instructions (16-Bit ISA)

Instruction Format Operation

Branch On Equal To
Zero

BEQZ rx, offset If rx = 0, the program branches to the target address specified as a
8-bit offset relative to PC + 2 (or PC + 4 when EXTENDed).

Branch On Not Equal
To Zero

BNEZ rx, offset If rx ≠ 0, the program branches to the target address specified as a
8-bit offset relative to PC + 2 (or PC + 4 when EXTENDed).

Branch On T8 Equal
To Zero

BTEQZ offset If t8 = 0, the program branches to the target address specified as a
16-bit offset relative to PC + 2 (or PC + 4 when EXTENDed).

Branch On T8 Not
Equal To Zero

BTNEZ offset If t8 ≠ 0, the program branches to the target address specified as a
16-bit offset relative to PC + 2 (or PC + 4 when EXTENDed).

Unconditional Branch B offset The program unconditionally branches to the target address
specified as a 16-bit offset relative to PC + 2 (or PC + 4 when
EXTENDed).

* Branch And Link BAL offset The program unconditionally branches to the target address
specified as a 16-bit offset relative to PC + 2 (or PC + 4 when
EXTENDed). The address of the instruction following the delay slot is
saved in r31.

* Enhancements from the TX19 to the TX19A

4-29

Chapter 4 16-Bit ISA Summary and Programming Tips

Table 4-27 Special Instructions (16-Bit ISA)

Instruction Format Operation

Breakpoint BREAK code A breakpoint exception occurs, immediately and unconditionally
transferring control to the exception handler.

Software Debug
Breakpoint Exception

SDBBP code A debug breakpoint exception occurs, immediately and
unconditionally transferring control to the exception handler.

* Disable Interrupt DI The IE bit in the Status register is cleared.

* Enable Interrupt EI The IE bit in the Status register is set.

* System Call SYSCALL code A System Call exception occurs, immediately and unconditionally
transferring control to the exception handler.

* Synchronize SYNC The instruction pipeline is interlocked until any load or store fetched
before the current instruction is completed.

* Exception Return ERET If the ERL bit in the Status register is set, the PC is restored from the
Error PC register. Otherwise, the PC is restored from the EPC
register

* Debug Exception
Return

DERET Program control is transferred back to a User program from a debug
exception handler. The return address in the DEPC register is
restored into the PC.

* Enter Standby
Mode

WAIT If the RP bit in the Status register is set, the processor enters DOZE
mode. If the RP bit is cleared, the processor enters HALT mode.

* Enhancements from the TX19 to the TX19A

 4-30

 Chapter 5 CPU Pipeline

 5-1

Chapter 5 CPU Pipeline

5.1 Architecture Overview
As described in Section 2.5, Pipeline Architecture, the processing of an instruction is broken down
into a sequence of simpler suboperations. Because tasks required to process an instruction are
fragmented, an instruction does not need the entire hardware resources of the execution unit. Each
suboperation is performed by a separate hardware section called a stage, and each stage passes its
result to a succeeding stage. The TX19A pipeline has five stages, Fetch (F), Decode (D), Execute
(E), Memory Access (M) and Register Write-back (W). For example, after an instruction completes
the D stage, it can proceed to the E stage while the subsequent instruction can advance into the D
stage. Each of the five pipe stages requires approximately one clock cycle. Therefore, once the
pipeline has been filled, the execution of five instructions is overlapped at a time, as shown in
Figure 5-1.

F D E M W

Instruction
Fetch Decode Execute Memory

Access
Register

Write-back

#1 F D E M W
#2 F D E M W
#3 F D E M W
#4 F D E M W
#5 F D E M W

Time

1 Clock Cycle
Current CPU Cycle

Figure 5-1 Five CPU Pipeline Stages

The following paragraphs describe the operations in each stage that occur for the most-commonly
used instructions.

Instruction Fetch (F): In this stage, the instruction is fetched from the instruction memory
subsystem (i.e., instruction ROM or instruction RAM). Instructions are fetched in one-word units,
whether in 16-bit or 32-bit ISA mode.
Decode (D): During this stage, the instruction is decoded and required operands are
read from the on-chip register file.

Execute (E): In this stage, one of the following occurs:
 The arithmetic logic unit (ALU) starts the integer arithmetic, logical

or shift operation.
 For load and store instructions, the ALU initiates the bus cycle and calculates the effective

address by adding the offset value to the contents of the base register at the same time.
 For jump instructions, the ALU calculates the jump target address.

Chapter 5 CPU Pipeline

 5-2

 For branch and branch-likely instructions, the ALU determines
whether the branch condition is true and calculates the branch target address.

Memory Access (M): For loads and stores, data memory is accessed.
Register Write-back (W): In this stage, one of the following occurs:

 The results of the ALU operation during the E stage is written back to
the on-chip register file.

 If the instruction is a jump-and-link, branch-and-link or branch-likely-and-link, the return
address is written to register r31 (ra).

In a pipelined machine like the TX19A, there are certain instructions that can potentially disrupt the
smooth advance through the pipeline. This problem is referred to as pipeline hazards. The sections
that follow describe when pipeline hazards occur and how they are handled by hardware and
software.

5.2 Load, Store and SYNC Instructions
The performance of software systems is drastically affected by how well software designers,
especially assembly-language programmers, understand the basic hardware technologies at work in
the processor. This section describes load delays, non-blocking loads, shared memory
synchronization and so on from the view point of the CPU pipeline.

5.2.1 Load Delays
Figure 5-2 illustrates how the load instruction advances through the CPU pipeline.

F D E M W

Instruction
Fetch Decode

Effective Address
Calculation &

Bus Cycle Initiation

Memory
Access

Resister
Write-back

Figure 5-2 Load Instruction

Load instructions read an operand from memory into a CPU register for a subsequent operation by
other instructions. In the case of loads from the on-chip fast memory, an operand becomes available
after completion of the Memory Access (M) stage of the load instruction because it is internally
forwarded at the M stage before the Register Write-back (W) stage. Still, the operand is not
immediately usable for the Execute (E) cycle of the subsequent instruction, as shown in Figure 5-3.

This is called data dependency. In Figure 5-3, the TX19A handles data dependency by inserting a
wait (or "stall") cycle into the E stage of the next instruction. Figure 5-3 depicts a delay (or latency)
of one cycle. The instruction that immediately follows the load instruction is said to be in the load

delay slot. Loads from external memory incur additional stall cycles.

 Chapter 5 CPU Pipeline

 5-3

LW r3,0(r1) F D E M W

ADD r8,r9,r3 F Ds D E M W

 Stall Cycle

r3

Figure 5-3 Data Dependency Resulting from a Load Instruction

However, this is not a very efficient use of the pipeline. The optimizer, which is executed as a part of
the compiler or assembler, can rearrange the code to ensure that the instruction in the load delay slot
does not require the operand loaded by the previous load instruction. Figure 5-4 gives an example of
re-ordering instructions to remove data dependency. This is a part of the code to swap the contents of
two memory locations.

• With data dependency

LW r9,0(r8)

LW r10,4(r8)

SW r10,0(r8) ← Load delay slot
SW r9,4(r8)

• Without data dependency

LW r9,0(r8)

LW r10,4(r8)

SW r9,4(r8) ← Load delay slot
SW r10,0(r8)

Figure 5-4 Re-ordering Instructions to Remove Data Dependency

In the rearranged code, the SW instruction does not depend on the availability of data from the
immediately preceding LW instruction. Therefore, the load delay slot for "LW r10, 4 (r8)" can be
filled with a useful instruction, "SW r9, 0(r8)," so that the pipeline is fully utilized.

Chapter 5 CPU Pipeline

 5-4

5.2.2 Non-blocking Loads

If the instruction that immediately follows a load instruction does not access the target register (rt)
of the load instruction, data dependency does not occur. The TX19A recognizes the presence of data
dependency, and if there is no data dependency, it continues to execute subsequent instructions. This
is called non-blocking loads. By virtue of non-blocking loads, external memory accesses do not stall
the CPU pipeline. All the other parts of the pipeline can continue to work on non-dependent
instructions while external memory is being accessed.
In Figure 5-5 below, the TX19A continues to execute independent instructions (ADD, r6, r4, r2 and
ADD r7, r5, r2) without stalling on the external memory access resulting from the LW
Instruction. It defers execution of a dependent instruction (ADD, r8, r9, r3) until the data has been
returned.

LW r3,0(r1) F D E ････ M W

ADD r6,r4,r2 F D E M W

ADD r7,r5,r2 F D E M W

ADD r8,r9,r3 F Ds Ds Ds D E M W

Memory Read Cycles

Stall Cycles

r3

Figure 5-5 Non-blocking Loads

The non-blocking load capability of the TX19A allows the optimizing compiler to rearrange the code
to "prefetch" data from memory before a need actually arises to reference it. Selective use of
prefetches based on the compiler’s optimization can yield significant performance improvement.

 Chapter 5 CPU Pipeline

 5-5

5.2.3 Store Instructions (32 Bit ISA/ 16 Bit ISA)
Figure 5-6 illustrates how the store instruction advances through the CPU pipeline.

F D E M W

Instruction
Fetch Decode

Effective Address
Calculation &

Bus Cycle Initiation

Mempory Access
in WAIT ―

Figure 5-6 Store Instruction

Stores to the on-chip fast memory occur during the Memory Access (M) stage; no operation occurs
in the Register Write-back (W) stage. Stores to external memory take more than one cycle.

The store instruction is to store the data in CPU register to the memory. Figure 5-7 shows how to store
to the on-chip fast memory. Stores to the on-chip fast memory occur during the Effective Address
Calculation (E) stage and they take 1 clock as a write bus cycle. No operations occur in the Memory
Access stage and the Register Write-back stage.
Figure 5－8 shows the procedure to execute the instruction on the external memory access. Stores to
the external memory take more than 2 clocks as a write bus cycle. With the TX19A, the pipelines
never stall by the continuous memory access instructions because its on-chip write buffer can store 4
write-data at the maximum. The instructions using subsequent write buffer stall when the write buffer
space is full.

Figure 5-7 Access to the On-chip Fast Memory

Figure 5-8 Continuous Access to the External Memory

SW r3,4(r2) F

ADDU r4,r3,r2

ADDU r5,r6,r7

D E M W

F D E M W

F D E M W

Bus Cycle

Write Cycle

Instruction 1 SW r4,4(r2) F

Instruction 2 SW r5,8(r2)

Instruction 3 SW r6,12(r2)

D E M W

F D E M W

F D E M W

Bus Cycle

Write Cycle

Instruction1 Instruction2 Instruction3

 Write Buffer

Chapter 5 CPU Pipeline

 5-6

5.2.4 SYNC Instruction (32 Bit ISA/ 16 Bit ISA)
Load and store instructions execute memory accesses during the M stage. In the meantime, the
TX19A continues to execute other instructions in parallel.

Figure 5-9 illustrate the SYNC instruction procedure. The SYNC instruction provides an ordering
function for the effects of load/store and subsequent instructions. The SYNC instruction ensures that
all loads and stores initiated prior to this instruction are completed before any instruction after this
instruction is allowed to start. To enforce in-order execution, stall cycles are inserted into the M stage
until the previously initiated loads and stores are completed.

Load F D E …… M W
Next Instruction F D E M W

Load F D E …… M W
SYNC F D Es E M W
Next Instruction F Ds D E M W

Store F D E M W
SYNC F D Es E M W
Next Instruction F Ds D E M W

Memory Read Completed

Memory Read Completed

Read Cycles

Memory Write Completed

Read Cycles

Write Cycles

Figure 5-9 SYNC Instruction

5.2.5 Bit Manipulation Instruction (16 Bit ISA)
There are two kinds of the Bit Manipulation Instructions. One is to place the result back into the
memory. Another is to place the result back into the CPU register. Figures 5-10 and 5-11 show each
procedure.

Figure 5-10 Placing the result back into the memory

Figure 5-11 Placing the result back into the CPU register

F D E M W

Instruction
Fetch Decode

Effective Address
Calculation &

Bus Cycle Initiation

Memory
Access

－

F D E M Md W

Instruction
Fetch Decode

Effective Address
Calculation &

Bus Cycle Initiation

Memory
Access Computation Register

Write-back

 Chapter 5 CPU Pipeline

 5-7

As for the instruction illustrated in Figure 5-10, the write buffer enters the bus operation without any
pipeline stall same as the store instruction. See Figure 5-12 for the detailed procedure.

Figure 5-12 Detailed procedure of placing the result back into the memory

The instruction shown in Figure 5-11 has the different operations depend on the contents.
The pipelines do not stall during the subsequent instructions if the instruction immediately after the
bit manipulation instruction does not access the target register (t8) of the bit manipulation instruction.
At that time, the bit manipulation instructions, BTST and BEXT, are operating in non-blocking load.
On the other hand, the pipelines stall during the subsequent instructions if the instruction immediately
after the bit manipulation instruction accesses the target register (t8).
Figure 5-13 shows the detailed procedure of the case with CPU. The two ADDU instructions do not
access the target register. Therefore, these two immediately after the BTST can be executed without
stall. The fourth BTEGZ, however, stalls since it needs to refer to the target register.

Figure 5-13 Detailed procedure of placing the result back into the CPU register

In non-blocking load, the W stage of the Bit Manipulation Instruction may conflict with the W stage
of the subsequent instruction. Then the subsequent instructions stall.

Figure 5-14 W Stages Conflict

Instruction1 bset 0x00(fp),0 F

Instruction 2 bset 0x04(fp),4

Instruction 3 addu r2,r4,r5

D E M W

F D E M W

F D E M W

Bus cycle

Read
Instruction
1

Instruction
2

Write Buffer

Write Read Write

btst 0x00(fp),0 F

addu r2,r4,r5

addu r4,r5,r6

D E － W

F D E M W

F D E M W

Bus Cycle Read Cycle

btegz loop_A

－ － － M

F D E M WDs Ds Ds

Referring
t8 Register

Stall Cycle

btst 0x00(fp),0 F

addu r2,r4,r5

addu r4,r5,r6

D E M W

F D E M W

F D E M W

－ － － －

addu r4,r5,r6 F D E M W

addu r4,r5,r6 F D E Ms M W

Stall Cycle

Bus Cycle Read Cycle

Chapter 5 CPU Pipeline

 5-8

5.3 Jump, Branch and Branch-Likely Instructions
Jump and branch instructions involve a delay or latency of two instruction cycles. This section
explains how this latency is reduced to one cycle by software intervention. This section also
describes how branch-likely instructions are processed through the pipeline.

5.3.1 Jump and Regular Branch Instructions (32-Bit ISA)

Figure 5-15 shows how jump and regular branch instructions advance through the CPU pipeline.

F D E M W

Instruction
Fetch Decode

Target Address Calculation &
Branch Condition Test

PC Update
No Operation Register

Write-back

Figure 5-15 Jump and Branch Instructions

For jump and branch instructions, one of the following occurs in the Execute (E) stage:

 For jump instructions, the ALU calculates the jump target address.
 For branch and branch-likely instructions, the ALU determines whether the branch condition

is true and calculates the branch target address.

No operation is performed in the M stage. If the instruction is a jump-and-link or a branch-and-link,
a return address is written to register r31 (ra) in the Register Write-back (W) stage.

See Figure 5-16 for the illustrated regular branch instruction. The jump or branch target address
becomes available during the E stage. A jump or branch occurs with a delay of two instructions cycles
since the fetch of the target instruction occurs after the target address calculation. the instruction in
the delay slot occurs immediately after the jump or regular branch instruction is always executed
prior to the jump/branch taking effect. Therefore, the delay cycle caused by the jump or branch
instruction looks as if only 1 cycle. It is the responsibility of the compiler to rearrange the code to fill
a jump or branch delay slot with a useful instruction. If there is no useful instruction, the compiler
must fill the delay slot with a NOP.

Jump or Branch F D E M W

Delay Slot F D E M W

Jump/Branch Target F D E M W
Figure 5-16 Jump and Branch Delay Slots

 Chapter 5 CPU Pipeline

 5-9

Note 1: Please do not fill a jump or branch delay slot with a jump or branch instruction to avoid instable hardware
operation.

Note 2: Please do not fill a branch delay slot with any instruction may cause an effect to program logic since the regular
branch instruction always executes the one in the delay slot regardless of whether the branch is taken or not.

Chapter 5 CPU Pipeline

 5-10

5.3.2 Branch-Likely Instructions (32-Bit ISA)
A regular branch instruction causes the TX19A to always execute the instruction in a branch delay
slot, regardless of whether the branch is to be taken or not. Therefore, the instruction in the branch
delay slot must logically precede the branch instruction. for the difference.

On the other hand, a branch-likely instruction causes the TX19A to nullify the instruction in the
delay slot at the Execute (E) stage if the branch is not taken. If a branch is taken, the instruction in
the delay slot is executed. This approach allows the compiler to fill a branch delay slot with the
branch target instruction (see Figure 5-17).

 Regular Branch Branch-Likely
 Branch

Taken
Branch Not

Taken Branch
Taken

Branch Not
Taken

Branch Instruction
Branch Delay Slot ×

 × ×

Branch Destination

Branch-Likely F D E M W

Delay Slot F D (E) (M) (W)

Next Instruction F D E M W

When a Branch-Likely is Not Taken

False Condition

Nullified

…

…

… … …

…

Figure 5-17 Branch-Likely Instruction

5.3.3 Jump Instructions (16-Bit ISA)
The JAL and JALX instructions in the 16-bit ISA are still 32-bits wide; so in 16-bit ISA mode, the
previous TX19 needs to execute a jump instruction in two steps as shown in Figure 5-18. The TX19
performs no operation during the first D and E stages. Instead it waits for the second half of the
instruction code to come in order to calculate the effective address of the jump destination. This
address calculation occurs in the E stage of the second half of the jump instruction. As a
consequence, jump instructions in the 16-bit ISA occur with a two-instruction delay.

In contrast, the TX19A fetches and decodes a jump instruction in one go, thereby reducing a jump
delay from two instruction cycles to one (see Figure 5-19).

Note: Please do not fill a jump delay slot with a jump or branch instruction to avoid instable hardware operation.

 Chapter 5 CPU Pipeline

 5-11

Jump Instruction(1st Half) F (D) (E) (M) (W)
Jump Instruction(2nd Half) F D E M W

Delay Slot F D E M W

Jump Target F D E M W

Figure 5-18 Jump Instruction (TX19 16-Bit ISA)

Jump Instruction F D E M W

Delay Slot F D E M W

Jump Target F D E M W

Figure 5-19 Jump Instruction (TX19A 16-Bit ISA)

5.3.4 Branch Instructions (16-Bit ISA)
Unlike the 32-bit ISA, the 16-bit ISA has no delayed branches (see Figure 5-20). The branches take
effect before the next instruction. Thus if the branch is taken, the following instructions are not
executed. For this reason, any instruction can be placed immediately after a branch instruction.

 32-Bit ISA 16-Bit ISA
 Branch

Taken
Branch Not

Taken
 Branch

Taken
Branch Not

Taken
Branch Instruction Branch Instruction
Branch Delay Slot Next Instruction ×

 × ×

Branch Destination Branch Destination

Branch F D E M W

Next Instruction F D (E) (M) (W)

Branch Destination F D E M W

When the Branch is Taken

True Condition

…

…

…

…

… …

Nullified

…

Figure 5-20 Branch Instruction (16-Bit ISA)

Chapter 5 CPU Pipeline

 5-12

5.3.5 SAVE ・ RESTORE Instructions (16-Bit ISA)
One SAVE/RESTORE instruction can save or restore the data in multiple registers.
See figure 5-21 and 5-22 for the details.
The next instructions stall until the contents of the stack pointer register (r29) are rewritten with the
final data restore or save.

Figure5-21 SAVE Instructions

Figure 5-22 RESTORE Instructions

SAVE Instruction F D Es Es W

Bus Cycle
Write

Next Instruction

Es Es Es E

F D E M WDs Ds Ds

Stall Cycle

M

Ds Ds

Write Write Write

RESTORE Instruction F D Es Es W

Bus Cycle
Read

Next Instruction

Es Es Es E

F D E M WDs Ds Ds

Stall Cycle

M

Ds Ds

Read Read Read

 Chapter 5 CPU Pipeline

 5-13

5.4 Divide Instructions
Any integer divide instruction is transferred to the dedicated divide unit as remaining instructions
continue through the pipeline. The divide unit keeps running even when delay cycles and exceptions
occur. The quotient and the remainder of the divide instruction are saved in the LO and HI registers.

The TX19A starts a divide operation in the E stage; it takes 35 cycles for the divide operation to
complete, independent of the magnitude and sign of the operands. If the divide instruction is
followed by an MFHI, MFLO, MADD, MADDU, MSUB or MSUBU instruction before the
quotient and the remainder are available, the pipeline stalls until they do become available.

 F D E M W
 Instruction

Fetch Decode Execute No
Operation

No
Operation

DIV r5,r1 F D E M W
 E1 E2 …… E34 E35

MFLO r4 F D Es …… Es E M W

The contents of LO is read here.
35 Cycles

The result is written to HI and LO.

Latency = 35 Cycles
Pipeline Stalls

Figure 5-23 Divide Instructions

Chapter 5 CPU Pipeline

 5-14

5.5 Multiply, Multiply-and-Add and Multiply-and-Subtract Instructions
Any integer multiply, multiply-and-add and multiply-and-subtract instructions are transferred to the
dedicated MAC unit as remaining instructions continue through the pipeline. It takes a single cycle
for a multiply, multiply-and-add or multiply-and-subtract instruction to complete.

Because it takes only one cycle for a multiply, multiply-and-add or multiply-and-subtract instruction
to complete the E stage, multiple multiply, multiply-and-add and multiply-and-subtract instructions
can be executed back-to-back without causing pipeline stalls (see Figure 5-24).

MADD r5,r1 F D E M W

MADD r6,r2 F D E M W

Figure 5-24 Back-to-Back Multiply-and-Add Instructions

The MFHI and MFLO instructions read the contents of the HI and LO registers. Multiply,
multiply-and-add and multiply-and-subtract instructions can be followed by an MFHI or MFLO
instruction without causing pipeline stalls (see Figure 5-25).

MULT r5,r6 F D E M W

MFLO r4 F D E M W

Figure 5-25 Multiply Instruction Followed by an MFLO Instruction

Remember that the result of the multiply, multiply-and-add and multiply-and-subtract instructions
becomes available after completion of the M stage instead of the E stage. If the multiply,
multiply-and-add or multiply-and-subtract instruction specifies a general-purpose register as a
destination register (rd), subsequent instructions should not access that register until the result is
saved in rd. Otherwise, the pipeline stalls at the D stage until it does become available.

MADD r3,r2,r1 F D E M W

ADD r5,r4,r3 F Ds D E M W

Stall Cycle
Figure 5-26 Structural Hazard Involving a Multiply Instruction

 Chapter 5 CPU Pipeline

 5-15

5.6 EXTENDed Instructions (16-Bit ISA)
The EXTEND prefix turns 16-bit instructions in the 16-bit ISA into 32 bits. The machine code of an
EXTENDed instruction consists of an 16-bit EXTEND code and the 16-bit instruction code that is
to be EXTENDed. While the TX19 executes any EXTENDed instruction in two steps (Figure 5-28),
the TX19A improves instruction throughput by executing each EXTENDed instruction in one go
(Figure 5-27).

EXTENDed Instruction F D E M W

Execution

Figure 5-27 EXTENDed Instruction (TX19A 16-Bit ISA)

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0
11110 imm

[10:4]
imm

[14:11]
01000 rs rt 0 imm

[3:0]

 F (D) (E) (M) (W)

 F D E M W

EXTEND Code EXTENDed Instruction Code

Execution

EXTEND Code

EXTENDed Instruction Code

Figure 5-28 EXTENDed Instruction (TX19 16-Bit ISA)

 Chapter 6 Memory Management

Chapter 6 Memory Management
This chapter describes the operating modes of the TX19A processor, the virtual and physical
address spaces and how they are mapped.

6.1 Operating Modes
The TX19A has two modes of operation, User mode and Kernel mode. The TX19A enters Kernel
mode whenever an exception is taken. Since a Reset exception occurs when a system is reset, the
TX19A wakes up in Kernel mode. The processor switches to User mode when the ERET
(Exception Return) or DERET (Debug Exception Return) instruction is executed.

 User Mode

The operating mode determines the addresses, registers and instructions that are available to a
program. The use of them is restricted under User mode. While the processor is operating in
User mode, it is permitted to access a linear address space of 2 GB (kuseg) starting at virtual address
0x0000_0000. The CP0 registers are accessible only when the CU0 bit in the Status register is 1.

When the processor is operating in User mode, both of the following conditions are true: 1) the UM
bit in the Status register is set; and 2) the ERL and EXL bits in this register are cleared.

 Kernel Mode

Kernel mode has higher privileges than User mode. Kernel-mode programs are permitted to use all
addresses, registers and instructions. Operating system routines, general exception handlers and
debug exception handlers are executed in Kernel mode.

When the processor is operating in Kernel mode, any of the following conditions is true: 1) the DM
bit in the Debug register is set; 2) the UM bit in the Status register is cleared; 3) the ERL bit in the
Status register is set; or 4) the EXL bit in the Status register is set.

Note: TX19A only allows using Kernel mode.

6.2 Virtual Address Segments
Figure 6-1 shows the virtual address segments available in User and Kernel modes. While the
processor is operating in User mode, a single, uniform virtual address space (kuseg) of 2 GB is
available. While the processor is operating Kernel mode, four distinct virtual address segments,
kuseg, kseg0, kseg1 and kseg2, are simultaneously available.
Each segment is architecturally predefined as cached or uncached; however, because the TX19A

6-1

Chapter 6 Memory Management

does not have a cache on-chip, cacheability has no meaning.

kseg0
Cached

0xA000_0000

0x7FFF_FFFF
0x8000_0000

0xC000_ 0000

Kernel mode User mode

16 MB Reserved

kseg2
Cached

kseg1
Uncached

kuseg
Cached

0xFFFF_FFFF

0x0000_0000

kuseg
Cached

16 MB Reserved 0x7FFF_FFFF

0x0000_ 0000

Uncached

Uncached

16 MB Reserved

Figure 6-1 Virtual Address Segments

 Kuseg (Kernel/User Segment)

Kuseg is a 2-GB segment designed to be used by User-mode programs while providing accessibility
in Kernel mode. This virtual address space begins at address 0x0000_0000 and runs up to 0x7FFF_
FFFF; so all valid User-mode virtual addresses have the most-significant bit cleared to 0. A User
program attempt to reference a Kernel address with the most-significant bit set to 1 causes an
Address Error exception. The upper 16 MB of kuseg should not be used. This region is reserved for
on-chip resources which map to these virtual addresses.

 Kseg0, kseg1 and kseg2 (Kernel Segments)

The virtual address space accessible only in Kernel mode consists of three distinct segments called
kseg0, kseg1 and kseg2, which total 2 GB in size. The Kernel segments start at virtual address
0x8000_0000 and run up to
0xFFFF_FFFF.

 Kseg0 is a 512-MB segment, beginning at virtual address 0x8000_0000; all references through
this segment are cacheable.

 Kseg1 is also a 512-MB segment, beginning at virtual address 0xA000_0000, but unlike kseg0,
all references through this segment are uncacheable.

 Kseg2 is a 1-GB linear address space, beginning at virtual address 0xC000_0000. The upper 16
MB of kseg2 should not be used. This region is reserved for on-chip resources which map to
these virtual addresses; 2-MB addresses from 0xFF20_0000 to 0xFF3F_FFFF are reserved for

 6-2

 Chapter 6 Memory Management

debugging. While the upper 16 MB is uncacheable, the remaining region of kseg2 is cacheable.

6.3 Address Translation
The virtual-to-physical address translation is done through a direct segment mapping, which allows
Kernel-mode software to be protected from User-mode accesses without requiring virtual page
management software. Direct segment mapping of virtual-to-physical addresses is illustrated in

Figure 6-2.

Inaccessible

16 MB Reserved

kseg2

Cached

kseg1
Uncached

512 MB

kseg0
Cached

kuseg
Cached

Physical Address Space Virtual Address Space
16 MB Reserved

1 GB

2 GB

16 MB Reserved

16 MB Reserved

0xFFFF_FFFF

0xC000_ 0000

0xA000_0000

0x8000_0000

0x0000_0000

0xFFFF_FFFF

0xC000_0000

0x4000_0000

0x2000_0000

0x0000_0000

Uncached

Uncached

Figure 6-2 Virtual to Physical Address Translation

Figure 6-3 shows the virtual address format used by the TX19A. The three highest bits represent
segment numbers; only these three bits are involved in virtual-to-physical address translation.

31 30 29 0

0 x x kuseg
1 0 0 kseg0
1 0 1 kseg1
1 1 x kseg2

Figure 6-3 Virtual Address Format

 Kuseg is mapped to a contiguous 2-GB region of the physical address space starting at
0x4000_0000. The physical address is constructed by replacing "0x" in the two highest-order bits
with "01."

 Virtual addresses in both kseg0 and kseg1 are mapped to the 512-MB physical address space
starting at address 0x0000_0000. When the three highest-order bits of the virtual address are
"100," that virtual address resides in kseg0. When the three highest-order bits of the virtual

6-3

Chapter 6 Memory Management

address are "101," that virtual address resides in kseg1. The physical address is constructed by
replacing these three bits with "000."

 Virtual addresses in kseg2 are directly output as physical addresses.

Table 6-4 Segment Mapping from Virtual to Physical Addresses

Segment Virtual Addresses Physical Addresses Cacheability
Operating

Mode

Reserved 0xFF20_0000∼0xFFFF_FFFF 0xFF00_0000∼0xFFFF_FFFF Uncacheable Kernel kseg2

Free 0xC000_0000∼0xFEFF_FFFF 0xC000_0000∼0xFEFF_FFFF Cacheable Kernel

kseg1 0xA000_0000∼0xBFFF_FFFF 0x0000_0000∼0x1FFF_FFFF Uncacheable Kernel

kseg0 0x8000_0000∼0x9FFF_FFFF 0x0000_0000∼0x1FFF_FFFF Cacheable Kernel

Reserved 0x7F00_0000∼0x7FFF_FFFF 0xBF00_0000∼0xBFFF_FFFF Uncacheable Kernel/
User

kuseg

Free 0x0000_0000∼0x7EFF_FFFF 0x4000_0000∼0xBEFF_FFFF Cacheable Kernel/
User

It is prohibited to place programs across two segments. Jumps and branches must not transfer
program control outside the current segment.

 6-4

 Chapter 7 Internal I/O Bus Operation

Chapter 7 Internal I/O Bus Operation

7.1 Internal Memory Interface
Figure 7-1 shows an example of the bus interface inside the TX19A core. To maximize
performance, the TX19A implements a Harvard architecture, wherein there are two separate sets of
address and data buses for code (instructions) and data (operands). Additionally, the TX19A allows
very fast access to the on-chip memory – one word of data per clock cycle. Consequently, an
execution rate of one instruction for each clock cycle is achieved.

D (Instruction)

CPU Core

Instruction
BIU

Operand
BIU

Address
DecoderACK

GBIF

A (Instruction)

A (Operand)

D (Operand)

ACK

Bgnt-I
Breq
Bgnt-O

Data RAM

Instruction Memory ROM

G-Bus

Figure 7-1 General Internal Memory Interface

7-1

Chapter 7 Internal I/O Bus Operation

7.2 Operand Read and Instruction Fetch Operations
Figure 7-2 and Figure 7-3 show the bus cycle timing for operand reads and instruction fetches. The
TX19A core features pipelined addressing where it allows up to two outstanding bus cycles at any
given time. While the TX19A core waits for the data for the first bus cycle, the address for a second
bus cycle is issued. Using pipelined addressing, the TX19A provides support for zero-wait-state
reads even for relatively slow memories like flash.

ADRS1

R

CLK

ADRS

DATA

BSTART

AS

WRITE

CS

ACK

The dotted circles indicate sampling points.

Figure 7-2 Memory Read Timing (Zero-Wait State)

 CLK

ADRS

DATA

BSTART

AS

WRITE

CS

ACK

The dotted circles indicate sampling points.

ADRS3

R

Figure 7-3 Memory Read Timing (1 Wait State for ADRS3)

 7-2

 Chapter 7 Internal I/O Bus Operation

7.3 Write Operation
Basically, memory write cycles use much the same protocol as memory read cycles. The TX19A
core drives out a memory address on the falling edge of the system clock. At the same time, Byte
Enable, Bus Start (BSTART*), Address Strobe (AS*), Write (WRITE*) and Chip Select (CS) etc.
are also asserted.

 CLK

ADRS

DATA

BSTART

AS

WRITE

CS

ACK

The dotted circles indicate sampling points.

ADRS1
ぬぬ

Data

Figure 7-4 Write Timing (Zero-Wait State)

 CLK

ADRS

DATA

BSTART

AS

WRITE

CS

ACK

The dotted circles indicate sampling points.

Data

ADRS3

Figure 7-5 Write Timing (1 Wait State for ADR3)

7-3

 Chapter 8 System Control Coprocessor (CP0) Registers

Chapter 8 System Control Coprocessor (CP0)Registers
This chapter describes the system control coprocessor (CP0) registers used for system configuration,
memory management and exception processing.

When the processor is in Kernel mode, the system control coprocessor instructions can always use
the CP0 registers. When the processor is in User mode, the CP0 registers are accessible only when
the CU0 bit in the Status register is set.

8.1 Overview
Table 8-1 provides a brief description of each of the CP0 registers. Register numbers are used by
software when issuing the Move From CP0 (MFC0) and Move To CP0 (MTC0) instructions.

Table 8-1 CP0 Registers

8-1

Category Register Name
Register

Description Number

System Specifies various configuration options for the TX19A processor. Config 16 (SEL0)
Configuration Config1 16 (SEL1)

Config2 16 (SEL2)
Config3 16 (SEL3)
BadVAddr 8 (SEL0) Displays the most recent virtual address that caused a virtual-to-physical

address translation error. Read-only.
General
Exception

Count 9 (SEL0) Acts as a timer, incrementing at a constant rate. Handling

Compare 11 (SEL0) Maintains a constant value compared against the Count register value.
Status 12 (SEL0) Contains operating mode (User/Kernel), interrupt enable and other states

of the processor.
Cause 13 (SEL0) Displays the cause of the last exception.
EPC 14 (SEL0) Contains the upper 31 bits of the address of the exception-causing

instruction, from which point processing resumes after the exception has
been serviced, combined with the ISA mode bit that was in effect before
the exception occurred.

ErrorEPC 30 (SEL0) Similar to the EPC register except that ErrorEPC is used on Reset and
NMI exceptions.

PRId 15 (SEL0) Contains the revision identifier of the TX19A processor. Read-only.
IER 9 (SEL7) Manipulates the interrupt enable/disable bit in the Status register.
SSCR 22 (SEL0) Contains a two-level stack (current and previous) for the shadow register

set used. ／9 (SEL6)
Debug 23 (SEL0) Displays the cause and the current status of a debug exception. Debug
DEPC 24 (SEL0) Contains the address of the instruction that caused a debug exception,

from which point processing resumes after the exception has been
serviced. Also saves the ISA mode bit that was in effect before the
exception occurred.

Exception
Handling

DESAVE 31 (SEL0) Debug exception save register for exclusive use by an in-circuit emulator
(ICE).

The sections in this chapter describe the CP0 register organizations and how data is represented in
these registers. The number following a register name in the headings as in "8.2.1 Config Register
(16:SEL0)" indicates the register number.

Chapter 8 System Control Coprocessor (CP0) Registers

8.2 System Configuration Registers

8.2.1 Config Register (16:SEL0)

31 30 16
M 0

15 14 13 12 10 9 7 6 3 2 0
BE AT AR 0 2

Table 8-2 Config Register Field Descriptions

8-2

Fields Read/ Reset
Description Write ValueName Bits

M 31 Config1 Register Select Field R 1
In the TX19A, this field is fixed at 1.

－ 30:16 Reserved R 0
This field is always read as 0.

BE 15 Endian is selective and fixed at mounting. R Note 1
Endian:
0: Little-endian
1: Big-endian

AT 14:13 Architecture Type: R 0
0: MIPS32
1: MIPS64 with access only to 32-bit compatibility segments
2: MIPS64 with access to all address segments
3: Reserved
In the TX19A, this field is fixed at 0.

AR 12:10 Architecture Revision Level: R 0
0: Revision 1
1-7: Reserved
In the TX19A, this field is fixed at 0.

－ 9:3 In the TX19A, this field is fixed at 0. R 0
－ 2:0 In the TX19A, this field is fixed at 2. R 2

Note 1: Endian is fixed as 0 or 1 at mounting.

 Chapter 8 System Control Coprocessor (CP0) Registers

8.2.2 Config1 Register (16:SEL1)

31 30 16
M 0

15 3 2 1 0
0 CA EP FP

Table 8-3 Config1 Register Field Descriptions (1 of 3)

8-3

Fields Read/ Reset
Description Write ValueName Bits

M 31 Config2 Register Select Field: R 1
In the TX19A, this bit is fixed at 1.

－ 30:3 In the TX19A, this bit is fixed at 0. R 0
R 1 CA 2 16-bit code Implemented.

0: MIPS16ASE not implemented
1: MIPS16ASE implemented
In the TX19A, this bit is fixed at 1.

EP 1 EJTAG Implemented: R 1
0: No EJTAG implemented
1: EJTAG implemented
In the TX19A, this bit is fixed at 1.

FP 0 FPU Implemented: R 0
0: No FPU implemented
1: FPU implemented
In the TX19A, this bit is fixed at 0.

Note: The Config1 register is read-only.

Chapter 8 System Control Coprocessor (CP0) Registers

8.2.3 Config2 Register (16:SEL2)

31 30 16
M 0

15 0
0

Table 8-4 Config2 Register Field Descriptions

8-4

Field Read/ Reset Description
Name Bits Write Value

M 31 Config3 Register Select Field: R 1
In the TX19A, this bit is fixed at 0.

－ 30:0 In the TX19A, this bit is fixed at 0. R 0

Note: The Config2 register is read-only.

 Chapter 8 System Control Coprocessor (CP0) Registers

8.2.4 Config3 Register (16:SEL3)

31 30 16
M 0

15 0
0

Table 8-5 Config3 Register Field Descriptions

8-5

Field Read/ Reset Description
Name Bits Write Value

M 31 Config4 Register Select Field: R 0
In the TX19A, this bit is fixed at 0.

－ 30:0 In the TX19A, this bit is fixed at 0. R 0

Note: The Config3 register is read-only.

Chapter 8 System Control Coprocessor (CP0) Registers

8.3 General Exception Handling Registers
This section describes the CP0 registers that are used in general exception processing. The
remaining CP0 registers are used for program debug and described in the next section.

8.3.1 BadVAddr Register (8)

The BadVAddr (Bad Virtual Address) register is a read-only register. It captures the most recent
virtual address that caused a virtual-to-physical address translation error. The Address Error (AdEL
or AdE) exception is taken.

31 0

BadVAddr

Table 8-6 BadVAddr Register Field Descriptions

8-6

Field Read/ Reset Description
Name Bits Write Value

BadVAddr 31:0 Bad Virtual Address R Undefined

Note: BadVAddr register is read-only.

 Chapter 8 System Control Coprocessor (CP0) Registers

8.3.2 Count Register (9:SEL0)

The Count register is a read/write register. It acts as a time, incrementing at 1/2 the rate of
CPUCLK.

If the processor input called GTINTDIS is held at logic 0, the Count register is incremented. If
GTINTDIS is held at logic 1, the Count register remains inactive.

The Count register can be written for diagnostic purposes or during system initialization.

31 0

Count

Table 8-7 Count Register Field Descriptions

8-7

Field Read/ Reset Description
Name Bits Write Value

Count 31:0 Interval counter R/W Undefined

Chapter 8 System Control Coprocessor (CP0) Registers

8.3.3 Compare Register (11)

When the value of the Count register reaches the value programmed into the Compare register,
interrupt bit IP[7] in the Cause register is set. This causes an Interrupt exception if the interrupt is
enabled.

Writing to the Compare register clears the timer interrupt.

For diagnostic purposes, the Compare register is a read/write register. In normal use, the Compare
register is write-only.

31 16

Compare

Table 8-8 Compare Regiser Field Descriptions

8-8

Field Read/ Reset Description
Name Bits Write Value

Compare 31:0 Interval count compare value R/W Undefined

 Chapter 8 System Control Coprocessor (CP0) Registers

8.3.4 Status Register (12)

31 28 27 26 25 24 23 22 21 20 19 18 17 16
CU RP FR RE MX PX BEV 0 0 NMI 0 Impl

15 8 7 6 5 4 3 2 1 0

IM7-IM0 KX SX UX UM R0 ERL EXL IE

Table 8-9 Status Register Field Descriptions (1 of 2)

8-9

Field Read/ Reset Description
Name Bits Write Value

Controls the usability of coprocessors 3 to 0. In Kernel mode, CP0 R/W UndefinedCU 31:28
is always usable, regardless of the value of the CU0 bit. The CU3, (CU3,
CU2 and CU1 bits must always be written as 0s. …
0: Coprocessor not usable

CU0) 1: Coprocessor usable
RP 27 Reduced Power Mode: R/W 0

0: Halt mode
1: Doze Mode
Selects which one of the reduced power modes is to be entered on
execution of an WAIT instruction. The TX19A freezes the instruction
pipeline in both Halt and Doze modes; however, the Halt mode
provides more power savings than the Doze mode.

FR 26 Ignored on write and returned as 0 on read R 0
RE 25 Ignored on write and returned as 0 on read R 0
MX 24 Ignored on write and returned as 0 on read R 0
PX 23 Ignored on write and returned as 0 on read R 0

BEV 22 Bootstrap Exception Vector R/W 1
Set when the processor is reset. When BEV=1, all exception
vectors reside in uncacheable kseg1 space. Typically, this is used
to allow diagnostic tests to occur before the functionality of the
cache is validated. When BEV=0, the Reset, NMI and Debug
exception vectors reside in uncacheable kseg1 space and all the
other exception vectors reside in cacheable kseg0 space.

TS 21 Ignored on write and returned as 0 on read. R 0
SR 20
NMI 19 Set when a non-maskable interrupt (NMI) signal is asserted low. R/W 0

Writing a 0 to this bit clears it. Writing a 1 to this bit has no effect.
Note that the functionality of this bit differs between the TX19.

－ 18 Ignored on write and returned as 0 on read. R 0
Impl 17:16 Ignored on write and returned as 0 on read. R 0

Interrupt Mask: R/W 0x00 IM 15:8
Enables and disables each of the external, timer and software (IM7,
interrupts. An interrupt is only accepted when the Interrupt Enable …
(IE) bit is set and the corresponding IM bit in the Status register and

IM0) the IP bit in the Cause register are both set.
0: Interrupt request disabled
1: Interrupt request enabled

Chapter 8 System Control Coprocessor (CP0) Registers

Table 8-9 Status Register Field Descriptions (2 of 2)

8-10

Field Read/ Reset Description
Name Bits Write Value

KX 7 Ignored on write and returned as 0 on read. R 0
SX 6 Ignored on write and returned as 0 on read. R 0
UX 5 Ignored on write and returned as 0 on read. R 0
UM 4 Operating Mode: R/W 0

0: Kernel mode
1: User mode
Only Kernel mode is available with TX19A.

－ 3 Ignored on write and returned as 0 on read. R 0
ERL 2 Error Level: R/W 1

Set when a Reset or NMI exception is taken.
When this bit is set:
• The processor is running is Kernel mode.
• Interrupts are disabled.
• The ERET instruction will use the return address held in the
ErrorEPC register.

EXL 1 Exception Level: R/W 0
Set when an exception other than Reset and NMI exceptions is
taken.
When this bit is set:
• The processor is running in Kernel mode.
• Interrupts are disabled.
• The EPC register and the BD bit in the Cause register will not be
updated if another exception is taken.

IE 0 Interrupt Enable: R/W 0
0: Interrupts are disabled.
1: Interrupts are enabled.
The IE bit is not automatically set or cleared by the interrupt
response sequence or the ERET instruction. (This bit is cleared
upon reset.)

 Chapter 8 System Control Coprocessor (CP0) Registers

8.3.5 Cause Register (13)

The Cause register indicates the cause of the last exception. All the bits in this register is read-only,
except the IP[1:0] and IV bits.

31 30 29 28 27 24 23 22 21 16
BD 0 CE 0000 IV WP 000000

15 8 7 6 2 1 0

IP7:IP0 0 Exc Code 0 0

Table 8-10 Cause Register Field Descriptions

8-11

Field Read/ Reset Description
Name Bits Write Value

BD 31 Set when an exception occurred in a jump or branch delay slot. The R Undefined
processor updates the BD bit only if the EXL bit is 0 when an
interrupt or exception occurred.

－ 30 Ignored on write and returned as 0 on read. R 0
CE[1:0] 29:28 Coprocessor Error: R Undefined

Indicates the coprocessor unit number referenced when a
Coprocessor Unusable exception was taken. The value in this field
is undefined for any other exception.

－ 27:24 Ignored on write and returned as 0 on read. R 0
IV 23 Interrupt Vector: R/W Undefined

If this bit is set, an Interrupt exception uses a special interrupt
vector different from the general exception vector.
BEV (Status) IV Interrupt Vector

0 0 0x8000_0180
0 1 0x8000_0200
1 0 0xBFC0_0380
1 1 0xBFC0_0400

WP 22 Ignored on write and returned as 0 on read. R 0
－ 21:16 Ignored on write and returned as 0 on read. R 0

IP[7:2] 15:10 Interrupt Request (Hardware): R Undefined
IP[7]: Hardware interrupt 5 or timer interrupt
IP[6]: Hardware interrupt 4
IP[5]: Hardware interrupt 3
IP[4]: Hardware interrupt 2
IP[3]: Hardware interrupt 1
IP[2]: Hardware interrupt 0
A timer interrupt occurs when the value of the Count register ($9)
equals the value of the Compare register ($11).

IP[1:0] 9:8 Interrupt Request (Software) R/W Undefined
IP[1]: Request software interrupt 1
IP[0]: Request software interrupt 0

－ 7 Ignored on write and returned as 0 on read. R 0
ExcCode 6:2 Exception code (See Table 8-11.) R Undefined

－ 1:0 Ignored on write and returned as 0 on read. R 0

Chapter 8 System Control Coprocessor (CP0) Registers

Table 8-11 Exception Code (ExcCode) Field

8-12

Exception Code Value
Mnemonic Description

Decimal Hexadecimal
0 0x00 Int Interrupt exception (software and hardware)
4 0x04 AdEL Address Error exception (instruction fetch or load)
5 0x05 AdES Address Error exception (Store)
6 0x06 IBE Bus Error exception (instruction fetch)
7 0x07 DBE Bus Error exception (data load)
8 0x08 Sys System Call exception
9 0x09 Bp Breakpoint exception

10 0x0a RI Reserved Instruction exception
11 0x0b CpU Coprocessor Unusable exception
12 0x0c Ov Integer Overflow exception
13 0x0d Tr Trap exception

Other (Reserved)

 Chapter 8 System Control Coprocessor (CP0) Registers

8.3.6 EPC Register (14)

The EPC register contains the address at which processing resumes after an exception has been
serviced.

For synchronous exceptions, the EPC register contains either one of the following:

• the virtual address of the instruction that was the direct cause of the exception
• the virtual address of the immediately preceding branch or jump instruction (When the
exception-causing instruction is in a branch delay slot, the BD bit in the Cause register is set.)

The processor does not write to the EPC register when the EXL bit in the Status register is set to
one.

31 0

EPC

Table 8-12 EPC Register Field Descriptions

8-13

Field Read/ Reset Description
Name Bits Write Value

EPC 31:0 Exception Program Counter R/W Undefined

Chapter 8 System Control Coprocessor (CP0) Registers

8.3.7 PRId Register (15)

The PRId register is a read-only register that indicates the implementation and revision identifier of
the CPU and the CP0.

31 24 23 16 15 8 7 0

Company Options Company ID Processor ID Revision

Table 8-13 PRId Register Field Descriptions

8-14

Field Read/ Reset Description
Name Bits Write Value

Company-dependent options Company 31:24 R 0x00
Returned as 0 on read. Options
Company ID Company 23:16 R 0x07
In the TX19A, this field is fixed at 0x07. ID
Processor ID R 0x40 Processor 15:8
In the TX19A, this field is fixed at 0x40. ID

Revision 7:0 Revision R 0x00
In the TX19A, this field is fixed at 0x00.

Note: PRId register is read-only.

 Chapter 8 System Control Coprocessor (CP0) Registers

8.3.8 ErrorEPC Register (30)

The ErrorEPC register is a read/write register that captures the value of the Program Counter (PC)
on Reset and NMI exceptions.

The ErrorEPC register contains one of the following addresses:

• the virtual address of the instruction that was the direct cause of the exception
• the virtual address of the immediately preceding branch or jump instruction when the error-causing
instruction is in a branch delay slot

31 0

ErrorEPC

Table 8-14 ErrorEPC Register Field Descriptions

8-15

Field Read/ Reset Description
Name Bits Write Value

ErrorEPC 31:0 Error Exception Program Counter R/W Undefined

Chapter 8 System Control Coprocessor (CP0) Registers

8.3.9 Shadow Register Set Control Register: SSCR (22 or 9：SEL6)

31 30 16
SSD 0

15 12 11 8 7 4 3 0

0 PSS 0 CSS

Table 8-15 SSCR Register Field Descriptions

8-16

Field Read/ Reset Description
Name Bits Write Value

SSD 31 Shadow Register Set Disable Signal R/W 1
0: MIPS32 Version.1.0 with Shadow Register Set
1: MIPS32 Version.1.0

－ 30:12 Reserved bits R 0
PSS 11:8 Previous Shadow Register Set R/W Undefined

x000: Main GPRs
x001: Shadow Register 1
x010: Shadow Register 2
x011: Shadow Register 3
x100: Shadow Register 4
x101: Shadow Register 5
x110: Shadow Register 6
x111: Shadow Register 7

－ 7:4 Reserved bits R 0
CSS 3:0 Current Shadow Register Set R/W 0000

x000: Main GPRs
x001: Shadow Register 1
x010: Shadow Register 2
x011: Shadow Register 3
x100: Shadow Register 4
x101: Shadow Register 5
x110: Shadow Register 6
x111: Shadow Register 7

Note 1: The SSCR register is a read/write register.
Note 2: When the processor accepts an interrupt request from the interrupt controller, the value of the CSS field is

copied to the PSS field, and the CSS field is updated with the value of the new interrupt request level.
Note 3: On an ERET, the value of the PSS field is restored to the CSS field.
Note 4: The instruction that modifies the contents of the SSCR register must be followed by two NOPs to avoid

pipeline hazards.

Example: MTC0 r18, SSCR

NOP

NOP

 ADD r19, r12, r13
Note 5: When the SSD bit is set, the Shadow Register Set is not updated by any interruptions.
Note 6: When the SSD bit is set, only shadow set 0 is accessible, and the value of the CSS field is ignored.

 Chapter 8 System Control Coprocessor (CP0) Registers

 PSS CSS

8-17

Before Interrupt xxx 2

 Interrupt Level = 5

After Interrupt 2 5

 2 2 After Return from
Interrupt

 (ERET Instruction)

Figure 8-16 Saving and Restoring the Shadow Register Set Number

Chapter 8 System Control Coprocessor (CP0) Registers

8.3.10 IER Register (9:SEL7)

The IER register is used to set or clear the IE bit in the Status register. Writing a zero to the IER
register causes the IE bit in the Status register to be cleared. Writing a non-zero value to the IER
register causes the IE bit to be set. Use the instruction “MTC0 r0, IER” to disable interrupts. Use a
register that contains a non-zero value as the target register like “MTC0 $sp, IER” to enable
interrupts.

31 0

Interrupt Enable Register

Table 8-17 IER Register Field Descriptions

8-18

Field Read/ Reset Description
Name Bits Write Value

IER 31:0 Interrupt Enable Register R/W Undefined
This register is used to set or clear the IE bit in the Status register.
Writing a 0 to this register causes the IE bit to be cleared. Writing a
non-zero value to this register causes the IE bit to be set.

 Chapter 8 System Control Coprocessor (CP0) Registers

8.4 Debug Exception Handling Registers
The TX19A allows program instruction execution to arbitrarily stop to handle debugging events.
This section provides explanations about the extra hardware-based features the TX19A incorporate to
enhance program debug.

8.4.1 Debug Register (23)

As a debugging aid, the Debug register reflects conditions that were in effect at the time a debug
exception occurred and allows you to initiate debug processing. Code execution breakpoints can be
generated by embedding Software Debug Breakpoint (SDBBP) instructions in the code at the time
SDBBP instruction is executed.
Additionally, the single-step feature may be enabled by setting the SSt bit in the Debug register;
when single-step mode is enabled, a Single-Step exception occurs each time the processor executes
an instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Count
DM

IBus
EP

M
CheckP`

DDBS
Impr

DDBL
Impr

EJTAG
ver[2:0]

8-19

DBD DM No
DCR

Cache
EP

DBus
EPLSNM Doze Halt IEXI

15 14 10 9 8 7 6 5 4 3 2 1 0

EJTAG
ver[2:0]

DexcCode NoSSt SSt 0 DINT DIB DDBS DDBL DBp DSS

Table 8-18 Debug Register Field Descriptions (1 of 3)

Field Read/ Reset Description
Name Bits Write Value

DBD 31 Debug Branch Delay: R Undefined
Set when a debug exception occurred in a jump or branch delay
slot.

DM 30 Debug Mode: R 0
Indicates whether a debug exception occurred. This bit is set when
a debug exception is taken and cleared on a DERET.

NoDCR 29 dseg memory segment: R 0
0: Dseg is present
1: No dseg present

LSNM 28 Controls access of load/store between dseg and remaining memory when
dseg is present:

R 0

0: Load/store in dseg address range go to dseg
1: Load/store in dseg address range go to system memory

Chapter 8 System Control Coprocessor (CP0) Registers

Table 8-18 Debug Register Field Descriptions (2 of 3)

8-20

Field Read/ Reset Description
Name Bits Write Value

Doze 27 Low-Power Mode Flag (Doze): Ｒ Undefined
Set if the processor was in low-power Doze mode when a debug
exception occurred.

Halt 26 Low-Power Mode Flag (Halt): Ｒ Undefined
Set if the processor was in low-power Halt mode when a debug
exception occurred.

CountDM 25 Count Register in Debug Mode: R/W 0
0: Stops the Count register in Debug mode.
1: Runs the Count register in Debug mode.

IBusEP 24 Instruction Bus Error Pending: R/W1 0
Set when a bus error (from an instruction fetch) is detected or a 1 is
written to the bit by software in debug mode. Cleared when a Bus Error
exception is taken by the processor. If the IEXI bit is cleared when the
IBusEP bit is set, the pending Bus Error exception is taken by the
processor, and the IBusEP bit is cleared.
Writing a 0 to this bit has no effect.

McheckP 23 Not implemented in the TX19A. Returned as 0 on read. R 0
CacheEP 22 Not implemented in the TX19A. Returned as 0 on read. R 0
DBusEP 21 Data Bus Error Pending: R/W1 0

Set when a bus error (from a data access) is detected or a 1 is
written to the bit by software in debug mode. Cleared when a Bus Error
Exception is taken by the processor. If the IEXI bit is cleared when the
DBusEP bit is set, the pending Bus Error exception is taken by the
processor, and the DBusEP bit is cleared.
Writing a 0 to this bit has no effect.

IEXI 20 An Imprecise Error eXception Inhibit (IEXI) R/W 0
Set when the processor takes a debug exception or an exception
occurs in Debug mode. Cleared by the DERET instruction. Also
modifiable by software.
When the IEXI bit is set, Bus Error exceptions (from instruction
fetches and data accesses) are inhibited or deferred until the bit is
cleared.
Debug Data Break Store Imprecise Exception: R UndefinedDDBS 19
Set when a data address break occurred during a write bus cycle. Impr
Cleared when a general exception occurred in Debug mode.
Debug Data Break Load Imprecise Exception: R UndefinedDDBL 18
Set when a data address break occurred during a read bus cycle. Impr
Cleared when a general exception occurred in Debug mode.

EJATGver 17:15 EJTAG version: R 010
0: Version 1 and 2.0
1: Version 2.5
2: Version 2.6
3-7: Reserved

DExcCode 14:10 General Exception in Debug Mode: R Undefined
Indicates the Exception Code (ExcCode) in the same manner as for
the Cause register if a general exception occurs while a debug
exception handler is being executed in Debug mode (i.e., DM=1).
See Table 8-11 for a list of exception codes.

NoSSt 9 Single-Step Feature Available: R 0
0: Single-step feature available
1: No single-step feature available
In the TX19A, this bit is fixed at 0.

 Chapter 8 System Control Coprocessor (CP0) Registers

Table 8-18 Debug Register Field Descriptions (3 of 3)

8-21

Field Read/ Reset Description
Name Bits Write Value

SSt 8 Single-Step: R/W 0
When set, the single-step feature is enabled. When cleared, the
single-step feature is disabled. The single-step feature is disabled
while a debug exception handler is being executed (i.e., DM=1).

0 7:6 Ignored on write and returned as 0 on read. 0 0
DINT 5 Debug Interrupt Exception: R Undefined

Set when a Debug Interrupt exception occurred. Cleared on a
general exception in Debug mode.

DIB 4 Debug Instruction Break: R Undefined
Set when an instruction address break occurred. Cleared on a
general exception in Debug mode.

DDBS 3 Debug Data Break Store Exception: R Undefined
Debug Data Break Store Exception:
Set when a data address break occurred on a store. Cleared on a
general exception in Debug mode. The Debug Data Break Store
exception is not implemented in the TX19A.

DDBL 2 Debug Data Break Load Exception: R Undefined
Set when a data address break occurred on a load. The breakpoint
match is evaluated on a load address, but not on the data value.
Cleared on a general exception in Debug mode. The Debug Data
Break Load exception is not implemented in the TX19A.

DBp 1 Debug Breakpoint Exception: R Undefined
Set when an SDBBP instruction caused a Debug Breakpoint
exception. Cleared on a general exception in Debug mode.

DSS 0 Debug Single-Step Exception: R Undefined
Set when a Single-Step exception occurred. Cleared on a general
exception in Debug mode.

Chapter 8 System Control Coprocessor (CP0) Registers

8.4.2 DEPC Register (24)

The DEPC register contains the address at which processing resumes after a debug exception has
been serviced.

The DEPC register contains either one of the following:
• the virtual address of the instruction that was the direct cause of the debug exception.
• the virtual address of the immediately preceding branch or jump instruction when the exception causing

instruction is in a branch delay slot
The DERET instruction causes a jump to DEPC address. The DEPC register is a read/write register.

31 0

DEPC

Table 8-19 DEPC Register Field Descriptions

8-22

Field Read/ Reset Description
Name Bits Write Value

DEPC 31:0 Debug Exception Program Counter R/W Undefined

 Chapter 8 System Control Coprocessor (CP0) Registers

8.4.3 DESAVE Register (31)

The debug exception handler uses the DESAVE register to save one of the general-purpose registers.
The general-purpose register saved in DESAVE is used to save the rest of the context to a predetermined
memory area, for example, in a processor probe. The DESAVE register allows the safe
debugging of exception handlers and other types of code where the existence of a valid stack for
context saving can not be assumed.

The DESAVE register is for exclusive use by an in-circuit emulator (ICE).

31 0

DESAVE

Table 8-20 DESAVE Register Field Descriptions

8-23

Field Read/ Reset Description
Name Bits Write Value

DESAVE 31:0 Debug Exception Save Register R/W Undefined

Chapter 8 System Control Coprocessor (CP0) Registers

 8-24

 Chapter 9 Exception Handling

Chapter 9 Exception Handling
This chapter discusses system resources related to exception and exception processing sequence.
The main sections in this chapter are:

 General Exceptions

 Interrupts

 Debug Exceptions

9.1 General Exceptions
Exceptions in the TX19A are broadly categorized into general exceptions or debug exceptions. This
section explains details concerning sources of specific exceptions, how each arises and
how each is processed.

9.1.1 How General Exception Processing Works

Exceptions are any conditions that alter the normal sequence of instructions as a result of external
interrupt signals, errors or unusual conditions arising in the execution of instructions. When
exceptions occur, the processor saves information about the state of the processor, enters Kernel
mode and transfers control to a predefined address. This predefined location is called exception
vector, which directly indicates the start of the actual exception handler routine.

All exceptions other than Reset and NMI exceptions are processed in the sequence shown in Figure
9-1. Reset and NMI exceptions are processed in the sequence shown in Figure 9-2.

9-1

Chapter 9 Exception Handling

EXL (Status [1])?

･ BD (Cause[31]) ← 1
･ EPC ← PC of jump or

 branch instr.

･ BD (Cause[31]) ← 0
･ EPC ← PC

Maskable
Interrupt？

* If BEV=0 & IV=0
PC ← 0x8000_0180

 If BEV=0 & IV=1
PC ← 0x8000_0200

 If BEV=1 & IV=0
PC ← 0xBFC0_0380

 If BEV=1 & IV=1
PC ← 0xBFC0_0400

If BEV=0
PC ← 0x8000_0180

If BEV=1
PC ← 0xBFC0_0380

CE (Cause[29:28]) ← Fault Cop #
ExcCode (Cause[6:2]) ← Exception code
EXL (Status[1]) ← 1

Branch to the exception handler

YES

NO

0

1

Exception detection

Instr. In branch
delay slot？

YES

NO

* BEV = Status [22]
 IV = Cause [23]

Figure 9-1 General Exception Processing

The CE field consists of the Cause register bit 28 and 29 is only valid when a Coprocessor Unusable
exception occurred.

 9-2

 Chapter 9 Exception Handling

･ ErrorEPC ← Pc of jump
 or branch instr.

･ ErrorEPC ← PC

YES

Status:
 BEV ← 1
 NMI ← 0
 ERL ← 1
 RP ← 0

Instr. in branch
delay slot？

PC ← 0xBFC0_0000

NO

◆ NMI Exception ◆ Reset Exception

Status:
 NMI ← 1
 ERL ← 1

Figure 9-2 Reset and NMI Exception Processing

9.1.2 General Exception Priorities

While more than one exception can occur at a time, the TX19A reports only one exception with the
priority order shown in Table 9-3.

Table 9-3 General Exception Types

Priority Exception Mnemonic Type

Highest Reset Reset Non_debug
 Single-Step exception DSS Debug
 Nonmaskable Interrupt (NMI) exception Nmi
 Maskable Interrupt exception Int

Non_debug

 Address Error exception (Instruction fetch) AdEL
 Bus Error exception (Instruction fetch) IBE

Non_debug

 Debug Breakpoint exception (SDBBP) DBp Debug
 Coprocessor Unusable exception (see Note) CpU
 Reserved Instruction exception, Integer Overflow

exception, Trap exception, System Call exception,
Breakpoint exception

RI、Ov、
Tr、Sys、

Bp

Non_debug

 Address Error exception (Load/store) AdEL/AdES
Lowest Bus Error exception (Data access) DBE

Non_debug

exception conditions arise. The CpU exception occurs, however, based on the priority order shown above.
Note: When FPU instructions with the COP1 opcode are executed with the CU1 bit cleared, both CpU and RI

9-3

Chapter 9 Exception Handling

9.1.3 Exception Vector Addresses (Exception Vectors)
An exception vector is the entry address of a routine that handles an exception. The Reset and
Nonmaskable Interrupt exceptions are always vectored to virtual address 0xBFC0_0000. The Debug
exception is always vectored to virtual address 0xBFC0_0480. Values of the other vectors depend
on the BEV bit (bit 23) in the Status register and the IV bit (bit 23) in the Cause register. Table 9-4
shows the exception vector addresses.

Table 9-4 Exception Vector Addresses

BEV=0 BEV=1
Exception Type

Virtual Physical Virtual Physical
Reset、NMI 0xBFC0_0000 0x1FC0_0000 0xBFC0_0000 0x1FC0_0000
Debug Breakpoint 0xBFC0_0480 0x1FC0_0480 0xBFC0_0480 0x1FC0_0480
Interrupt (IV=0) 0x8000_0180 0x0000_0180 0xBFC0_0380 0x1FC0_0380
Interrupt (IV=1) 0x8000_0200 0x0000_0200 0xBFC0_0400 0x1FC0_0400
All others 0x8000_0180 0x0000_0180 0xBFC0_0380 0x1FC0_0380

9.1.4 Reset Exception

 Cause

This exception occurs when the processor’s reset signal is asserted and then negated.

 Handling

1. All the CP0 registers are initialized.
2. The ERL bit in the Status register is set.
3. The ErrorEPC register is loaded with the restart PC.
4. The processor jumps to the exception handler located at address 0xBFC0_0000.

Note: If a Reset exception occurs during processor bus cycles, the processor immediately discontinues

the ongoing bus cycle and takes a Reset exception.

 9-4

 Chapter 9 Exception Handling

9.1.5 Nonmaskable Interrupt (NMI) Exception

 Cause

This exception occurs when the processor’s non-maskable interrupt signal, GNMI, is asserted. This
exception is not maskable; it occurs regardless of the settings of the EXL, ERL and IE bits in the
Status register.

 Handling

1. The values of the ExcCode and CE fields in the Cause register become undefined.
2. The ERL and NMI bits in the Status register are set.
3. The ErrorEPC register is loaded with the program counter (PC) on the interrupt. If the
interrupt-causing instruction is in a jump or branch delay slot, the ErrorEPC register points at
the preceding jump or branch instruction, and the BD bit in the Cause register is set. The
least-significant bit in the ErrorEPC register saves the ISA mode that was in effect prior to the
exception.
4. If the processor is in a reduced power mode (either HALT or DOZE mode), the reduced power
mode is exited and start to handle the NMI exception.
5. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to
32-bit ISA mode.
6. The processor jumps to the exception handler located at address 0xBFC0_0000.

Note: When an NMI interrupt request is generated during a bus cycle, the processor recognizes the

request at the end of the current bus cycle, as is the case with all the other exceptions but the

Reset exception.

9-5

Chapter 9 Exception Handling

9.1.6 Address Error Exception

 Cause

This exception occurs when an attempt is made to:

 fetch a 32-bit ISA instruction that is not aligned on a word boundary (AdEL)

 fetch a 16-bit ISA instruction that is not aligned on a halfword boundary (AdEL)

 load or store a word that is not aligned on a word boundary (AdEL/AdES)

 load or store a halfword that is not aligned on a halfword boundary (AdEL/AdES)

 reference a Kernel-mode address space (kseg0, kseg1 or kseg2) in User mode (AdEL/AdES)

 Handling

1. The AdEL code (4) or the AdES code (5) is set into the ExcCode field in the Cause register,
depending on whether the exception occurred during an instruction fetch or a load operation
(AdEL), or a store operation (AdES).

2. The BadVAddr register stores the virtual address that is not properly aligned or the virtual address
that improperly references a Kernel segment.

3. The following operation only occurs when the EXL bit in the Status register is cleared. The EXL
bit is set, and the EPC register is loaded with the address of the instruction that caused the
exception unless this instruction is not in a jump or branch delay slot. If it is in a jump or branch
delay slot, the EPC register points at the preceding jump or branch instruction and the BD bit in
the Cause register is set. The least-significant bit of the EPC register saves the ISA mode that was
in effect prior to the exception.

4. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to 32-bit
ISA mode.

5. The processor jumps to an appropriate exception vector address (see Table 9-5).

 9-6

 Chapter 9 Exception Handling

9.1.7 Bus Error Exception

 Cause

This exception occurs when the bus error signal, GBUSERR, is asserted during memory read bus
cycles. A Bus Error exception can occur during the fetching of any instruction or during a memory
read bus cycle by a load or bit manipulation instruction.

The handling of a write bus error differs between the TX19 and the TX19A. The assertion of the
GBUSERR signal causes the TX19 to take a Bus Error exception whether or not it is during a read
or write operation. In the TX19A, GBUSERR is not signaled to the processor during a write
operation because of the on-chip write buffer; in case of a write bus error, the system hardware must
terminate the write operation through use of an NMI interrupt.

 Handling

1. The IBE code (6) or the DBE code (7) is set into the ExcCode field in the Cause register,
depending on whether the exception occurred during an instruction fetch (IBE), or a data load or
store operation (DBE).

2. The following operation only occurs when the EXL bit in the Status register is cleared. The EXL
bit is set, and the EPC register is loaded with the address of the instruction that caused the
exception unless this instruction is not in a jump or branch delay slot. If it is in a jump or branch
delay slot, the EPC register points at the preceding jump or branch instruction and the BD bit in
the Cause register is set. The least-significant bit of the EPC register saves the ISA mode that was
in effect prior to the exception.

3. The EPC register saves the program counter (PC) on the exception for the following cases:
 a load instruction is followed by a SYNC instruction
 the instruction immediately following a load has dependency on the loaded data

In such cases, the pipeline stalls until the load is complete; so the EPC register displays the
address of the instruction immediately following the load instruction.

4. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to
32-bit ISA mode.

5. The processor jumps to an appropriate exception vector address (see Table 9-4).

9-7

Chapter 9 Exception Handling

9.1.8 Integer Overflow Exception

 Cause

This exception occurs when the ADD, ADDI or SUB instruction in the 32-bit ISA or the DIVE
instruction in the 16-bit ISA results in two’s-complement overflow or when the DIVE or DIVEU
instruction in the 16-bit ISA attempts to divide by zero.

 Handling

1. The Ov code (12) is set into the ExcCode field in the Cause register.

2. The following operation only occurs when the EXL bit in the Status register is cleared. The
EXL bit is set, and the EPC register is loaded with the address of the instruction that caused
the exception unless this instruction is not in a jump or branch delay slot. If it is in a jump or
branch delay slot, the EPC register points at the preceding jump or branch instruction and
the BD bit in the Cause register is set. The least-significant bit of the EPC register saves the
ISA mode that was in effect prior to the exception.

3. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to
32-bit ISA mode.

4. The processor jumps to an appropriate exception vector address (see Table 9-4).

 9-8

 Chapter 9 Exception Handling

9.1.9 Trap Exception

 Cause

This exception occurs when the TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU, TLTI,
TLTIU, TEQI or TNEI instruction results in a true condition.

 Handling

The Tr code (13) is set into the ExcCode field in the Cause register.

1. The following operation only occurs when the EXL bit in the Status register is cleared.

2. The EXL bit is set, and the EPC register is loaded with the address of the instruction that caused
the exception unless this instruction is not in a jump or branch delay slot. If it is in a jump or
branch delay slot, the EPC register points at the preceding jump or branch instruction and the BD
bit in the Cause register is set. The least-significant bit of the EPC register saves the ISA mode
that was in effect prior to the exception.

3. The processor jumps to the appropriate exception vector address (see Table 9-4).

* The Trap exception occurs only in 32-bit ISA mode.

9-9

Chapter 9 Exception Handling

9.1.10 System Call Exception

 Cause

This exception occurs when a SYSCALL instruction is executed.

 Handling

1. The Sys code (8) is set into the ExcCode field in the Cause register.

2. The following operation only occurs when the EXL bit in the Status register is cleared. The EXL
bit is set, and the EPC register is loaded with the address of the instruction that caused the exception
unless this instruction is not in a jump or branch delay slot. If it is in a jump or branch delay slot, the
EPC register points at the preceding jump or branch instruction and the BD bit in the Cause register is
set. The least-significant bit of the EPC register saves the ISA mode that was in effect prior to the
exception.

3. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to 32-bit
ISA mode.
4. The processor jumps to an appropriate exception vector address (see Table 9-4).

When a System Call exception occurs, control is transferred to an exception handler. The unused
bits (bits 25-6 in the 32-bit ISA; bits 25-16 and 10-5 in the 16-bit ISA) in a SYSCALL instruction is
available for use as software parameters to pass additional information. To examine these bits, load
the contents of the instruction at which the EPC register points. If the instruction is in a jump or
branch delay slot (i.e., the BD bit in the Cause register is set), add four to the contents of the EPC
register to locate the instruction.

To resume execution after the exception has been serviced, alter the contents of the EPC register by
adding four so that the SYSCALL instruction is not re-executed. If the SYSCALL instruction is in a
jump or branch delay slot (i.e., the BD bit in the Cause register is set), the instruction at the return
address is a jump or branch instruction. In that case, the jump or branch instruction must be
interpreted to set the EPC register before resuming execution.

 9-10

 Chapter 9 Exception Handling

9.1.11 Breakpoint Exception

 Cause

This exception occurs when a BREAK instruction is executed.

 Handling

1. The Bp code (9) is set into the ExcCode field in the Cause register.

2. The following operation only occurs when the EXL bit in the Status register is cleared. The
EXL bit is set, and the EPC register is loaded with the address of the instruction that caused
the exception unless this instruction is not in a jump or branch delay slot. If it is in a jump or
branch delay slot, the EPC register points at the preceding jump or branch instruction and the
BD bit in the Cause register is set. The least-significant bit of the EPC register saves the ISA
mode that was in effect prior to the exception.

3. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to
32-bit ISA mode.

4. The processor jumps to the appropriate exception vector address (see Table 9-4).

When a Breakpoint exception occurs, control is transferred to an exception handler. The unused bits
(bits 25-16 in the 32-bit ISA, bits 10-5 in the 16-bit ISA) in a BREAK instruction is available for
use as software parameters to pass additional information. To examine these bits, load the contents
of the instruction at which the EPC register points. If the instruction is in a jump or branch delay
slot (i.e., the BD bit in the Cause register is set), add four (in the 32-bit ISA mode) or two (in the 16-
bit ISA mode) to the contents of the EPC register to locate the instruction.

To resume execution after the exception has been serviced, alter the contents of the EPC register by
adding four (in 32-bit ISA mode) or two (in 16-bit ISA mode) so that the BREAK instruction is not
re-executed. If the BREAK instruction is in a jump or branch delay slot (i.e., the BD bit in the Cause
register is set), the instruction at the return address is a jump or branch instruction. In that case, the
jump or branch instruction must be interpreted to set the EPC register before resuming execution.

9-11

Chapter 9 Exception Handling

9.1.12 Reserved Instruction Exception

 Cause

In 32-bit ISA mode, this exception occurs when an attempt is made to:

 execute an instruction with an undefined major opcode (bits 31-26)

 execute a SPECIAL instruction with an undefined minor opcode (bits 5-0)

 execute a SPECIAL2 instruction with an undefined minor opcode (bits 5-0)

 execute a REGIMM instruction with an undefined minor opcode (bits 20-16)

 execute a COPz rs instruction (z=1 or 2) with an undefined minor opcode (bits 25-21)

 execute a LWCz, SWCz, LDCz, SDCz (z=1 or 2) or MOVCI instruction

In 16-bit ISA mode, this exception occurs when an attempt is made to:

 execute an instruction with an undefined instruction code: 11101xxxxxx01001,
11101xxxxxx10011, 11101xxxx1100000, 11101xxx01010001, 11101xxx01110001,
11101xxx11010001 or 11101xxx11110001

 execute an unimplemented instruction (LWU, LD, SD, DADDU, DSUBU, DADDIU,
DMULT, DMULTU, DDIV, DDIVU, DSLL, DSRL, DSRA, DSLLV, DSRLV, DSRAV)

 EXTEND an instruction that is not extensible

 execute an instruction with an undefined EXTEND+RR minor opcode (bits 4-0)

 execute an instruction with an undefined EXTEND+ADDIU8 minor opcode (bits 7-5 = 001
or 011)

 execute an instruction with an undefined EXTEND+INT minor opcode ([7][1:0] = 100 &
[10:8] ≠ 00x)

 9-12

 Chapter 9 Exception Handling

 Handling

1. The RI code (10) is set into the ExcCode field in the Cause register.

2. The following operation only occurs when the EXL bit in the Status register is cleared. The
EXL bit is set, and the EPC register is loaded with the address of the instruction that caused
the exception unless this instruction is not in a jump or branch delay slot. If it is in a jump or
branch delay slot, the EPC register points at the preceding jump or branch instruction and the
BD bit in the Cause register is set. The least-significant bit of the EPC register saves the ISA
mode that was in effect prior to the exception.

3. If the exception occurs while the processor was in 16-bit ISA mode, the processor switches to
32-bit ISA mode.

4. The processor jumps to an appropriate exception vector address (see Table 9-4).

9-13

Chapter 9 Exception Handling

9.1.13 Coprocessor Unusable Exception

 Cause

This exception occurs when an attempt is made to:

• execute a CP0 instruction in User mode when the CU0 bit in the Status register is cleared
(Kernel- and Debug-mode execution of CP0 instructions never causes this exception, regardless
of the setting of the CU0 bit)

• execute COP1, LWC1, SWC1, LDC1, SDC1 or MOVCI instruction when the CU1 bit in the
Status register is cleared

• execute COP2, LWC2, SWC2, LDC2 or SDC2 instruction when the CU2 bit in the Status
register is cleared

• execute COP3 instruction when the CU3 bit in the Status register is cleared

 Handling

The CpU code (11) is set into the ExcCode field in the Cause register.

1. The CE field in the Cause register shows which of the coprocessor units was referenced when
an exception occurred.

2. The following operation only occurs when the EXL bit in the Status register is cleared. The
EXL bit is set, and the EPC register is loaded with the address of the instruction that caused
the exception unless this instruction is not in a jump or branch delay slot. If it is in a jump or
branch delay slot, the EPC register points at the preceding jump or branch instruction and the
BD bit in the Cause register is set. The least-significant bit of the EPC register saves the ISA
mode that was in effect prior to the exception.

3. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to
32-bit ISA mode.

4. The processor jumps to an appropriate exception vector address (see Table 9-4).

 9-14

 Chapter 9 Exception Handling

9.1.14 Maskable Interrupt Exception (Interrupts)

 Cause

The TX19A supports the following maskable interrupts:

• Two software interrupts (IP0 and IP1)

• Six hardware interrupts (IP2 to IP7)

• One timer interrupt (IP7)

This exception occurs when all of the following conditions are met:

1. An interrupt request bit in the IP [7:0] field of the Cause register is set (Cause).
2. The corresponding interrupt mask bit in the IM [7:0] field of the Status register is set
(Status).
3. The Interrupt Enable (IE) bit in the Status register is set (Status).
4. The processor is not in Debug mode; i.e., the DM bit in the Debug register is cleared

(Debug).
5. The Error Level (ERL) and Exception Level (EXL) bits in the Status register are cleared

(Status).

An interrupt is taken when all of these conditions are true and a higher-priority exception is not
being serviced.

IP7 can be configured for either a hardware interrupt (GINT [5] input) or an internal timer interrupt.
The timer interrupt is valid when the GTINTDIS input is at logic 0, and GINT [5] is valid when it is
at logic 1.

 Handling

The interrupt vector address varies, depending on the settings of the BEV bit in the Status register
and the IV bit in the Cause register.

Table 9-5 Maskable Interrupt Vectors

BEV (Status[22])
IV (Cause[23])

BEV=0 BEV=1
IV=0 0x8000_0180 0xBFC0_0380
IV=1 0x8000_0200 0xBFC0_0400

9-15

Chapter 9 Exception Handling

 Servicing

A software interrupt can be cleared by writing a 0 to the corresponding IP bit (IP1 or IP0) in the
Cause register.
A hardware interrupt can be cleared by clearing the cause of the interrupt.
A timer interrupt can be cleared by altering the Compare register value.

9.2 Interrupts
The TX19A provides a non-maskable interrupt and maskable hardware and software interrupts. This
section describes the types of interrupts, how interrupts are prioritized and how interrupts are
recognized by the processor.

9.2.1 Interrupt Types

The TX19A recognizes a non-maskable interrupt, six maskable hardware interrupts and two
maskable software interrupts. Interrupt exceptions are processed by hardware and then serviced by
software (interrupt service routines). See 9.1.14, Maskable Interrupt Exception and
9.1.5, Nonmaskable Interrupt (NMI) Exception for how interrupt exceptions are
handled by processor hardware.

Sources of non-maskable interrupts can be an assertion of the processor’s input or on-chip
peripherals such as watchdog timers. See individual hardware user’s manuals for possible on-chip
sources of non-maskable interrupts. Non-maskable interrupts are for implementation of critical
interrupt routines and can not be masked (disabled) by software; they are always recognized
regardless of CPU operation mode and forces the processor to restart at 0xBFC0_0000.

Maskable hardware interrupts are detected with the processor’s 3-bit interrupt port. Interrupt
requests originate from external or on-chip hardware resources. Interrupt requests are submitted to
the interrupt controller, which then turns them into a 3-bit priority level. The priority-level signals
are connected to the IP4, IP3 and IP2 ports of the TX19A processor core. The TX19A automatically
switches to a specific shadow register set associated with the conditions of IP4, IP3 and IP2
immediately after the interrupt receipt. Thus, for the processor to accept a maskable hardware
interrupt, the IM [4:2] bits in the Status register must be 111.

 9-16

 Chapter 9 Exception Handling

There are two software interrupts, IP1 and IP0. Software interrupts can be generated by setting the
corresponding bit in the Cause register. The application program may use these bits to request
interrupt service. There are corresponding bits in the Status register to mask respective software
interrupts.

9.2.2 Maskable Interrupt Vectors

Maskable interrupts are vectored to the addresses shown in Table 9-5, depending on the register
settings. The TX19A uses the same vector addresses for both hardware and software interrupts.
When an interrupt occurs, the interrupt service routine must check the interrupt controller in order to
determine the source of the interrupt, read the corresponding vector address and transfer control to it.

9.2.3 Maskable Interrupt Recognition

Maskable interrupts are taken when all of the following conditions are true:

• An interrupt request bit in the IP [7:0] field of the Cause register is set (Cause).

• The corresponding interrupt mask bit in the IM [7:0] field of the Status register is set (Status).

• The Interrupt Enable (IE) bit in the Status register is set (Status).

• The processor is not in Debug mode (Debug); i.e., the DM bit in the Debug register is cleared.

• The Error Level (ERL) and Exception Level (EXL) bits in the Status register are cleared.

For the processor to accept a maskable hardware interrupt, the IM [4:2] bits in the Status register
must be 111.

In the event that both hardware- and software-requested interrupts are posted simultaneously, the
hardware interrupt is delivered first while the software interrupt is left pending.

9-17

Chapter 9 Exception Handling

Table 9-6 Mapping of Interrupts to the Cause and Status Registers

Cause Register Status Register
Interrupt type

Interrupt
Number Bit

Number Name Bit
Number Name

Software Interrupt
0
1

[8]
[9]

IP0
IP1

[8]
[9]

IM0
IM1

0 [10] IP2 [10] IM2
1 [11] IP3 [11] IM3
2 [12] IP4 [12] IM4
3 [13] IP5 [13] IM5

Hardware Interrupt

4 [14] IP6 [14] IM6
Hardware Interrupt or
Timer Interrupt 5 [15] IP7 [15] IM7

3

Resolve hardware interrupt priority

Interrupt Controller

Software Interrupt

(Cause Register: IP1 or IP0 ? 1)

Switch shadow register set

Resolve interrupt priority

Check interrupt enable conditions

Accept an interrupt

Hardware Interrupt Level

Source #1
Source #2

Source #3

0
1

2
3

4
5

6
7

 CSS

 PSS

Figure 9-7 Maskable Interrupt Recognition

 9-18

 Chapter 9 Exception Handling

9.2.4 Shadow Register Sets

When a hardware interrupt occurs, the TX19A switches to a specific shadow register set associated
with its priority level. The interrupt level is set to CSS bit (bit 3-0) in SSCR register. At the same time,
CSS bit before update is set to PSS bit (bit11-8). The 3-bit priority-level signals from the interrupt
controller are connected to the IP4, IP3 and IP2 ports of the processor. When the processor recognizes
the interrupt, it switches to corresponding shadow register set depend on the signal conditions (see
Table 9-8). Software interrupts, the internal timer interrupt or any other exceptions do not cause the
TX19A to switch the shadow register set. The value of the PSS field is updated instead.

On execution of the ERET instruction, the value of the PSS field is restored to the CSS field (see
Figure 8-1).

A debug exception and a return from a debug exception (via a DERET instruction) do not change
the CSS and PSS fields.

Table 9-8 Relationships Between IP[4:2] Signals and Shadow Register Sets

IP4 IP3 IP2 Shadow Register Set

0 0 0 –
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

9-19

Chapter 9 Exception Handling

9.3 Debug Exceptions
There are Single-Step and Debug Breakpoint exceptions in the TX19A. This section provides
details concerning sources of specific debug exceptions, how each arises and how each processed.

9.3.1 How Debug Exception Processing Work

The TX19A allows program instruction execution to arbitrarily stop to handle debugging events.
Code execution breakpoints can be generated by the Software Debug Breakpoint (SDBBP)
instruction. The single-step feature may be enabled by setting the SSt bit in the Debug register.

Debug exception processing occurs in the sequence shown in Figure 9-9.

Running Program

D
ebug E

xception C
ondition

Debug Exception Processing

Debug

PC

DEPC

Debug Exception
Handler (2) Capture cause and

current state of exception

 Set exception return address
(1)

(5) DERET
 Instruction

(3) Change ISA mode to 32-bit

(4) Set exception vector
 address

(6)

Debugger
Command
Processing

Figure 9-9 Exception Operation

5. The currently executing instruction and any subsequent instructions in the pipeline are aborted.

6. The debug exception registers save information about the debugging event.

• The Debug register shows the cause of the debug exception and whether it is currently being
serviced.

• The DEPC register captures the virtual address of the instruction that caused a debug exception.
When the instruction is in a jump or branch delay slot, the DEPC register is rolled back to point to
the jump or branch instruction so that it can be re-executed, and the DBD bit in the Debug
register is set. The least-significant bit of the DEPC register is the ISA mode bit that indicates the
ISA mode that as in effect when the exception occurred.

 9-20

 Chapter 9 Exception Handling

 3. The processor enters Kernel mode and disables all interrupts, independent of the setting of the
Status register. If the exception occurs in 16-bit ISA mode, the least-significant bit (i.e., the
ISA mode bit) of the PC is set to zero, bringing the processor into 32-bit ISA mode.

 4. The PC is loaded with the Debug exception vector address to jump to the starting location of
the debug exception handler.

5. At completion of the debug exception handler, the DERET instruction is executed to jump
back to the return address saved in the DEPC register.

6. Processing resumes from the point where the processor left off when the exception occurred.

9.3.2 Debug Exception Types

Table 9-10 gives the types of debug exceptions that can occur in the TX19A processor.

Table 9-10 Debug Exception Types

Exception Type Description

Single-Step A Single-step exception occurs before the next instruction starts execution when the
SSt bit in the Debug register is set.

Debug Breakpoint

A Debug Breakpoint exception provides a code execution breakpoint; it occurs
when an SDBBP instruction is executed. If the SSt bit in the Debug register is set, a
Single-step exception takes precedence over a Debug Breakpoint exception. If the
SDBBP instruction is executed while a debug exception is being serviced (i.e.,
when the DM bit in the Debug register is 1), another debug exception is taken; in
this case, the Break exception code is set into the DExcCode field in the Debug
register.

9.3.3 Debug Exception Priorities

A debug exception and a general exception may occur simultaneously. In that case, the processor
services the exceptions in the order shown in Table 9-1.

9-21

Chapter 9 Exception Handling

9.3.4 Exception Masking

While a debug exception is being serviced (DM=1 and IEXI=1), the processor masks all the other
exceptions.

• When a Bus Error event occurs on an instruction fetch, the IBusEP bit in the Debug register is set
to flag its occurrence. When a Bus Error event occurs on a data access, the DBusEP bit in the
Debug register is set.

• All maskable interrupts are disabled while a debug exception is being serviced. (Maskable
interrupts are unmasked by the execution of a DERET instruction.)

• A non-maskable interrupt is left pending until a return from a debug exception is made through
the DERET instruction.

• When the IEXI bit in the Debug register is cleared, the TX19A responds to a general exception
event (except maskable and non-maskable interrupt requests). Even if a general-exception
condition arises, a debug exception is processed, causing the processor to jump to the debug
exception handler. In this case, the Debug register bits that indicate the cause of the exception
(DINT, DIB, DBp, DSS, DDBSImpr and DDBLImpr) remain unchanged. Instead the DExcCode
field shows the cause of the general exception that occurred in Debug mode.

9.3.5 Executing a Debug Exception Handler

A debug exception handler should operate the processor under controlled conditions for program
debug. It should check the DSS and DBp bits in the Debug register to determine whether to perform
single-step execution or code-execution breakpoint operations.

9.3.6 Returning from Debug Exceptions

Returning from the debug exception handler is made through the DERET instruction, which
performs the following:

1. Restores the return address in the DEPC register into the program counter (PC) so that the
processor resumes processing from the point where a debug exception occurred. If the
instruction that caused an exception is in a jump or branch delay slot, the PC points at the
preceding jump or branch instruction so that it can be re-executed. The ISA mode bit of the
PC is restored from bit 0 of the DEPC register to enter ISA mode that was in effect before the
exception occurred.

2. Clears the Debug Mode (DM) and IEXI bits in the Debug register.

3. Gets out of the forced "Kernel mode" state.

 9-22

 Chapter 9 Exception Handling

9.3.7 Single-Step Exception

 Cause

This exception occurs when the SSt bit in the Debug register is set.

 Handling

A Single-step exception takes place before executing the next instruction. Figure 9-11 highlights the
CP0 register fields that are used to handle this exception.

 DBD

31

Debug register

DEPC register

DM

30

DSS

0

IEXI

31 0

DExcCode

14 1020

DBusEP

21

IBusEP

24

SSt

8

Figure 9-11 Single-Step Exception

1. The DM and DSS bits in the Debug register are set. That a Single-Step exception occurred means

the SSt bit had been set.
2. The DEPC register stores the program counter on the exception. The least-significant bit in the

DEPC register saves the ISA mode that was in effect prior to the exception.
3. The processor enters Kernel mode and disables all interrupts, independent of the settings of the

Status register.
4. The processor jumps to the exception handler located at address 0xBFC0_0480.

The processor does not take a Single-Step exception for the following cases:

• the instruction in a jump or branch delay slot

• the first instruction on returning from a debug instruction through the DERET instruction (see
Figure 9-12)

• a debug exception is being serviced (i.e., the DM bit in the Debug register is set)

9-23

Chapter 9 Exception Handling

DERET

NOP

#1 after the return

#2 after the return

#3 after the return

#4 after the return

#1 in debug exception handler

The DEPC register points at instruction #2 after the return from the exception.

F E D M W

F E D M W

F D

F

F E D M W

Executed

Not Executed

Executed

Single-step exception

Nullified

Not fetched

Exception handler’s

starting instruction

F E D M W

Figure 9-12 CPU Pipeline Operation After the DERET Instruction

9.3.8 Debug Breakpoint Exception

 Cause

This exception occurs when an SDBBP instruction is executed.

 Handling

Figure 9-13 highlights the CP0 register fields that are used to handle this exception.

 DBD

31

Debug register

DEPC register

DM

30

DBp

1

IEXI

31 0

DExcCode

14 1020

DBusEP

21

IBusEP

24

Figure 9-13 Debug Breakpoint Exception

1. The DM and DBp bits in the Debug register are set. That a Debug Breakpoint exception occurred

means the SSt bit had been cleared.
2. The DEPC register stores the program counter on the exception. If the processor is executing an

instruction in a jump or branch delay slot, the DEPC register points at the preceding jump or
branch instruction, and the DBD bit in the Debug register is set. The least-significant bit in the
DEPC register saves the ISA mode that was in effect prior to the exception.

3. The processor enters Kernel mode and disable all interrupts, independent of the settings of the
Status register.

4. If the exception occurs while the processor is in 16-bit ISA mode, the processor switches to 32-bit
ISA mode.

5. The processor jumps to the exception handler located at address 0xBFC0_0480.

 9-24

 Chapter 9 Exception Handling

The unused bits (bits 25-6 in the 32-bit ISA, bits 10-5 in the 16-bit ISA) in an SDDBP instruction are
available for use as software parameters to pass additional information to an exception handler. To
examine these bits, load the contents of the instruction at which the DEPC register points. If the
instruction is in a jump or branch delay slot (i.e., the DBD bit in the Debug register is set), add four to
the contents of the DEPC register to locate the instruction.
To resume execution after the exception has been serviced, alter the contents of the DEPC register by
adding four (in 32-bit ISA mode) or two (in 16-bit ISA mode) so that the SDDBP instruction is not
re-executed. If the SDDBP instruction is in a jump or branch delay slot (i.e., the DBD bit in the Debug
register is set), the instruction at the return address is a jump or branch instruction. In that case, the
jump or branch instruction must be interpreted to set the DEPC register before resuming execution.

9-25

Chapter 9 Exception Handling

 9-26

 Chapter 10 Power Consumption Management

Chapter 10 Power Consumption Management
The TX19A provides hardware support for several levels of power reduction. The Halt and Doze
modes are entered by setting the RP bit in the CP0's Status register and executing the WAIT
instruction. This chapter describes the power management features and capabilities provided by the
TX19A.

10.1 Power-Saving Modes
Figure 10-1 illustrates the power-saving modes provided by the TX19A.

Free-Running Clock Clock Stopped

Standby

CPU Inactive

Doze
(CPU bus requests

monitored)

Halt
(CPU bus requests

disabled)

Normal Operation
(Full-On mode)

CPU Active

Figure 10-1 Power-Saving Modes

10-1

Chapter 10 Power Consumption Management

The TX19A has the capability to dynamically control power consumption during operation. Table
10-2 describes the available power-saving modes.

Table 10-2 Power-Saving Modes

Mode Description

Standby Mode For lowest power operation, the processor clock can be removed altogether. There
are two levels of power savings achieved through Standby mode.
1. In one mode, both the processor and the oscillator circuitry are disabled
altogether.
2. In the other mode, the oscillator circuitry continues to run, but the clock input to
the processor is disabled.
For details on Standby mode, see respective hardware user’s manuals.

Halt Mode In Halt mode, all activities of the processor stop, and the CPU bus monitoring is
disabled. The TX19A processor assumes bus mastership. Halt mode can be
entered by executing the WAIT instruction when the RP bit in the Status register is
cleared.

Doze Mode In Doze mode, all activities of the processor stop except for the CPU bus monitor
that continues to operate and recognizes bus requests. Bus mastership is granted
to an external agent. Doze mode can be entered by executing the WAIT instruction
when the RP bit in the Status register is set.

Normal Mode (Full-On
Mode)

This is the default power state of the TX19A following a hardware reset, with the
processor fully powered and operating at full clock speed.

Other Modes There are components having additional power-saving capabilities, e.g., a very-low
speed mode in which the clock runs at 32.768 kHz for time-of-day clocks. For
additional power-saving modes, see respective hardware user’s manuals.

 10-2

 Chapter 10 Power Consumption Management

10.2 Halt Mode
Figure 10-2 depicts how Halt mode can be entered.

Standby Halt
(Disabled Bus Monitoring)

Full-On

Exception
(Reset, Nonmaskable Interrupt or Hardware Interrupt)

Clock Restarted

Clock Stopped Status Register: RP ? 0

WAIT Instruction

Figure 10-2 Halt Mode

The processor enters Halt mode on execution of the WAIT instruction when the RP bit in the Status
register is cleared during normal operation mode. Halt mode freezes the "processor core," preserving
the pipeline state. In Halt mode, the processor ignores any external bus requests, as it monopolizes
mastership of the bus.
In Halt mode, the on-chip write buffer unit (if any) continues to operate until all entries in it have
been written to external memory.

A wakeup from Halt mode can be achieved by causing a Reset, Nonmaskable
Interrupt or Maskable Hardware Interrupt exception. Any of these exceptions causes the processor
to exit Halt mode and take an exception.

Maskable interrupts are recognized even if they are masked in the Status register. In that case, after a
wakeup, normal processing resumes with all register contents intact, i.e., the processor continues
execution from the address following the instruction that brought the processor into Halt mode.

In Halt mode, the processor may have its clock input shut down for additional power savings. The
oscillator and/or clock stop causes the processor to enter Standby mode. Restarting the clock to the
processor causes it to return to Halt mode.

10-3

Chapter 10 Power Consumption Management

10.3 Doze Mode
Figure 10-3 depicts how Doze mode can be entered.

Doze

(Enabled Bus)
Full-On

Exception

(Reset, Nonmaskable Interrupt or Hardware Interrupt)

Status Register: RP ? 1
WAIT Instruction

Figure 10-3 Doze Mode

The processor enters Doze mode on execution of the WAIT instruction when the RP bit in the Status
register is cleared during normal operation mode. Like Halt mode, Doze mode freezes the "processor
core," preserving the pipeline state, but in Doze mode, the processor recognizes external bus requests.
In Doze mode, the on-chip write buffer unit (if any) continues to operate until all entries in it have
been written to external memory.
A wakeup from Doze mode can be achieved by causing a Reset, Non-maskable
Interrupt or Maskable Hardware Interrupt exception. Any of these exceptions causes the processor
to exit Doze mode and take an exception.
Maskable interrupts are recognized even if they are masked in the Status register. In that case, after a
wakeup, normal processing resumes with all register contents intact, i.e., the processor continues
execution from the address following the instruction that brought the processor into Doze mode.

 10-4

 Appendix A 32-Bit ISA Details

 A-1

Appendix A 32-Bit ISA Details
This appendix presents detailed information concerning each instruction in the 32-bit ISA, including
assembler syntax, instruction format, operation and exceptions that may occur due to the execution
of the instruction. Each instruction is listed alphabetically by mnemonic. For the variations of
instruction formats, see Section 3.1, Instruction Formats.

Appendix A 32-Bit ISA Details

 A-2

ADD rd, rs, rt
Add

Operation
rd ⇐ rs + rt

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt Rd
0

00000
ADD

100000

6 5 5 5 5 6

Description

The contents of general-purpose register rs is added to the contents of general-purpose register rt,
and the result is placed into general-purpose register rd.

In the case of c←a+b, an Interger Overflow exception occurs if a and b has the same sign and c has
the different one. The destination register (rd) is not altered when an Integer Overflow exception
occurs.

Exceptions

Interger Overflow exception

Examples

1. Assume that registers r2 and r3 contain 0x0200_0000 and 0x0123_4567 respectively. Then,
executing the instruction:

ADD r4,r2,r3

 places the sum (0x0323_4567) into r4.

2. Assume that registers r2 and r3 contain 0x7FFF_FFFF and 0x0000_0001 respectively. Then, the
addition of r2 and r3 gives the result 0x8000_0000, which is a negative number, indicating a
2’s-complement overflow. Thus executing the instruction:

ADD r4,r2,r3

causes an Integer Overflow exception. Register r4 is not modified as a result of this instruction.

 Appendix A 32-Bit ISA Details

 A-3

ADDI rt, rs, immediate
Add Immediate

Operation
rt ⇐ rs + ((immediate15)16 || immediate15..0)

Instruction Encoding
31 26 25 21 20 16 15 0

ADDI
001000

rs rt immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and added to the contents of general-purpose register rs. The
result is placed into general-purpose register rt.

An Integer Overflow exception is taken on 2’s-complement overflow. The destination register (rt) is
not altered when an Integer Overflow exception occurs.

With the 16-bit signed immediate, the immediate range is -32768 to +32767. If a number is outside
this range, you need to put it in a general-purpose register and use the ADD or ADDU instruction
(see Section 3.3.2, 32-Bit Constants).

Exceptions

Integer Overflow exception

Example

Assume that register r2 contains 0x0200_F000. Then, executing the instruction:

ADDI r3,r2,0x1234

places the sum 0x0201_0234 into r3.

+

0 2 0 0 F 0 0 0

0 2 0 1 0 2 3 4

0 0 0 0 1 2 3 4

r2

r3

Sign-Extended

Appendix A 32-Bit ISA Details

 A-4

ADDIU rt, rs, immediate
Add Immediate Unsigned

Operation
rt ⇐ rs + ((immediate15)16 || immediate15..0)

Instruction Encoding
31 26 25 21 20 16 15 0

ADDIU
001001

Rs rt immediate

6 5 5 16

Description

The term "Add Immediate Unsigned" is a misnomer; the 16-bit immediate is sign-extended and added
to the contents of general-purpose register rs. The result is placed into general-purpose register rt.
The only difference between this instruction and the ADDI instruction is that this instruction never
causes an Integer Overflow exception.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-5

ADDU rd, rs, rt
Add Unsigned

Operation
rd ⇐ rs + rt

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
ADDU
100001

6 5 5 5 5 6

Description

The contents of general-purpose register rs is added to the contents of general-purpose register rt, and
the result is placed into general-purpose register rd.
The only difference between this instruction and the ADD instruction is that this instruction never
causes an Integer Overflow exception.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-6

AND rd, rs, rt
AND

Operation
rd ⇐ rs AND rt

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
AND

100100

6 5 5 5 5 6

Description

The contents of general-purpose register rs is ANDed with the contents of general-purpose register
rt, and the result is placed into general-purpose register rd.

Exceptions
None

Example

Assume that registers r2 and r3 contain 0x8000_7350 and 0x0000_3456 respectively. Then, the
instruction:

AND r4,r2,r3

performs the logical AND between r2 and r3 and puts the result (0x0000_3050) in r4, as shown
below.

AND
1000 0000 0000 0000 0111 0011 0101 0000

0000 0000 0000 0000 0011 0000 0101 0000

0000 0000 0000 0000 0011 0100 0101 0110

r2

r3

r4

 Appendix A 32-Bit ISA Details

 A-7

ANDI rt, rs, immediate
Logical AND Immediate

Operation
rt ⇐ rs AND (016 || immediate15..0)

Instruction Encoding
31 26 25 21 20 16 15 0

ANDI
001100

rs rt immediate

6 5 5 16

Description

The 16-bit immediate is zero-extended and ANDed with the contents of general-purpose register rs.
The result is placed into general-purpose register rt.
The immediate field is 16 bits in length. If the immediate size is larger than that, you need to put it in
a general-purpose register and use the AND instruction (see Section 3.3.2, 32-Bit Constants).

Exceptions
None

Example
Assume that register r2 contains 0x0000_7350. Then, the instruction:

ANDI r3,r2,0x1234

performs the logical AND between 0x0000_7350 and 0x0000_1234 and puts the result
(0x0000_1210) in r3, as shown below.

AND

0000 0000 0000 0000 0111 0011 0101 0000

0000 0000 0000 0000 0001 0010 0001 0000

0000 0000 0000 0000 0001 0010 0011 0100

r2

r3

Zero-Extended

Appendix A 32-Bit ISA Details

 A-8

B offset
Unconditional Branch

Operation
 pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

BEQ
000100

0
00000

0
00000

offset

6 5 5 16

Description

The program unconditionally branches to the target address with a delay of one instruction (or two
pipeline cycles). The target address is computed relative to the address of the instruction in the branch
delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended and added to
PC+4 to form the target address.

Exceptions
None

Example
B SGEZERO

Assume that the B instruction resides at address 0x2000 and that label SGEZERO points to absolute
address 0x1C04. Then the assembler/linker turns this label into a relative offset of 0xFF00 (see the
figure below).
The processor unconditionally transfers program control to 0x1C04. The instruction in the branch
delay slot is executed before the branch is taken.

0xFFFF_FC00

The offset, 0xFF00, is shifted left

by 2 bits and sign-extended.

B SGEZERO

+

0x2004

0x2000

0x1C04

Branch Delay Slot

Branch Destination

Assembly Idiom

 Appendix A 32-Bit ISA Details

 A-9

BAL offset
Branch And Link

Operation
r31 ⇐ pc + 8; pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

0
00000

BGEZAL
10001

Offset

6 5 5 16

Description

The program unconditionally branches to the target address with a delay of one instruction (or two
pipeline cycles). The address of the instruction after the branch delay slot (PC+8) is saved in the link
register, r31 (ra). The target address is computed relative to the address of the instruction in the
branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended and
added to PC+4 to form the target address.

Exceptions
None

Example
BAL PSUB

Assume that the BAL instruction resides at address 0x2000 and that label PSUB points to absolute
address 0x2404. Then the assembler/linker turns this label into a relative offset of 0x0100 (see the
figure below).
The processor unconditionally transfers program control to address 0x2404. The instruction in the
branch delay slot is executed before the branch is taken.
The JR instruction is used at the end of the called subroutine to return control to the instruction after
the branch delay slot (PC+8).

JR r31

Assembly Idiom

Appendix A 32-Bit ISA Details

 A-10

Subroutine

0x0400

The offset, 0x0100, is shift left by

2 bits and sign-extended.

BAL PSUB

+

0x2004

0x2000

0x2404

Branch Delay Slot

Branch Destination

PC+8 is saved in r31. 0x2008

JR r31

0x0000 2008 r31

PC+8 is restored from r31.

 Appendix A 32-Bit ISA Details

 A-11

BEQ rs, rt, offset
Branch On Equal

Operation
if rs = rt then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

BEQ
000100

rs rt offset

6 5 5 16

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt. If the two registers are equal, then the program branches to the target address with a delay of one
instruction (or two pipeline cycles). The instruction in the branch delay slot is always executed,
regardless of whether the branch is taken or not. The target address is computed relative to the
address of the instruction in the branch delay slot (PC+4); the 16-bit immediate offset is shifted left
by two bits, sign-extended and added to PC+4 to form the target address.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-12

BEQL rs, rt, offset
Branch On Equal Likely

Operation
if rs = rt then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

BEQL
010100

rs rt offset

6 5 5 16

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt. If the two registers are equal, then the program branches to the target address with a delay of one
instruction (or two pipeline cycles). If the branch condition is true, the instruction in the branch
delay slot is executed before the branch; otherwise, it is nullified. The target address is computed
relative to the address of the instruction in the branch delay slot (PC+4); the 16-bit immediate offset
is shifted left by two bits, sign-extended and added to PC+4 to form the target address.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-13

BGEZ rs, offset
Branch On Greater Than Or Equal To Zero

Operation
if rs ≥ 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
BGEZ
00001

offset

6 5 5 16

Description

If the contents of general-purpose register rs are greater than or equal to zero, then the program
branches to the target address with a delay of one instruction (or two pipeline cycles). The instruction
in the branch delay slot is always executed, regardless of whether the branch is taken or not. The
target address is computed relative to the address of the instruction in the branch delay slot (PC+4);
the 16-bit immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the
target address.

Exceptions
None

Example
BGEZ r8,SGEZERO

Assume that this branch instruction resides at address 0x2000 and that label SGEZERO points to
absolute address 0x1C04. Then the assembler/linker turns this label into a relative offset of 0xFF00
(see the figure below).

If the contents of r8 is greater than or equal to zero (i.e., r8 has the sign bit cleared), the processor
transfers program control to address 0x1C04. The branch takes effect after the instruction in the
branch delay slot is executed.

Appendix A 32-Bit ISA Details

 A-14

The offset, 0xFF00, is shifted left

by 2 bits and sign-extended.

BGEZ r8, SGEZERO

+

0x2004

0x2000

0x1C04

Branch Delay Slot

Branch Destination

 Appendix A 32-Bit ISA Details

 A-15

BGEZAL rs, offset
Branch On Greater Than or Equal To Zero And Link

Operation
r31 ⇐ pc +8; if rs ≥ 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
BGEZAL

10001
offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than or equal to zero, then the program
branches to the target address with a delay of one instruction (or two pipeline cycles), and saves the
address of the instruction following the branch delay slot (PC+8) in the link register, r31. The
instruction in the branch delay slot is always executed, regardless of whether the branch is taken or
not. The target address is computed relative to the address of the instruction in the branch delay slot
(PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended and added to PC+4 to
form the target address.

General-purpose register rs may not be r31 because such an instruction cannot be restarted, with the
contents of rs altered by the return address. An exception or interrupt could prevent the completion
of a legal instruction in the branch delay slot. If that happens, after the exception handler routine has
been executed, processing must restart with the branch instruction.

Exceptions
None

Example
BGEZAL r8,PSUB

Assume that this branch instruction resides at address 0x2000 and that label PSUB points to
absolute address 0x2404. Then the assembler/linker turns this label into a relative offset of 0x0100
(see the figure below).

If the contents of r8 is greater than or equal to zero (i.e., r8 has the sign bit cleared), the processor
transfers program control to address 0x2404. The branch takes effect after the instruction in the
branch delay slot is executed.

Appendix A 32-Bit ISA Details

 A-16

The JR instruction is used at the end of the called subroutine to return control to the instruction after
the branch delay slot (PC+8).

JR r31

Subroutine

0x0400

The offset, 0x0100, is shifted left

by 2 bits and sign-extended.

BGEZAL r8, PSUB

+

0x2004

0x2000

0x2404

Branch Delay Slot

Branch Destination

PC+8 is saved in r31. 0x2008

JR r31

0x0000 2008 r31

PC+8 is restored from r31.

 Appendix A 32-Bit ISA Details

 A-17

BGEZALL rs, offset
Branch On Greater Than Or Equal To Zero And Link Likely

Operation
r31 ⇐ pc +8; if rs ≥ 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
BGEZALL

10011
offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than or equal to zero, then the program
branches to the target address with a delay of one instruction (or two pipeline cycles), and saves the
address of the instruction following the branch delay slot (PC+8) in the link register, r31. If the
branch condition is true, the instruction in the branch delay slot is executed before the branch;
otherwise, it is nullified. The target address is computed relative to the address of the instruction in
the branch delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended
and added to PC+4 to form the target address.

General-purpose register rs may not be r31 because such an instruction cannot be restarted, with the
contents of rs altered by the return address. An exception or interrupt could prevent the completion
of a legal instruction in the branch delay slot. If that happens, after the exception handler routine has
been executed, processing must restart with the branch instruction.

Exceptions
None

Example
BGEZALL r8,PSUB

Assume that this branch instruction resides at address 0x2000 and that label PSUB points to
absolute address 0x2404. Then the assembler/linker turns this label into a relative offset of 0x0100.

If the contents of r8 is greater than or equal to zero (i.e., r8 has the sign bit cleared), the processor
transfers program control to address 0x2404. The branch takes effect after the instruction in the
branch delay slot is executed. When the branch is not taken, the instruction in the branch delay is
nullified.

Appendix A 32-Bit ISA Details

 A-18

The JR instruction is used at the end of the called subroutine to return control to the instruction after
the branch delay slot (i.e., PC+8).

JR r31

Subroutine

0x0400

The offset, 0x0100, is shifted left

by 2 bits and sign-extended.

BGEZALL r8, PSUB

+

0x2004

0x2000

0x2404

Branch Delay Slot

Branch Destination

PC+8 is saved in r31. 0x2008

JR r31

0x0000 2008 r31

PC+8 is restored from r31.

 Appendix A 32-Bit ISA Details

 A-19

BGEZL rs, offset
Branch On Greater Than Or Equal To Zero Likely

Operation
if rs ≥ 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
BGEZL
00011

offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than or equal to zero, then the program
branches to the target address with a delay of one instruction (or two pipeline cycles). If the branch
condition is true, the instruction in the branch delay slot is executed before the branch; otherwise, it
is nullified. The target address is computed relative to the address of the instruction in the branch
delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended and added to
PC+4 to form the target address.

Exceptions
None

Example
BGEZL r8,SGEZERO

Assume that this branch instruction resides at address 0x2000 and that label SGEZERO points to
absolute address 0x1C04. Then the assembler/linker turns this label into a relative offset of 0xFF00
(see the figure below).

If the contents of r8 is greater than or equal to zero (i.e., r8 has the sign bit cleared), the processor
transfers program control to address 0x1C04. The branch takes effect after the instruction in the
branch delay slot is executed. When the branch is not taken, the instruction in the branch delay slot
is nullified.

Appendix A 32-Bit ISA Details

 A-20

0xFFFF_FC00
The offset, 0xFF00, is shifted left
by 2 bits and sign-extended.

BGEZ r8, SGEZERO

+

0x2004

0x2000

0x1C04

Branch Delay Slot

Branch Destination

 Appendix A 32-Bit ISA Details

 A-21

BGTZ rs, offset
Branch On Greater Than Zero

Operation
if rs > 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

BGTZ
000111

rs
0

00000
offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than zero, then the program branches to the
target address with a delay of one instruction (or two pipeline cycles). The instruction in the branch
delay slot is always executed, regardless of whether the branch is taken or not. The target address is
computed relative to the address of the instruction in the branch delay slot (PC+4); the 16-bit
immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the target
address.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-22

BGTZL rs, offset
Branch On Greater Than Zero Likely

Operation
if rs > 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

BGTZL
010111

rs
0

00000
offset

6 5 5 16

Description

If the contents of general-purpose register rs is greater than zero, then the program branches to the
target address with a delay of one instruction (or two pipeline cycles). If the branch condition is true,
the instruction in the branch delay slot is executed before the branch; otherwise, it is nullified. The
target address is computed relative to the address of the instruction in the branch delay slot (PC+4);
the 16-bit immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the
target address.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-23

BLEZ rs, offset
Branch On Less Than Or Equal To Zero

Operation
if rs ≤ 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

BLEZ
000110

rs
0

00000
offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than or equal to zero, then the program branches
to the target address with a delay of one instruction (or two pipeline cycles). The instruction in the
branch delay slot is always executed, regardless of whether the branch is taken or not. The target
address is computed relative to the address of the instruction in the branch delay slot (PC+4); the
16-bit immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the
target address.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-24

BLEZL rs, offset
Branch On Less Than Or Equal To Zero Likely

Operation
if rs ≤ 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

BLEZL
010110

rs
0

00000
offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than or equal to zero, then the program branches
to the target address with a delay of one instruction (or two pipeline cycles). If the branch condition
is true, the instruction in the branch delay slot is executed before the branch; otherwise, it is
nullified. The target address is computed relative to the address of the instruction in the branch
delay slot (PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended and added to
PC+4 to form the target address.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-25

BLTZ rs, offset
Branch On Less Than Zero

Operation
if rs < 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
BLTZ
00000

offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than zero, then the program branches to the
target address with a delay of one instruction (or two pipeline cycles). The instruction in the branch
delay slot is always executed, regardless of whether the branch is taken or not. The target address is
computed relative to the address of the instruction in the branch delay slot (PC+4); the 16-bit
immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the target
address.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-26

BLTZAL rs, offset
Branch On Less Than Zero And Link

Operation
r31 ⇐ pc +8; if rs < 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
BLTZAL
10000

offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than zero, then the program branches to the
target address with a delay of one instruction (or two pipeline cycles). The instruction in the branch
delay slot is always executed, regardless of whether the branch is taken or not. The target address is
computed relative to the address of the instruction in the branch delay slot (PC+4); the 16-bit
immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the target
address. The address of the instruction following the branch delay slot (PC+8) is unconditionally
saved in the link register, r31.

General-purpose register rs may not be r31 because such an instruction is not restart able, with the
contents of rs altered by the return address. An exception or interrupt could prevent the completion
of a legal instruction in the branch delay slot. If that happens, after the exception handler routine has
been executed, processing must restart with the branch instruction.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-27

BLTZALL rs, offset
Branch On Less Than Zero And Link Likely

Operation
r31 ⇐ pc +8; if rs < 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
BLTZALL

10010
offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than zero, then the program branches to the
target address with a delay of one instruction (or two pipeline cycles), and saves the address of the
instruction following the branch delay slot (PC+8) in the link register, r31. If the branch condition is
true, the instruction in the branch delay slot is executed before the branch; otherwise, it is nullified.
The target address is computed relative to the address of the instruction in the branch delay slot
(PC+4); the 16-bit immediate offset is shifted left by two bits, sign-extended and added to PC+4 to
form the target address.

General-purpose register rs may not be r31 because such an instruction cannot be restarted, with the
contents of rs altered by the return address. An exception or interrupt could prevent the completion
of a legal instruction in the branch delay slot. If that happens, after the exception handler routine has
been executed, processing must restart with the branch instruction.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-28

BLTZL rs, offset
Branch On Less Than Zero Likely

Operation
if rs < 0 then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
BLTZL
00010

offset

6 5 5 16

Description

If the contents of general-purpose register rs is less than zero, then the program branches to the
target address with a delay of one instruction (or two pipeline cycles). If the branch condition is true,
the instruction in the branch delay slot is executed before the branch; otherwise, it is nullified. The
target address is computed relative to the address of the instruction in the branch delay slot (PC+4);
the 16-bit immediate offset is shifted left by two bits, sign-extended and added to PC+4 to form the
target address.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-29

BNE rs, rt, offset
Branch On Not Equal

Operation
if rs ≠ rt then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

BNE
000101

rs rt offset

6 5 5 16

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt. If the two registers are not equal, then the program branches to the target address with a delay of
one instruction (or two pipeline cycles). The instruction in the branch delay slot is always executed,
regardless of whether the branch is taken or not. The target address is computed relative to the
address of the instruction in the branch delay slot (PC+4); the 16-bit immediate offset is shifted left
by two bits, sign-extended and added to PC+4 to form the target address.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-30

BNEL rs, rt, offset
Branch On Not Equal Likely

Operation

if rs ≠ rt then pc ⇐ pc + 4 + sign-extend(offset || 00)

Instruction Encoding
31 26 25 21 20 16 15 0

BNEL
010101

rs rt offset

6 5 5 16

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt. If the two registers are not equal, then the program branches to the target address with a delay of
one instruction (or two pipeline cycles). If the branch condition is true, the instruction in the branch
delay slot is executed before the branch; otherwise, it is nullified. The target address is computed
relative to the address of the instruction in the branch delay slot (PC+4); the 16-bit immediate offset
is shifted left by two bits, sign-extended and added to PC+4 to form the target address.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-31

BREAK code
Breakpoint

Operation
Breakpoint exception

Instruction Encoding
31 26 25 6 5 0

SPECIAL
000000

code
BREAK
001101

6 20 6

Description

When this instruction is executed, a Breakpoint exception occurs, immediately and unconditionally
transferring control to the exception handler.

The code field in the BREAK instruction is available for use as software parameters to pass
additional information. The exception handler can retrieve it by loading the contents of the memory
word containing the instruction. For more on this, see Section 9.1.11, Breakpoint Exception.

Exceptions
Breakpoint exception

Appendix A 32-Bit ISA Details

 A-32

CLO rd, rs
Count Leading Ones in Word

Operation
rd ⇐ count_leading_ones rs

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs 00000 rd
0

00000
CLO

100001

6 5 5 5 5 6

Description

The contents of general-purpose register rs is scanned from bit 31 to bit 0, and the number of
leading ones is written to general-purpose register rd. If all 32 bits in rs are set, the result written to
rd is 32.

Exceptions
None

Example
Assume that register r2 contains 0xFE23_DE67. Then, the instruction:

CLO r4, r2

counts the number of leading ones in r2 and puts the result, 0x0000_0007, in r4.

 Appendix A 32-Bit ISA Details

 A-33

CLZ rd, rs
Count Leading Zeros in Word

Operation
rd ⇐ count_leading_zeros rs

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs 00000 rd
0

00000
CLZ

100000

6 5 5 5 5 6

Description

The contents of general-purpose register rs is scanned from bit 31 to bit 0, and the number of
leading zeros is written to general-purpose register rd. If all 32 bits in rs are set, the result written to
rd is 32.

Exceptions
None

Example
Assume that register r2 contains 0x07EF_45CD. Then, the instruction:

CLZ r4, r2

counts the number of leading zeros in r2 and puts the result, 0x0000_0005, in r4.

Appendix A 32-Bit ISA Details

 A-34

DERET
Debug Exception Return

Operation
pc ⇐ DEPC, Debug[DM] ⇐ 0, Debug[IEXI] ⇐ 0

Instruction Encoding
31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

DERET
011111

6 1 19 6

Description

The DERET instruction is used to return control from a debug exception handler to a user program.
This is accomplished by loading the contents of the DEPC register into the program counter (PC).
See Section 9.3.6, Returning from Debug Exceptions, for details.

The DERET instruction does not have a delay slot. It is executed with a delay of one instruction (or
two pipeline cycles).

The DERET instruction restores the ISA mode bit (bit 0) of the PC from bit 0 of the DEPC register,
bringing the processor into the ISA mode that had been in effect before the debug exception was
taken.

The DERET instruction may not be in a jump or branch delay slot.

The operation of the DERET instruction is unpredictable if the processor is not in Debug mode (i.e.,
if the DM bit in the Debug register is cleared).

Typically, the DEPC register automatically captures the address of the exception-causing instruction
on a debug exception. If you want to use the MTC0 instruction to load the DEPC register with a
return address, the debug exception handler must execute at least two instructions before issuing the
DERET instruction.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-35

DIV rs, rt
Divide

Operation
LO ⇐ rs ÷ rt;
HI ⇐ rs MOD rt

Instruction Encoding
31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt
0

00 0000 0000
DIV

011010

6 5 5 10 6

Description

The contents of general-purpose register rs is divided by the contents of general-purpose register rt.
Both operands are treated as signed integers. The quotient is placed into register LO and the
remainder is placed into register HI. The DIV instruction never causes an Integer Overflow
exception.

The result of the DIV instruction is undefined if the divisor is zero. Typically, it is necessary to
check for a zero divisor and an overflow condition after a DIV instruction.

Any divide instruction is transferred to the dedicated divide unit as remaining instructions continue
through the pipeline. The divide unit keeps running even when delay cycles and exceptions occur.

If the DIV instruction is followed by an MFHI, MFLO, MADD, MADDU, MSUB or MSUBU
instruction before the quotient and the remainder are available, the pipeline stalls until they do
become available (see Section 5.4, Divide Instructions).

Exceptions
None

Appendix A 32-Bit ISA Details

 A-36

DIVU rs, rt
Divide Unsigned

Operation
LO ⇐ rs ÷ rt;
HI ⇐ rs MOD rt

Instruction Encoding
31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt
0

00 0000 0000
DIVU

011011

6 5 5 10 6

Description

The contents of general-purpose register rs is divided by the contents of general-purpose register rt.
The quotient is placed into register LO and the remainder is placed into register HI. The DIVU
instruction never causes an Integer Overflow exception. The only difference between the DIV
instruction and this instruction is that this instruction treats both operands as unsigned integers.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-37

ERET
Exception Return

Operation
if Status[ERL] = 1 then pc ⇐ ErrorEPC

 Status[ERL] ⇐ 0

 else pc ⇐ EPC

 Status[EXL] ⇐ 0

SSCR[CSS] ⇐ SSCR[PSS]

Instruction Encoding
31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

ERET
011000

6 1 19 6

Description
ERET is an instruction for returning from an interrupt, exception or error trap.

The ERET instruction does not have a delay slot. It is executed with a delay of one instruction (two
pipeline cycles).

The ERET instruction restores the ISA mode bit (bit 0) of the PC from bit 0 of the ErrorEPC
register, bringing the processor into the ISA mode that had been in effect before the exception was
taken.

An attempt to execute the ERET instruction in User mode when the CU0 bit in the Status register is
cleared causes a Coprocessor Unusable exception. If you want to use the MTC0 instruction to load
the ErrorEPC or EPC register with a return address or if you have modified the contents of the
Status register, the exception handler must execute at least two instructions before issuing the ERET
instruction.

If the ERL bit in the Status register is set, ERET restores the PC from the ErrorPC register and then
clears the ERL bit. Otherwise, ERET restores the PC from the EPC register and then clears the EXL
bit.

Also, the PSS field in the SSCR register is popped to the CSS field.
ERET must not be placed in a branch or jump delay slot.

Appendix A 32-Bit ISA Details

 A-38

Exceptions
Coprocessor Unusable exception

 Appendix A 32-Bit ISA Details

 A-39

J target
Jump

Operation
pc ⇐ pc[31:28] || target || 00

Instruction Encoding
31 26 25 0

J
000010

target

6 26

Description

The program unconditionally jumps to the target address with a delay of one instruction (or two
pipeline cycles). The target address is computed relative to the address of the instruction in the jump
delay slot (PC+4). The 26-bit target is shifted left by two bits and combined with the four
most-significant bits of PC+4 to form the target address.

With the J instruction, the address of the target must be within a 228-byte segment. To jump to an
arbitrary 32-bit address, load the desired address into a register and use the JR instruction (see
Section 3.4.6, Jumping to 32-Bit Addresses).

Exceptions
None

Example
J SJUMP

Assume that this jump instruction resides at address 0x2000 and that label SJUMP points to
absolute address 0x2_4000. Then the assembler/linker turns this label into target operand 0x1_2000
(see the figure below).

The processor unconditionally transfers program control to address 0x2_4000. The jump takes
effect after the instruction in the jump delay slot is executed.

Appendix A 32-Bit ISA Details

 A-40

0x002_4000

The target operand, 0x1_2000,

is shifted left by two bits.

J SJUMP

+

0x2004

0x2000

0x2_4000

Jump Delay Slot

Jump Destination

0x0 (Four MSBs of the Delay Slot Address)

 Appendix A 32-Bit ISA Details

 A-41

JAL target
Jump And Link

Operation
r31 ⇐ pc + 8; pc ⇐ pc[31:28] || target || 00

Instruction Encoding
31 26 25 0

JAL
000011

target

6 26

Description

The program unconditionally jumps to the target address with a delay of one instruction (or two
pipeline cycles). The target address is computed relative to the address of the instruction in the jump
delay slot (PC+4). The 26-bit target is shifted left by two bits and combined with the four
most-significant bits of PC+4 to form the target address. The JAL instruction never toggles the ISA
mode bit of the program counter (PC).

The address of the instruction after the jump delay slot (PC+8) is saved in the link register, r31 (ra).
The least-significant bit of r31 stores the ISA mode bit that was in effect before the jump.

With the JAL instruction, the address of the target must be within a 228-byte segment. To jump to an
arbitrary 32-bit address, load the desired address into a register and use the JALR instruction (see
Section 3.4.6, Jumping to 32-Bit Addresses).

Exceptions
None

Example
JAL PSUB

Assume that this jump instruction resides at address 0x2000 and that label PSUB points to absolute
address 0x2_4000. Then the assembler/linker turns this label into target operand 0x1_2000 (see the
figure below).

The processor unconditionally transfers program control to address 0x2_4000. The jump takes
effect after the instruction in the jump delay slot is executed. The address of the instruction after the
jump delay slot is saved in the link register, r31.

Appendix A 32-Bit ISA Details

 A-42

0

0x002_4000

The target operand, 0x1_2000,

is shifted left by two bits.

JAL PSUB

+

0x2004

0x2000

0x2_4000

Jump Delay Slot

Jump Destination

0x2008

0x0 (Four MSBs of the Delay Slot Address)

MIPS32 ISA Mode

MIPS32 ISA Mode

0000 0000 0000 0000 0010 0000 0000 100 r31

0
MIPS32 ISA Mode

 Appendix A 32-Bit ISA Details

 A-43

JALR (rd,) rs
Jump And Link Register

Operation
rd or r31 ⇐ pc + 8; pc ⇐ rs

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs
0

00000
rd

0
00000

JALR
001001

6 5 5 5 5 6

Description

The program unconditionally jumps to the address contained in general-purpose register rs, with the
least-significant bit cleared, with a delay of one instruction (or two pipeline cycles). The
least-significant bit of rs is interpreted as the ISA mode specifier. The address of the instruction after
the jump delay slot (PC+8) is saved in general-purpose register rd. If rd is omitted, the default is r31
(ra).

Register specifies rd and rs must not be equal because such an instruction cannot be restarted, with
the
contents of rs altered by the return address. An exception or interrupt could prevent the completion
of a legal instruction in the jump delay slot. If that happens, after the exception handler routine has
been executed, processing must restart with the jump instruction.

In 32-bit ISA mode, all instructions must be aligned on word boundaries. Therefore, when jumping
to a 32-bit routine, the two low-order bits of the target register (rs) must be zero. If the two low-order
bits are not zero, an Address Error exception will occur when the processor fetches the instruction at
the jump destination.

Exceptions
None

Example

Assume that register r2 contains 0x0012_3457 and that the following jump instruction resides at
address 0x0000_2000. Then, executing the instruction:

JALR r2

transfers program control to address 0x0012_3456, with the least-significant bit of 0x0012_3457

Appendix A 32-Bit ISA Details

 A-44

cleared. The jump takes effect after the instruction in the jump delay slot is executed. Since register
r2 has the least-significant bit set to 1, the ISA mode bit toggles to 1 after the jump, bringing the
processor into 16-bit ISA mode. The return address, 0x0000_2008, is saved in the link register, r31,
combined with the ISA mode bit.

0

JALR r2
0x2004

0x2000

0x12_3456

Jump Delay Slot

Jump Destination

0x2008

MIPS32 ISA Mode

MIPS16 ISA Mode

0000 0000 0000 0000 0010 0000 0000 100 r31

0
MIPS32 ISA Mode

 Appendix A 32-Bit ISA Details

 A-45

JALX target
Jump And Link eXchange

Operation
r31 ⇐ pc + 8; pc[31:1] ⇐ pc[31:28] || target || 00; pc[0] ⇐ NOT pc[0]

Instruction Encoding
31 26 25 0

JALX
011101

target

6 26

Description

The program unconditionally jumps to the target address with a delay of one instruction (or two
pipeline cycles). The target address is computed relative to the address of the instruction in the jump
delay slot (PC+4). The 26-bit target is shifted left by two bits and combined with the four
most-significant bits of PC+4 to form the target address. The JALX instruction unconditionally
toggles the ISA mode bit of the program counter (PC).

The address of the instruction after the jump delay slot (PC+8) is saved in the link register, r31 (ra).
The least-significant bit of r31 stores the ISA mode bit that was in effect before the jump.

Exceptions
None

Example
JALX PSUB

Assume that this jump instruction resides at address 0x0000_2000 and that label PSUB points to
absolute address 0x2_4000. Then, the assembler/linker turns this label into target operand 0x1_2000
(see the figure below).

The processor unconditionally transfers program control to address 0x2_4000. The jump takes
effect after the instruction in the jump delay slot is executed. The ISA mode bit unconditionally
toggles, bringing the processor into 16-bit ISA mode. The return address, 0x0000_2008, is saved in
the link register, r31, combined with the ISA mode bit.

Appendix A 32-Bit ISA Details

 A-46

0

0x002_4000

The target operand, 0x1_2000,

is shifted left by two bits.

JALX PSUB

+

0x2004

0x2000

0x2_4000

Jump Delay Slot

Jump Destination

0x2008

0x0 (Four MSBs of the Delay Slot Address)

MIPS32 ISA Mode

MIPS16 ISA Mode

0000 0000 0000 0000 0010 0000 0000 100 r31

0
MIPS32 ISA Mode

 Appendix A 32-Bit ISA Details

 A-47

JR rs
Jump Register

Operation
pc ⇐ rs

Instruction Encoding
31 26 25 21 20 6 5 0

SPECIAL
000000

rs
0

000 0000 000 0000
JR

001000

6 5 15 6

Description

The program unconditionally jumps to the address contained in general-purpose register rs, with the
least-significant bit cleared, with a delay of one instruction (or two pipeline cycles). The
least-significant bit of rs is interpreted as the ISA mode specifier.
In 32-bit ISA mode, all instructions must be aligned on word boundaries. Therefore, when jumping
to a 32-bit routine, the two low-order bits of the target register (rs) must be zero. If the two low-order
bits are not zero, an Address Error exception will occur when the processor fetches the
instruction at the jump destination.

Exceptions
None

Example

In the following example, the JALR instruction in a 16-bit routine transfers control to a 32-bit
routine. At the end of the 32-bit routine, the JR instruction restores the return address into the
program counter (PC) from the link register, r31 (ra). Since the JALR instruction saves the ISA
mode specifier in the least-significant bit of ra, executing the JR instruction at the end of the 32-bit
routine restores it into the PC, causing the processor to revert to 16-bit ISA mode.

Appendix A 32-Bit ISA Details

 A-48

1

JALR ra, r2
0x2004

0x2000

0x12_3458

Jump Delay Slot
Return Point

Jump Destination

0x2008

MIPS16 ISA Mode

MIPS32 ISA Mode

0000 0000 0000 0000 0010 0000 0000 100 ra

1
MIPS16 ISA Mode

JR ra

Jump to a 32-bit
routine through the

JALR instruction

Return to the 16-bit
routine through the

JR instruction

 Appendix A 32-Bit ISA Details

 A-49

LB rt, offset (base)
Load Byte

Operation
rt ⇐ {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

LB
100000

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The byte in memory addressed by EA is sign-extended and
loaded into general-purpose register rt.

Exceptions
Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory location at address 0x404
contains 0xF2. Then, executing the instruction:

LB r9,4(r8)

loads register r9 with 0xFFFF_FFF2.

Load (Sign-Extend)

r8 0x0000 0400

Memory

11110010

0x400
0x401
0x402
0x403
0x404

+4

Byte

1 Byte

Sign-Extended

Memory

CPU
Register

r9 0xFFFF FFF2

Appendix A 32-Bit ISA Details

 A-50

LBU rt, offset (base)
Load Byte Unsigned

Operation
rt ⇐ {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

LBU
100100

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The byte in memory addressed by EA is zero-extended and
loaded into general-purpose register rt.

Exceptions
Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory location at address 0x404
contains 0xF2. Then, executing the instruction:

LBU r9,4(r8)

loads register r9 with 0x0000_00F2.

Load (Zero-Extend)

r8 0x0000 0400

Memory

11110010

0x400
0x401
0x402
0x403
0x404

+4

Byte

1 Byte

Zero-Extended

Memory

CPU
Register

r9 0x0000 00F2

 Appendix A 32-Bit ISA Details

 A-51

LH rt, offset (base)
Load Halfword

Operation
rt ⇐ {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

LH
100001

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The halfword in memory addressed by EA is sign-extended
and loaded into general-purpose register rt.

If the least-significant bit of the effective address is not zero (i.e., the effective address is not on a
halfword boundary), an Address Error exception occurs.

Exceptions
Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory locations at addresses 0x404
and 0x405 contain 0xFF and 0x02 respectively. Then, executing the instruction:

LH r9,4(r8)

loads register r9 with 0xFFFF_FF02 in big-endian mode and with 0x0000_02FF in little-endian
mode.
Executing the instruction:

LH r9,3(r8)

causes an Address Error exception since 0x403 is not on a halfword boundary.

Appendix A 32-Bit ISA Details

 A-52

Load (Sign-Extend)

r8 0x0000 0400

Memory

11111111

0x400
0x401
0x402
0x403
0x404

+4

Halfword

Sign-Extended

Memory

CPU
Register

r9 0xFFFF FF02

r9 0x0000 02FF

Big-Endian

Little-Endian

Halfword Boundary

Halfword Boundary

Halfword Boundary
00000010 0x405

Byte

 Appendix A 32-Bit ISA Details

 A-53

LHU rt, offset (base)
Load Halfword Unsigned

Operation
rt ⇐ {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

LHU
100101

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The halfword in memory addressed by EA is zero-extended
and loaded into general-purpose register rt.

If the least-significant bit of the effective address is not zero (i.e., the effective address is not on a
halfword boundary), an Address Error exception occurs.

Exceptions
Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory locations at addresses 0x404
and 0x405 contain 0xFF and 0x02 respectively. Then, executing the instruction:

LHU r9,4(r8)

loads register r9 with 0x0000_FF02 in big-endian mode and with 0x0000_02FF in little-endian
mode.

Executing the instruction:

LH r9,3(r8)

causes an Address Error exception since 0x403 is not on a halfword boundary.

Appendix A 32-Bit ISA Details

 A-54

Load (Zero-Extend)

r8 0x0000 0400

Memory

11111111

0x400
0x401
0x402
0x403
0x404

+4

Halfword

Zero-Extended

Memory

CPU
Register

r9 0x0000 FF02

r9 0x0000 02FF

Big-Endian

Little-Endian

Halfword Boundary

Halfword Boundary

Halfword Boundary

00000010 0x405

Byte

 Appendix A 32-Bit ISA Details

 A-55

LUI rt, immediate
Load Upper Immediate

Operation
rt ⇐ immediate || 0x0000

Instruction Encoding
31 26 25 21 20 16 15 0

LUI
001111

0
00000

rt immediate

6 5 5 16

Description

The 16-bit immediate is shifted left by 16 bits and concatenated to 16 bits of zeros. The result is
placed into general-purpose register rt.

Exceptions
None

Example
The instruction:

LUI r9,0x1234

loads register r9 with 0x1234_0000.

Appendix A 32-Bit ISA Details

 A-56

LW rt, offset (base)
Load Word

Operation
rt ⇐ {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

LW
100011

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The word in memory addressed by EA is loaded into
general-purpose register rt.

If the two low-order bits of the effective address is not zero (i.e., the effective address is not on a
word boundary), an Address Error exception occurs.

Exceptions
Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory locations at addresses 0x404 to
0x407 contain 0x01, 0x23, 0x45 and 0x67 respectively. Then, executing the instruction:

LW r9,4(r8)

loads register r9 with 0x0123_4567 in big-endian mode and with 0x6745_2301 in little-endian
mode.
Executing the instruction:

LW r9,5(r8)

causes an Address Error exception since 0x405 is not on a word boundary.

 Appendix A 32-Bit ISA Details

 A-57

Load

r8 0x0000 0400

Memory

0x01

0x400
0x401
0x402
0x403
0x404

+4

Byte

r9 0x0123 4567

r9 0x6745 2301

Big-Endian

Little-Endian

Word Boundary

Word Boundary
0x23 0x405
0x45 0x406
0x67 0x407

Appendix A 32-Bit ISA Details

 A-58

LWL rt, offset (base)
Load Word Left

Operation
rt ⇐ rt MERGE {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

LWL
100010

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The appropriate high-order part of the word in memory
addressed by EA that crosses a natural word boundary is loaded into the left portion of general
purpose register rt.
No Address Error exception occurs due to misalignment.

An immediately preceding load instruction and the following LWL instruction can specify the same
general-purpose register as rt. The contents of general-purpose register rt is internally bypassed (or
forwarded) within the processor so that no NOP instruction is needed between the two instructions.

The LWL and LWR instructions are used in combination to load a misaligned word from memory
into a general-purpose register.

Exceptions
Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory locations at addresses 0x402 to
0x405 contains 0x01, 0x23, 0x45 and 0x67 respectively.

 Appendix A 32-Bit ISA Details

 A-59

r8 0x0000 0400

0x01

0x400
0x401
0x402
0x403
0x404

+2

Byte

Word Boundary
0x23

0x405

0x45
0x67 +5

• Big-endian mode

The instruction:

LWL r9,2(r8)

starts at address 0x402 and loads that byte into the leftmost byte of register r9. Then it loads
bytes from memory to r9, going in the higher-address direction, until it reaches a word

boundary in memory. The operation of this LWL instruction is as follows.

 r9

 r9 AA

After

Before
BB CC DD

01 23 CC DD

(a) Big-Endian

• Little-endian mode

The instruction:

LWL r9,5(r8)

starts at address 0x405 and loads that byte into the leftmost byte of register r9. Then it loads
bytes from memory to r9, going in the lower-address direction, until it reaches a word

boundary in memory. The operation of this LWL instruction is as follows.

 r9

 r9 AA

After

Before
BB CC DD

67 45 CC DD

(b) Little-Endian

Appendix A 32-Bit ISA Details

 A-60

LWR rt, offset (base)
Load Word Right

Operation
rt ⇐ rt MERGE {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

LWR
100110

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The appropriate low-order part of the word in memory
addressed by EA that crosses a natural word boundary is loaded into the right portion of general
purpose register rt.
No Address Error exception occurs due to misalignment.

An immediately preceding load instruction and the following LWR instruction can specify the same
general-purpose register as rt. The contents of general-purpose register rt is internally bypassed (or
forwarded) within the processor so that no NOP instruction is needed between the two instructions.

The LWL and LWR instructions are used in combination to load a misaligned word from memory
into a general-purpose register.

Exceptions
Address Error exception

Example

Assume that register r8 contains 0x0000_0400 and that the memory locations at addresses 0x402 to
0x405 contains 0x01, 0x23, 0x45 and 0x67 respectively.

 Appendix A 32-Bit ISA Details

 A-61

r8 0x0000 0400

0x01

0x400
0x401
0x402
0x403
0x404

+2

Byte

Word Boundary
0x23

0x405

0x45
0x67 +5

• Big-endian mode

The instruction:

LWR r9,5(r8)

starts at address 0x405 and loads that byte into the rightmost byte of register r9. Then it loads
bytes from memory to r9, going in the lower-address direction, until it reaches a word boundary in
memory. The operation of this LWR instruction is as follows.

 r9

 r9 01

After

Before
23 CC DD

01 23 45 67

(a) Big-Endian

• Little-endian mode

The instruction:

LWR r9,2(r8)

starts at address 0x402 and loads that byte into the rightmost byte of register r9. Then it loads
bytes from memory to r9, going in the higher-address direction, until it reaches a word boundary in
memory. The operation of this LWR instruction is as follows.

 r9

 r9 67

After

Before
45 CC DD

67 45 23 01

(b) Little-Endian

Appendix A 32-Bit ISA Details

 A-62

MADD (rd,) rs, rt
Multiply and Add

Operation
HI ⇐ high-order word of (HI || LO) + (rs ⋅ rt);
LO ⇐ low-order word of (HI || LO) + (rs ⋅ rt);
rd ⇐ low-order word of (HI || LO) + (rs ⋅ rt)

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd
0

00000
MADD
000000

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register
rt, and then the product is added to the 64-bit, doubleword contents of the HI and LO registers. Both
rs and rt are treated as signed integers. The high-order word of the result is placed into the HI
register, and the low-order word of the result is placed into the LO register. If destination register rd
is specified, the low-order word of the result is also copied into rd.

If rd is omitted, the default is r0; thus the low-order word of the result is not copied into a
general-purpose register.
This instruction never causes an Integer Overflow exception.

Exceptions
None

Example

Assume that the HI and LO registers contain 0x0000_0000 and 0xFFFF_FFFF respectively and that
general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF respectively. Then,
the instruction:

MADD r4,r2,r3

evaluates:
0x0000_0000_FFFF_FFFF + (0x0123_4567 ⋅ 0x89AB_CDEF)
= 0x0000_0000_FFFF_FFFF + 0xFF79_5E36_C94E_4629
= 0xFF79_5E37_C94E_4628
Hence, the high-order word of the result, 0xFF79_5E37, is placed into the HI register, and the

 Appendix A 32-Bit ISA Details

 A-63

low-order word of the result, 0xC94E_4628, is placed into the LO and r4 registers.

Appendix A 32-Bit ISA Details

 A-64

MADDU (rd,) rs, rt
Multiply and Add Unsigned

Operation
HI ⇐ (HI || LO) + (rs × rt) の上位ワード
LO ⇐ (HI || LO) + (rs × rt) の下位ワード
rd ⇐ (HI || LO) + (rs × rt) の下位ワード

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd
0

00000
MADDU
000001

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register
rt, and then the product is added to the 64-bit, doubleword contents of the HI and LO registers. Both
rs and rt are treated as unsigned integers. The high-order word of the result is placed into the HI
register, and the low-order word of the result is placed into the LO register. If destination register rd
is specified, the low-order word of the result is also copied into rd.

If rd is omitted, the default is r0; thus the low-order word of the result is not copied into a
general-purpose register.
This instruction never causes an Integer Overflow exception.

Exceptions
None

Example

Assume that the HI and LO registers contain 0x_0000_0000 and 0xFFFF_FFFF respectively and
that general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF respectively.
Then, the instruction:

MADDU r4,r2,r3

evaluates:
0x0000_0000_FFFF_FFFF + (0x0123_4567 ⋅ 0x89AB_CDEF)
= 0x0000_0000_FFFF_FFFF + 0x009C_A39D_C94E_4629
= 0x009C_A39E_C94E_4628
Hence, the high-order word of the result, 0x009C_A39E, is placed into the HI register, and the

 Appendix A 32-Bit ISA Details

 A-65

low-order word of the result, 0xC94E_4628, is placed into the LO and r4 registers.

Appendix A 32-Bit ISA Details

 A-66

MFC0 rt, rd
Move From Coprocessor 0

Operation
rt ⇐ coprocessor register rd of CP0

Instruction Encoding
31 26 25 21 20 16 15 11 10 3 2 0

COP0
010000

MF
00000

rt rd
0

0000 0000
sel

6 5 5 5 8 3

Description
The contents of CP0 register rd is loaded into general-purpose register rt.

Exceptions
Coprocessor Unusable exception

 Appendix A 32-Bit ISA Details

 A-67

MFHI rd
Move From HI

Operation
rd ⇐ HI

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000

rd
0

00000
MFHI

010000

6 10 5 5 6

Description
The contents of HI register is loaded into general-purpose register rd.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-68

MFLO rd
Move From LO

Operation
rd ⇐ LO

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000

rd
0

00000
MFLO
010010

6 10 5 5 6

Description
The contents of the LO register is loaded into general-purpose register rd.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-69

MOVN rd, rs, rt
Move Conditional on Not Zero

Operation
if rt ≠ 0 then rd ⇐ rs

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
MOVN
001011

6 5 5 5 5 6

Description

If the contents of general-purpose register rt is not equal to zero, the contents of general-purpose
register rs is loaded into general-purpose register rd.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-70

MOVZ rd, rs, rt
Move Conditional on Zero

Operation
if rt = 0 then rd ⇐ rs

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
MOVZ
001010

6 5 5 5 5 6

Description

If the contents of general-purpose register rt is equal to zero, the contents of general-purpose
register rs is loaded into general-purpose register rd.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-71

MSUB (rd), rs, rt
Multiply and Subtract

Operation
HI ⇐ high-order word of (HI || LO) – (rs ⋅ rt)
LO ⇐ low-order word of (HI || LO) – (rs ⋅ rt)
rd ⇐ low-order word of (HI || LO) – (rs ⋅ rt)

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd
0

00000
MSUB
000100

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register
rt, and then the product is subtracted from the 64-bit, doubleword contents of the HI and LO
registers. Both rs and rt are treated as signed integers. The high-order word of the result is placed
into the HI register, and the low-order word of the result is placed into the LO register. If destination
register rd is specified, the low-order word of the result is also copied into rd.

If rd is omitted, the default is r0; thus the low-order word of the result is not copied into a
general-purpose register.
This instruction never causes an Integer Overflow exception.

Exceptions
None

Example

Assume that the HI and LO registers contain 0xFF79_5E37 and 0xC94E_4628 respectively and that
general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF respectively. Then,
the instruction:

MSUB r2,r3

evaluates:
0xFF79_5E37_C94E_4628 – (0x0123_4567 ⋅ 0x89AB_CDEF)
= 0xFF79_5E37_C94E_4628 – 0xFF79_5E36_C94E_4629
= 0x0000_0000_FFFF_FFFF

Appendix A 32-Bit ISA Details

 A-72

Hence, the high-order word of the result, 0x0000_0000, is placed into the HI register, and the
low-order word of the result, 0xFFFF_FFFF, is placed into the LO register.

 Appendix A 32-Bit ISA Details

 A-73

MSUBU (rd), rs, rt
Multiply and Subtract Unsigned

Operation
HI ⇐ high-order word of (HI || LO) – (rs ⋅ rt)
LO ⇐ low-order word of (HI || LO) – (rs ⋅ rt)
rd ⇐ low-order word of (HI || LO) – (rs ⋅ rt)

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd
0

00000
MSUBU
000101

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register
rt, and then the product is subtracted from the 64-bit, doubleword contents of the HI and LO
registers. Both rs and rt are treated as unsigned integers. The high-order word of the result is placed
into the HI register, and the low-order word of the result is placed into the LO register. If destination
register rd is specified, the low-order word of the result is also copied into rd.

If rd is omitted, the default is r0; thus the low-order word of the result is not copied into a
general-purpose register.
This instruction never causes an Integer Overflow exception.

Exceptions
None

Example

Assume that the HI and LO registers contain 0x009C_A39E and 0xC94E_4628 respectively and
that general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF respectively.
Then, the instruction:

MSUBU r2,r3

evaluates:
0x009C_A39E_C94E_4628 – (0x0123_4567 ⋅ 0x89AB_CDEF)
= 0x009C_A39E_C94E_4628 – 0x009C_A39D_C94E_4629
= 0x0000_0000_FFFF_FFFF

Appendix A 32-Bit ISA Details

 A-74

Hence, the high-order word of the result, 0x0000_0000, is placed into the HI register, and the
low-order word of the result, 0xFFFF_FFFF, is placed into the LO register.

 Appendix A 32-Bit ISA Details

 A-75

MTC0 rt, rd
Move To Coprocessor 0

Operation
Coprocessor register rd of CP0 ⇐ rt

Instruction Encoding
31 26 25 21 20 16 15 11 10 3 2 0

COP0
010000

MT
00100

rt rd
0

0000 0000
sel

6 5 5 5 8 3

Description
The contents of general-purpose register rt is loaded into CP0 register rd.

Once the MTC0 instruction writes to the Status, EPC or ErrorEPC register, at least two instructions
must be executed before the ERET instruction. Otherwise, the operation is undefined.

Likewise, once the MTC0 instruction writes to the DEPC register, at least two instructions must be
executed before the DERET instruction. Otherwise, the operation is undefined.

Because this instruction may alter the state of the virtual address translation system, the operation of
load and store instructions immediately before and after this instruction is undefined.

The MTC0 instruction that modifies the contents of the SSCR register must be followed by two
NOPs.

Exceptions
Coprocessor Unusable exception

Appendix A 32-Bit ISA Details

 A-76

MTHI rs
Move To HI

Operation
HI ⇐ rs

Instruction Encoding
31 26 25 21 20 6 5 0

SPECIAL
000000

rs
0

000 0000 0000 0000
MTHI

010001

6 5 15 6

Description
The contents of general-purpose register rs is loaded into the HI register.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-77

MTLO rs
Move To LO

Operation
LO ⇐ rs

Instruction Encoding
31 26 25 21 20 6 5 0

SPECIAL
000000

rs
0

000 0000 0000 0000
MTLO
010011

6 5 15 6

Description
The contents of general-purpose register rs is loaded into the LO register.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-78

MUL rd, rs, rt
Multiply

Operation

rd ⇐ low-order word of (rs ⋅ rt)

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd
0

00000
MUL

000010

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register
rt. Both rs and rt are treated as signed integers. The low-order word of the result is placed into
general-purpose register rd. The contents of the HI and LO registers become undefined.

This instruction never causes an Integer Overflow exception.

Exceptions
None

Example

Assume that general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF
respectively. Then, the instruction:

MUL r4,r2,r3

evaluates:
(0x0123_4567 ⋅ 0x89AB_CDEF)
= 0xFF79_5E36_C94E_4629
Hence, the low-order word of the result, 0xC94E_4629, is placed into the r4 register.

 Appendix A 32-Bit ISA Details

 A-79

MULT (rd,) rs, rt
Multiply

Operation

HI ⇐ high-order word of (rs ⋅ rt);

LO ⇐ low-order word of (rs ⋅ rt);

rd ⇐ low-order word of (rs ⋅ rt)

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
MULT

011000

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register
rt. Both rs and rt are treated as signed integers. The high-order word of the result is placed into the
HI register, and the low-order word of the result is placed into the LO register. If destination register
rd is specified, the low-order word of the result is also copied into rd.

If rd is omitted, the default is r0; thus the low-order word of the result is not copied into a
general-purpose register.
This instruction never causes an Integer Overflow exception.

Exceptions
None

Example

Assume that general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF
respectively. Then, the instruction:

MULT r4,r2,r3

evaluates:
(0x0123_4567 ⋅ 0x89AB_CDEF)
= 0xFF79_5E36_C94E_4629
Hence, the high-order word of the result, 0xFF79_5E36, is placed into the HI register, and the
low-order word of the result, 0xC94E_4629, is placed into the LO and r4 registers.

Appendix A 32-Bit ISA Details

 A-80

MULTU (rd,) rs, rt
Multiply Unsigned

Operation

HI ⇐ high-order word of (rs ⋅ rt);

LO ⇐ low-order word of (rs ⋅ rt);
rd ⇐ low-order word of (rs ⋅ rt)

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
MULTU
011001

6 5 5 5 5 6

Description

The contents of general-purpose register rs is multiplied by the contents of general-purpose register
rt. Both rs and rt are treated as unsigned integers. The high-order word of the result is placed into
the HI register, and the low-order word of the result is placed into the LO register. If destination
register rd is specified, the low-order word of the result is also copied into rd.

If rd is omitted, the default is r0; thus the low-order word of the result is not copied into a
general-purpose register.
This instruction never causes an Integer Overflow exception.

Exceptions
None

Example

Assume that general-purpose registers r2 and r3 contain 0x0123_4567 and 0x89AB_CDEF

respectively. Then, the instruction:

MULTU r4,r2,r3

(0x0123_4567 ⋅ 0x89AB_CDEF)
= 0x009C_A39D_C94E_4629
Hence, the high-order word of the result, 0x009C_A39D, is placed into the HI register, and the
low-order word of the result, 0xC94E_4629, is placed into the LO and r4 registers.

 Appendix A 32-Bit ISA Details

 A-81

NOR rd, rs, rt
NOR

Operation
rd ⇐ rs NOR rt

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
NOR

100111

6 5 5 5 5 6

Description

The contents of general-purpose register rs is NORed with the contents of general-purpose register
rt, and the result is placed into general-purpose register rd.

Exceptions
None

Example

Assume that registers r2 and r3 contain 0x8000_7350 and 0x0000_3456 respectively. Then, the
instruction:

NOR r4,r2,r3

performs the logical NOR between r2 and r3 and puts the result (0x7FFF_88A9) in r4, as shown
below.

NOR
1000 0000 0000 0000 0111 0011 0101 0000

0111 1111 1111 1111 1000 1000 1010 1001

0000 0000 0000 0000 0011 0100 0101 0110

r2

r3

r4

Appendix A 32-Bit ISA Details

 A-82

OR rd, rs, rt
OR

Operation
rd ⇐ rs OR rt

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
CR

100101

6 5 5 5 5 6

Description

The contents of general-purpose register rs is ORed with the contents of general-purpose register rt,
and the result is placed into general-purpose register rd.

Exceptions
None

Example

Assume that registers r2 and r3 contain 0x8000_7350 and 0x0000_3456 respectively. Then, the
instruction:

OR r4,r2,r3

performs the logical OR between r2 and r3 and puts the result (0x8000_7756) in r4, as shown
below.

OR
1000 0000 0000 0000 0111 0011 0101 0000

1000 0000 0000 0000 0111 0111 0101 0110

0000 0000 0000 0000 0011 0100 0101 0110

r2

r3

r4

 Appendix A 32-Bit ISA Details

 A-83

ORI rt, rs, immediate
OR Immediate

Operation
rt ⇐ rs OR (016 || immediate15..0)

Instruction Encoding
31 26 25 21 20 16 15 0

ORI
001101

rs rt immediate

6 5 5 16

Description

The 16-bit immediate is zero-extended and ORed with the contents of general-purpose register rs.
The result is placed into general-purpose register rt.

The immediate field is 16 bits in length. If the immediate size is larger than that, you need to put it
in a general-purpose register and use the OR instruction (see Section 3.3.2, 32-Bit Constants).

Exceptions
None

Example
Assume that register r2 contains 0x0000_7350. Then, the instruction:

ORI r3,r2,0x1234

performs the logical OR between 0x0000_7350 and 0x0000_1234 and puts the result
(0x0000_7374) in r3, as shown below.

OR

0000 0000 0000 0000 0111 0011 0101 0000

0000 0000 0000 0000 0111 0011 0111 0100

0000 0000 0000 0000 0001 0010 0011 0100

r2

r3

Zero-Extended

Appendix A 32-Bit ISA Details

 A-84

SB rt, offset (base)
Store Byte

Operation
rt ⇒ {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

SB
101000

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The least-significant byte in general-purpose register rt is
stored at the memory location addressed by EA.

The three high-order bytes in rt are simply ignored; so there is no distinction between signed and
unsigned stores.

Exceptions
Address Error exception

Example

Assume that registers r8 and r9 contain 0x0000_0400 and 0x0123_4567 respectively. Then,
executing the instruction:

SB r9,4(r8)

stores 0x67 to the memory location at address 0x404.

Store

r8 0x0000 0400

Memory

0x67

0x400
0x401
0x402
0x403
0x404

+4

Byte

1 Byte

Memory

CPU
Register

r9 0x0123 4567

 Appendix A 32-Bit ISA Details

 A-85

SDBBP code
Software Debug Breakpoint Exception

Operation
Software debug breakpoint exception

Instruction Encoding
31 26 25 6 5 0

SPECIAL2
011100

code
SDBBP
111111

6 20 6

Description

A debug breakpoint occurs, immediately and unconditionally transferring control to the exception
handler.

The code field in the SDBBP instruction is available for use as software parameters to pass
additional information. The exception handler can retrieve it by loading the contents of the memory
word containing the instruction. See Section 9.3, Debug Exceptions, for details.

The SDBBP instruction may not be used within the user’s program; it is intended for use by
development tools. Executing the SDBBP instruction on a device without EJTAG causes a
Reserved Instruction exception.

Exceptions

Debug Breakpoint exception
Reserved Instruction exception

EJTAG

Appendix A 32-Bit ISA Details

 A-86

SH rt, offset (base)
Store Halfword

Operation
rt ⇒ {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

SH
101001

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The least-significant halfword in general-purpose register rt
is stored at the memory location addressed by EA.

The higher-order halfword in rt is simply ignored; so there is no distinction between signed and
unsigned stores.

If the least-significant bit of the effective address is not zero (i.e., the effective address is not on a
halfword boundary), an Address Error exception occurs.

Exceptions
Address Error exception

Example

Assume that registers r8 and r9 contain 0x0000_0400 and 0x0123_4567 respectively. In big-endian
mode, executing the instruction:

SH r9,4(r8)

stores 0x45 and 0x67 to the memory locations at addresses 0x404 and 0x405 respectively. In
little-endian mode, this instruction stores 0x67 and 0x45 to the memory locations at addresses 0x404
and 0x405 respectively.
Executing the instruction:

SH r9,3(r8)

causes an Address Error exception since 0x403 is not on a halfword boundary.

 Appendix A 32-Bit ISA Details

 A-87

Store

r8 0x0000 0400

Memory

0x45

0x400
0x401
0x402
0x403
0x404

+4

Byte

Halfword

Memory

CPU
Register

r9 0x0123 4567

0x405

Big-Endian

0x67

Little-Endian

0x67 0x45

Halfword Boundary

Halfword Boundary

Halfword Boundary

Byte

Appendix A 32-Bit ISA Details

 A-88

SLL rd, rt, sa
Shift Left Logical

Operation
rd ⇐ rt << sa

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
000000

rt rd sa
SLL

000000

6 5 5 5 5 6

Description

The contents of general-purpose register rt is shifted left by sa bits. Zeros are supplied to the
vacated positions on the right. The result is placed into general-purpose register rd.

Exceptions
None

Example
Assume that register r2 contains 0x2170_ADC5. Then, executing the instruction:

SLL r3,r2,4

places 0x170A_DC50 in register r3, as shown below.

Shifted left
by 4 bits

r2 0000

r3

Padded with zeros
00000001 0111 0000 1010 1101 1100 0101

0001 0111 0000 1010 1101 1100 0101

 Appendix A 32-Bit ISA Details

 A-89

SLLV rd, rt, rs
Shift Left Logical Variable

Operation
rd ⇐ rt << 5 LSBs of rs

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

000000
SLLV

000100

6 5 5 5 5 6

Description

The contents of general-purpose register rt is shifted left the number of bits specified by the five
least-significant bits of general-purpose register rs. Zeros are supplied to the vacated positions on
the right. The result is placed into general-purpose register rd.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-90

SLT rd, rs, rt
Set On Less Than

Operation
if rs < rt then rd ⇐ 1; else rd ⇐ 0

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

000000
SLT

101010

6 5 5 5 5 6

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt. Both rs and rt are treated as signed integers. If rs is less than rt, general-purpose register rd is set
to one. Otherwise, rd is set to zero.

No Integer Overflow exception occurs under any circumstances. The comparison is valid even if the
subtraction performed for comparison results in overflow.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-91

SLTI rt, rs, immediate
Set On Less Than Immediate

Operation
if rs < ((immediate15)16 || immediate15..0) then rt ⇐ 1; else rt ⇐ 0

Instruction Encoding
31 26 25 21 20 16 15 0

SLTI
001010

rs rt immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.
The immediate and rs are compared as signed integers. If rs is less than immediate, general-purpose
register rt is set to one. Otherwise, rt is set to zero.

No Integer Overflow exception occurs under any circumstances. The comparison is valid even if the
subtraction performed for comparison results in overflow.

With the 16-bit immediate, the immediate range is -32768 to +32767. If a number is outside this
range, you need to put it in a general-purpose register and use the SLT instruction (see Section 3.3.2,
32-Bit Constants).

Exceptions
None

Appendix A 32-Bit ISA Details

 A-92

SLTIU rt, rs, immediate
Set On Less Than Immediate Unsigned

Operation
if (0 || rs) < ((immediate15)17 || immediate15..0) then rt ⇐ 1; else rt ⇐ 0

Instruction Encoding
31 26 25 21 20 16 15 0

SLTIU
001011

rs rt immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.
The immediate and rs are compared as unsigned integers. If rs is less than immediate,
general-purpose register rt is set to one. Otherwise, rt is set to zero.
No Integer Overflow exception occurs under any circumstances. The comparison is valid even if the
subtraction performed for comparison results in overflow.

The immediate field is 16 bits in length. If a number is outside this range, you need to put it in a
general-purpose register and use the SLTU instruction (see Section 3.3.2, 32-Bit Constants).

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-93

SLTU rd, rs, rt
Set On Less Than Unsigned

Operation
if (0 || rs) < (0 || rt) then rd ⇐ 1; else rd ⇐ 0

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SLTU

101011

6 5 5 5 5 6

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt. Both rs and rt are treated as unsigned integers. If rs is less than rt, general-purpose register rd is
set to one. Otherwise, rd is set to zero.

No Integer Overflow exception occurs under any circumstances. The comparison is valid even if the
subtraction performed for comparison results in overflow.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-94

SRA rd, rt, sa
Shift Right Arithmetic

Operand
rd ⇐ rt >> sa

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd sa
SRA

000011

6 5 5 5 5 6

Description

The contents of general-purpose register rt is shifted right by sa bits. The sign bit is copied to the
vacated positions on the left. The result is placed into general-purpose register rd.

Exceptions
None

Example
Assume that register r2 contains 0xB521_4C5E. Then, executing the instruction:

SRA r3,r2,16

places 0xFFFF_B521 into r3, as shown below.

 r2

r3

Sign Bit Shifted right by 16 bits

1 011 0101 0010 0001 0100 1100 0101 1110

1011 0101 0010 00011111 1111 1111 1111

 Appendix A 32-Bit ISA Details

 A-95

SRAV rd, rt, rs
Shift Right Arithmetic Variable

Operation
rd ⇐ rt >> 5 LSBs of rs

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SRAV
000111

6 5 5 5 5 6

Description

The contents of general-purpose register rt is shifted right the number of bits specified by the five
least-significant bits of general-purpose register rs. The sign bit is copied to the vacated positions on
the left. The result is placed into general-purpose register rd.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-96

SRL rd, rt, sa
Shift Right Logical

Operation
rd ⇐ rt >> sa

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

rt rd sa
SRL

000010

6 5 5 5 5 6

Description

The contents of general-purpose register rt is shifted left by sa bits. Zeros are supplied to the
vacated positions on the left. The result is placed into general-purpose register rd.

Exceptions
None

Example
Assume that register r2 contains 0xB521_4C5E. Then, executing the instruction:

SRL r3,r2,16

places 0x0000_B521 in register r3, as shown below.

 r2

r3

Padded with zeros Shifted right by 16 bits

0100 1100 0101 1110

1011 0101 0010 00010000 0000 0000 0000

1011 0101 0010 0001

 Appendix A 32-Bit ISA Details

 A-97

SRLV rd, rt, rs
Shift Right Logical Variable

Operation
rd ⇐ rt >> 5 LSBs of rs

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SRLV

000110

6 5 5 5 5 6

Description

The contents of general-purpose register rt (32 bits) is shifted right the number of bits specified by the
five least-significant bits of general-purpose register rs. Zeros are supplied to the vacated positions on
the left. The result is placed into general-purpose register rd.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-98

SUB rd, rs, rt
Subtract

Operation
rd ⇐ rs – rt

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SUB

100010

6 5 5 5 5 6

Description

The contents of general-purpose register rt is subtracted from the contents of general-purpose
register rs. Both rs and rt are treated as signed integers. The remainder is placed into general-purpose
register rd.

An Integer Overflow exception is taken on 2’s-complement overflow, which occurs if the signs of
the operands are not the same and the sign of the remainder is not the same as the sign of the
minuend (rs). The destination register (rd) is not altered when an Integer Overflow exception
occurs.

Exceptions
Interger Overflow exception

Example
1. Assume that registers r2 and r3 contain 0x7654_3210 and 0x5000_0000 respectively. Then,

executing the instruction:
SUB r4,r2,r3

places the remainder (0x2654_3210) into r4.

2. Assume that registers r2 and r3 contain 0x7FFF_FFFF and 0x8FFF_FFFF respectively.
Then, the subtraction of r3 from r2 gives the result 0xF000_0000. So, the signs of r2 and r3
are different, and the signs of r2 and the remainder are also different. This indicates a
2’scomplement overflow. Thus executing the instruction:

SUB r4,r2,r3

 causes an Integer Overflow exception. Register r4 is not modified as a result of this
instruction.

 Appendix A 32-Bit ISA Details

 A-99

SUBU rd, rs, rt
Subtract Unsigned

Operation
rd ⇐ rs – rt

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SUBU
100011

6 5 5 5 5 6

Description

The contents of general-purpose register rt is subtracted from the contents of general-purpose
register rs. The remainder is placed into general-purpose register rd.

The only difference between this instruction and the SUB instruction is that this instruction never
causes an Integer Overflow exception.

Exceptions
None

Appendix A 32-Bit ISA Details

 A-100

SW rt, offset (base)
Store Word

Operation
rt ⇒ {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

SW
101011

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The contents of general-purpose register rt is stored at the
memory location addressed by EA.

If the two least-significant bits of the effective address is not zero (i.e., the effective address is not
on a word boundary), an Address Error exception occurs.

Exceptions
Address Error exception

Example

Assume that registers r8 and r9 contain 0x0000_0400 and 0x0123_4567 respectively. In big-endian
mode, executing the instruction:

SW r9,4(r8)

stores 0x01, 0x23, 0x45 and 0x67 to the memory locations at addresses 0x404 to 0x407
respectively. In little-endian mode, this instruction stores 0x67, 0x45, 0x23 and 0x01 to the memory
locations at addresses 0x404 to 0x407 respectively.

Executing the instruction:

SW r9,5(r8)

causes an Address Error exception since 0x405 is not on a word boundary.

 Appendix A 32-Bit ISA Details

 A-101

Store

r8 0x0000 0400

Memory

0x01

0x400
0x401
0x402
0x403
0x404

+4

Byte

r9 0x0123 4567

0x405

Big-Endian

0x67

Byte

Little-Endian

0x23 0x45

Word Boundary

Word Boundary

0x45
0x67

0x23
0x01

0x406
0x407

Appendix A 32-Bit ISA Details

 A-102

SWL rt, offset (base)
Store Word Left

Operation
rt ⇒ {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

SWL
101010

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The left portion of general-purpose register rt is stored into
the appropriate high-order part of the word at the memory locations addressed by EA that cross a
natural word boundary.

No Address Error exception occurs due to misalignment.
The SWL and SWR instructions are used in combination to store a word into memory locations that
are not on a natural word boundary.

Exceptions
Address Error exception

Example
Assume that registers r8 and r9 contain 0x0000_0400 and 00123_4567 respectively.

 r9 0x0123 4567

 Appendix A 32-Bit ISA Details

 A-103

• Big-endian mode

The instruction:

SWL r9,2(r8)

starts at the leftmost byte in register r9 and stores that byte at address 0x0402. Then it stores
bytes in register r9, going in the higher-address direction, until it reaches a word boundary in
memory. The operation of this SWL instruction is as follows.

0xCC

0x01

0xDD

0x23

Memory

0xAA 0x402
0x403
0x404
0x405

Byte

Before

0xCC

Byte

After

Word
Boundary

0xBB

0xDD

(a) Big-Endian

• Little-endian mode

The instruction:

SWL r9,5(r8)

starts at the leftmost byte in register r9 and stores that byte at address 0x0405. Then it stores
bytes in register r9, going in the lower-address direction, until it reaches a word boundary in
memory. The operation of this SWL instruction is as follows.

0x23
0x01

0xCC

0xAA

0xDD

0xBB

Memory

0xAA 0x402
0x403
0x404
0x405

Byte

Before

Byte

After

Word
Boundary

0xBB

(b) Little-Endian

Appendix A 32-Bit ISA Details

 A-104

SWR rt, offset (base)
Store Word Right

Operation
rt ⇒ {sign-extend(offset) + (base)}

Instruction Encoding
31 26 25 21 20 16 15 0

SWR
101110

base rt offset

6 5 5 16

Description

The 16-bit immediate offset is sign-extended and added to the contents of general-purpose register
base to form an effective address (EA). The right-portion of general-purpose register rt is stored into
the appropriate low-order part of the word at the memory locations addressed by EA that cross a
natural word boundary.

No Address Error exception occurs due to misalignment.

The SWL and SWR instructions are used in combination to store a word into memory locations that
are not on a natural word boundary.

Exceptions
Address Error exception

Example
Assume register r9 contains 0x123_4567.

 r9 0x0123 4567

The following shows how to store the right portion of a general-purpose register after storing the left
portion as described on the previous SWL pages.

 Appendix A 32-Bit ISA Details

 A-105

• Big-endian mode

The instruction:

SWR r9,5(r8)

starts at the rightmost byte in register r9 and stores that byte at address 0x0405. Then it stores
bytes in register r9, going in the lower-address direction, until it reaches a word boundary in
memory. The operation of this SWR instruction is as follows.

 After execution of "SWL r9, 2(r8)"

0x45
0x67

0x01
0x23
0xCC

0x01

0xDD

0x23
0x402
0x403
0x404
0x405

Before

Byte

After

Word
Boundary

(a) Big-Endian

• Little-endian mode

The instruction:

SWR r9,2(r8)

starts at the rightmost byte in register r9 and stores that byte at address 0x0402. Then it stores
bytes in register r9, going in the higher-address direction, until it reaches a word boundary in
memory. The operation of this SWR instruction is as follows.

0x23
0x01

After execution of "SWL r9, 5(r8)"

0x23
0x01

0xAA
0xBB

0x67
0x45

0x402
0x403
0x404
0x405

Before

Byte

After

Word
Boundary

(b) Little-Endian

Appendix A 32-Bit ISA Details

 A-106

SYNC
Synchronize

Operation
Synchronize operation

Instruction Encoding
31 26 25 6 5 0

SPECIAL
000000

0
0000 0000 0000 0000

SYNC
001111

6 20 6

Description

The SYNC instruction interlocks the instruction pipeline until loads and stores performed prior to
the present instruction are completed before any instructions after this instruction are allowed to
start. See Section 5.2.4, SYNC Instruction (32-Bit ISA).
If there is no data dependency, the TX19A continues to execute subsequent instructions. This is
called non-blocking loads. By virtue of non-blocking loads, the instruction pipeline can continue to
work on non-dependent instructions.

Exceptions
None

 Appendix A 32-Bit ISA Details

 A-107

SYSCALL code
System Call

Operation
System call exception

Instruction Encoding
31 26 25 6 5 0

SPECIAL
000000

Code
SYSCALL

001100

6 20 6

Description

A System Call exception occurs, immediately and unconditionally transferring control to the
exception handler.

The code field in a SYSCALL instruction is available for use as software parameters to pass
additional information. To examine these bits, load the contents of the instruction at which the EPC
register points. For details on System Call exceptions, see Section 9.1.10, System Call Exception.

Exceptions
System call exception

Appendix A 32-Bit ISA Details

 A-108

TEQ rs, rt, code
Trap If Equal

Operation
if rs = rt then Trap Exception; else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TEQ

110100

6 5 5 10 6

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt. If rs is equal to rt, a Trap exception occurs. The code field in a TEQ instruction is available for
use as software parameters to pass additional information. To examine these bits, system software
must load the instruction word from memory.

Exceptions
Trap exception

 Appendix A 32-Bit ISA Details

 A-109

TEQI rs, immediate
Trap If Equal Immediate

Operation
if rs = (immediate15)16 || immediate15..0 then Trap Exception else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
TEQI
01100

immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.
If rs is equal to immediate, a Trap exception occurs.

Exceptions
Trap exception

Appendix A 32-Bit ISA Details

 A-110

TGE rs, rt, code
Trap If Greater Than or Equal

Operation
if rs ≧ rt then Trap Exception; else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TGE

110000

6 5 5 10 6

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt as signed integers. If rs is greater than or equal to rt, a Trap exception occurs. The code field in a
TGE instruction is available for use as software parameters to pass additional information. To
examine these bits, system software must load the instruction word from memory.

Exceptions
Trap exception

 Appendix A 32-Bit ISA Details

 A-111

TGEI rs, immediate
Trap If Greater Than Or Equal Immediate

Operation
if rs ≧ (immediate15)16 || immediate15..0 then Trap Exception else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
TGEI
01000

immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs
as signed integers. If rs is greater than or equal to immediate, a Trap exception occurs.

Exceptions
Trap exception

Appendix A 32-Bit ISA Details

 A-112

TGEIU rs, immediate
Trap If Greater Than Or Equal Immediate Unsigned

Operation
if (0 || rs) ≧ 0 || (immediate15)16 || immediate15..0 then Trap Exception else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
TGEIU
01001

immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs
as unsigned integers. If rs is greater than or equal to immediate, a Trap exception occurs.

Exceptions
Trap exception

 Appendix A 32-Bit ISA Details

 A-113

TGEU rs, rt, code
Trap If Greater Than or Equal Unsigned

Operation
if (0 || rs) ≧ (0 || rt) then Trap Exception; else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt Code
TGEU
110001

6 5 5 10 6

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt as unsigned integers. If rs is greater than or equal to rt, a Trap exception occurs. The code field in
a TGEU instruction is available for use as software parameters to pass additional information. To
examine these bits, system software must load the instruction word from memory.

Exceptions
Trap exception

Appendix A 32-Bit ISA Details

 A-114

TLT rs, rt, code
Trap If Less Than

Operation
if rs < rt then Trap Exception; else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TLT

110010

6 5 5 10 6

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt as signed integers. If rs is less than rt, a Trap exception occurs. The code field in a TLT
instruction is available for use as software parameters to pass additional information. To examine
these bits, system software must load the instruction word from memory.

Exceptions
Trap exception

 Appendix A 32-Bit ISA Details

 A-115

TLTI rs, immediate
Trap If Less Than Immediate

Operation
if rs < (immediate15)16 || immediate15..0 then Trap Exception else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
TLTI

01010
Immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs
as signed integers. If rs is less than immediate, a Trap exception occurs.

Exceptions
Trap exception

Appendix A 32-Bit ISA Details

 A-116

TLTIU rs, immediate
Trap If Less Than Immediate Unsigned

Operation
if (0 || rs) < 0 || (immediate15)16 || immediate15..0 then Trap Exception else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
TLTIU
01011

Immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs
as unsigned integers. If rs is less than immediate, a Trap exception occurs.

Exceptions
Trap exception

 Appendix A 32-Bit ISA Details

 A-117

TLTU rs, rt, code
Trap If Less Than Unsigned

Operation
if (0 || rs) < (0 || rt) then Trap Exception; else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TLTU

110011

6 5 5 10 6

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt unsigned integers. If rs is less than rt, a Trap exception occurs. The code field in a TLTU
instruction is available for use as software parameters to pass additional information. To examine
these bits, system software must load the instruction word from memory.

Exceptions
Trap exception

Appendix A 32-Bit ISA Details

 A-118

TNE rs, rt, code
Trap If Not Equal

Operation
if rs ≠ rt then Trap Exception; else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TNE

110110

6 5 5 10 6

Description

The contents of general-purpose register rs is compared to the contents of general-purpose register
rt. If rs is not equal to rt, a Trap exception occurs. The code field in a TNE instruction is available
for use as software parameters to pass additional information. To examine these bits, system
software must load the instruction word from memory.

Exceptions
Trap exception

 Appendix A 32-Bit ISA Details

 A-119

TNEI rs, immediate
Trap If Not Equal Immediate

Operation
if rs ≠ (immediate15)16 || immediate15..0 then Trap Exception else Next Instruction

Instruction Encoding
31 26 25 21 20 16 15 0

REGIMM
000001

rs
TNEI
01110

immediate

6 5 5 16

Description

The 16-bit immediate is sign-extended and compared to the contents of general-purpose register rs.
If rs is not equal to immediate, a Trap exception occurs.

Exceptions
Trap exception

Appendix A 32-Bit ISA Details

 A-120

WAIT
Enter Standby Mode

Operation
if Status[RP] = 1 then DOZE mode

 else HALT mode

Instruction Encoding
31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

WAIT
100000

6 1 19 6

Description

The WAIT instruction is used to stall the instruction pipeline to reduce the processor’s power
consumption. If the RP bit in the Status register is set, the processor enters DOZE mode. If the RP
bit is cleared, the processor enters HALT mode. Refer to Chapter 10, Low-Power Modes.

The WAIT instruction must not be set in a delay slot of the branch or jump instruction.
Once the MTC0 instruction writes to the Status, EPC or ErrorEPC register, at least two instructions
must be executed before the WAIT instruction. Otherwise, the operation is undefined.

Exceptions
Coprocessor Unusable exception

 Appendix A 32-Bit ISA Details

 A-121

XOR rd, rs, rt
Exclusive OR

Operation
rd ⇐ rs XOR rt

Instruction Encoding
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
XOR

100110

6 5 5 5 5 6

Description

The contents of general-purpose register rs is exclusive-ORed with the contents of general-purpose
register rt. The result is placed back into general-purpose register rd.

Exceptions
None

Example
Assume that registers r2 and r3 contain 0x1000_7350 and 0x0000_3456 respectively. Then,
executing the instruction:

XOR r4,r2,r3

places 0x1000_4706 back in register r4, as shown below.

XOR
0001 0000 0000 0000 0111 0011 0101 0000

0001 0000 0000 0000 0100 0111 0000 0110

0000 0000 0000 0000 0011 0100 0101 0110

r2

r3

r4

Appendix A 32-Bit ISA Details

 A-122

XORI rt, rs, immediate
Exclusive OR Immediate

Operation
rt ⇐ rs XOR (016 || immediate15..0)

Instruction Encoding
31 26 25 21 20 16 15 0

XORI
001110

rs rt immediate

6 5 5 16

Description

The 16-bit immediate is zero-extended and exclusive-ORed with the contents of general-purpose
register rs. The result is placed back into rt.

The immediate field is 16 bits in length. If the immediate size is larger than that, you need to put it
in a general-purpose register and use the XOR instruction (see Section 3.3.2, 32-Bit Constants).

Exceptions
None

Example
Assume that register r2 contains 0x0000_7350. Then, executing the instruction:

XORI r3,r2,0x1234

places 0x0000_6164 back in register r3, as shown below.

XOR

0000 0000 0000 0000 0111 0011 0101 0000

0000 0000 0000 0000 0110 0001 0110 0100

0000 0000 0000 0000 0001 0010 0011 0100

r1

r3

Zero-Extended

 Appendix B 16-Bit ISA Details

 B-1

Appendix B 16-Bit ISA Details
This appendix presents detailed information concerning each instruction in the 16-bit ISA. Each
instruction is listed alphabetically by mnemonic. Each listing contains complete information about
assembler syntax, instruction format, operation and exceptions that may occur due to the execution
of the instruction. For the variations of instruction formats, see Section 4.1, Instruction Formats.

To fit within the 16-bit limit, the register fields (rx, ry, rz and base) in the 16-bit instructions are
only 3 bits. Therefore, to the 16-bit instructions, only eight of the 32 general-purpose registers are
normally visible, r2 to r7, r16 and r17. These registers are encoded as follows.

Code Register Code Register

000 r16 100 r4
001 r17 101 r5
010 r2 110 r6
011 r3 111 r7

Additionally, specific instructions implicitly reference r24 (t8), r28 (gp), r29 (sp), r30 (fp) and r31
(ra). r24 serves as the condition code register for handling compare results. r28 is the global pointer.
r29 maintains the program stack pointer. r30 is the frame pointer. r31 is the link register to store the
subroutine return address. These registers are implicitly referred to through special function codes.

Appendix B 16-Bit ISA Details

 B-2

AC0IU cp0rt32, imm3
Add Coprocessor 0 Immediate Unsigned

Operation
cp0rt32 ⇐ cp0rt32 + imm3

Instruction Encoding
 15 11 10 8 7 6 2 1 0

RRR
11100

ximm3 0 cp0rt32 00

 5 3 1 5 2

Description

The encoding used for the 3-bit imm3 field is shown below. The value indicated by imm3 is added
to the contents of CP0 register cp0rt32. The result is placed back into cp0rt32. imm3 can only be
one of these: –8, –4, –2, –1, +1, +2, +4, +8.

ximm3 imm3
1 1 1 －8
1 1 0 －4
1 0 1 －2
1 0 0 －1
0 0 0 +1
0 0 1 +2
0 1 0 +4
0 1 1 +8

No Integer Overflow exception occurs under any circumstances.

Once the AC0IU instruction writes to the Status, EPC or ErrorEPC register, at least two instructions
must be executed before the ERET instruction. Otherwise, the operation is undefined.

The AC0IU instruction that modifies the contents of the SSCR register must be followed by two
NOPs.

Exceptions
Coprocessor Unusable exception

 Appendix B 16-Bit ISA Details

 B-3

Example
Assume that the EPC register contains 0x8001_0060. Then, the instruction:

AC0IU EPC, -8

writes the result of 0x8001_0058 into EPC.

Appendix B 16-Bit ISA Details

 B-4

ADDIU fp, immediate
Add Immediate Unsigned

Operation
 r30 ⇐ r30 + (immediate7)22 || (immediate7..0) || 00

(EXTENDED) r30 ⇐ r30 + (immediate15)16 || (immediate15..0)

Instruction Encoding
 15 11 10 8 7 0

I8

01100
ADJFP

110
Immediate[7:0]

 5 3 8

31 27 26 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

imm [10:5]
imm

[15:11]
I8

01100
110 000 Imm[4:0]

5 8 3 5 3 3 5

Description

The term "unsigned" in the instruction name is a misnomer. The 8-bit immediate is shifted left by
two bits and sign-extended. The resultant value is added to the contents of the fp (r30) register.

No Integer Overflow exception occurs under any circumstances.

Since the 8-bit immediate is shifted left by two bits, the immediate range is –512 to +504, in
increments of four. If the immediate is outside this range, the instruction is EXTENDed to provide a
16-bit signed immediate in the range of –32768 to +32767. When EXTENDed, the immediate
operand is not shifted at all.

Exceptions
None

Example
Assume that frame pointer register fp contains 0x0000_2000. Then, the instruction:

ADDIU fp,8

places the result 0x0000_2008 in fp.

EXTENDED

EXTENDED

 Appendix B 16-Bit ISA Details

 B-5

ADDIU rx, immediate
Add Immediate Unsigned

Operation
 rx ⇐ rx + (immediate7)24 || (immediate7..0)

(EXTENDED) rx ⇐ rx + (immediate15)16 || (immediate15..0)

Instruction Encoding
 15 11 10 8 7 0

ADDIU8
01001

rx immediate

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

imm[10:5] imm[15:11]
ADDIU8
01001

rx 000 imm[4:0]

 5 6 5 5 3 3 5

Description

The term "unsigned" in the instruction name is a misnomer. The 8-bit immediate is sign-extended
and added to the contents of general-purpose register rx. The result is placed back into
general-purpose
register rx.

No Integer Overflow exception occurs under any circumstances.

With the 8-bit immediate field, the immediate range is -128 to +127. If the immediate is outside this
range, the instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to
+32767.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-6

ADDIU rx, pc, immediate
Add Immediate Unsigned

Operation
 rx ⇐ Masked base PC + 022 || (immediate7..0) || 00

(EXTENDED) rx ⇐ Masked base PC + (immediate15)16 || (immediate15..0)

Instruction Encoding
 15 11 10 8 7 0

ADDIUPC

00001
rx immediate

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

imm[10:5] imm[15:11]
ADDIUPC

00001
rx 000 imm[4:0]

 5 6 5 5 3 3 5

Description

The PC value used as the base for address calculation is called base PC value. The two low-order
bits of the PC are cleared to form a "masked base PC value." The 8-bit immediate is shifted left by
two bits, zero-extended and then added to the masked base PC value to form a virtual address. This
address is placed into general-purpose register rx. This instruction is used to calculate the PC relative
address of an instruction or data in its proximity and place it in a register.

No Integer Overflow exception occurs under any circumstances.

The 32-bit PC-relative instruction is not a valid 32-bit ISA instruction; thus the operation of this
instruction differs from that of the ADDIU instruction in the 32-bit ISA.

Since the 8-bit immediate is shifted left by two bits, the immediate range is 0 to 1020, in increments
of four. If the immediate is outside this range, the instruction is EXTENDed to provide a 16-bit
signed immediate in the range of -32768 to +32767. When EXTENDed, the immediate operand is
not shifted at all.

The base PC value differs as follows, depending on whether this instruction is in a delay slot and
whether it is prepended with an EXTEND prefix.

EXTENDED

 Appendix B 16-Bit ISA Details

 B-7

ADDIUPC Base PC Value

Delay slot of a JR or JALR instruction Address of the JR or JALR instruction
Delay slot of a JAL or JALX instruction Address of the upper halfword of the JAL or JALX instruction
EXTENDed Address of the EXTEND instruction code
Not EXTENDed Address of the ADDIUPC instruction

Exceptions
None

Example
ADDIU r3,pc,16

Assume that this instruction is at address 0x0123_456A which is not a delay slot. Then, the masked
PC value of 0x0123_4568 is obtained by clearing its two low-order bits. Since the immediate value
is shifted left by two bits by the processor hardware, the assembler turns the specified operand (16)
into a code of 4. Thus the instruction code for this ADDIU instruction becomes 0x0B04. The offset
is added to the masked PC value as shown below, and the result is placed in register r3.

Masked Base PC 0x0123_4568

The immediate value, 4, is
shifted left by two bits.

Memory Word

r3 0x0123_4578

ADDIU r3, pc, 16 0x1234568
0x123456C
0x123457C
0x1234574
0x1234578
0x123457C

+16

Appendix B 16-Bit ISA Details

 B-8

ADDIU rx, sp, immediate
Add Immediate Unsigned

Operation
 rx ⇐ sp + 022 || (immediate7..0) || 00

(EXTENDED) rx ⇐ sp + (immediate15)16 || (immediate15..0)

Instruction Encoding
 15 11 10 8 7 0

ADDIUSP

00000
rx immediate

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

imm[10:5] imm[15:11]
ADDIUSP

00000
rx 000 imm[4:0]

 5 6 5 5 3 3 5

Description

In this instruction format, the 8-bit immediate is shifted left by two bits and zero-extended. The
resultant value is added to the contents of stack pointer register sp (r29), and the result is placed into
general-purpose register rx.

No Integer Overflow exception occurs under any circumstances.

Since the 8-bit immediate is shifted left by two bits, the immediate range is 0 to 1020, in increments
of four. If the immediate is outside this range, the instruction is EXTENDed to provide a 16-bit
signed immediate in the range of -32768 to +32767. When EXTENDed, the immediate operand is
not shifted at all.

Exceptions
None

EXTENDED

 Appendix B 16-Bit ISA Details

 B-9

ADDIU ry, rx, immediate
Add Immediate Unsigned

Operation
 ry ⇐ rx + (immediate3)28 || (immediate3..0)

(EXTENDED) ry ⇐ rx + (immediate14)17 || (immediate14..0)

Instruction Encoding
 15 11 10 8 7 5 4 3 0

RRI-A
01000

rx ry 0 immediate

 5 3 3 1 4

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0

EXTEND
11110

imm[10:4] imm[14:11]
PRI-A
01000

rx ry 0 imm[3:0]

 5 7 4 5 3 3 1 4

Description

The term "unsigned" in the instruction name is a misnomer. The 4-bit immediate is sign-extended
and added to the contents of general-purpose register rx. The result is placed into general-purpose
register ry.

No Integer Overflow exception occurs under any circumstances.

With the 4-bit immediate field, the immediate range is -8 to +7. If the immediate is outside this
range, the instruction is EXTENDed to provide a 15-bit signed immediate in the range of -16384 to
+16833.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-10

Example
Assume that register r2 contains 0x0000_1234. Then, executing the instruction:

ADDIU r3,r2,-6

places the sum 0x0000_122E into r3.

+

0 0 0 0 1 2 3 4

0 0 0 0 1 2 2 E

F F F F F F F A

r2

r3

Sign-Extended

 Appendix B 16-Bit ISA Details

 B-11

ADDIU sp, immediate
Add Immediate Unsigned

Operation
 sp ⇐ sp + (immediate7)21 || (immediate7..0) || 000

(EXTENDED) sp ⇐ sp + (immediate15)16 || (immediate15..0)

Instruction Encoding
 15 11 10 8 7 0

I8

01100
ADJSP

011
immediate

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

imm[10:5] imm[15:11]
18

01100
ADJSP

011
000 imm[4:0]

 5 6 5 5 3 3 5

Description

The term "unsigned" in the instruction name is a misnomer. The 8-bit immediate is shifted left by
three bits and sign-extended. The resultant value is added to the contents of stack pointer register sp
(r29).

No Integer Overflow exception occurs under any circumstances.

Since the 8-bit immediate is shifted left by three bits, the immediate range is -1024 to +1016, in
increments of eight. If the immediate is outside this range, the instruction is EXTENDed to provide
a 16-bit signed immediate in the range of -32768 to +32767. When EXTENDed, the immediate
operand is not shifted at all.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-12

Example
Assume stack pointer register sp contains 0x0000_2000. Then, the instruction:

ADDIU sp,8

places the result 0x0000_2008 in sp, as shown below.

+

0 0 0 0 2 0 0 0

0 0 0 0 2 0 0 8

0 0 0 0 0 0 0 8

r2

r3

Sign-extended

 Appendix B 16-Bit ISA Details

 B-13

ADDMIU offset (base3), imm3
Add Immediate to Memory Word

Operation
{zero-extend (offset || 00) + (base3)} ⇐ {zero-extend (offset || 00) + (base3)} + imm3

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] base3
offset
[13:11]

01001 ximm3
ADDMIU

010
offset[4:0]

 5 6 2 3 5 3 3 5

Description

The 14-bit offset is shifted left by two bits, zero-extended, then added to the contents of the general
purpose register specified by base3 to form an effective address (EA). The value indicated by the
3-bit imm3 is added to the memory word addressed by the EA, and the sum is written back to the EA.

base3 GPR
01 r28 (gp)
10 r29 (sp)
11 r30 (fp)

imm3 can only be one of these: –8, –4, –2, –1, +1, +2, +4, +8.

ximm3 imm3
1 1 1 －8
1 1 0 －4
1 0 1 －2
1 0 0 －1
0 0 0 +1
0 0 1 +2
0 1 0 +4
0 1 1 +8

No Integer Overflow exception occurs under any circumstances.

Since the 14-bit offset is shifted left by two bits, the offset range is 0 to 65532, in increments of
four.

EXTENDED

Appendix B 16-Bit ISA Details

 B-14

Exceptions
Address Error exception

Example

Assume that the fp register contains 0x0000_0400 and that the memory word at address 0x0404 is
0xFFFF_FFFC. Then, the instruction:

ADDMIU 4(fp), 8

adds 8 to the contents of the memory word at 0x404, as shown below.

r30 0x0000_0400

Memory

FC

0x400
0x401
0x402
0x403

+4

Byte

0x404

+8

Before After

The offset, 1, is shifted
left by two bits.

0x405
0x406
0x407

FF
FF
FF

Memory

04

0x400
0x401
0x402
0x403

Byte

0x404
0x405
0x406
0x407

00
00
00

Little-Endian

 Appendix B 16-Bit ISA Details

 B-15

ADDMIU offset (r0), imm3
Add Immediate to Memory Word

Operation
{sign-extend (offset || 00)} ⇐ {sign-extend (offset || 00)} + imm3

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] 00
offset
[13:11]

01001 ximm3
ADDMIU

010
offset[4:0]

 5 6 2 3 5 3 3 5

Description

The 14-bit offset is shifted left by two bits, sign-extended, then added to the contents of general
purpose register r0 to form an effective address (EA). The value indicated by the 3-bit imm3 is
added to the memory word addressed by the EA, and the sum is written back to the EA.

imm3 can only be one of these: –8, –4, –2, –1, +1, +2, +4, +8.

ximm3 imm3
1 1 1 －8
1 1 0 －4
1 0 1 －2
1 0 0 －1
0 0 0 +1
0 0 1 +2
0 1 0 +4
0 1 1 +8

No Integer Overflow exception occurs under any circumstances.

Since the 14-bit offset is shifted left by two bits, the offset range is –32768 to +32764, in increments
of four.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-16

Example
Assume that the memory word at address 0x0404 is 0x0000_0104. Then, the instruction:

ADDMIU 0x404(r0), -8

adds –8 to the contents of the memory word at 0x404, as shown below:

Target Address

Memory

0x04 0x404
0x405
0x406
0x407

Byte

0x408

－8

Before After

The offset is shifted
left by two bits to form
the target address.

0x01
0x00
0x00

Memory

0xFC 0x404
0x405
0x406
0x407

Byte

0x408

0x00
0x00
0x00

Little-Endian

 Appendix B 16-Bit ISA Details

 B-17

ADDU rz, rx, ry
Add Unsigned

Operation
rz ⇐ rx + ry

Instruction Encoding
 15 11 10 8 7 5 4 2 1 0

RRR
11100

rx ry rz
ADDU

01

 5 3 3 3 2

Description

The contents of general-purpose register rx is added to the contents of general-purpose register ry,
and the result is placed into general-purpose register rz. No Integer Overflow exception occurs
under any circumstances.

Exceptions
None

Example

Assume that registers r2 and r3 contain 0x2000_0000 and 0x0123_4567 respectively. Then,
executing the instruction:

ADDU r4,r2,r3

places the sum (0x323_4567) into r4.

Appendix B 16-Bit ISA Details

 B-18

AND rx, ry
AND

Operation
rx ⇐ rx AND ry

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

AND
01100

 5 3 3 5

Description

The contents of general-purpose register rx is ANDed with the contents of general-purpose register
ry, and the result is placed back into general-purpose register rx.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-19

ANDI ry, immediate
Logical AND Immediate

Operation
ry ⇐ ry AND (016 || immediate15..0)

Instruction Encoding
31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110 Imm[10:5] Imm[15:11] 01001 ry ANDI

100 Imm[4:0]

5 6 5 5 3 3 5

Description

The 16-bit immediate is zero-extended and ANDed with the contents of general-purpose register ry.
The result is placed back into ry.

The immediate field is 16 bits in length. If the immediate size is larger than that, you need to put it
in a general-purpose register and use the AND instruction (see 3.3.2, 32-Bit Constants).

Exceptions
None

Example
Assume that register r4 contains 0x0000_7350. Then, the instruction:

ANDI r4,0x1234

performs the logical AND between 0x0000_7350 and 0x0000_1234 and puts the result
(0x0000_1210) in r4, as shown below.

r4 0000 0000 0000 0000 0111 0011 0101 0000

 AND

 0000 0000 0000 0000 0001 0010 0011 0100

 Zero-Extended

 r4 0000 0000 0000 0000 0001 0010 0001 0000

EXTENDED

Appendix B 16-Bit ISA Details

 B-20

B offset
Unconditional Branch

Operation
 pc ⇐ pc + 2 + sign-extend (offset || 0)

(EXTENDED) pc ⇐ pc + 4 + sign-extend (offset || 0)

Instruction Encoding
 15 11 10 0

B

00010
offset

 5 11

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
B

00010
000 000 offset[4:0]

 5 6 5 5 3 3 5

Description

The program unconditionally branches to the target address with a delay of one instruction (or two
pipeline cycles). See Section 5.3.4, Branch Instructions (16-Bit ISA), for pipeline delays. This
instruction does not have a delay slot. If the branch is taken, the instruction that immediately follows
this instruction is not executed. The target address is computed relative to the address of the
immediately following instruction, i.e., PC+2 when the instruction is not EXTENDED and PC+4
when EXTENDed.

Since the 11-bit offset is shift left by one bit, the branch range is -2048 to +2046. If the offset is
outside this range, the instruction is EXTENDed to provide a 17-bit signed immediate in the range
of -65536 to +65534. Whether EXTENDed or not, the target address is computed in the same
manner.

Exceptions
None

EXTENDED

 Appendix B 16-Bit ISA Details

 B-21

Example
B SBRANCH

Assume that this branch instruction resides at address 0x2000 and that label SBRANCH points to
absolute address 0x1FFA. Then the assembler/linker turns this label into an offset operand of
0x7FC (see the figure below). Thus the instruction code for this branch instruction becomes

0x17FC.

The processor unconditionally transfers program control to address 0x1FFA. The instruction
following the B instruction is never executed.

0xFFFF_FFF8

The offset, 0x7FC, is shifted left

by one bit and sign-extended.

B SBRANCH

+

0x2002

0x2000

0x1FFA

Next Instruction

Branch Destination

Appendix B 16-Bit ISA Details

 B-22

BAL offset
Branch And Link

Operation
 r31 ⇐ pc + 3; pc ⇐ pc + 2 + sign-extend (offset || 0)

(EXTENDED) r31 ⇐ pc + 5; pc ⇐ pc + 4 + sign-extend (offset || 0)

Instruction Encoding
 15 11 10 8 7 0

SPECIAL

11111
100 offset[7:0]

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5]
offset
[15:11]

SPECIAL
11111

100 000 offset[4:0]

5 6 5 5 3 3 5

Description

The program unconditionally branches to the target address with a delay of one instruction (or two
pipeline cycles). See Section 5.3.4, Branch Instructions (16-Bit ISA), for pipeline delays. This
instruction does not have a delay slot. If the branch is taken, the instruction that immediately follows
this instruction is not executed. The target address is computed relative to the address of the
immediately following instruction, i.e., PC+2 when the instruction is not EXTENDED and PC+4
when EXTENDed.

The address of the instruction following the BAL instruction (PC+2) is saved in the link register,
r31 (ra). The least-significant bit of r31 stores the ISA mode bit that was in effect before the branch
(16-bit ISA = 1).

Since the 8-bit offset is shifted left by one bit, the branch range is –256 to +254. If the offset is
outside this range, the instruction is EXTENDed to provide a 17-bit signed immediate in the range
of –65536 to –65534. In this case also, the target address is computed the same way.

Exceptions
None

EXTENDED

 Appendix B 16-Bit ISA Details

 B-23

Example
BAL PSUB

Assume that this branch instruction resides at address 0x2000 and that label PSUB points to
absolute address 0x2022. Then, the assembler/linker turns this label into an offset operand of
0x0010 (see the figure below).

The program unconditionally branches to address 0x2022.

The JR instruction is used at the end of the called subroutine to return control to the instruction after
the BAL instruction.

JR r31

Subroutine

0x0020

The offset, 0x0010, is shifted left

by 1 bit and sign-extended.

BAL PSUB

+

0x2002

0x2000

0x2022

Branch Destination

PC+2 is saved in r31. 0x2004

JR r31

0x0000_2002 r31

PC+2 is restored from r31.

Appendix B 16-Bit ISA Details

 B-24

BCLR offset (base3), pos3
Bit Clear

Operation
{zero-extend (offset) + (base3)} [pos3] ⇐ 0

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] base3
offset
[13:11]

11111 001 pos3 offset[4:0]

5 6 2 3 5 3 3 5

Description

A bit specified by pos3 in a memory byte is cleared. The effective address is computed by
zero-extending the 14-bit offset and adding the resultant value to the contents of a general-purpose
register indicated by base3. The encoding used for base3 is as follows:

base3 GPR
01 gp(r28)
10 sp(r29)
11 fp(r30)

With the 14-bit offset field, the offset range is 0 to +16383.

Exceptions
Address Error exception

EXTENDED

 Appendix B 16-Bit ISA Details

 B-25

Example

Assume that the sp register (r29) contains 0x0000_0400 and that the byte position at address
0x0404 contains 0xF2. Then, the instruction:

BCLR 4(sp),7

clears bit 7 of byte data 0xF2 as shown below.

r29 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

0x404

Memory

01110010

0x400
0x401
0x402
0x403

Byte

0x404

Bit 7 is cleared.

Before After

Appendix B 16-Bit ISA Details

 B-26

BCLR offset (r0), pos3
Bit Clear

Operation
{sign-extend (offset)} [pos3] ⇐ 0

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] 00
offset
[13:11]

11111 001 pos3 offset[4:0]

5 6 2 3 5 3 3 5

Description

A bit specified by pos3 in a memory byte is cleared. The effective address is computed by
sign-extending the 14-bit offset and adding the resultant value to the contents of general-purpose
register r0, which is hardwired to a value of zero.
With the 14-bit offset field, the offset range is -8192 to +8191.

Exceptions
Address Error exception

Example
Assume that the byte position at address 0x0404 contains 0xF2. Then, the instruction:

BCLR 0x404(r0), 6

clears bit 6 of byte data 0xF2 as shown below.

 Memory

11110010

0x400
0x401
0x402
0x403

Byte

0x404

Memory

10110010

0x400
0x401
0x402
0x403

Byte

0x404

Bit 6 is cleared.

Before After

Target Address

EXTENDED

 Appendix B 16-Bit ISA Details

 B-27

BCLR offset (fp), pos3
Bit Clear

Operation
{zero-extend (offset) + (fp)} [pos3] ⇐ 0

Instruction Encoding
 15 11 10 8 7 6 5 4 0

 11111
bclr
001

pos3 offset[4:0]

 5 3 3 5

Description

A bit specified by pos3 in a memory byte is cleared. The effective address is computed by
zero-extending the 5-bit offset and adding the resultant value to the contents of the fp register (r30).
With the 5-bit offset field, the offset range is 0 to +31.

Exceptions
Address Error exception

Example

Assume that the fp register (r30) contains 0x0000_0400 and that the byte position at address 0x0404
contains 0xF2. Then, the instruction:

BCLR 4(fp), 7

clears bit 7 of byte data 0xF2 as shown below.

r30 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

0x404

Memory

01110010

0x400
0x401
0x402
0x403

Byte

0x404

Bit 7 is cleared.

Before After

Appendix B 16-Bit ISA Details

 B-28

BEQZ rx, offset
Branch On Equal To Zero

Operation
 if rx = 0 then pc ⇐ pc + 2 + sign-extend (offset || 0)

(EXTENDED) if rx = 0 then pc ⇐ pc + 4 + sign-extend (offset || 0)

Instruction Encoding
 15 11 10 8 7 0

BEQZ
00100

rx offset

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
BEQZ
00100

rx 000 offset[4:0]

 5 6 5 5 3 3 5

Description

If the contents of general-purpose register rx is equal to zero, then the program branches to the
target address with a delay of one instruction (or two pipeline cycles). See Section 5.3.4, Branch
Instructions (16-Bit ISA), for pipeline delays. This instruction does not have a delay slot. If the
branch is taken, the instruction that immediately follows this instruction is not executed. The target
address is computed relative to the address of the immediately following instruction, i.e., PC+2
when the instruction is not EXTENDED and PC+4 when EXTENDed.

Since the 8-bit offset is shifted left by one bit, the branch range is -256 to +254. If the offset is
outside this range, the instruction is EXTENDed to provide a 17-bit signed immediate in the range
of -65536 to +65534. Whether EXTENDed or not, the target address is computed in the same
manner.

Exceptions
None

EXTENDED

 Appendix B 16-Bit ISA Details

 B-29

Example
BEQZ r2,SZERO

Assume that this branch instruction resides at address 0x2000 and that label SZERO points to
absolute address 0x1FFC. Then the assembler/linker turns this label into an offset operand of 0xFD
(see the figure below). Thus the instruction code for this branch instruction becomes 0x22FD.

If the contents of r2 are equal to zero, the processor transfers program control to address 0x1FFC.
Otherwise, the program just continues to the next instruction at 0x2002.

0xFFFF_FFFA

The offset, 0xFD, is shifted left

by one bit and sign-extended.

BEQZ r2, SZERO

+

0x2002

0x2000

0x1FFC

Next Instruction

Branch Destination

Appendix B 16-Bit ISA Details

 B-30

BEXT offset (base3), pos3
Bit Extract

Operation
t8 ⇐ 31’b 000_0000_0000_0000_0000_0000_0000_0000 || {zero-extend (offset) + (base3)} [pos3]

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] base3
offset
[13:11]

11111 101 pos3 offset[4:0]

5 6 2 3 5 3 3 5

Description

A bit specified by pos3 in a memory byte is copied into the least-significant bit (LSB) of general
purpose register t8 (r24). The upper 31 bits of t8 are filled with zeros. The effective address is
computed by zero-extending the 14-bit offset and adding the resultant value to the contents of a
general-purpose register indicated by base3. The encoding used for base3 is as follows:

base3 GPR
01 gp(r28)
10 sp(r29)
11 fp(r30)

With the 14-bit offset field, the offset range is 0 to +16383.

Exceptions
Address Error exception

EXTENDED

 Appendix B 16-Bit ISA Details

 B-31

Example

Assume that the sp register (r29) contains 0x0000_0400 and that the byte position at address
0x0404 contains 0xF2. Then, the instruction:

BEXT 4(sp), 3

loads r24 with 0x0000_0000.

Bit 3 is loaded into r24.

r29 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

r24 0x0000_0000

0x404

Appendix B 16-Bit ISA Details

 B-32

BEXT offset (r0), pos3
Bit Extract

Operation
t8 ⇐ 31’b 000_0000_0000_0000_0000_0000_0000_0000 || {sign-extend (offset)} [pos3]

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] 00
offset
[13:11]

11111 101 pos3 offset[4:0]

5 6 2 3 5 3 3 5

Description

A bit specified by pos3 in a memory byte is copied into the least-significant bit (LSB) of general
purpose register t8 (r24). The upper 31 bits of t8 are filled with zeros. The effective address is
computed by sign-extending the 14-bit offset and adding the resultant value to the contents of
general-purpose register r0, which is hardwired to a value of zero.

With the 14-bit offset field, the offset range is -8192 to +8191.

Exceptions
Address Error exception

Example
Assume that the byte position at address 0x0404 contains 0xF2. Then, the instruction:

BEXT 0x404(r0), 1

loads r24 with 0x0000_0001.

Bit 1 is loaded into r24.

Memory

11110010

0x400
0x401
0x402
0x403

Byte

r24 0x0000_0001

0x404 Target Address

EXTENDED

 Appendix B 16-Bit ISA Details

 B-33

BEXT offset (fp), pos3
Bit Extract

Operation
t8 ⇐ 31’b 000_0000_0000_0000_0000_0000_0000_0000 || {zero-extend (offset) + (fp)} [pos3]

Instruction Encoding
 15 11 10 8 7 5 4 0

 11111
bext
101

pos3 offset[4:0]

 5 3 3 5

Description

A bit specified by pos3 in a memory byte is copied into the least-significant bit (LSB) of general
purpose register t8 (r24). The upper 31 bits of t8 are filled with zeros. The effective address is
computed by zero-extending the 5-bit offset and adding the resultant value to the contents of the fp
register (r30).

With the 5-bit offset5 field, the offset range is 0 to +31.

Exceptions
Address Error exception

Example

Assume that the fp register (r30) contains 0x0000_0400 and that the byte position at address 0x0404
contains 0xF2. Then, the instruction:

BEXT 4(fp), 3

loads r24 with 0x0000_0000.

Bit 3 is loaded into r24.

r30 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

r24 0x0000_0000

0x404

Appendix B 16-Bit ISA Details

 B-34

BFINS ry, rx, bit2, bit1
Bit Field Insert

Operation
ry[bit2:bit1] ⇐ rx[bit2-bit1 : 0] ;

Instruction Encoding
31 27 26 25 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

0 bit2 bit1 11101 ry rx 00111

5 1 5 5 5 3 3 5

Description

A bit field indicated by [(bit2 – bit1):0] in general-purpose register rx is copied into a location
indicated by (bit2:bit1) in general-purpose register ry.

Exceptions
None

Example

Assume that general-purpose registers r4 and r5 contain 0x0123_4567 and 0x89AB_CDEF
respectively. Then, the instruction:

bfins r4, r5, 15, 8

reads bits 7-0 in r5 and deposits them in bits 15-8 in r4, as shown below.

 7 0

Before r4 0000 0001 0010 0011 0100 0101 0110 0111 r5 1000 1001 1010 1011 1100 1101 1110 1111

After r4 0000 0001 0010 0011 1110 1111 0110 0111

 15 8

EXTENDED EXTENDED

 Appendix B 16-Bit ISA Details

 B-35

BINS offset (base3), pos3
Bit Insert

Operation
{zero-extend (offset) + (base3)} [pos3] ⇐ t8[0]

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] base3
offset
[13:11]

11111 011 pos3 offset[4:0]

5 6 2 3 5 3 3 5

Description

The least-significant bit (LSB) of general-purpose register t8 (r24) is copied into a bit position
indicated by pos3 in a memory byte. The effective address is computed by zero-extending the 14-bit
offset and adding the resultant value to the contents of a general-purpose register indicated by base3.
The encoding used for base3 is as follows:

base3 GPR
01 gp(r28)
10 sp(r29)
11 fp(r30)

With the 14-bit offset field, the offset range is 0 to +16383.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-36

Example

Assume that the sp register (r29) contains 0x0000_0400, that the byte position at address 0x0404
contains 0xF2 and that r24 contains 0x0000_0001. Then, the instruction:

BINS 4(sp), 2

replaces bit 2 at address 0x0404 with a 1.

The LSB of r24 is copied into bit 2.

r29 0x0000_0400

Memory

11110110

0x400
0x401
0x402
0x403

+4

Byte

r24 0x0000_0001

0x404

 Appendix B 16-Bit ISA Details

 B-37

BINS offset (r0), pos3
Bit Insert

Operation
{sign-extend (offset)} [pos3] ⇐ t8[0]

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] 00
offset
[13:11]

11111 011 pos3 offset[4:0]

5 6 2 3 5 3 3 5

Description

The least-significant bit (LSB) of general-purpose register t8 (r24) is copied into a bit position
indicated by pos3 in a memory byte. The effective address is computed by sign-extending the 14-bit
offset and adding the resultant value to the contents of general-purpose register r0, which is
hardwired to a value of zero.

With the 14-bit offset field, the offset range is -8192 to +8191.

Exceptions
Address Error exception

Example

Assume that the byte position at address 0x0404 contains 0xF2 and that r24 contains 0x0000_0000.
Then, the instruction:

BINS 0x404(r0), 1

replaces bit 1 at address 0x0404 with a 0.

The LSB of r24 is copied into bit 1.

Memory

11110000

0x400
0x401
0x402
0x403

Byte

r24 0x0000_0000

0x404 Target Address

EXTENDED

Appendix B 16-Bit ISA Details

 B-38

BINS offset (fp), pos3
Bit Insert

Operation
{zero-extend (offset) + (fp)} [pos3] ⇐ t8[0]

Instruction Encoding
 15 11 10 8 7 5 4 0

 11111 011 pos3 offset[4:0]

 5 3 3 5

Description

The least-significant bit (LSB) of general-purpose register t8 (r24) is copied into a bit position
indicated by pos3 in a memory byte. The effective address is computed by zero-extending the 5-bit
offset and adding the resultant value to the contents of the fp register (r30).

With the 5-bit offset field, the offset range is 0 to +31.

Exceptions
Address Error exception

Example

Assume that the fp register (r30) contains 0x0000_0400, that the byte position at address 0x0404
contains 0xF2 and that r24 contains 0x0000_0001. Then, the instruction:

BINS 4(fp), 2

replaces bit 2 at address 0x0404 with a 1.

The LSB of r24 is copied into bit 2.

r30 0x0000_0400

Memory

11110110

0x400
0x401
0x402
0x403

+4

Byte

r24 0x0000_0001

0x404

 Appendix B 16-Bit ISA Details

 B-39

BNEZ rx, offset
Branch On Not Equal To Zero

Operation
 if rx ≠ 0 then pc ⇐ pc + 2 + sign-extend (offset || 0)

(EXTENDED) if rx ≠ 0 then pc ⇐ pc + 4 + sign-extend (offset || 0)

Instruction Encoding
 15 11 10 8 7 0

BNEZ
00101

rx offset

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
BNEZ
00101

rx 000 offset[4:0]

 5 6 5 5 3 3 5

Description

If the contents of general-purpose register rx is not equal to zero, then the program branches to the
target address with a delay of one instruction (or two pipeline cycles). See Section 5.3.4, Branch
Instructions (16-Bit ISA), for pipeline delays. This instruction does not have a delay slot. If the
branch is taken, the instruction that immediately follows this instruction is not executed. The target
address is computed relative to the address of the immediately following instruction, i.e., PC+2
when the instruction is not EXTENDED and PC+4 when EXTENDed.

With the 8-bit offset field, the branch range is -256 to +254. If the offset is outside this range, the
instruction is EXTENDed to provide a 17-bit signed immediate in the range of -65536 to +65534.
Whether EXTENDed or not, the target address is computed in the same manner.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-40

Example
BNEZ r2,SNOTZERO

Assume that this branch instruction resides at address 0x2000 and that label SNOTZERO points to
absolute address 0x1FFC. Then the assembler/linker turns this label into an offset operand of 0xFD
(see the figure below). Thus the instruction code for this branch instruction becomes 0x2AFD.

If the contents of r2 are not equal to zero, the processor transfers program control to address 0x1FFC.
Otherwise, the program just continues to the next instruction at 0x2002.

0xFFFF_FFFA

The offset, 0xFD, is shifted left

by one bit and sign-extended.

BNEZ r2, SNOTZERO

+

0x2002

0x2000

0x1FFC

Next Instruction

Branch Destination

 Appendix B 16-Bit ISA Details

 B-41

BREAK code
Breakpoint Exception

Operation
Breakpoint exception

Instruction Encoding
 15 11 10 5 4 0

RR

11101
code

BREAK
00101

 5 6 5

Description

When this instruction is executed, a breakpoint exception occurs, immediately and unconditionally
transferring control to the exception handler.

The code field in the BREAK instruction is available for use as software parameters to pass
additional information. The exception handler can retrieve it by loading the contents of the memory
halfword containing the instruction. For more on this, see Section 9.1.11, Breakpoint Exception.

Exceptions
Breakpoint exception

Appendix B 16-Bit ISA Details

 B-42

BS1F ry, rx
Bit Search One Forward

Operation
if rx == 0 then ry ⇐ 0 ;

 else ry ⇐ (bit position of rx[bit position] == 1) + 1 ;

Instruction Encoding
31 27 26 22 21 16 15 11 10 8 7 5 4 0

EXTEND
11110

10000 000000 11101 ry rx 00111

5 5 6 5 3 3 5

Description

General-purpose register rx is searched for the first set bit, starting from bit 0 towards bit 31. If a set
bit is found in rx, its bit position (bit number plus 1) is placed into general-purpose register ry. If no
set bit is found in rx, the value written to ry is 0.

Exceptions
None

Example
Assume that general-purpose register r4 contains 0x1234_1200 (bit 9 is set). Then, the instruction:

BS1F r3, r4

loads general-purpose register r3 with 0x0000_000A.

r4 0001 0010 0011 0100 0001 0010 0000 0000

 r4 is searched for a 1,
starting with the LSB.

r3 0000 0000 0000 0000 0000 0000 0000 1010

EXTENDED EXTENDED

 Appendix B 16-Bit ISA Details

 B-43

BSET offset (base3), pos3
Bit Set

Operation
{zero-extend (offset) + (base3)} [pos3] ⇐ 1

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] base3
offset
[13:11]

11111 010 pos3 offset[4:0]

5 6 2 3 5 3 3 5

Description

A bit specified by pos3 in a memory byte is set. The effective address is computed by zero-extending
the 14-bit offset and adding the resultant value to the contents of a general-purpose
register indicated by base3. The encoding used for base3 is as follows:

base3 GPR
01 gp(r28)
10 sp(r29)
11 fp(r30)

With the 14-bit offset field, the offset range is 0 to +16383.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-44

Example

Assume that the sp register (r29) contains 0x0000_0400 and that the byte position at address
0x0404 contains 0xF2. Then, the instruction:

BSET 4(sp), 0

sets bit 0 of byte data 0xF2 as shown below.

r29 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

0x404

Memory

11110011

0x400
0x401
0x402
0x403

Byte

0x404

Bit 0 is set.

Before After

 Appendix B 16-Bit ISA Details

 B-45

BSET offset (r0), pos3
Bit Set

Operation
{sign-extend (offset)} [pos3] ⇐ 1

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] 00
offset
[13:11]

11111 010 pos3 offset[4:0]

5 6 2 3 5 3 3 5

Description

A bit specified by pos3 in a memory byte is negated and placed into the least-significant bit (LSB)
of general-purpose register t8 (r24). The upper 31 bits of t8 are filled with zeros. The effective
address is computed by sign-extending the 14-bit offset and adding the resultant value to the
contents of general-purpose r0, which is hardwired to a value of zero.

With the 14-bit offset field, the offset range is -8192 to +8191.

Exceptions
Address Error exception

Example
Assume that the byte position at address 0x0404 contains 0xF2. Then, the instruction:

BSET 0x404(r0), 2

sets bit 2 of byte data 0xF2 as shown below.

 Memory

11110010

0x400
0x401
0x402
0x403

Byte

0x404

Memory

11110110

0x400
0x401
0x402
0x403

Byte

0x404

Bit 2 is set.

Before After

Target Address

EXTENDED

Appendix B 16-Bit ISA Details

 B-46

BSET offset (fp), pos3
Bit Set

Operation
{zero-extend (offset) + (fp)} [pos3] ⇐ 1

Instruction Encoding
 15 11 10 8 7 5 4 0

 11111
bset
010

pos3 offset[4:0]

 5 3 3 5

Description

A bit specified by pos3 in a memory byte is set. The effective address is computed by zero-extending
the 5-bit offset and adding the resultant value to the contents of the fp register (r30).

With the 5-bit offset field, the offset range is 0 to +31.

Exceptions
Address Error exception

Example

Assume that the fp register (r30) contains 0x0000_0400 and that the byte position at address 0x0404
contains 0xF2. Then, the instruction:

BSET 4(fp), 0

sets bit 0 of byte data 0xF2 as shown below.

r30 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

0x404

Memory

11110011

0x400
0x401
0x402
0x403

Byte

0x404

Bit 0 is set.

Before After

 Appendix B 16-Bit ISA Details

 B-47

BTEQZ offset
Branch On T8 Equal To Zero

Operation
 if t8 == 0 then pc ⇐ pc + 2 + sign-extend (offset || 0)

(EXTENDED) if t8 == 0 then pc ⇐ pc + 4 + sign-extend (offset || 0)

Instruction Encoding
 15 11 10 8 7 0

I8

01100
BTEQZ

000
offset

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
I8

01100
BTEQZ

000
000 offset[4:0]

 5 6 5 5 3 3 5

Description

If the contents of condition code register t8 (r24) is equal to zero, then the program branches to the
target address with a delay of one instruction (or two pipeline cycles). See Section 5.3.4, Branch
Instructions (16-Bit ISA), for pipeline delays. This instruction does not have a delay slot. If the
branch is taken, the instruction that immediately follows this instruction is not executed. The target
address is computed relative to the address of the immediately following instruction, i.e., PC+2
when the instruction is not EXTENDED and PC+4 when EXTENDed.

Since the 8-bit offset is shifted left by one bit, the branch range is -256 to +254. If the offset is
outside this range, the instruction is EXTENDed to provide a 17-bit signed immediate in the range
of -65536 to +65534. Whether EXTENDed or not, the target address is computed in the same
manner.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-48

Example
BTEQZ SZERO

Assume that this branch instruction resides at address 0x2000 and that label SZERO points to
absolute address 0x1FFC. Then the assembler/linker turns this label into an offset operand of 0xFD
(see the figure below). Thus the instruction code for this branch instruction becomes 0x60FD.

If the contents of t8 are equal to zero, the processor transfers program control to address 0x1FFC.
Otherwise, the program just continues to the next instruction at 0x2002.

0xFFFF_FFFA

The offset, 0xFD, is shifted left

by one bit and sign-extended.

BTEQZ SZERO

+

0x2002

0x2000

0x1FFC

Next Instruction

Branch Destination

 Appendix B 16-Bit ISA Details

 B-49

BTNEZ offset
Branch On T8 Not Equal To Zero

Operation
 if t8 ≠ 0 then pc ⇐ pc + 2 + sign-extend (offset || 0)

(EXTENDED) if t8 ≠ 0 then pc ⇐ pc + 4 + sign-extend (offset || 0)

Instruction Encoding
 15 11 10 8 7 0

I8

01100
BTNEZ

001
offset

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
I8

01100
BTNEZ

001
000 offset[4:0]

 5 6 5 5 3 3 5

Description

If the contents of condition code register t8 (r24) is not equal to zero, then the program branches to
the target address with a delay of one instruction (or two pipeline cycles). See Section 5.3.4, Branch
Instructions (16-Bit ISA), for pipeline delays. This instruction does not have a delay slot. If the
branch is taken, the instruction that immediately follows this instruction is not executed. The target
address is computed relative to the address of the immediately following instruction, i.e., PC+2
when the instruction is not EXTENDED and PC+4 when EXTENDed.

Since the 8-bit offset is shifted left by one bit, the branch range is -256 to +254. If the offset is
outside this range, the instruction is EXTENDed to provide a 17-bit signed immediate in the range
of -65536 to +65534. Whether EXTENDed or not, the target address is computed in the same
manner.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-50

Example
BTNEZ SNOTZERO

Assume that this branch instruction resides at address 0x2000 and that label SNOTZERO points to
absolute address 0x1FFC. Then the assembler/linker turns this label into an offset operand of 0xFD
(see the figure below). Thus the instruction code for this branch instruction becomes 0x61FD.

If the contents of t8 are equal to zero, the processor transfers program control to address 0x1FFC.
Otherwise, the program just continues to the next instruction at 0x2002.

0xFFFF_FFFA

The offset, 0xFD, is shifted left

by one bit and sign-extended.

BTNEZ SNOTZERO

+

0x2002

0x2000

0x1FFC

Next Instruction

Branch Destination

 Appendix B 16-Bit ISA Details

 B-51

BTST offset (base3), pos3
Bit Test

Operation
t8 ⇐ 31’b 000_0000_0000_0000_0000_0000_0000_0000 || NOT ({zero-extend (offset) + (base3)}

[pos3])

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] base3
offset
[13:11]

11111 000 pos3 offset[4:0]

5 6 2 3 5 3 3 5

Description

A bit specified by pos3 in a memory byte is negated and placed into the least-significant bit (LSB)
of general-purpose register t8 (r24). The upper 31 bits of t8 are filled with zeros. The effective
address is computed by zero-extending the 14-bit offset and adding the resultant value to the
contents of a general-purpose register indicated by base3. The encoding used for base3 is as
follows:

base3 GPR
 01 gp (r28)
 10 sp (r29)
 11 fp (r30)

With the 14-bit offset field, the offset range is 0 to +16383.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-52

Example

Assume that the sp register (r29) contains 0x0000_0400 and that the byte position at address
0x0404 contains 0xF2. Then, the instruction:

BTST 4(sp), 3

loads r24 with 0x0000_0001.

Bit 3 is negated and placed into r24.

r29 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

r24 0x0000_0001

0x404

 Appendix B 16-Bit ISA Details

 B-53

BTST offset (r0), pos3
Bit Test

Operation
t8 ⇐ 31’b 000_0000_0000_0000_0000_0000_0000_0000 || NOT ({sign-extend (offset)} [pos3])

Instruction Encoding
31 27 26 21 20 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] 00
offset
[13:11]

11111 000 pos3 offset[4:0]

5 6 2 3 5 3 3 5

Description

A bit specified by pos3 in a memory byte is negated and placed into the least-significant bit (LSB)
of general-purpose register t8 (r24). The upper 31 bits of t8 are filled with zeros. The effective
address is computed by sign-extending the 14-bit offset and adding the resultant value to the
contents of general-purpose r0, which is hardwired to a value of zero.

With the 14-bit offset field, the offset range is -8192 to +8191.

Exceptions
Address Error exception

Example
Assume that the byte position at address 0x0404 contains 0xF2. Then, the instruction:

BTST 0x404(r0), 1

loads r24 with 0x0000_0000.

Bit 1 is negated and placed into r24.

Memory

11110010

0x400
0x401
0x402
0x403

Byte

r24 0x0000_0000

0x404 Target Address

EXTENDED

Appendix B 16-Bit ISA Details

 B-54

BTST offset (fp), pos3
Bit Test

Operation
t8 ⇐ 31’b 000_0000_0000_0000_0000_0000_0000_0000 || NOT ({zero-extend (offset) + (fp)}

[pos3])

Instruction Encoding
 15 11 10 8 7 5 4 0

 11111
btst
000

pos3 offset[4:0]

 5 3 3 5

Description

A bit specified by pos3 in a memory byte is negated and placed into the least-significant bit (LSB)
of general-purpose register t8 (r24). The upper 31 bits of t8 are filled with zeros. The effective
address is computed by zero-extending the 5-bit offset and adding the resultant value to the contents
of the fp register (r30).

With the 5-bit offset field, the offset range is 0 to +31.

Exceptions
Address Error exception

 Appendix B 16-Bit ISA Details

 B-55

Example

Assume that the fp register (r30) contains 0x0000_0400 and that the byte position at address 0x0404
contains 0xF2. Then, the instruction:

BTST 4(fp), 3

loads r24 with 0x0000_0001.

Bit 3 is negated and placed into r24.

r30 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

r24 0x0000_0001

0x404

Appendix B 16-Bit ISA Details

 B-56

CMP rx, ry
Compare

Operation
if rx == ry then t8 ⇐ 0; else t8 ⇐ non-zero value

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

CMP
01010

 5 3 3 5

Description

The contents of general-purpose register rx is exclusive-ORed with the contents of general-purpose
register ry. The result is placed into condition code register t8 (r24). In other words, if rx and ry are
equal, t8 is loaded with a value of zero.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-57

CMPI rx, immediate
Compare Immediate

Operation
if rx == 016 || (immediate15..0) then t8 ⇐ 0; else t8 ⇐ non-zero value

Instruction Encoding
 15 11 10 8 7 0

CMPI
01110

rx immediate

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

imm[10:5] imm[15:11]
CMPI
01110

rx 000 imm[4:0]

 5 6 5 5 3 3 5

Description

The 8-bit immediate is zero-extended and exclusive-ORed with the contents of general-purpose
register rx. The result is placed into condition code register t8 (r24). In other words, if rx and
immediate are equal, t8 is loaded with a value of zero.

With the 8-bit immediate field, the immediate range is 0 to 255. If the immediate is larger than 255,
the instruction is EXTENDed to provide a 16-bit unsigned immediate in the range of 0 to 65535.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-58

DERET
Debug Exception Return

Operation
pc ⇐ DEPC, Debug[DM] ⇐ 0, Debug[IEXI] ⇐ 0

Instruction Encoding
31 27 26 22 21 16 15 11 10 5 4 0

EXTEND
11110

01000 000000 11101 000000 11111

5 5 6 5 6 5

Description

The DERET instruction is used to return control from a debug exception handler to a user program.
This is accomplished by loading the contents of the DEPC register into the program counter (PC).
See Section 9.3.6, Returning from Debug Exceptions, for details.

The DERET instruction does not have a delay slot. It is executed with a delay of one instruction (or
two pipeline cycles).

The DERET instruction restores the ISA mode bit (bit 0) of the PC from bit 0 of the DEPC register,
bringing the processor into the ISA mode that had been in effect before the debug exception was
taken.

The DERET instruction may not be in a jump or branch delay slot.

The operation of the DERET instruction is unpredictable if the processor is not in Debug mode (i.e.,
if the DM bit in the Debug register is cleared).

Typically, the DEPC register automatically captures the address of the exception-causing instruction
on a debug exception. If you want to use the MTC0 instruction to load the DEPC register with a
return address, the debug exception handler must execute at least two instructions before issuing the
DERET instruction.

Exceptions
None

EXTENDED EXTENDED

 Appendix B 16-Bit ISA Details

 B-59

DI
Disable Interrupt

Operation
Status[IE] ⇐ 0

Instruction Encoding
 15 11 10 8 7 6 0

RRR
11100

000 1 0000000

 5 3 1 7

Description
The IE bit in the Status register is cleared.

Exceptions
Coprocessor Unusable exception

Appendix B 16-Bit ISA Details

 B-60

DIV rx, ry
Divide

Operation
LO ⇐ rx ÷ ry;

HI ⇐ rx MOD ry

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

DIV
11010

 5 3 3 5

Description

The contents of general-purpose register rx is divided by the contents of general-purpose register ry.
Both operands are treated as signed integers. The quotient is placed into register LO and the
remainder is placed into register HI. The DIV instruction never causes an Integer Overflow
exception.

The result of the DIV instruction is undefined if the divisor is zero. Typically, it is necessary to
check for a zero divisor and an overflow condition after a DIV instruction.

Any divide instruction is transferred to the dedicated divide unit as remaining instructions continue
through the pipeline. The divide unit keeps running even when delay cycles and exceptions occur.

If the divide instruction is followed by an MFHI, MFLO, MADD, MADDU, MSUB or MSUBU
instruction before the quotient and the remainder are available, the pipeline stalls until they do
become available (see Section 5.5, Divide Instructions).

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-61

DIVE rx, ry
Divide Exception

Operation
LO ⇐ rx ÷ ry

HI ⇐ rx MOD ry

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

DIVE
11110

 5 3 3 5

Description

The contents of general-purpose register rx is divided by the contents of general-purpose register ry.
Both operands are treated as signed integers. The quotient is placed into register LO and the
remainder is placed into register HI.

An Integer Overflow exception occurs if divide-by-zero or overflow conditions are detected.

Any divide instruction is transferred to the dedicated divide unit as remaining instructions continue
through the pipeline. The divide unit keeps running even when delay cycles and exceptions occur.

If the divide instruction is followed by an MFHI, MFLO, MADD, MADDU, MSUB or MSUBU
instruction before the quotient and the remainder are available, the pipeline stalls until they do
become available (see Section 5.5, Divide Instructions).

Exceptions
Integer Overflow exception

Appendix B 16-Bit ISA Details

 B-62

DIVEU rx, ry
Divide Exception Unsigned

Operation
LO ⇐ rx ÷ ry

HI ⇐ rx MOD ry

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

DIVEU
11111

 5 3 3 5

Description

The contents of general-purpose register rx is divided by the contents of general-purpose register ry.
Both operands are treated as unsigned integers. The quotient is placed into register LO and the
remainder is placed into register HI.

An Integer Overflow exception occurs if divide-by-zero is detected.

Any divide instruction is transferred to the dedicated divide unit as remaining instructions continue
through the pipeline. The divide unit keeps running even when delay cycles and exceptions occur.

If the divide instruction is followed by an MFHI, MFLO, MADD, MADDU, MSUB or MSUBU
instruction before the quotient and the remainder are available, the pipeline stalls until they do
become available (see Section 5.5, Divide Instructions).

Exceptions
Integer Overflow exception

 Appendix B 16-Bit ISA Details

 B-63

DIVU rx, ry
Divide Unsigned

Operation
LO ⇐ rx ÷ ry;

HI ⇐ rx MOD ry

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

DIV
11011

 5 3 3 5

Description

The contents of general-purpose register rx is divided by the contents of general-purpose register ry.
Both operands are treated as unsigned integers. The quotient is placed into register LO and the
remainder is placed into register HI. The DIV instruction never causes Integer Overflow exceptions.
The only difference between the DIV instruction and this instruction is that this instruction treats
both operands as unsigned integers.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-64

EI
 Enable Interrupt

Operation
Status[IE] ⇐ 1

Instruction Encoding
 15 11 10 8 7 6 0

RRR
11100

001 1 0000000

 5 3 1 7

Description
The IE bit in the Status register is set.

Exceptions
Coprocessor Unusable exception

 Appendix B 16-Bit ISA Details

 B-65

ERET
Exception Return

Operation
if Status[ERL] = 1 then pc ⇐ Error EPC

 Status[ERL] ⇐ 0

 else pc ⇐ EPC

 Status[EXL] ⇐ 0

SSCR[CSS] ⇐ SSCR[PSS]

Instruction Encoding
31 27 26 22 21 16 15 11 10 5 4 0

EXTEND
11110

01000 000000 11101 000000 11000

5 5 6 5 6 5

Description
ERET is an instruction for returning from an interrupt, exception or error trap.

The ERET instruction does not have a delay slot. It is executed with a delay of one instruction (two
pipeline cycles).

The ERET instruction restores the ISA mode bit (bit 0) of the PC from bit 0 of the ErrorEPC
register, bringing the processor into the ISA mode that had been in effect before the exception was
taken.

An attempt to execute the ERET instruction in User mode when the CU0 bit in the Status register is
cleared causes a Coprocessor Unusable exception. If you want to use the MTC0 instruction to load
the ErrorEPC or EPC register with a return address or if you have modified the contents of the
Status register, the exception handler must execute at least two instructions before issuing the ERET
instruction.

If the ERL bit in the Status register is set, ERET restores the PC from the ErrorPC register and then
clears the ERL bit. Otherwise, ERET restores the PC from the EPC register and then clears the EXL
bit.

Also, the PSS field in the SSCR register is popped to the CSS field.

ERET must not be placed in a branch or jump delay slot.

EXTENDED EXTENDED

Appendix B 16-Bit ISA Details

 B-66

Exceptions
Coprocessor Unusable exception

 Appendix B 16-Bit ISA Details

 B-67

JAL target
Jump And Link

Operation
ra ⇐ pc + 7; pc ⇐ pc[31:28] || target || 00

Instruction Encoding

31 27 26 25 21 20 16 15 0

JAL
00011

x
0

target
[20:16]

target
[25:21]

target
[15:0]

 5 1 5 5 16

Description

Although this instruction is in the 16-bit ISA, it is 32-bits wide. The program unconditionally jumps
to the target address with a delay of one instruction (or two pipeline cycles). See Section 5.3.3,
Jump Instructions (16-Bit ISA). The target address is computed relative to the address of the
instruction in the jump delay slot (PC+4). The 26-bit target is shifted left by two bits and combined
with the four most-significant bits of PC+4 to form the target address. The JAL instruction never
toggles the ISA mode bit of the program counter (PC).

The address of the instruction after the jump delay slot is saved in the link register, ra (r31). The
ISA mode specifier (i.e., a 1 for the 16-bit ISA mode) is saved in the least-significant bit of ra.

Appendix B 16-Bit ISA Details

 B-68

Example
JAL PSUB

Assume that this jump instruction resides at address 0x2000 and that label PSUB points to absolute
address 0x2_4000. Then the assembler/linker turns this label into a target operand of 0x1_2000 (see
the figure below).

The processor unconditionally transfers program control to address 0x2_4000. The jump takes
effect after the instruction in the jump delay slot is executed. The address of the instruction after the
jump delay slot is saved in ra, combined with the ISA mode bit value; thus the ra value becomes
0x0000_2007.

1

0x002_4000

The target operand, 0x1_2000,

is shifted left by two bits.

JAL PSUB

+

0x2004

0x2002

0x2_4000

Jump Delay Slot

Jump Destination

0x2006

0 (Four MSBs of the Delay Slot Address)

16-Bit ISA Mode

16-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 001 ra

1
16-Bit ISA Mode

0x2000

 Appendix B 16-Bit ISA Details

 B-69

JALR ra, rx
Jump And Link Register

Operation
ra ⇐ pc + 5; pc ⇐ rx

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx 010

JALR
00000

 5 3 3 5

Description

The program unconditionally jumps to the address contained in general-purpose register rx, with the
least-significant bit cleared, with a delay of one instruction (or two pipeline cycles). The
least-significant bit of rx is interpreted as the ISA mode specifier. The address of the instruction after
the jump delay slot is saved in the link register, ra (r31), combined with the value of the ISA mode
that was in effect before the jump.
In 32-bit ISA mode, all instructions must be aligned on word boundaries. Therefore, when jumping
to a 32-bit routine, the two low-order bits of the target register (rx) must be zero. If the two low-order
bits are not zero, an Address Error exception will occur when the processor fetches the
instruction at the jump destination.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-70

Example

Assume that register r2 contains 0x0012_3458 and that the following jump instruction resides at
address 0x0000_2000. Then, executing the instruction:

JALR ra,r2

transfers program control to address 0x0012_3458. Since r2 has the least-significant bit cleared, the
ISA mode bit toggles to 0 after the jump, bringing the processor into 32-bit ISA mode. The address
of the instruction after the jump delay slot is saved in ra, combined with the ISA mode bit value;
thus the ra value becomes 0x0000_2005.

1

JALR ra, r2
0x2002

0x2000

0x12_3458

Jump Delay Slot

Jump Destination

0x2004

16-Bit ISA Mode

32-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 010 ra

1
16-Bit ISA Mode

 Appendix B 16-Bit ISA Details

 B-71

JALRC ra, rx
Jump And Link Register, Compact

Operation
ra ⇐ pc + 3; pc ⇐ rx

Instruction Encoding
 15 11 10 8 7 6 5 4 0

RR

11101
rx

nd
1

l
1

ra
0

J (AL) R (C)
00000

 5 3 1 1 1 5

Description

The program unconditionally jumps to the address contained in general-purpose register rx, with the
least-significant bit cleared, with a delay of one instruction (or two pipeline cycles). This instruction
does not have a delay slot; the address of the instruction following this instruction is saved in the
link register, ra (r31), combined with the ISA mode bit.

In 32-bit ISA mode, all instructions must be aligned on word boundaries. Therefore, when jumping
to a 32-bit routine, the two low-order bits of the target register (rx) must be zero. If the two low order
bits are not zero, an Address Error exception will occur when the processor fetches the
instruction at the jump destination.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-72

Example

Assume that register r2 contains 0x0012_3458 and that the following jump instruction resides at
address 0x0000_2000. Then, executing the instruction:

JALRC ra,r2

transfers program control to address 0x0012_3458. Since r2 has the least-significant bit cleared, the
ISA mode bit toggles to 0 after the jump, bringing the processor into 32-bit ISA mode. The address
of the instruction after this instruction is saved in ra, combined with the ISA mode bit value; thus
the ra value becomes 0x0000_2003.

1

JALRC ra, r2
0x2002

0x2000

0x12_3458

Next Instruction

Jump Destination

0x2004

16-Bit ISA Mode

32-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 001 ra

1
16-Bit ISA Mode

 Appendix B 16-Bit ISA Details

 B-73

JALX target
Jump And Link eXchange

Operation
ra ⇐ pc + 7; pc[31:1] ⇐ pc[31:28] || target || 00; pc[0] ⇐ NOT pc[0]

Instruction Encoding

31 27 26 25 21 20 16 15 0

JAL
00011

x
1

target
[20:16]

target
[25:21]

target
[15:0]

 5 1 5 5 16

Description

Although this instruction is in the 16-bit ISA, it is 32-bits wide. The program unconditionally jumps
to the target address with a delay of one instruction (or two pipeline cycles). See Section 5.3.3,
Jump Instructions (16-Bit ISA). The target address is computed relative to the address of the
instruction in the jump delay slot (PC+4). The 26-bit target is shifted left by two bits and combined
with the four most-significant bits of PC+4 to form the target address. The JALX instruction
unconditionally toggles the ISA mode bit of the program counter (PC).

The address of the instruction after the jump delay slot is saved in the link register, ra (r31). The
least-significant bit of ra stores the ISA mode bit that was in effect before the jump.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-74

Example
JALX PSUB

Assume that this jump instruction resides at address 0x0000_2000 and that label PSUB points to
absolute address 0x2_4000. Then, the assembler/linker turns this label into a target operand of
0x1_2000 (see the figure below).

The processor unconditionally transfers program control to address 0x2_4000. The jump takes
effect after the instruction in the jump delay slot is executed. The ISA mode bit unconditionally
toggles, bringing the processor into 32-bit ISA mode. The address of the instruction after the jump
delay slot is saved in ra, combined with the ISA mode bit value; thus the ra value becomes
0x0000_2007.

1

0x002_4000

The target operand, 0x1_2000,

is shifted left by two bits.

JALX PSUB

+

0x2004

0x2002

0x2_4000

Jump Delay Slot

Jump Destination

0x2006

0 (Four MSBs of the Delay Slot Address)

16-Bit ISA Mode

32-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 001 ra

1
16-Bit ISA Mode

0x2000

 Appendix B 16-Bit ISA Details

 B-75

JR rx
Jump Register

Operation
pc ⇐ rx

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx 000

JR
00000

 5 3 3 5

Description

The program unconditionally jumps to the address contained in general-purpose register rx, with the
least-significant bit cleared, with a delay of one instruction (or two pipeline cycles). The
least-significant bit of rx is interpreted as the ISA mode specifier.
In 32-bit ISA mode, all instructions must be aligned on word boundaries. Therefore, when jumping
to a 32-bit routine, the two low-order bits of the target register (rx) must be zero. If the two low-order
bits are not zero, an Address Error exception will occur when the processor fetches the
instruction at the jump destination.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-76

Example
Assume that register r2 contains 0x0012_3458. Then, executing the instruction:

JR r2

transfers program control to address 0x0012_3458. Since r2 has the least-significant bit cleared, the
processor switches to 32-bit ISA mode. The jump takes effect after the instruction in the jump delay
slot is executed.

 JR r2
0x2002

0x2000

0x12_3458

Jump Delay Slot

Jump Destination

0x2004

16-Bit ISA Mode

32-Bit ISA Mode

 Appendix B 16-Bit ISA Details

 B-77

JR ra
Jump Register

Operation
pc ⇐ ra

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
000 001

JR
00000

 5 3 3 5

Description

The program unconditionally jumps to the address contained in the link register, ra (r31), with the
least-significant bit cleared, with a delay of one instruction (or two pipeline cycles). The
least-significant bit of ra is interpreted as the ISA mode specifier.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-78

Example

In the following example, the JALR instruction in a 32-bit routine transfers program control to a 16-
bit routine. At the end of the 16-bit routine, the JR instruction restores the return address into the
program counter (PC) from the link register, ra (r31). Since the ISA mode has been saved in the
least-significant bit of ra by the 32-bit JALR instruction, executing the JR instruction at the end of
the 16-bit routine restores it into the PC, causing the processor to revert to 32-bit ISA mode.

0

JALR r2
0x2004

0x2000

0x12_3456

Jump Delay Slot
Return Point

Jump Destination

0x2008

32-Bit ISA Mode

16-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 100 ra

0
32-Bit ISA Mode

JR ra

Jump to a 16-bit
routine through the
JALR instruction

Return to the 32-bit
routine through the
JR instruction

 Appendix B 16-Bit ISA Details

 B-79

JRC ra
Jump Register ra, Compact

Operation
pc ⇐ ra

Instruction Encoding
 15 11 10 8 7 6 5 4 0

RR

11101
000

nd
1

l
0

ra
1

J (AL) R (C)
00000

 5 3 1 1 1 5

Description

The program unconditionally jumps to the address contained in the link register, ra (r31), with the
least-significant bit cleared, with a delay of one instruction (or two pipeline cycles). The
least-significant bit of ra is interpreted as the ISA mode specifier.
This instruction does not have a delay slot.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-80

Example

In the following example, the JALR instruction in a 32-bit routine transfers program control to a 16-
bit routine. At the end of the 16-bit routine, the JRC instruction restores the return address into the
program counter (PC) from the link register, ra (r31). Since the ISA mode has been saved in the
least-significant bit of ra by the 32-bit JALR instruction, executing the JRC instruction at the end of
the 16-bit routine restores it into the PC, causing the processor to revert to 32-bit ISA mode.

0

JALR r2
0x2004

0x2000

0x12_3456

Jump Delay Slot
Return Point

Jump Destination

0x2008

32-Bit ISA Mode

16-Bit ISA Mode

0000 0000 0000 0000 0010 0000 0000 100 ra

0
32-Bit ISA Mode

JRC ra

Jump to a 16-bit
routine through the

JALR instruction

Return to the 32-bit
routine through the

JR instruction

 Appendix B 16-Bit ISA Details

 B-81

JRC rx
Jump Register, Compact

Operation
pc ⇐ rx

Instruction Encoding
 15 11 10 8 7 6 5 4 0

RR

11101
rx

nd
1

l
0

ra
0

J (AL) R (C)
00000

 5 3 1 1 1 5

Description

The program unconditionally jumps to the address contained in general-purpose register rx, with the
least-significant bit cleared, with a delay of one instruction (or two pipeline cycles). The
least-significant bit of rx is interpreted as the ISA mode specifier.
This instruction does not have a delay slot.
In 32-bit ISA mode, all instructions must be aligned on word boundaries. Therefore, when jumping
to a 32-bit routine, the two low-order bits of the target register (rx) must be zero. If the two low-order
bits are not zero, an Address Error exception will occur when the processor fetches the
instruction at the jump destination.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-82

Example
Assume that register r2 contains 0x0012_3458. Then, executing the instruction:

JRC r2

transfers program control to address 0x0012_3458. Since r2 has the least-significant bit cleared, the
ISA mode bit toggles to 0 after the jump, bringing the processor into 32-bit ISA mode. The
instruction following this instruction is not executed.

 JRC r2
0x2002

0x2000

0x12_3458

Next Instruction

Jump Destination

16-Bit ISA Mode

32-Bit ISA Mode

 Appendix B 16-Bit ISA Details

 B-83

LB ry, offset (base)
Load Byte

Operation
 ry = {zero-extend (offset) + (base)}

(EXTENDED) ry = {sign-extend (offset) + (base)}

Instruction Encoding
 15 11 10 8 7 5 4 0

LB

10000
base ry offset

 5 3 3 5

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
LB

10000
base ry offset[4:0]

 5 6 5 5 3 3 5

Description

The 5-bit immediate offset is zero-extended and added to the contents of general-purpose register
base to form an effective address (EA). The byte in memory addressed by the EA is sign-extended
and loaded into general-purpose register ry.

With the 5-bit offset field, the offset range is 0 to 31. If the offset is outside this range, the
instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to +32767.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-84

Example

Assume that register r2 contains 0x0000_0400 and that the memory location at address 0x404
contains 0xF2. Then, executing the instruction:

LB r3,4(r2)

loads register r3 with 0xFFFF_FFF2.

Load (Sign-Extended)

r2 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

1 Byte

Sign-Extended

Memory

CPU
Register

r3 0xFFFF_FFF2

0x404

 Appendix B 16-Bit ISA Details

 B-85

LBU ry, offset (base)
Load Byte Unsigned

Operation
 ry = {zero-extend (offset) + (base)}

(EXTENDED) ry = {sign-extend (offset) + (base)}

Instruction Encoding
 15 11 10 8 7 5 4 0

LBU

10100
base ry offset

 5 3 3 5

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
LBU

10100
base ry offset[4:0]

 5 6 5 5 3 3 5

Description

The 5-bit immediate offset is zero-extended and added to the contents of general-purpose register
base to form an effective address (EA). The byte in memory addressed by the EA is zero-extended
and loaded into general-purpose register ry.

With the 5-bit offset field, the offset range is 0 to 31. If the offset is outside this range, the
instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to +32767.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-86

Example

Assume that register r2 contains 0x0000_0400 and that the memory location at address 0x404
contains 0xF2. Then, executing the instruction:

LBU r3,4(r2)

loads register r3 with 0x0000_00F2.

Load (Zero-Extended)

r2 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

1 Byte

Zero-Extended

Memory

CPU
Register

r3 0x0000_00F2

0x404

 Appendix B 16-Bit ISA Details

 B-87

LBU ry, offset (fp)
Load Byte Unsigned

Operation
 ry = {zero-extend (offset) + (fp)}

(EXTENDED) ry = {sign-extend (offset) + (fp)}

Instruction Encoding

 15 11 10 8 7 6 0

FP-B
00111

ry 0 offset[6:0]

 5 3 1 7

31 27 26 21 20 16 15 11 10 8 7 6 5 4 0

EXTEND
11110

offset[10:5] offset[15:11] 00111 ry 0 00 offset[4:0]

5 6 5 5 3 1 2 5

Description

The 7-bit immediate offset is zero-extended and added to the contents of the fp register (r30) to form
an effective address (EA). The byte in memory addressed by the EA is zero-extended and loaded
into general-purpose register ry.

With the 7-bit offset field, the offset range is 0 to 127. If the offset is outside this range, the
instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to +32767.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-88

Example

Assume that fp register (r30) contains 0x0000_0400 and that the memory location at address 0x404
contains 0xF2. Then, executing the instruction:

LBU r3,4(fp)

loads register r3 with 0x0000_00F2.

Load (Zero-Extended)

r30 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

1 Byte

Zero-Extended

Memory

CPU
Register

r3 0x0000_00F2

0x404

 Appendix B 16-Bit ISA Details

 B-89

LBU ry, offset (sp)
Load Byte Unsigned

Operation
 ry = {zero-extend (offset) + (sp)}

(EXTENDED) ry = {sign-extend (offset) + (sp)}

Instruction Encoding
 15 11 10 8 7 6 0

SP-B
01111

ry 0 offset[6:0]

 5 3 1 7

31 27 26 21 20 16 15 11 10 8 7 6 5 4 0

EXTEND
11110

offset[10:5] offset[15:11] 01111 ry 0 00 offset[4:0]

5 6 5 5 3 1 2 5

Description

The 7-bit immediate offset is zero-extended and added to the contents of the sp register (r29) to
form an effective address (EA). The byte in memory addressed by the EA is zero-extended and
loaded into general-purpose register ry.

With the 7-bit offset field, the offset range is 0 to 127. If the offset is outside this range, the
instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to +32767.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-90

Example

Assume that sp register (r29) contains 0x0000_0400 and that the memory location at address x404
contains 0xF2. Then, executing the instruction:

LBU r3,4(sp)

loads register r3 with 0x0000_00F2.

Load (Zero-Extended)

r29 0x0000_0400

Memory

11110010

0x400
0x401
0x402
0x403

+4

Byte

1 Byte

Zero-Extended

Memory

CPU
Register

r3 0x0000_00F2

0x404

 Appendix B 16-Bit ISA Details

 B-91

LH ry, offset (base)
Load Halfword

Operation
 ry ⇐ {zero-extend (offset || 0) + (base)}

(EXTENDED) ry ⇐ {sign-extend (offset) + (base)}

Instruction Encoding
 15 11 10 8 7 5 4 0

LH

10001
base ry offset

 5 3 3 5

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
LH

10001
base ry offset[4:0]

 5 6 5 5 3 3 5

Description

The 5-bit immediate offset is shifted left by one bit, zero-extended and added to the contents of
general-purpose register base to form an effective address (EA). The halfword in memory addressed
by the EA is sign-extended and loaded into general-purpose register ry.

Since the 5-bit offset is shifted left by one bit, the offset range is 0 to 62, in increments of two. If the
offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate in
the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at all.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-92

Example
LH r3,4(r2)

Assume that register r2 contains 0x0000_0400 and that the memory locations at addresses 0x404
and 0x405 contain 0xFF and 0x02 respectively. Since the offset value is shifted left by one bit by
the processor hardware, the assembler/linker turns the specified offset (4 or binary 0100) into a code
of 2 (binary 0010). Thus the instruction code for this load instruction becomes 0x8A62.

This load instruction loads register r3 with 0xFFFF_FF02 in big-endian mode and with
0x0000_02FF in little-endian mode.

Load (Sign-Extended)

r2 0x0000_0400

Memory

11111111

0x400
0x401
0x402
0x403
0x404

Byte

Halfword

Sign-Extended

Memory

CPU
Register

r3 0xFFFF_FF02

r3 0x0000_02FF

Big-Endian

Little-Endian

Halfword Boundary

Halfword Boundary

Halfword Boundary

00000010 0x405

+4
The offset, 2, is
shifted left by 1 bit.

 Appendix B 16-Bit ISA Details

 B-93

LHU ry, offset (base)
Load Halfword Unsigned

Operation
 ry ⇐ {zero-extend (offset || 0) + (base)}

(EXTENDED) ry ⇐ {sign-extend (offset) + (base)}

Instruction Encoding
 15 11 10 8 7 5 4 0

LHU

10101
base ry offset

 5 3 3 5

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
LHU

10101
base ry offset[4:0]

 5 6 5 5 3 3 5

Description

The 5-bit immediate offset is shifted left by one bit, zero-extended and added to the contents of
general-purpose register base to form an effective address (EA). The halfword in memory addressed
by the EA is zero-extended and loaded into general-purpose register ry.

Since the 5-bit offset is shifted left by one bit, the offset range is 0 to 62, in increments of two. If the
offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate in
the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at all.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-94

Example
LHU r3,4(r2)

Assume that register r2 contains 0x0000_0400 and that the memory locations at addresses 0x404
and 0x405 contain 0xFF and 0x02 respectively. Since the offset value is shifted left by one bit by
the processor hardware, the assembler/linker turns the specified offset (4 or binary 0100) into a code
of 2 (binary 0010). Thus the instruction code for this load instruction becomes 0xAA62.

This load instruction loads register r3 with 0x0000_FF02 in big-endian mode and with
0x0000_02FF in little-endian mode.

Load (Zero-Extended)

r2 0x0000_0400

Memory

11111111

0x400
0x401
0x402
0x403
0x404

Byte

Halfword

Zero-Extended

Memory

CPU
Register

r3 0x0000_FF02

r3 0x0000_02FF

Big-Endian

Little-Endian

Halfword Boundary

Halfword Boundary

Halfword Boundary

00000010 0x405

+4
The offset, 2, is
shifted left by 1 bit.

 Appendix B 16-Bit ISA Details

 B-95

LHU ry, offset (fp)
Load Halfword Unsigned

Operation
 ry ⇐ {zero-extend (offset || 0) + (fp)}

(EXTENDED) ry ⇐ {sign-extend (offset || 0) + (fp)}

Instruction Encoding
 15 11 10 8 7 6 1 0

FP-SP-H

10111
ry 0 offset[6:1] 1

 5 3 1 6 1

31 27 26 21 20 16 15 11 10 8 7 6 5 4 1 0

EXTEND
11110

offset[10:5] offset[15:11] 10111 ry 0 00 offset[4:1] 1

5 6 5 5 3 1 2 4 1

Description

The 6-bit immediate offset is shifted left by one bit, zero-extended and added to the contents of the
fp register (r30) to form an effective address (EA). The halfword in memory addressed by the EA is
zero-extended and loaded into general-purpose register ry.

Since the 6-bit offset is shifted left by one bit, the offset range is 0 to 126, in increments of two. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate.
When EXTENDed, the offset operand is shifted left by one bit to allow an offset of -32768 to
+32766.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-96

Example
LHU r3,4(fp)

Assume that the fp register (r30) contains 0x0000_0400 and that the memory locations at addresses
0x404 and 0x405 contain 0xFF and 0x02 respectively. Since the offset value is shifted left by one
bit by the processor hardware, the assembler/linker turns the specified offset (4 or binary 0100) into
a code of 2 (binary 0010). Thus the instruction code for this load instruction becomes 0xBB05.

This load instruction loads register r3 with 0x0000_FF02 in big-endian mode and with
0x0000_02FF in little-endian mode.

Load (Zero-Extended)

r30 0x0000_0400

Memory

11111111

0x400
0x401
0x402
0x403
0x404

Byte

Halfword

Zero-Extended

Memory

CPU
Register

r3 0x0000_FF02

r3 0x0000_02FF

Big-Endian

Little-Endian

Halfword Boundary

Halfword Boundary

Halfword Boundary

00000010 0x405

+4
The offset, 2, is
shifted left by 1 bit.

 Appendix B 16-Bit ISA Details

 B-97

LHU ry, offset (sp)
Load Halfword Unsigned

Operation
 ry ⇐ {zero-extend (offset || 0) + (sp)}

(EXTENDED) ry ⇐ {sign-extend (offset || 0) + (sp)}

Instruction Encoding
 15 11 10 8 7 6 1 0

FP-SP-H

10111
ry 0 offset[6:1] 0

 5 3 1 6 1

31 27 26 21 20 16 15 11 10 8 7 6 5 4 1 0

EXTEND
11110

offset[10:5] offset[15:11] 10111 rt8 0 00 offset[4:1] 0

5 6 5 5 3 1 2 4 1

Description

The 6-bit immediate offset is shifted left by one bit, zero-extended and added to the contents of the
sp register (r29) to form an effective address (EA). The halfword in memory addressed by the EA is
zero-extended and loaded into general-purpose register ry.

Since the 6-bit offset is shifted left by one bit, the offset range is 0 to 126, in increments of two. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate.
When EXTENDed, the offset operand is shifted left by one bit to allow an offset of -32768 to
+32766.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-98

Example
LHU r3,4(sp)

Assume that the sp register (r29) contains 0x0000_0400 and that the memory locations at addresses
0x404 and 0x405 contain 0xFF and 0x02 respectively. Since the offset value is shifted left by one
bit by the processor hardware, the assembler/linker turns the specified offset (4 or binary 0100) into
a code of 2 (binary 0010). Thus the instruction code for this load instruction becomes 0xBB04.

This load instruction loads register r3 with 0x0000_FF02 in big-endian mode and with
0x0000_02FF in little-endian mode.

Load (Zero-Extended)

r29 0x0000_0400

Memory

11111111

0x400
0x401
0x402
0x403
0x404

Byte

Halfword

Zero-Extended

Memory

CPU
Register

r3 0x0000_FF02

r3 0x0000_02FF

Big-Endian

Little-Endian

Halfword Boundary

Halfword Boundary

Halfword Boundary

00000010 0x405

+4

The offset, 2, is

shifted left by 1 bit.

 Appendix B 16-Bit ISA Details

 B-99

LI rx, immediate
Load Immediate

Operation
rx ⇐ 016 || (immediate15..0)

Instruction Encoding
 15 11 10 8 7 0

LI

01101
rx immediate

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
LI

01101
rx 000 imm[4:0]

 5 6 5 5 3 3 5

Description
The 8-bit immediate is zero-extended and loaded into general-purpose register rx.

With the 8-bit immediate field, the immediate range is 0 to 255. If the immediate is outside this
range, the instruction is EXTENDed to provide a 16-bit unsigned immediate in the range of 0 to
65535.

Exceptions
None

Example
The instruction:

LI r3,0x12

loads register r3 with 0x0000_0012.

EXTENDED

Appendix B 16-Bit ISA Details

 B-100

LUI ry, immediate
Load Upper Immediate

Operation
ry ⇐ immediate || 0x0000

Instruction Encoding
31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110 Imm[10:5] Imm[15:11] 01001 ry LUI

111 Imm[4:0]

5 6 5 5 3 3 5

Description

The 16-bit immediate is shifted left by 16 bits and concatenated to 16 bits of zeros. The result is
placed into general-purpose register ry.

Exceptions
None

Example
The instruction:

LUI r4,0x1234

loads register r4 with 0x1234_0000.

EXTENDED

 Appendix B 16-Bit ISA Details

 B-101

LW rx, offset (pc)
Load Word

Operation
 rx ⇐ {zero-extend (offset || 00) + (Masked Base PC)}

(EXTENDED) rx ⇐ {sign-extend (offset) + (Masked Base PC)}

Instruction Encoding
 15 11 10 8 7 0

LWPC
10110

rx offset

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
LWPC
10110

rx 000 offset[4:0]

 5 6 5 5 3 3 5

Description

The 8-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of the
program counter (PC) with the lower two bits cleared to form an effective address (EA). A 32-bit
constant in memory addressed by the EA is then loaded into general-purpose register rx.

By virtue of this instruction, 32-bit constants can be embedded in the code segment. The LW
instructions within the nearby routines can reference this data with a single instruction.

Since the 8-bit offset is shifted left by two bits, the offset range is 0 to 1020, in increments of four. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate
in the range of -32768 to +32767. Given the PC-relative addressing mode, there is also an
instruction (ADDIUPC) to calculate a PC-relative address and place it in a general-purpose register.

Because the PC value is used as the base value, it is commonly referred to as the base PC value. The
base PC value with the lower two bits cleared is referred to as the masked base PC value. The base
PC value varies, depending on whether the instruction is in a delay slot and whether it is to be
EXTENDed.

LWPC Base PC Value

Delay slot of the JR or JALR instruction Address of the JR or JALR instruction
Delay slot of the JAL or JALX instruction Address of the upper halfword of the JAL or JALX instruction
EXTENDed Address of the EXTEND code
Not EXTENDed (nor in a delay slot) Address of the LWPC instruction

EXTENDED

Appendix B 16-Bit ISA Details

 B-102

Exceptions
Address error exception

Example

Assume that the masked base PC points at address 0x0123_4568 and that addresses 0x1234_5678
to 0x0123_457B contain 0x01, 0x23, 0x45 and 0x67 respectively. Given the instruction:

LW r3,16(pc)

the assembler turns the specified offset value (16 or binary 0001_0000) into a code of 4 (binary
0000_ 0100) since it is to be shifted left by two bits by the processor hardware. Thus the instruction
code for the above load instruction becomes 0xB304. Executing the above instruction loads register
r3 with 0x0123_4567 in big-endian mode and with 0x6745_2301 in little-endian mode.

Masked Base PC 0x0123_4568

+16

The offset, 4, is
shifted left by two
bits.

r3 0x0123_4567

LW r3 16 (pc)

0x45 0x67 0x01 0x23

0x123_4568
0x123_456C
0x123_4570
0x123_4574
0x123_4578
0x123_457C

Big-Endian

r3 0x6745_2301

Little-Endian

Load

Memory
Word

 Appendix B 16-Bit ISA Details

 B-103

LW rx, offset (sp)
Load Word

Operation
 rx ⇐ {zero-extend (offset || 00) + (sp)}

(EXTENDED) rx ⇐ {sign-extend (offset) + (sp)}

Instruction Encoding
 15 11 10 8 7 0

LWSP
10010

rx offset

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
LWSP
10010

rx 000 offset[4:0]

 5 6 5 5 3 3 5

Description

The 8-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of
stack pointer register sp (r29) to form an effective address (EA). The word in memory addressed by
the EA is loaded into general-purpose register rx.

Since the 8-bit offset is shifted left by two bits, the offset range is 0 to 1020, in increments of four. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate
in the range of -32768 to +32767.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-104

Example

Assume that stack pointer register sp points at address 0x0000_0400 and that addresses 0x404 to
0x407 contain 0x01, 0x23, 0x45 and 0x67 respectively. Given the instruction:

LW r3,4(sp)

the assembler/linker turns the specified offset value (4 or binary 0100) into a code of 1 (binary
0001) since it is to be shifted left by two bits by the processor hardware. Thus the instruction code
for the above load instruction becomes 0x9301. Executing the above instruction loads register r3
with 0x0123_4567 in big-endian mode and with 0x6745_2301 in little-endian mode.

Load

sp 0x0000_0400

0x01

0x400
0x401
0x402
0x403
0x404

r3 0x0123_4567

r3 0x6745_2301

0x23 0x405
0x45 0x406
0x67 0x407

Memory
Byte

Big-Endian

Little-Endian

+4

The offset, 1, is shifted

left by two bits.

 Appendix B 16-Bit ISA Details

 B-105

LW ry, offset (base)
Load Word

Operation
 ry ⇐ {zero-extend (offset || 00) + (base)}

(EXTENDED) ry ⇐ {sign-extend (offset) + (base)}

Instruction Encoding
 15 11 10 8 7 5 4 0

LW

10011
base ry offset

 5 3 3 5

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
LW

10011
base ry offset[4:0]

 5 6 5 5 3 3 5

Description

The 5-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of
general-purpose register base to form an effective address (EA). The word in memory addressed by
the EA is loaded into general-purpose register ry.

Since the 5-bit offset is shifted left by two bits, the offset range is 0 to 124, in increments of four. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate
in the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at all.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-106

Example
LW r3,4(r2)

Assume that register r2 contains 0x0000_0400 and that the memory locations at addresses 0x404 to
0x407 contain 0x01, 0x23, 0x45 and 0x67 respectively. Since the offset value is shifted left by two
bits by the processor hardware, the assembler/linker turns the specified offset (4 or binary 0100) into
a code of 1 (binary 0001). Thus the instruction code for this load instruction becomes 0x9A61.

This load instruction loads register r3 with 0x0123_4567 in big-endian mode and with
0x6745_2301 in little-endian mode.

Load

r2 0x0000_0400

0x01

0x400
0x401
0x402
0x403
0x404

r3 0x0123_4567

r3 0x6745_2301

0x23 0x405
0x45 0x406
0x67 0x407

Memory
Byte

Big-Endian

Little-Endian

Word Boundary

+4

The offset, 1, is shifted
left by two bits. Word Boundary

 Appendix B 16-Bit ISA Details

 B-107

LW ry, offset (fp)
Load Word

Operation
 ry ⇐ {zero-extend (offset || 00) + (fp)}

(EXTENDED) ry ⇐ {sign-extend (offset) + (fp)}

Instruction Encoding
 15 11 10 8 7 5 4 0

LWFP
11111

110 ry offset[4:0]

 5 3 3 5

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11] 11111 110 ry offset[4:0]

5 6 5 5 3 3 5

Description

The 5-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of the
fp register (r30) to form an effective address (EA). The word in memory addressed by the EA is
loaded into general-purpose register ry.

Since the 5-bit offset is shifted left by two bits, the offset range is 0 to 124, in increments of four. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate
in the range of -32768 to +32767.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-108

Example

Assume that the fp register (r30) points at address 0x0000_0400 and that addresses 0x404 to 0x407
contain 0x01, 0x23, 0x45 and 0x67 respectively. Given the instruction:

LW r3,4(fp)

the assembler/linker turns the specified offset value (4 or binary 0100) into a code of 1 (binary
0001) since it is to be shifted left by two bits by the processor hardware. Thus the instruction code
for the above load instruction becomes 0xFE61.

Executing the above instruction loads register r3 with 0x0123_4567 in big-endian mode and with
0x6745_2301 in little-endian mode.

Load

fp 0x0000_0400

0x01

0x400
0x401
0x402
0x403
0x404

r3 0x0123_4567

r3 0x6745_2301

0x23 0x405
0x45 0x406
0x67 0x407

Memory
Byte

Big-Endian

Little-Endian

+4

The offset, 1, is shifted
left by 2 bits.

 Appendix B 16-Bit ISA Details

 B-109

MADD rx, ry
Multiply and Add

Operation
HI ⇐ high-order word of (HI || LO) + (rx × ry)

LO ⇐ low-order word of (HI || LO) + (rx × ry) の下位ワード

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

MADD
10110

 5 3 3 5

Description

The contents of general-purpose register rx is multiplied by the contents of general-purpose register
ry, and then the product is added to the 64-bit, doubleword contents of the HI and LO registers.
Both rx and ry are treated as signed integers. The high-order word of the result is placed into the HI
register, and the low-order word of the result is placed into the LO register.

No Integer Overflow exception occurs under any circumstances.

Exceptions
None

Example

Assume that the HI and LO registers contain 0x0000_0000 and 0xFFFF_FFFF respectively and that
general-purpose registers r3 and r4 contain 0x0123_4567 and 0x89AB_CDEF respectively. Then,
the instruction:

MADD r3,r4

evaluates:
0x0000_0000_FFFF_FFFF + (0x0123_4567 ⋅ 0x89AB_CDEF)
= 0x0000_0000_FFFF_FFFF + 0xFF79_5E36_C94E_4629
= 0xFF79_5E37_C94E_4628

Hence, the high-order word of the result, 0xFF79_5E37, is placed into the HI register, and the
low-order word of the result, 0xC94E_4628, is placed into the LO register.

Appendix B 16-Bit ISA Details

 B-110

MADDU rx, ry
Multiply and Add Unsigned

Operation
HI ⇐ high-order word of (HI || LO) + (rx × ry)

LO ⇐ low-order word of (HI || LO) + (rx × ry)

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

MADDU
10111

 5 3 3 5

Description

The contents of general-purpose register rx is multiplied by the contents of general-purpose register
ry, and then the product is added to the 64-bit, doubleword contents of the HI and LO registers.
Both rx and ry are treated as unsigned integers. The high-order word of the result is placed into the
HI register, and the low-order word of the result is placed into the LO register.

No Integer Overflow exception occurs under any circumstances.

Exceptions
None

Example

Assume that the HI and LO registers contain 0x0000_0000 and 0xFFFF_FFFF respectively and that
general-purpose registers r3 and r4 contain 0x0123_4567 and 0x89AB_CDEF respectively. Then,
the instruction:

MADDU r3,r4

evaluates:
0x0000_0000_FFFF_FFFF + (0x0123_4567 ⋅ 0x89AB_CDEF)
= 0x0000_0000_FFFF_FFFF + 0x009C_A39D_C94E_4629
= 0x009C_A39E_C94E_4628

Hence, the high-order word of the result, 0x009C_A39E, is placed into the HI register, and the
low-order word of the result, 0xC94E_4628, is placed into the LO register.

 Appendix B 16-Bit ISA Details

 B-111

MAX rz, rx, ry
Maximum Signed

Operation
if rx ＞ ry then rz ⇐ rx ;

 else rz ⇐ ry ;

Instruction Encoding
31 27 26 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

00000000 ry 11101 rz rx 00101

5 8 3 5 3 3 5

Description

The contents of general-purpose register rx is compared to the contents of general-purpose register
ry as signed values. If rx is greater than ry, the value of rx is written to general-purpose register rz.
Otherwise, the value of ry is written to rz.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-112

MFC0 ry, cp0rs32
Move from Coprocessor 0

Operation
ry ⇐ CP0 register cp0rs32

Instruction Encoding
 15 11 10 8 7 3 2 0

SHIFT
00110

ry cp0rs32 001

 5 3 5 3

Description

The contents of CP0 register cp0rs32 is loaded into general-purpose register ry.
In 16-bit ISA mode, this instruction can not access the Config1, Config2, Config3 and IER
registers.

Exceptions
Coprocessor Unusable exception

 Appendix B 16-Bit ISA Details

 B-113

MFHI rx
Move From HI

Operation
rx ⇐ HI

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx

0
000

MFHI
10000

 5 3 3 5

Description
The contents of the HI register is loaded into general-purpose register rx.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-114

MFLO rx
Move From LO

Operation
rx ⇐ LO

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx

0
000

MFLO
10010

 5 3 3 5

Description
The contents of the LO register is loaded into general-purpose register rx.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-115

MIN rz, rx, ry
Minimum Signed

Operation
if rx ＜ ry then rz ⇐ rx ;

 else rz ⇐ ry ;

Instruction Encoding
31 27 26 19 18 16 15 11 10 8 7 5 4 0

EXTEND
11110

10000000 ry 11101 rz rx 00101

5 8 3 5 3 3 5

Description

The contents of general-purpose register rx is compared to the contents of general-purpose register
ry as signed values. If rx is less than ry, the value of rx is written to general-purpose register rz.
Otherwise, the value of ry is written to rz.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-116

MOVE fp, r32
Move

Operation
fp ⇐ r32

Instruction Encoding
 15 11 10 9 5 4 0

RR

11101
1 r32 01000

 5 3 3 5

Description

The contents of general-purpose register r32 is copied into the fp register (r30), where r32 is any of
the 32 registers (r0 to r31).

The encoding of the r32 field in the 16-bit instruction code is as follows.

Code Register Code Register
00000 r0 10000 r16
00001 r1 10001 r17
00010 r2 10010 r18
00011 r3 10011 r19
00100 r4 10100 r20
00101 r5 10101 r21
00110 r6 10110 r22
00111 r7 10111 r23
01000 r8 11000 r24
01001 r9 11001 r25
01010 r10 11010 r26
01011 r11 11011 r27
01100 r12 11100 r28
01101 r13 11101 r29
01110 r14 11110 r30
01111 r15 11111 r31

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-117

MOVE ry, r32
Move

Operation
ry ⇐ r32

Instruction Encoding
 15 11 10 8 7 5 4 0

I8

01100
movr32

111
ry r32

 5 3 3 5

Description

The contents of general-purpose register r32 is copied to general-purpose register ry, where r32 is
any of the 32 registers (r0 to r31) and ry is one of the eight registers visible to the 16-bit ISA.

To the 16-bit instructions, only eight of the 32 general-purpose registers are normally visible, r2 to
r7, r16 and r17. Since the processor includes the full 32 registers of the 32-bit ISA mode, the 16-bit
ISA includes the MOVE instructions to copy values between the eight 16-bit ISA registers and the
remaining 24 registers of the full processor architecture. By virtue of the MOVE instructions, 16-bit
routines can utilize all of the 32 general-purpose registers.

The encoding of the r32 field in the 16-bit instruction code is as follows.

Code Register Code Register
00000 r0 10000 r16
00001 r1 10001 r17
00010 r2 10010 r18
00011 r3 10011 r19
00100 r4 10100 r20
00101 r5 10101 r21
00110 r6 10110 r22
00111 r7 10111 r23
01000 r8 11000 r24
01001 r9 11001 r25
01010 r10 11010 r26
01011 r11 11011 r27
01100 r12 11100 r28
01101 r13 11101 r29
01110 r14 11110 r30
01111 r15 11111 r31

Exceptions
None

Appendix B 16-Bit ISA Details

 B-118

MOVE r32, rz
Move

Operation
r32 ⇐ rz

Instruction Encoding
 15 11 10 8 7 3 2 0

I8

01100
mov32r

101
r32 rz

 5 3 5 3

Description

The contents of general-purpose register rz is copied to general-purpose register r32, where rz is one
of the eight registers visible to the 16-bit ISA and r32 is any of the 32 registers (r0 to r31).

To the 16-bit instructions, only eight of the 32 general-purpose registers are normally visible, r2 to
r7, r16 and r17. Since the processor includes the full 32 registers of the 32-bit ISA mode, the 16-bit
ISA includes the MOVE instructions to copy values between the eight 16-bit ISA registers and the
remaining 24 registers of the full processor architecture. By virtue of the MOVE instructions, 16-bit
routines can utilize all of the 32 general-purpose registers.

The encoding of the r32 field in this 16-bit instruction code differs from that of the 32-bit ISA. The
r32 field, encoded as [2:0][4:3], denotes a general-purpose register as shown below.

Code Register Code Register

00000 r0 10000 r4
00001 r8 10001 r12
00010 r16 10010 r20
00011 r24 10011 r28
00100 r1 10100 r5
00101 r9 10101 r13
00110 r17 10110 r21
00111 r25 10111 r29
01000 r2 11000 r6
01001 r10 11001 r14
01010 r18 11010 r22
01011 r26 11011 r30
01100 r3 11100 r7
01101 r11 11101 r15
01110 r19 11110 r23
01111 r27 11111 r31

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-119

MTC0 rx, cp0rd32
Move to System Coprocessor 0 (CP0)

Operation
CP0 レジスタの cp0rd32 ⇐ rx

Instruction Encoding
 15 11 10 8 7 3 2 0

SHIFT
00110

rx cp0rd32

101

 5 3 5 5

Description
The contents of general-purpose register rx is loaded into CP0 register cp0rd32.

In 16-bit ISA mode, this instruction can not access the Config1, Config2, Config3, IER and SSCR
registers.

Once the MTC0 instruction writes to the Status, EPC or ErrorEPC register, at least two instructions
must be executed before the ERET instruction. Otherwise, the operation is undefined.

Likewise, once the MTC0 instruction writes to the DEPC register, at least two instructions must be
executed before the ERET instruction. Otherwise, the operation is undefined.

Because this instruction may alter the state of the virtual address translation system, the operation of
load and store instructions immediately before and after this instruction is undefined.

Exceptions
Coprocessor Unusable exception

Appendix B 16-Bit ISA Details

 B-120

MTHI rx
Move To HI

Operation
HI ⇐ rx

Instruction Encoding
 15 11 10 8 7 6 0

RRR
11100

rx 0 0000010

 5 3 1 7

Description
The contents of general-purpose register rx is loaded into the HI register.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-121

MTLO rx
Move To LO

Operation
LO ⇐ rx

Instruction Encoding
 15 11 10 8 7 6 0

RRR
11100

rx 1 0000010

 5 3 1 7

Description
The contents of general-purpose register rx is loaded into the LO register.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-122

MULT ry, rx, ry
Multiply

Operation
HI ⇐ high-order word of (rx × ry);

LO ⇐ low-order word of (rx × ry);

ry ⇐ low-order word of (rx × ry);

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

MULT
11100

 5 3 3 5

Description

The contents of general-purpose register rx is multiplied by the contents of general-purpose register
ry. Both rx and ry are treated as signed integers. The high-order word of the result is placed into the
HI register, and the low-order word of the result is placed into the LO register and ry.

No Integer Overflow exception occurs under any circumstances.

Exceptions
None

Example

Assume that general-purpose registers r3 and r4 contain 0x0123_4567 and 0x89AB_CDEF
respectively. Then, the instruction:

MULT r4,r3,r4

evaluates:
(0x0123_4567 ⋅ 0x89AB_CDEF)
= 0xFF79_5E36_C94E_4629

Hence, the high-order word of the result, 0xFF79_5E36, is placed into the HI register, and the
low-order word of the result, 0xC94E_4629, is placed into the LO and r4 registers.

 Appendix B 16-Bit ISA Details

 B-123

MULT rx, ry
Multiply

Operation
HI ⇐ high-order word of (rx × ry);

LO ⇐ high-order word of (rx × ry);

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

MULT
11000

 5 3 3 5

Description

The contents of general-purpose register rx is multiplied by the contents of general-purpose register
ry. Both rx and ry are treated as signed integers. The high-order word of the result is placed into the
HI register, and the low-order word of the result is placed into the LO register.

No Integer Overflow exception occurs under any circumstances.

Exceptions

None

Example

Assume that general-purpose registers r3 and r4 contain 0x0123_4567 and 0x89AB_CDEF
respectively. Then, the instruction:

MULT r3,r4

evaluates:
(0x0123_4567 ⋅ 0x89AB_CDEF)
= 0xFF79_5E36_C94E_4629

Hence, the high-order word of the result, 0xFF79_5E36, is placed into the HI register, and the
low-order word of the result, 0xC94E_4629, is placed into the LO register.

Appendix B 16-Bit ISA Details

 B-124

MULTU rx, ry
Multiply Unsigned

Operation
HI ⇐ high-order word of (rx × ry);

LO ⇐ low-order word of (rx × ry);

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

MULTU
11001

 5 3 3 5

Description

The contents of general-purpose register rx is multiplied by the contents of general-purpose register
ry. Both rx and ry are treated as unsigned integers. The high-order word of the result is placed into
the HI register, and the low-order word of the result is placed into the LO register.

No Integer Overflow exception occurs under any circumstances.

Exceptions
None

Example

Assume that general-purpose registers r3 and r4 contain 0x0123_4567 and 0x89AB_CDEF
respectively. Then, the instruction:

MULTU r3,r4

evaluates:
(0x0123_4567 ⋅ 0x89AB_CDEF)
= 0x009C_A39D_C94E_4629

Hence, the high-order word of the result, 0x009C_A39D, is placed into the HI register, and the
low-order word of the result, 0xC94E_4629, is placed into the LO register.

 Appendix B 16-Bit ISA Details

 B-125

MULTU ry, rx, ry
Multiply

Operation
HI ⇐ high-order word of (rx × ry);

LO ⇐ low-order word of (rx × ry);

ry ⇐ low-order word of (rx × ry);

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

MULTU
11101

 5 3 3 5

Description

The contents of general-purpose register rx is multiplied by the contents of general-purpose register
ry. Both rx and ry are treated as unsigned integers. The high-order word of the result is placed into
the HI register, and the low-order word of the result is placed into the LO register and ry.

No Integer Overflow exception occurs under any circumstances.

Exceptions
None

Example

Assume that general-purpose registers r3 and r4 contain 0x0123_4567 and 0x89AB_CDEF
respectively. Then, the instruction:

MULTU r4,r3,r4

evaluates:
(0x0123_4567 ⋅ 0x89AB_CDEF)
= 0x009C_A39D_C94E_4629

Hence, the high-order word of the result, 0x009C_A39D, is placed into the HI register, and the
low-order word of the result, 0xC94E_4629, is placed into the LO and r4 registers.

Appendix B 16-Bit ISA Details

 B-126

NEG rx, ry
Negate

Operation
rx = 0 – ry

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

NEG
01011

 5 3 3 5

Description

This instruction performs 2’s complement of the contents of general-purpose register ry and places
the result into general-purpose register rx. It is implemented as the subtraction of ry from a value of
zero.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-127

NOT rx, ry
NOT

Operation
rx ⇐ ry NOR 0x0000_0000

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

NOT
01111

 5 3 3 5

Description

This instruction performs 1’s complement of the contents of general-purpose register ry and places
the result into general-purpose register rx. Each bit in ry is inverted. It is implemented as the logical
NOR of ry and a value of zero.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-128

OR rx, ry
OR

Operation
rx ⇐ rx OR ry

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

OR
01101

 5 3 3 5

Description

The contents of general-purpose register rx is ORed with the contents of general-purpose register ry,
and the result is placed back into general-purpose register rx.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-129

ORI ry, immediate
Logical OR Immediate

Operation
ry ⇐ ry OR (016 || immediate15..0)

Instruction Encoding
31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110 Imm[10:5] Imm[15:11] 01001 ry ORI

101 Imm[4:0]

5 6 5 5 3 3 5

Description

The 16-bit immediate is zero-extended and ORed with the contents of general-purpose register ry.
The result is placed back into ry.

The immediate field is 16 bits in length. If the immediate size is larger than that, you need to put it
in a general-purpose register and use the OR instruction (see 3.3.2, 32-Bit Constants).

Exceptions
None

Example
Assume that register r4 contains 0x0000_7350. Then, the instruction:

ORI r4,0x1234

performs the logical OR between 0x0000_7350 and 0x0000_1234 and puts the result
(0x0000_7374) back in r4, as shown below.

r4 0000 0000 0000 0000 0111 0011 0101 0000

 OR

 0000 0000 0000 0000 0001 0010 0011 0100

 Zero-Extended

 r4 0000 0000 0000 0000 0111 0011 0111 0100

EXTENDED

Appendix B 16-Bit ISA Details

 B-130

RESTORE reg_list3, framesize4
Restore Registers and Deallocate Stack Frame

Operation
ra(r31) ⇐ Stack and/or s1(r17) ⇐ Stack and/or s0(r16) ⇐ Stack ;

if framesize4 == 0 then sp(r29) ⇐ sp + 128 ;

 else sp(r29) ⇐ sp + (0 || framesize4 << 3) ;

Instruction Encoding
 15 11 10 8 7 6 5 4 3 0

I8

01100
SVRS
100

s
0

ra s0 s1
framesize

[3:0]

 5 3 1 1 1 1 4

Description

The r31 (ra), r16 (s0) and/or r17 (s1) registers are restored from the memory stack if the
corresponding ra, s0 and s1 bits of the instruction are set, and the stack pointer register (sp) is
adjusted by the framesize4 value. Higher numbered registers are loaded from higher stack addresses.

The encoding used for the reg_list3 field is as follows:

 reg_list3 ra s0 s1
 0x1 0 0 1
 0x2 0 1 0
 0x3 0 1 1
 0x4 1 0 0
 0x5 1 0 1
 0x6 1 1 0
 0x7 1 1 1

The reg_list3 field must be non-zero; otherwise, the operation is unpredictable.

The 4-bit framesize4 value is shifted left by three bits and zero-extended. A framesize4 value of 0 is
interpreted as a stack pointer adjustment of 128. Thus framesize4 can be between +8 and +128 in
increments of eight. If framesize4 is outside this range, the instruction is EXTENDed, providing an
8-bit framesize field for stack pointer adjustment between 0 and +2040. The framesize field in the
EXTENDed instruction is also shifted left by three bits.

If either of the two least-significant bits of the stack pointer is not zero, an Address Error exception
occurs.

 Appendix B 16-Bit ISA Details

 B-131

Operation Details

if framesize[3:0] = 0 then
 temp ⇐ sp (r29) + 128
else
 temp ⇐ sp (r29) + (0 || (framesize[3:0] << 3))
endif
temp2 ⇐ temp
if ra = 1 then
 temp ⇐ temp - 4
 r31 ⇐ Memory [temp]
endif
if s1 = 1 then
 temp ⇐ temp - 4
 r17 ⇐ Memory [temp]
endif
if s0 = 1 then
 temp ⇐ temp - 4
 r16 ⇐ Memory [temp]
endif
sp (r29) ⇐ temp2

Exceptions
Address Error exception

Programming Notes

The time required to execute this instruction varies, depending on the number of memory loads and
the memory access time. In case of any interrupt during execution, the full sequence of operations
will be restarted upon return from the interrupt.

Appendix B 16-Bit ISA Details

 B-132

RESTORE reg_list3, xsregs, aregs, framesize8
Restore Registers and Deallocate Stack Frame

Operation
ra(r31) ⇐ Stack and/or [r18-r23, r30] ⇐ Stack and/or

s1(r17) ⇐ Stack and/or s0(r16) ⇐ Stack and/or [r4-r7] ⇐ Stack ;

sp(r29) ⇐ sp + (0 || framesize8 << 3) ;

Instruction Encoding
31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0

EXTEND
11110

xsregs
framesize

[7:4]
aregs

I8
01100

SVRS
100

s
0

ra s0 s1
framesize

[3:0]

5 3 4 4 5 3 1 1 1 1 4

Description

The r31 (ra) register is restored from the memory stack if the ra bit in the instruction is set. The r30
and r23-r18 registers are restored from the memory stack, as indicated by the value of the xsregs
field. The r17 and/or r16 registers are restored from the memory stack if the corresponding s1 and s0
bits in the instruction are set. The r7 to r4 registers are restored from the memory stack, as indicated
by the aregs field. The stack pointer register (sp) is adjusted by the framesize8 value. Higher
numbered registers are loaded from higher stack addresses.

For the interpretation of the xsregs field, see the Operation Details section. For the interpretation of
the aregs field, see the Interpretation of the aregs Field section.

The encoding used for the reg_list3 field is as follows:

 reg_list3 ra s0 s1
 0x0 0 0 0
 0x1 0 0 1
 0x2 0 1 0
 0x3 0 1 1
 0x4 1 0 0
 0x5 1 0 1
 0x6 1 1 0
 0x7 1 1 1

At least one register must be specified in any of the reg_list3, xsregs and aregs fields to be restored.
If no register is specified, the behavior of the processor is unpredictable.

The 8-bit framesize8 value is shifted left by three bits and zero-extended. Thus framesize8 can be
between 0 and +2040, in increments of eight.

EXTENDED

 Appendix B 16-Bit ISA Details

 B-133

If either of the two least-significant bits of the stack pointer is not zero, an Address Error exception
occurs.

Interpretation of the aregs Field

In the standard MIPS ABIs (Application Binary Interfaces), registers r4-r7 are designated as a0-a3
for passing arguments to functions. When they are so used, they are saved on the stacks allocated
not only by the caller of the routine being entered but also by its callee. In the standard MIPS ABIs,
however, registers r4-r7 need not be restored on subroutine exit.

In other MIPS16e calling sequences, registers r4-r7 may be saved as static registers (i.e., registers
preserved throughout the function) on the callee stack instead of the caller stack, and restored before
return from the function.

The encoding used for the aregs field of the extended RESTORE instruction is the same as that
used for the extended SAVE instruction, except that the RESTORE instruction ignores argument
registers and handles only the registers treated as static.

The following table shows the encoding of the aregs field of the RESTORE instruction.

aregs

Encoding
(binary)

Registers Restored as Static
Registers

0000 –

0001 r7

0010 r6, r7

0011 r5, r6, r7

1011 r4, r5, r6, r7

0100 –

0101 r7

0110 r6, r7

0111 r5, r6, r7

1000 –

1001 r7

1010 r6, r7

1100 –

1101 r7

1110 –

1111 Reserved

Appendix B 16-Bit ISA Details

 B-134

Operation Details

temp ⇐ sp (r29) + (0 || (framesize[7:0] << 3))
temp2 ⇐ temp
if ra = 1 then
 temp ⇐ temp - 4
 r31 ⇐ Memory [temp]
endif
if xsregs > 0 then
 if xsregs > 1 then
 if xsregs > 2 then
 if xsregs > 3 then
 if xsregs > 4 then
 if xsregs > 5 then
 if xsregs > 6 then
 temp ⇐ temp - 4
 r30 ⇐ Memory [temp]
 endif
 temp ⇐ temp - 4
 r23 ⇐ Memory [temp]
 endif
 temp ⇐ temp - 4
 r22 ⇐ Memory [temp]
 endif
 temp ⇐ temp - 4
 r21 ⇐ Memory [temp]
 endif
 temp ⇐ temp - 4
 r20 ⇐ Memory [temp]
 endif
 temp ⇐ temp - 4
 r19 ⇐ Memory [temp]
 endif
 temp ⇐ temp - 4
 r18 ⇐ Memory [temp]
endif
if s1 = 1 then
 temp ⇐ temp - 4
 r17 ⇐ Memory [temp]
endif
if s0 = 1 then
 temp ⇐ temp - 4
 r16 ⇐ Memory [temp]
endif
case aregs of (in binary)
 0000, 0100, 1000, 1100, 1110 : astatic ⇐ 0
 0001, 0101, 1001, 1101 : astatic ⇐ 1
 0010, 0110, 1010 : astatic ⇐ 2
 0011, 0111 : astatic ⇐ 3

 Appendix B 16-Bit ISA Details

 B-135

 1011 : astatic ⇐ 4
 otherwise : UNPREDICTABLE
endcase
if astatic > 0 then
 temp ⇐ temp - 4
 r7 ⇐ Memory [temp]
 if astatic > 1 then
 temp ⇐ temp - 4
 r6 ⇐ Memory [temp]
 if astatic > 2 then
 temp ⇐ temp - 4
 r5 ⇐ Memory [temp]
 if astatic > 3 then
 temp ⇐ temp - 4
 r4 ⇐ Memory [temp]
 endif
 endif
 endif
endif
sp (r29) ⇐ temp2

Exceptions
Address Error exception

Programming Notes

The time required to execute this instruction varies, depending on the number of memory loads and
the memory access time. In case of any interrupt during execution, the full sequence of operations
will be restarted upon return from the interrupt.

The behavior of the processor is unpredictable if a reserved value of 1111 is given in the aregs field.

Appendix B 16-Bit ISA Details

 B-136

SADD ry, rx, ry
Saturated Add

Operation
if overflow on rx + ry then ry ⇐ 0x7FFF_FFFF (rx ≧ 0) or 0x8000_0000 (rx < 0)

 else ry ⇐ rx + ry

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

SADD
10100

 5 3 3 5

Description

The contents of general-purpose register rx is added to the contents of general-purpose register ry.
The sum saturates to the largest representable positive number (0x7FFF_FFFF) on overflow and to
the smallest representable negative number (0x8000_0000) on underflow. The result is placed into
ry. If neither overflow nor underflow occurs, the sum of rx and ry is placed into ry. Both rx and ry
are treated as signed integers.

An Integer Overflow exception never occurs on overflow.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-137

SAVE reg_list3, framesize4
Save Registers and Set up Stack Frame

Operation
Stack ⇐ ra(r31) and/or Stack ⇐ s1(r17) and/or Stack ⇐ s0(r16) ;

if framesize4 == 0 then sp(r29) ⇐ sp - 128 ;

 else sp(r29) ⇐ sp - (0 || framesize4 << 3) ;

Instruction Encoding
 15 11 10 8 7 6 5 4 3 0

I8

01100
SVRS
100

s
1

ra s0 s1
framesize

[3:0]

 5 3 1 1 1 1 4

Description

The r31 (ra), r16 (s0) and/or r17 (s1) registers are saved to the memory stack if the corresponding ra,
s0 and s1 bits of the instruction are set, and the stack pointer register (sp) is adjusted by the
framesize4 value. Higher numbered registers are stored to higher stack addresses.

The encoding used for the reg_list3 field is as follows:

 reg_list3 ra s0 s1
 0x1 0 0 1
 0x2 0 1 0
 0x3 0 1 1
 0x4 1 0 0
 0x5 1 0 1
 0x6 1 1 0
 0x7 1 1 1

The reg_list3 field must be non-zero; otherwise, the operation is unpredictable.

The 4-bit framesize4 value is shifted left by three bits and zero-extended. A framesize4 value of 0 is
interpreted as a stack pointer adjustment of 128. Thus framesize4 can be between +8 and +128 in
increments of eight. If framesize4 is outside this range, the instruction is EXTENDed, providing an
8-bit framesize field for stack pointer adjustment between 0 and +2040. The framesize field in the
EXTENDed instruction is also shifted left by three bits.

If either of the two least-significant bits of the stack pointer is not zero, an Address Error exception
occurs.

Appendix B 16-Bit ISA Details

 B-138

Operation Details

temp ⇐ sp (r29)
if ra = 1 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r31
endif
if s1 = 1 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r17
endif
if s0 = 1 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r16
endif
if framesize[3:0] = 0 then
 temp ⇐ sp (r29) - 128
else
 temp ⇐ sp (r29) - (0 || (framesize[3:0] << 3))
endif
sp (r29) ⇐ temp

Exceptions
Address Error exception

Programming Notes

The time required to execute this instruction varies, depending on the number of memory loads and
the memory access time. In case of any interrupt during execution, the full sequence of operations
will be restarted upon return from the interrupt.

 Appendix B 16-Bit ISA Details

 B-139

SAVE reg_list3, xsregs, aregs, framesize8
Save Registers and Set up Stack Frame

Operation
Stack ⇐ ra(r31) and/or Stack ⇐ [r18-r23, r30] and/or

Stack ⇐ s1(r17) and/or Stack ⇐ s0(r16) and/or Stack ⇐ [r4-r7] ;

sp(r29) ⇐ sp - (0 || framesize8 << 3) ;

Instruction Encoding
31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0

EXTEND
11110

xsregs
framesize

[7:4]
aregs

I8
01100

SVRS
100

s
1

ra s0 s1
framesize

[3:0]

5 3 4 4 5 3 1 1 1 1 4

Description

Registers r4-r7 are saved on the memory stack as arguments, as indicated by the value of the aregs
field. Register r31 (ra) is saved on the memory stack if the corresponding ra bit in the instruction is
set. Registers r18-r23 and r30 are saved on the memory stack, as indicated by the xsregs field.
Registers r16 (s0) and/or r17 (s1) are saved on the memory stack if the corresponding s0 and s1 bits
in the instruction are set. Registers r4-r7 are saved on the stack as static registers as indicated by the
aregs field. The stack pointer register (sp) is adjusted by the framesize8 value. Higher numbered
registers are loaded from higher stack addresses.

For the interpretation of the xsregs field, see the Operation Details section. For the interpretation of
the aregs field, see the Interpretation of the aregs Field section.

The encoding used for the reg_list3 field is as follows:

 reg_list3 ra s0 s1
 0x0 0 0 0
 0x1 0 0 1
 0x2 0 1 0
 0x3 0 1 1
 0x4 1 0 0
 0x5 1 0 1
 0x6 1 1 0
 0x7 1 1 1

At least one register must be specified in any of the reg_list3, xsregs and aregs fields to be saved. If
no register is specified, the behavior of the processor is unpredictable.

EXTENDED

Appendix B 16-Bit ISA Details

 B-140

The 8-bit framesize8 value is shifted left by three bits and zero-extended. Thus framesize8 can be
between 0 and +2040, in increments of eight.

If either of the two least-significant bits of the stack pointer is not zero, an Address Error exception
occurs.

Interpretation of the aregs Field

In the standard MIPS ABIs (Application Binary Interfaces), registers r4-r7 are designated as a0-a3
for passing arguments to functions. When they are so used, they are saved on the stacks allocated
not only by the caller of the routine being entered but also by its callee.

In other MIPS16e calling sequences, registers r4-r7 may be saved as static registers (i.e., registers
preserved throughout the function) on the callee stack instead of the caller stack.

The encoding of the aregs field allows for zero to four argument registers, zero to four static
registers and mixtures of the two. Registers are bound to arguments (a0, a1, a2 and a3) in ascending
order, and thus assigned to static values (r7, r6, r5 and r4) in the reverse order.

The following table shows the encoding of the aregs field of the SAVE instruction.

aregs
Encoding
(binary)

Registers Saved as Argument
Registers

Registers Saved as Static
Registers

0000 – –

0001 – r7

0010 – r6, r7

0011 – r5, r6, r7

1011 – r4, r5, r6, r7

0100 a0(r4) –

0101 a0(r4) r7

0110 a0(r4) r6, r7

0111 a0(r4) r5, r6, r7

1000 a0(r4), a1(r5) –

1001 a0(r4), a1(r5) r7

1010 a0(r4), a1(r5) r6, r7

1100 a0(r4), a1(r5), a2(r6) –

1101 a0(r4), a1(r5), a2(r6) r7

1110 a0(r4), a1(r5), a2(r6), a3(r7) –

1111 Reserved Reserved

 Appendix B 16-Bit ISA Details

 B-141

Operation Details
temp ⇐ sp (r29)
case aregs of (in binary)
 0000, 0001, 0010, 0011, 1011 : args ⇐ 0
 0100, 0101, 0110, 0111 : args ⇐ 1
 1000, 1001, 1010 : args ⇐ 2
 1100, 1101 : args ⇐ 3
 1110 : args ⇐ 4
 otherwise : UNPREDICTABLE
endcase
if args > 0 then
 Memory [temp] ⇐ r4
 if args > 1 then
 Memory [temp + 4] ⇐ r5
 if args > 2 then
 Memory [temp + 8] ⇐ r6
 if args > 3 then
 Memory [temp + 12] ⇐ r7
 endif
 endif
 endif
endif
if ra = 1 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r31
endif
if xsregs > 0 then
 if xsregs > 1 then
 if xsregs > 2 then
 if xsregs > 3 then
 if xsregs > 4 then
 if xsregs > 5 then
 if xsregs > 6 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r30
 endif
 temp ⇐ temp - 4
 Memory [temp] ⇐ r23
 endif
 temp ⇐ temp - 4
 Memory [temp] ⇐ r22
 endif
 temp ⇐ temp - 4
 Memory [temp] ⇐ r21
 endif
 temp ⇐ temp - 4
 Memory [temp] ⇐ r20
 endif
 temp ⇐ temp - 4
 Memory [temp] ⇐ r19

Appendix B 16-Bit ISA Details

 B-142

 endif
 temp ⇐ temp - 4
 Memory [temp] ⇐ r18
endif
if s1 = 1 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r17
endif
if s0 = 1 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r16
endif
case aregs of (in binary)
 0000, 0100, 1000, 1100, 1110 : astatic ⇐ 0
 0001, 0101, 1001, 1101 : astatic ⇐ 1
 0010, 0110, 1010 : astatic ⇐ 2
 0011, 0111 : astatic ⇐ 3
 1011 : astatic ⇐ 4
 otherwise : UNPREDICTABLE
endcase

if astatic > 0 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r7
 if astatic > 1 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r6
 if astatic > 2 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r5
 if astatic > 3 then
 temp ⇐ temp - 4
 Memory [temp] ⇐ r4
 endif
 endif
 endif
endif
temp ⇐ sp (r29) - (0 || (framesize[7:0] << 3))
sp (r29) ⇐ temp

Exceptions
Address Error exception

Programming Notes

The time required to execute this instruction varies, depending on the number of memory loads and
the memory access time. In case of any interrupt during execution, the full sequence of operations
will be restarted upon return from the interrupt.

The behavior of the processor is unpredictable if a reserved value of 1111 is given in the aregs field.

 Appendix B 16-Bit ISA Details

 B-143

SB ry, offset (base)
Store Byte

Operation
 ry = {zero-extend (offset) + (base)}

(EXTENDED) ry = {sign-extend (offset) + (base)}

Instruction Encoding
 15 11 10 8 7 5 4 0

SB

11000
base ry offset

 5 3 3 5

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
SB

11000
base ry offset[4:0]

 5 6 5 5 3 3 5

Description

The 5-bit immediate offset is zero-extended and added to the contents of general-purpose register
base to form an effective address (EA). The least-significant byte in general-purpose register ry is
stored at the memory location addressed by the EA.

The three high-order bytes in ry is simply ignored; so there is no distinction between signed and
unsigned stores.

With the 5-bit offset field, the offset range is 0 to 31. If the offset is outside this range, the
instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to +32767.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-144

Example

Assume that registers r2 and r3 contain 0x0000_0400 and 0x0123_4567 respectively. Then,
executing the instruction:

SB r3,4(r2)

stores 0x67 to the memory location at address 0x404.

Store

r2 0x0000_0400

Memory

0x67

0x400
0x401
0x402
0x403
0x404

+4

Byte

1 Byte

Memory

CPU
Register

r3 0x0123_4567

 Appendix B 16-Bit ISA Details

 B-145

SB ry, offset (fp)
Store Byte

Operation
 ry = {zero-extend (offset) + (fp)}

(EXTENDED) ry = {sign-extend (offset) + (fp)}

Instruction Encoding
 15 11 10 8 7 6 0

FP-B
00111

ry 1 Offset[6:0]

 5 3 1 7

31 27 26 21 20 16 15 11 10 8 7 6 5 4 0

EXTEND
11110

offset[10:5] offset[15:11] 00111 ry 1 00 offset[4:0]

5 6 5 5 3 1 2 5

Description

The 7-bit immediate offset is zero-extended and added to the contents of the fp register (r30) to form
an effective address (EA). The least-significant byte in general-purpose register ry is stored at the
memory location addressed by the EA.

The three high-order bytes in ry are simply ignored; so there is no distinction between signed and
unsigned stores.

With the 7-bit offset field, the offset range is 0 to 127. If the offset is outside this range, the
instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to +32767.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-146

Example

Assume that the fp (r30) and r3 registers contain 0x0000_0400 and 0x0123_4567 respectively.
Then, executing the instruction:

B r3,4(fp)

stores 0x67 to the memory location at address 0x0404.

Store

r30 0x0000_0400

Memory

0x67

0x400
0x401
0x402
0x403
0x404

+4

Byte

1 Byte

Memory

CPU
Register

r3 0x0123_4567

 Appendix B 16-Bit ISA Details

 B-147

SB ry, offset (sp)
Store Byte

Operation
 ry = {zero-extend (offset) + (sp)}

(EXTENDED) ry = {sign-extend (offset) + (sp)}

Instruction Encoding
 15 11 10 8 7 6 0

SP-B
01111

ry 1 Offset[6:0]

 5 3 1 7

31 27 26 21 20 16 15 11 10 8 7 6 5 4 0

EXTEND
11110

offset[10:5] offset[15:11] 01111 ry 1 00 offset[4:0]

5 6 5 5 3 1 2 5

Description

The 7-bit immediate offset is zero-extended and added to the contents of the sp register (r29) to
form an effective address (EA). The least-significant byte in general-purpose register ry is stored at
the memory location addressed by the EA.

The three high-order bytes in ry are simply ignored; so there is no distinction between signed and
unsigned stores.

With the 7-bit offset field, the offset range is 0 to 127. If the offset is outside this range, the
instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to +32767.

Exceptions
Address Error exception

EXTENDED

Appendix B 16-Bit ISA Details

 B-148

Example

Assume that the sp (r29) and r3 registers contain 0x0000_0400 and 0x0123_4567 respectively.
Then, executing the instruction:

SB r3,4(sp)

stores 0x67 to the memory location at address 0x404.

Store

r29 0x0000_0400

Memory

0x67

0x400
0x401
0x402
0x403
0x404

+4

Byte

1 Byte

Memory

CPU
Register

r3 0x0123_4567

 Appendix B 16-Bit ISA Details

 B-149

SDBBP code
Software Debug Breakpoint

Operation
Software debug breakpoint exception

Instruction Encoding
 15 11 10 5 4 0

RR

11101
code

SDBBP
00001

 5 6 5

Description

A debug breakpoint occurs, immediately and unconditionally transferring control to the exception
handler.

The code field in the SDBBP instruction is available for use as software parameters to pass
additional information. The exception handler can retrieve it by loading the contents of the memory
word containing the instruction. See Section 9.3, Debug Exceptions, for details.

The SDBBP instruction may not be used within the user’s program; it is intended for use by
development tools. Executing the SDBBP instruction on a device without EJTAG causes a
Reserved Instruction exception.

Exceptions

Debug Breakpoint exception
Reserved Instruction exception

Appendix B 16-Bit ISA Details

 B-150

SEB rx
Sign-Extend Byte

Operation
rx ⇐ (rx[7])24 || rx[7:0]

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx

SEB
100

10001

 5 3 3 5

Description

The least-significant byte in general-purpose register rx is sign-extended. The result is placed back
into rx.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-151

SEH rx
Sign-Extend Halfword

Operation
rx ⇐ (rx[15])16 || rx[15:0];

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx

SEH
101

10001

 5 3 3 5

Description

The low-order halfword in general-purpose register rx is sign-extended. The result is placed back
into rx.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-152

SH ry, offset (base)
Store Halfword

Operation
 ry = {zero-extend (offset || 0) + (base)}

(EXTENDED) ry = {sign-extend (offset) + (base)}

Instruction Encoding
 15 11 10 8 7 5 4 0

SH

11001
base ry offset

 5 3 3 5

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
SH

11001
base ry offset[4:0]

 5 6 5 5 3 3 5

Description

The 5-bit immediate offset is shifted left by one bit, zero-extended and added to the contents of
general-purpose register base to form an effective address (EA). The low-order halfword in
general-purpose register ry is stored at the memory location addressed by the EA.
The high-order halfword in ry is simply ignored; so there is no distinction between signed and
unsigned stores.

Since the 5-bit offset is shifted left by one bit, the offset range is 0 to 62, in increments of two. If the
offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate in
the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at all.

Exceptions
Address Error exception

EXTENDED

 Appendix B 16-Bit ISA Details

 B-153

Example
SH r3,4(r2)

Assume that registers r2 and r3 contain 0x0000_0400 and 0x0123_4567 respectively. Since the
offset value is shifted left by one bit by the processor hardware, the assembler/linker turns the
specified offset (4 or binary 0100) into a code of 2 (binary 0010). Thus the instruction code for this
store instruction becomes 0xCA62.

In big-endian mode, 0x45 and 0x67 are stored to the memory locations at addresses 0x404 and
0x405 respectively. In little-endian mode, 0x67 and 0x45 are stored to the memory locations at
addresses 0x404 and 0x405 respectively.

Store

r2 0x0000_0400

Memory

0x45

0x400
0x401
0x402
0x403
0x404

Byte

Halfword

Memory

CPU
Register

r3 0x0123_4567

0x405

Big-Endian

0x67

Byte

Little-Endian

0x67 0x45

Halfword Boundary

Halfword Boundary

Halfword Boundary

+4

The offset, 1, is shifted

left by 1 bit.

Appendix B 16-Bit ISA Details

 B-154

SH ry, offset (fp)
Store Halfword

Operation
 ry = {zero-extend (offset || 0) + (fp)}

(EXTENDED) ry = {sign-extend (offset || 0) + (fp)}

Instruction Encoding
 15 11 10 8 7 6 1 0

FP-H
10111

ry 1 offset[6:1] 1

 5 3 1 6 1

31 27 26 21 20 16 15 11 10 8 7 6 5 4 1 0

EXTEND
11110

offset[10:5] offset[15:11] 10111 ry 1 00 offset[4:1] 1

5 6 5 5 3 1 2 4 1

Description

The 6-bit immediate offset is shifted left by one bit, zero-extended and added to the contents of the
fp register (r30) to form an effective address (EA). The low-order halfword in general-purpose
register ry is stored at the memory location addressed by the EA.

The high-order halfword in ry is simply ignored; so there is no distinction between signed and
unsigned stores.

Since the 6-bit offset is shifted left by one bit, the offset range is 0 to 126, in increments of two. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate.
When EXTENDed, the offset operand is shifted left by one bit to allow an offset of -32768 to
+32766.

Exceptions
Address Error exception

EXTENDED

 Appendix B 16-Bit ISA Details

 B-155

Example
SH r3,4(fp)

Assume that fp (r30) and r3 registers contain 0x0000_0400 and 0x0123_4567 respectively. Since
the offset value is shifted left by one bit by the processor hardware, the assembler/linker turns the
specified offset (4 or binary 0100) into a code of 2 (binary 0010). Thus the instruction code for this
store instruction becomes 0xBB85.

In big-endian mode, 0x45 and 0x67 are stored to the memory locations at addresses 0x404 and
0x405 respectively. In little-endian mode, 0x67 and 0x45 are stored to the memory locations at
addresses 0x404 and 0x405 respectively.

Store

r30 0x0000_0400

Memory

0x45

0x400
0x401
0x402
0x403
0x404

Byte

Halfword

Memory

CPU
Register

r3 0x0123_4567

0x405

Big-Endian

0x67

Byte

Little-Endian

0x67 0x45

Halfword Boundary

Halfword Boundary

Halfword Boundary

+4

The offset, 1, is shifted

left by 1 bit.

Appendix B 16-Bit ISA Details

 B-156

SH ry, offset (sp)
Store Halfword

Operation
 ry = {zero-extend (offset || 0) + (sp)}

(EXTENDED) ry = {sign-extend (offset || 0) + (sp)}

Instruction Encoding
 15 11 10 8 7 6 1 0

SP-H
10111

ry 1 offset[6:1] 0

 5 3 1 6 1

31 27 26 21 20 16 15 11 10 8 7 6 5 4 1 0

EXTEND
11110

offset[10:5] offset[15:11] 10111 ry 1 00 offset[4:1] 0

5 6 5 5 3 1 2 4 1

Description

The 6-bit immediate offset is shifted left by one bit, zero-extended and added to the contents of the
sp (r29) register to form an effective address (EA). The low-order halfword in general-purpose
register ry is stored at the memory location addressed by the EA.

The high-order halfword in ry is simply ignored; so there is no distinction between signed and
unsigned stores.

Since the 6-bit offset is shifted left by one bit, the offset range is 0 to 126, in increments of two. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate.
When EXTENDed, the offset operand is shifted left by one bit allow an offset of -32768 to +32766.

Exceptions
Address Error exception

EXTENDED

 Appendix B 16-Bit ISA Details

 B-157

Example
SH r3,4(sp)

Assume that the sp (r29) and r3 registers contain 0x0000_0400 and 0x0123_4567 respectively.
Since the offset value is shifted left by one bit by the processor hardware, the assembler/linker turns
the specified offset (4 or binary 0100) into a code of 2 (binary 0010). Thus the instruction code for
this store instruction becomes 0xBB84.

In big-endian mode, 0x45 and 0x67 are stored to the memory locations at addresses 0x404 and
0x405 respectively. In little-endian mode, 0x67 and 0x45 are stored to the memory locations at
addresses 0x404 and 0x405 respectively.

Store

r29 0x0000_0400

Memory

0x45

0x400
0x401
0x402
0x403
0x404

Byte

Halfword

Memory

CPU
Register

r3 0x0123_4567

0x405

Big-Endian

0x67

Byte

Little-Endian

0x67 0x45

Halfword Boundary

Halfword Boundary

Halfword Boundary

+4

The offset, 1, is shifted

left by 1 bit.

Appendix B 16-Bit ISA Details

 B-158

SLL rx, ry, sa
Shift Left Logical

Operation
rx ⇐ ry << sa

Instruction Encoding
 15 11 10 8 7 5 4 2 1 0

SHIFT
00110

rx ry sa
SLL
00

 5 3 3 3 2

31 27 26 22 21 16 15 11 10 8 7 5 4 0

EXTEND
11110

sa[4:0] 000000
SHIFT
00110

rx ry 000000

 5 5 6 5 3 3 5

Description

The contents of general-purpose register ry is shifted left by sa bits. Zeros are supplied to the
vacated positions on the right. The result is placed into general-purpose register rx. The sa field is
only 3-bits wide. Thus the shift amount is restricted to 1 to 8. The sa value of 000 is defined as a
shift of 8 bits.

If the shift amount does not fit in the sa field, the instruction is EXTENDed to provide a full 5-bit
field for a shift of 0 to 31.

Example
Assume that register r2 contains 0x2170_ADC5. Then, executing the instruction:

SLL r3,r2,4

places 0x170A_DC50 in register r3, as shown below.

Shifted left
by 4 bits

r2

r3

Padded with zeros

0001 0111 0000 1010 1101 1100 0101 0000

0010 0001 0111 0000 1010 1101 1100 0101

EXTENDED

 Appendix B 16-Bit ISA Details

 B-159

SLL ry, sa5
Shift Left Logical

Operation
ry ⇐ ry << sa5

Instruction Encoding
 15 11 10 8 7 6 2 1 0

RRR
11100

ry 1 sa[4:0] 00

 5 3 1 5 2

Description

The contents of general-purpose register ry is shifted left by sa bits. Zeros are supplied to the
vacated positions on the right. The result is placed back into ry. The sa field is 5-bits wide; thus the
possible shift amount is 1 to 31. The sa value may not be 00000.

Example
Assume that register r2 contains 0x2170_ADC5. Then, executing the instruction:

SLL r2,4

places 0x170A_DC50 in register r2, as shown below.

Shifted left
by 4 bits

r2

r2

Padded with zeros

0001 0111 0000 1010 1101 1100 0101 0000

0010 0001 0111 0000 1010 1101 1100 0101

Appendix B 16-Bit ISA Details

 B-160

SLLV ry, rx
Shift Left Logical Variable

Operation
ry << 5 LSBs of rx

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

SLLV
00100

 5 3 3 5

Description

The contents of general-purpose register ry is shifted left the number of bits specified by the five
least-significant bits of general-purpose register rx. Zeros are supplied to the vacated positions on
the right. The result is placed back into general-purpose register ry.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-161

SLT rx, ry
Set On Less Than

Operation
if rx < ry then t8 ⇐ 1; else t8 ⇐ 0

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

SLT
00010

 5 3 3 5

Description

The contents of general-purpose register rx is compared to the contents of general-purpose register
ry. Both rx and ry are treated as signed integers. If rx is less than ry, condition code register t8 (r24)
is set to one. Otherwise, t8 is set to zero.

No Integer Overflow exception occurs under any circumstances. The comparison is valid even if the
subtraction performed for comparison results in overflow.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-162

SLTI rx, immediate
Set On Less Than Immediate

Operation
 if rx < 024 || (immediate7..0) then t8 ⇐ 1; else t8 ⇐ 0

(EXTENDED) if rx < (immediate15)16 || (immediate15..0) then t8 ⇐ 1; else t8 ⇐ 0

Instruction Encoding
 15 11 10 8 7 0

SLTI

01010
rx immediate

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

imm[10:5] imm[15:11]
SLTI

01010
rx 000 imm[4:0]

 5 6 5 5 3 3 5

Description

The 8-bit immediate is zero-extended and compared to the contents of general-purpose register rx.
The immediate and rx are compared as signed integers. If rx is less than immediate, condition code
register t8 (r24) is set to 1. Otherwise, t8 is set to zero.

No Integer Overflow exception occurs under any circumstances. The comparison is valid even if the
subtraction performed for comparison results in overflow.

With the 8-bit immediate field, the immediate range is 0 to 255. If a number is outside this range,
the instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to
+32767.

Exceptions
None

EXTENDED

 Appendix B 16-Bit ISA Details

 B-163

SLTIU rx, immediate
Set On Less Than Immediate Unsigned

Operation
 if (0 || rx) < 025 || (immediate7..0) then t8 ⇐ 1; else t8 ⇐ 0

(EXTENDED) if (0 || rx) < (immediate15)17 || (immediate15..0) then t8 ⇐ 1; else t8 ⇐ 0

Instruction Encoding
 15 11 10 8 7 0

SLTIU
01011

rx immediate

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

imm[10:5] imm[15:11]
SLTIU
01011

rx 000 imm[4:0]

 5 6 5 5 3 3 5

Description

The 8-bit immediate is zero-extended and compared to the contents of general-purpose register rx.
The immediate and rx are compared as unsigned integers. If rx is less than immediate, condition
code register t8 (r24) is set to one. Otherwise, t8 is set to zero.

No Integer Overflow exception occurs under any circumstances. The comparison is valid even if the
subtraction performed for comparison results in overflow.

With the 8-bit immediate field, the immediate range is 0 to 255. If a number is outside this range,
the instruction is EXTENDed to provide a 16-bit signed immediate in the range of -32768 to
+32767.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-164

SLTU rx, ry
Set On Less Than Unsigned

Operation
if (0 || rx) < (0 || ry) then t8 ⇐ 1; else t8 ⇐ 0

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

SLTU
00011

 5 3 3 5

Description

The contents of general-purpose register rx is compared to the contents of general-purpose register
ry. Both rx and ry are treated as unsigned integers. If rx is less than ry, condition code register t8
(r24) is set to one. Otherwise, t8 is set to zero.

No Integer Overflow exception occurs under any circumstances. The comparison is valid even if the
subtraction performed for comparison results in overflow.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-165

SRA rx, ry, sa
Shift Right Arithmetic

Operation
rx ⇐ ry >> sa

Instruction Encoding
 15 11 10 8 7 5 4 2 1 0

SHIFT
00110

rx ry sa
SRA
11

 5 3 3 3 2

31 27 26 22 21 16 15 11 10 8 7 5 4 0

EXTEND
11110

sa[4:0] 000000
SHIFT
00110

rx ry 000011

 5 5 6 5 3 3 5

Description

The contents of general-purpose register ry is shifted right by sa bits. The sign bit is copied to the
vacated positions on the left. The result is placed into general-purpose register rx. The sa field is
only 3-bits wide. Thus the shift amount is restricted to 1 to 8. The sa value of 000 is defined as a
shift of 8 bits.

If the shift amount does not fit in the sa field, the instruction is EXTENDed to provide a full 5-bit
field for shift of 0 to 31.

Example
Assume that register r2 contains 0xB521_AE5E. Then, executing the instruction:

SRA r3,r2,8

places 0xFFB5_21AE in register r3, as shown below.

 1 011 0101 0010 0001 1010 0101 1110

1111 1111 1011 0101 0010 0001 1010

r2

r3
Sign Bit Shifted right by 8 bits

EXTENDED

Appendix B 16-Bit ISA Details

 B-166

SRA ry, sa5
Shift Right Arithmetic

Operation
ry ⇐ ry >> sa5

Instruction Encoding
 15 11 10 8 7 6 2 1 0

RRR
11100

ry 0 sa[4:0] 10

 5 3 1 5 2

Description

The contents of general-purpose register ry is shifted right by sa bits. The sign bit is copied to the
vacated positions on the left. The result is placed back into ry. The sa field is 5-bits wide; thus the
possible shift amount is 1 to 31. The sa value may not be 00000.

Example
Assume that register r2 contains 0xB521_AE5E. Then, executing the instruction:

SRA r2,8

places 0xFFB5_21AE back in register r2, as shown below.

 1 011 0101 0010 0001 1010 0101 1110

1111 1111 1011 0101 0010 0001 1010

r2

r2
Sign Bit Shifted right by 8 bits

 Appendix B 16-Bit ISA Details

 B-167

SRAV ry, rx
Shift Right Arithmetic Variable

Operation
ry >> 5 LSBs of rx

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

SRAV
00111

 5 3 3 5

Description

The contents of general-purpose register ry is shifted right the number of bits specified by the five
least-significant bits of general-purpose register rx. The sign bit is copied to the vacated positions on
the left. The result is placed back into general-purpose register ry.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-168

SRL rx, ry, sa
Shift Right Logical

Operation
rx ⇐ ry >> sa

Instruction Encoding
 15 11 10 8 7 5 4 2 1 0

SHIFT
00110

rx ry sa
SRL
10

 5 3 3 3 2

31 27 26 22 21 16 15 11 10 8 7 5 4 0

EXTEND
11110

sa[4:0] 000000
SHIFT
00110

rx ry 000010

 5 5 6 5 3 3 5

Description

The contents of general-purpose register ry is shifted right by sa bits. Zeros are supplied to the
vacated positions on the left. The result is placed into general-purpose register rx. The sa field is
only 3-bits wide. Thus the shift amount is restricted to 1 to 8. The sa value of 000 is defined as a
shift of 8 bits.

If the shift amount does not fit in the sa field, the instruction is EXTENDed to provide a full 5-bit
field for a shift of 0 to 31.

Example
Assume that register r2 contains 0xB521_4C5E. Then, executing the instruction:

SRL r3,r2,8

places 0x00B5_214C in register r3, as shown below.

 1011 0101 0010 0001 1000 1100 0101 1110r2

r3

Padded with zeros Shifted right by 8 bits

0000 0000 1011 0101 0010 0001 0100 1100

EXTENDED

 Appendix B 16-Bit ISA Details

 B-169

SRL ry, sa5
Shift Right Logical

Operation
ry ⇐ ry >> sa5

Instruction Encoding
 15 11 10 8 7 6 2 1 0

RRR
11100

ry 1 sa[4:0] 10

 5 3 1 5 2

Description

The contents of general-purpose register ry is shifted right by sa bits. Zeros are supplied to the
vacated positions on the left. The result is placed back into ry. The sa field is 5-bits wide; thus the
possible shift amount is 1 to 31. The sa value may not be 00000.

Example
Assume that register r2 contains 0xB521_4C5E. Then, executing the instruction:

SRL r2,8

places 0x00B5_214C back in register r2, as shown below.

 1011 0101 0010 0001 0100 1100 0101 1110r2

r2

Padded with zeros Shifted right by 8 bits

0000 0000 1011 0101 0010 0001 0100 1100

Appendix B 16-Bit ISA Details

 B-170

SRLV ry, rx
Shift Right Logical Variable

Operation
ry >> 5 LSBs of rx

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

SRLV
00110

 5 3 3 5

Description

The contents of general-purpose register ry is shifted right the number of bits specified by the five
least-significant bits of general-purpose register rx. Zeros are supplied to the vacated positions on
the left. The result is placed back into general-purpose register ry.

Example
None

 Appendix B 16-Bit ISA Details

 B-171

SSUB ry, rx, ry
Saturated Subtract

Operation
if overflow on rx － ry then ry ⇐ 0x7FFF_FFFF (rx ≥ 0) or 0x8000_0000 (rx < 0)

 else ry ⇐ rx － ry

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

SSUB
10101

 5 3 3 5

Description

The contents of general-purpose register ry is subtracted from the contents of general-purpose
register rx. On overflow, the remainder saturates to the largest representable positive number
(0x7FFF_FFFF) if rx is zero or a positive number and to the smallest representable negative number
(0x8000_0000) if rx is a negative number. The result is placed into ry. If overflow does not occur,
the remainder is placed into ry. Both rx and ry are treated as signed integers.

An Integer Overflow exception never occurs on overflow.

Exceptions
None

Appendix B 16-Bit ISA Details

 B-172

SUBU rz, rx, ry
Subtract Unsigned

Operation
rz ⇐ rx – ry

Instruction Encoding
 15 11 10 8 7 5 4 2 1 0

RRR
11100

rx ry rz
SUBU

11

 5 3 3 3 2

Description

The contents of general-purpose register ry is subtracted from the contents of general-purpose
register rx. The remainder is placed into general-purpose register rz.

No Integer Overflow exception occurs under any circumstances.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-173

SW ra, offset (sp)
Store Word

Operation
 ra = {zero-extend (offset || 00) + (sp)}

(EXTENDED) ra = {sign-extend (offset) + (sp)}

Instruction Encoding
 15 11 10 8 7 0

I8

01100
SWRASP

010
offset

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
I8

01100
SWRASP

010
000 offset[4:0]

 5 6 5 5 3 3 5

Description

The 8-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of
stack pointer register sp (r29) to form an effective address (EA). The word in link register ra (r31) is
stored at the memory location addressed by the EA.

Since the 8-bit offset is shifted left by two bits, the offset range is 0 to 1024, in increments of four. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate
in the range of –32768 to +32767.

Exceptions
Address Error exception

Example
SW ra,4(sp)

Assume that the sp and ra registers contain 0x0000_0400 and 0x0123_4567 respectively. Since the
offset value is shifted left by two bits by the processor hardware, the assembler/linker turns the
specified offset (4 or binary 0100) into a code of 1 (binary 0001). Thus the instruction code for this
store instruction is 0x3101.

In big-endian mode, 0x0123_4567 is stored to the memory locations at addresses 0x0404 to 0x0407.

EXTENDED

Appendix B 16-Bit ISA Details

 B-174

sp 0x0000_0400

Memory

0x01

0x400
0x401
0x402
0x403
0x404

+4

The offset, 1, is shifted

left by 2 bits.

Byte

ra 0x0123_4567

Big-Endian

0x23 0x405
0x45 0x406
0x67 0x407

 Appendix B 16-Bit ISA Details

 B-175

SW ry, offset (fp)
Store Word

Operation
 ry = {zero-extend (offset || 00) + (fp)}

(EXTENDED) ry = {sign-extend (offset) + (fp)}

Instruction Encoding
 15 11 10 8 7 5 4 0

SWFP
11111

111 ry offset[4:0]

 5 3 3 5

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
SWFP
11111

111 ry offset[4:0]

5 6 5 5 3 3 5

Description

The 5-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of
fp register (r30) to form an effective address (EA). The word in general-purpose
register ry is stored at the memory location addressed by the EA.

Since the 5-bit offset is shifted left by two bits, the offset range is 0 to 124, in increments of four. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate
in the range of -32768 to +32767.

Exceptions
Address Error exception

Example
SW r3,4(fp)

Assume that registers fp and r3 contain 0x0000_0400 and 0x0123_4567 respectively. Since the
offset value is shifted left by two bits by the processor hardware, the assembler/linker turns the
specified offset (4 or binary 0100) into a code of 1 (binary 0001). Thus the instruction code for this
store instruction becomes 0xFF61.

In big-endian mode, 0x123_4567 is stored to the memory locations at addresses 0x404 to 0x407. In
little-endian mode, 0x6745_2301 is stored to the memory locations at addresses 0x404 to 0x407.

EXTENDED

Appendix B 16-Bit ISA Details

 B-176

r30 0x0000_0400

Memory

0x01

0x400
0x401
0x402
0x403
0x404

+4

The offset, 1, is shifted

left by 2 bits.

Byte

r3 0x0123_4567

Big-Endian

0x23 0x405
0x45 0x406
0x67 0x407

Memory

0x67

0x400
0x401
0x402
0x403
0x404

Byte

Little-Endian

0x45 0x405
0x23 0x406
0x01 0x407

 Appendix B 16-Bit ISA Details

 B-177

SW rx, offset (sp)
Store Word

Operation
 rx = {zero-extend (offset || 00) + (sp)}

(EXTENDED) rx = {sign-extend (offset) + (sp)}

Instruction Encoding
 15 11 10 8 7 0

SWSP
11010

rx offset

 5 3 8

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
SWSP
11010

rx 000 offset[4:0]

 5 6 5 5 3 3 5

Description

The 8-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of
stack pointer register sp (r29) to form an effective address (EA). The word in general-purpose
register rx is stored at the memory location addressed by the EA.

Since the 8-bit offset is shifted left by two bits, the offset range is 0 to 1020, in increments of four. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate
in the range of –32768 to +32767.

Exceptions
Address Error exception

Example
SW r3,4(sp)

Assume that the sp and r3 registers contain 0x0000_0400 and 0x0123_4567 respectively. Since the
offset value is shifted left by two bits by the processor hardware, the assembler/linker turns the
specified offset (4 or binary 0100) into a code of 1 (binary 0001). Thus the instruction code for this
store instruction is 0xD301.

In big-endian mode, 0x0123_4567 is stored to the memory locations at addresses 0x404 to 0x407.

EXTENDED

Appendix B 16-Bit ISA Details

 B-178

sp 0x0000_0400

Memory

0x01

0x400
0x401
0x402
0x403
0x404

+4

The offset, 1, is shifted

left by 2 bits.

Byte

r3 0x0123_4567

Big-Endian

0x23 0x405
0x45 0x406
0x67 0x407

 Appendix B 16-Bit ISA Details

 B-179

SW ry, offset (base)
Store Word

Operation
 ry = {zero-extend (offset || 00) + (base)}

(EXTENDED) ry = {sign-extend (offset) + (base)}

Instruction Encoding
 15 11 10 8 7 5 4 0

SW

11011
base ry offset

 5 3 3 5

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset[10:5] offset[15:11]
SW

11011
base ry offset[4:0]

 5 6 5 5 3 3 5

Description

The 5-bit immediate offset is shifted left by two bits, zero-extended and added to the contents of
general-purpose register base to form an effective address (EA). The word in general-purpose
register ry is stored at the memory location addressed by the EA.

Since the 5-bit offset is shifted left by two bits, the offset range is 0 to 124, in increments of four. If
the offset is outside this range, the instruction is EXTENDed to provide a 16-bit signed immediate
in the range of -32768 to +32767. When EXTENDed, the offset operand is not shifted at all.

Exceptions
Address Error exception

Example
SW r3,4(r2)

Assume that registers r2 and r3 contain 0x0000_0400 and 0x0123_4567 respectively. Since the
offset value is shifted left by two bits by the processor hardware, the assembler/linker turns the
specified offset (4 or binary 0100) into a code of 1 (binary 0001). Thus the instruction code for this
store instruction becomes 0xDAE1.

In big-endian mode, 0x123_4567 is stored to the memory locations at addresses 0x0404 to 0x0407. In
little-endian mode, 0x6745_2301 is stored to the memory locations at addresses 0x0404 to 0x0407.

EXTENDED

Appendix B 16-Bit ISA Details

 B-180

r2 0x0000_0400

Memory

0x01

0x400
0x401
0x402
0x403
0x404

+4

The offset, 1, is shifted

left by 2 bits.

Byte

r3 0x0123_4567

Big-Endian

0x23 0x405
0x45 0x406
0x67 0x407

Memory

0x67

0x400
0x401
0x402
0x403
0x404

Byte

Little-Endian

0x45 0x405
0x23 0x406
0x01 0x407

 Appendix B 16-Bit ISA Details

 B-181

SYNC
Synchronize

Operation
メモリ同期操作

Instruction Encoding
31 27 26 22 21 16 15 11 10 5 4 0

EXTEND
11110

00000 000000 11101 000000 01111

5 5 6 5 6 5

Description

The SYNC instruction interlocks the instruction pipeline until loads and stores performed prior to
the present instruction are completed before any instructions after this instruction are allowed to
start. See 5.2.4, SYNC Instruction.

If there is no data dependency, the TX19A continues to execute subsequent instructions. This is
called non-blocking loads. By virtue of non-blocking loads, the instruction pipeline can work on
nondependent instructions.

Exceptions
None

EXTENDED

Appendix B 16-Bit ISA Details

 B-182

SYSCALL code
System Call

Operation
System call exception

Instruction Encoding
31 27 26 22 21 16 15 11 10 5 4 0

EXTEND
11110

code[10:6] code[16:11] 11101 code[5:0] 01100

5 5 6 5 6 5

Description

A System Call exception occurs, immediately and unconditionally transferring control to the
exception handler.

The code field in a SYSCALL instruction is available for use as software parameters to pass
additional information. To examine these bits, load the contents of the instruction at which the EPC
register points. For details on System Call exceptions, see Section 9.1.10, System Call Exceptions.

Exceptions
System call exception

EXTENDED EXTENDED

 Appendix B 16-Bit ISA Details

 B-183

WAIT
Enter Standby Mode

Operation
if Status[RP] = 1 then DOZE mode

 else HALT mode

Instruction Encoding
31 27 26 22 21 16 15 11 10 5 4 0

EXTEND
11110

01000 000000 11101 000000 00000

5 5 6 5 6 5

Description

The WAIT instruction is used to freeze the instruction pipeline to reduce the processor’s power
consumption. If the RP bit in the Status register is set, the processor enters DOZE mode. If the RP
bit is cleared, the processor enters HALT mode. See Chapter 10, Low-Power Modes.

The WAIT instruction must not be set in a delay slot of the branch or jump instruction.
Once the MTC0 instruction writes to the Status register, at least two instructions
must be executed before the WAIT instruction. Otherwise, the operation is undefined.

Exceptions
Coprocessor Unusable exception

EXTENDED EXTENDED

Appendix B 16-Bit ISA Details

 B-184

XOR rx, ry
Exclusive OR

Operation
rx ⇐ rx XOR ry

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx ry

XOR
01110

 5 3 3 5

Description

The contents of general-purpose register rx is exclusive-ORed with the contents of general-purpose
register ry. The result is placed back into general-purpose register rx.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-185

XORI ry, immediate
Exclusive OR Immediate

Operation
ry ⇐ ry XOR (016 || immediate15..0)

Instruction Encoding
31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110 Imm[10:5] Imm[15:11] 01001 ry XORI

110 Imm[4:0]

5 6 5 5 3 3 5

Description

The 16-bit immediate is zero-extended and exclusive-ORed with the contents of general-purpose
register ry. The result is placed back into ry.

The immediate field is 16 bits in length. If the immediate size is larger than that, you need to put it
in a general-purpose register and use the XOR instruction (see Section 3.3.2, 32-Bit Constants).

Exceptions
None

Example
Assume that register r4 contains 0x0000_7350. Then, executing the instruction:

XORI r4,0x1234

places 0x0000_6164 back in register r4, as shown below.

r4 0000 0000 0000 0000 0111 0011 0101 0000

 XOR

 0000 0000 0000 0000 0001 0010 0011 0100

 Zero-Extended

 r4 0000 0000 0000 0000 0110 0001 0110 0100

EXTENDED

Appendix B 16-Bit ISA Details

 B-186

ZEB rx
Zero-Extend Byte

Operation
rx ⇐ 024 || rx[7:0]

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx

ZEB
000

10001

 5 3 3 5

Description

The least-significant byte in general-purpose register rx is zero-extended. The result is placed back
into rx.

Exceptions
None

 Appendix B 16-Bit ISA Details

 B-187

ZEH rx
Zero-Extend Halfword

Operation
rx ⇐ 016 || rx[15:0];

Instruction Encoding
 15 11 10 8 7 5 4 0

RR

11101
rx

ZEH
001

10001

 5 3 3 5

Description

The low-order halfword in general-purpose register rx is zero-extended. The result is placed back
into rx.

Exceptions
None

 Appendix C Programming Restrictions

Appendix C Programming Restrictions
In a pipelined machine like the TX19A, there are certain instructions which may disrupt the smooth
operation of the pipeline due to the very pipeline structure. This appendix lists the restrictions that
need to be observed in writing assembly-language programs.

C.1 32-Bit ISA Restrictions

Table C-1 Load and Store Instructions

Instructions Restrictions

LH rt, offset(base)
LHU rt, offset(base)
SH rt, offset(base)

The target address generated by these instructions must be on a halfword boundary;
i.e., it must have the least-significant bit cleared. Otherwise, an Address Error
exception occurs.

LW rt, offset(base)
LWU rt, offset(base)
SW rt, offset(base)

The target address generated by these instructions must be on a word boundary;
i.e., it must have the two least-significant bits cleared. Otherwise, an Address Error
exception occurs.

Table C-2 Jump Instructions

Instructions Restrictions

JALR (rd,) rs • Register rd may not be the same one as register rs because such an instruction is
not restartable after the exception has been serviced.
• In 32-bit ISA mode, all instructions must be word-aligned. Therefore, when
jumping to a 32-bit routine, the two least-significant bits of the target register (rs)
must be zero. Otherwise, an Address Error exception occurs when the processor
fetches the instruction at the jump destination.

JR rs In 32-bit ISA mode, all instructions must be word-aligned. Therefore, when jumping
to a 32-bit routine, the two least-significant bits of the target register (rs) must be
zero. Otherwise, an Address Error exception occurs when the processor fetches the
instruction at the jump destination.

All jump instructions Any jump instruction may not be in a jump or branch delay slot. The operation of the
jump instruction is undefined if it is in a jump or branch delay slot.

Table C-3 Branch and Branch-Likely Instructions

Instructions Restrictions

BGEZAL(L) rs, offset
BLTZAL(L) rs, offset

Register rs may not be r31 because such an instruction is not restartable after the
exception has been serviced.

All branch instructions All the branch instructions may not be in a jump or branch delay slot. The operation of
the branch instructions are undefined if they are in a jump or branch delay slot.

C-1

Appendix C Programming Restrictions

Table C-4 System Control Coprocessor (CP0) Instructions

Instructions Restrictions

MTC0 rt, rd
MFC0 rt, rd
ERET
WAIT

Attempts by a User-mode program to execute these instructions when the CU0 bit in
the Status register is cleared causes a Coprocessor Unusable exception. Kernel mode
programs can execute these instructions, regardless of the setting of the CU0
bit.

DERET • The DERET instruction does not have a delay slot.
• The operation of this instruction is undefined if the processor is not is in Debug
mode (i.e., when the DM bit in the Debug register is cleared).
• If you have used the MTC0 instruction to load the DEPC register with a return
address, the debug exception handler must execute at least two instructions
before issuing the DERET instruction.

MTC0 rt, rd • Once the MTC0 instruction writes to the Status, EPC or ErrorEPC register, at
least two instructions must be executed before the ERET instruction. Otherwise,
contents of the register become undefined.
• Once the MTC0 instruction writes to the DEPC register, at least two instructions
must be executed before the DERET instruction. Otherwise, the contents of the
register become undefined.
• The MTC0 instruction that modifies the contents of the SSCR register must be

followed by two NOPs.

WAIT
ERET
DERET

These instructions may not be placed in a delay slot.

WAIT

Once the MTC0 instruction writes to the Status register, at
least two instructions must be executed before the WAIT instruction. Otherwise,
contents of the register become undefined.

Table C-5 Special Instructions

Instructions Restrictions

SDBBP The SDBBP instruction may not be used within the user’s program; it is intended for
use by development tools.

 C-2

 Appendix C Programming Restrictions

C.2 16-Bit ISA Restrictions

Table C-6 Load and Store Instructions

Instructions Restrictions

LH ry, offset(base)
LHU ry, offset(base)
LHU ry, offset(sp)
LHU ry, offset(fp)
SH ry, offset(base)
SH ry, offset(sp)
SH ry, offset(fp)

The target address generated by these instructions must be on a halfword boundary;
i.e., it must have the least-significant bit cleared. Otherwise, an Address Error
exception occurs.

LW ry, offset(base)
LW ry, offset(pc)
LW ry, offset(sp)
LW ry, offset(fp)
SW ry, offset(base)
SW ry, offset(sp)
SW ry, offset(fp)
SW ra, offset(sp)

The target address generated by these instructions must be on a word boundary;
i.e., it must have the two least-significant bits cleared. Otherwise, an Address Error
exception occurs.

Table C-7 Jump Instructions

Instructions Restrictions

JALR ra, rx
JALRC ra, rx

• Register rx may not be ra because such an instruction is not restartable after the
exception has been serviced.
• In 32-bit ISA mode, all instructions must be word-aligned. Therefore, when
jumping to a 32-bit routine, the two least-significant bits of the target register (rx)
must be zero. Otherwise, an Address Error exception occurs when the processor
fetches the instruction at the jump destination.

JR rx
JRC rx

In 32-bit ISA mode, all instructions must be word-aligned. Therefore, when jumping
to a 32-bit routine, the two least-significant bits of the target register (rx) must be
zero. Otherwise, an Address Error exception occurs when the processor fetches the
instruction at the jump destination.

JR ra
JRC ra

In 32-bit ISA mode, all instructions must be word-aligned. Therefore, when jumping
to a 32-bit routine, the two least-significant bits of ra must be zero. Otherwise, an
Address Error exception occurs when the processor fetches the instruction at the
jump destination.

All jump instructions Any jump instructions may not be in a jump delay slot.

Table C-8 Branch Instructions

Instructions Restrictions

All branch instructions Any branch instructions may not be in a jump delay slot.

C-3

Appendix C Programming Restrictions

Table C-9 Special Instructions

Instructions Restrictions

SDBBP The SDBBP instruction may not be used within the user’s program; it is intended for
use by development tools.

Table C-10 EXTENDed Instructions

Instructions Restrictions

All EXTENDed instructions Any EXTENDed instructions may not be in a jump delay slot.

Table C-11 System Control Coprocessor (CP0) Instructions

Instructions Restrictions

MTC0 rt, rd
MFC0 rt, rd
ERET
WAIT

Attempts by a User-mode program to execute these instructions when the CU0 bit in
the Status register is cleared causes a Coprocessor Unusable exception. Kernel mode
programs can execute these instructions, regardless of the setting of the CU0
bit.

DERET • The DERET instruction does not have a delay slot.
• The operation of this instruction is undefined if the processor is not is in Debug
mode (i.e., when the DM bit in the Debug register is cleared).
• If you have used the MTC0 instruction to load the DEPC register with a return
address, the debug exception handler must execute at least two instructions
before issuing the DERET instruction.

MTC0 rt, rd • Once the MTC0 instruction writes to the Status, EPC or ErrorEPC register, at
least two instructions must be executed before the ERET instruction. Otherwise,
contents of the register become undefined.
• Once the MTC0 instruction writes to the DEPC register, at least two instructions
must be executed before the DERET instruction. Otherwise, contents of the
register become undefined.

MFC0 rt, rd
MTC0 rt, rd

The MTC0 instruction can not access the Config1, Config2, Config3, IER registers.

WAIT
ERET
DERET

These instructions may not be placed in a delay slot.

WAIT

Once the MTC0 instruction writes to the Status register, at
least two instructions must be executed before the WAIT instruction. Otherwise,
contents of the register become undefined.

Table C-12 SAVE and RESTORE Instructions

Instructions Restrictions

All SAVE instructions
All RESTORE instructions

At least one register must be specified to be saved or restored.

 C-4

 Appendix D Compatibility Among TX19, TX19A and TX39 Architectures

Appendix D Compatibility Among TX19, TX19A and

TX39 Architectures
Table D-1 shows the differences between Toshiba’s TX19A and TX19.

Table D-1 Comparisons Between the TX19A and the TX19

Feature TX19A TX19
Application Low power, high code density
Instruction Set MIPS16e-TX MIPS II + MIPS16 ASE

CPU Register

• 8 sets of general-purpose registers
• Same as for TX19 in all other respects

• 32 general-purpose registers
• Program counter (PC)
• Least-significant bit of the PC represents current ISA
mode.
• 2 multiply-divide registers (HI/LO)

• TX19A and TX19 assign coprocessor register numbers differently.
• TX19A complies with the MIPS32 CP0; its register numbers and bit assignments greatly differ from those of
TX19.

CP0 Registers

D-1

Register Number TX19A TX19
3 ⎯ Config
8 BadVAddr BadVAddr
9 Count/IER ⎯

11 Compare ⎯
12 Status Status
13 Cause Cause
14 EPC EPC
15 PRId PRId
16 Config/Config

1,2,3
Debug

17 ⎯ DEPC
22 SSCR ⎯
23 Debug DESAVE
24 DEPC ⎯
30 ErrorEPC ⎯
31 DESAVE IE

Instruction
Pipeline 5-stage

WBU 32-bit wide, 4-deep None
Multiply
Instructions Latency / Execution = 2 / 1 cycles

Multiply-and-Add
Instructions Latency / Execution = 2 / 1 cycles

Multiply-and-
Subtract
Instructions

Latency / Execution = 2 / 1 cycles None

Divide Instructions
Latency / Execution = 35 / 24 cycles

If the divide instruction is followed by an MFHI or MFLO instruction before the result is available, the pipeline
stalls until the result does become available.

16-Bit ISA
EXTENDed
Instructions

1 cycle 2 cycles

• 2 software interrupts (IP[1:0]) • 4 software interrupts (Sw[3:0])
Maskable • 3 hardware interrupts from interrupt controller (IP[4:2]) • 1 hardware interrupt from interrupt controller (7

• GPR shadow sets are automatically switched, based Interrupts prioritized levels)
on interrupt level.

Appendix D Compatibility Among TX19, TX19A and TX39 Architectures

Feature TX19A TX19

D-2

Exception
Vector
Addresses

TX19A TX19
Exception

BEV = 1 BEV = 0 BEV = 1 BEV = 0
0xBFC0_0000 0xBFC0_0000 Reset/NMI
0xBFC0_0480 0xBFC0_0200 Debug
0xFF20_0200 0xFF20_0200

0xBFC0_0240 0x8000_0140 Swi3 − −
0xBFC0_0230 0x8000_0130 Swi2 − −
0xBFC0_0220 0x8000_0120

Swi1
Swi0 0xBFC0_0210 0x8000_0110

0x8000_0180
or

0x8000_0200

0xBFC0_0380
or

0xBFC0_0400

Interrupts

0xBFC0_0260 0x8000_0160 Hardware
Others 0xBFC0_0380 0x8000_0180 0xBFC0_0380 0x8000_0080

 Appendix D Compatibility Among TX19, TX19A and TX39 Architectures

Table D-2 gives comparisons of the 32-bit ISA of the TX19A, the TX19 and the TX39. Differences
are highlighted in shaded boxes.

Table D-2 Instruction Sets of the TX19A, the TX19 and the TX39

Category Instruction TX19A 32-Bit ISA TX19 32-Bit ISA TX39
Load Byte LB rt, offset(base) LB rt, offset(base) LB rt, offset(base)
Load Byte Unsigned LBU rt, offset(base) LBU rt, offset(base) LBU rt, offset(base)
Load Halfword LH rt, offset(base) LH rt, offset(base) LH rt, offset(base)
Load Halfword Unsigned LHU rt, offset(base) LHU rt, offset(base) LHU rt, offset(base)
Load Word LW rt, offset(base) LW rt, offset(base) LW rt, offset(base)
Load Word Left LWL rt, offset(base) LWL rt, offset(base) LWL rt, offset(base)

D-3

Load Word Right LWR rt, offset(base) LWR rt, offset(base) LWR rt, offset(base) Load/Store

Store Byte SB rt, offset(base) SB rt, offset(base) SB rt, offset(base)
Store Halfword SH rt, offset(base) SH rt, offset(base) SH rt, offset(base)
Store Word SW rt, offset(base) SW rt, offset(base) SW rt, offset(base)
Store Word Left SWL rt, offset(base) SWL rt, offset(base) SWL rt, offset(base)
Store Word Right SWR rt, offset(base) SWR rt, offset(base) SWR rt, offset(base)

SYNC SYNC ⎯ Synchronize

Add Immediate ADDI rt, rs, immediate ADDI rt, rs, immediate ADDI rt, rs, immediate
Add Immediate Unsigned ADDIU rt, rs, immediate ADDIU rt, rs, immediate ADDIU rt, rs, immediate
Set On Less Than
Immediate SLTI rt, rs, immediate SLTI rt, rs, immediate SLTI rt, rs, immediate

Set On Less Than
Immediate Unsigned SLTIU rt, rs, immediate SLTIU rt, rs, immediate SLTIU rt, rs, immediateALU

AND Immediate ANDI rt, rs, immediate ANDI rt, rs, immediate ANDI rt, rs, immediate
Immediate

OR Immediate ORI rt, rs, immediate ORI rt, rs, immediate ORI rt, rs, immediate
Exclusive-OR Immediate XORI rt, rs, immediate XORI rt, rs, immediate XORI rt, rs, immediate
Load Upper Immediate LUI rt, rs, immediate LUI rt, rs, immediate LUI rt, rs, immediate

Add ADD rd, rs, rt ADD rd, rs, rt ADD rd, rs, rt
Add Unsigned ADDU rd, rs, rt ADDU rd, rs, rt ADDU rd, rs, rt
Subtract SUB rd, rs, rt SUB rd, rs, rt SUB rd, rs, rt
Subtract Unsigned SUBU rd, rs, rt SUBU rd, rs, rt SUBU rd, rs, rt
Set On Less Than SLT rd, rs, rt SLT rd, rs, rt SLT rd, rs, rt
Set On Less Than Unsigned SLTU rd, rs, rt SLTU rd, rs, rt SLTU rd, rs, rt
AND AND rd, rs, rt AND rd, rs, rt AND rd, rs, rt
OR OR rd, rs, rt OR rd, rs, rt OR rd, rs, rt 2/3-Operand

Exclusive-OR XOR rd, rs, rt XOR rd, rs, rt XOR rd, rs, rt
Register

NOR NOR rd, rs, rt NOR rd, rs, rt NOR rd, rs, rt
Type

Count Leading Ones in
Word CLO rd, rs ⎯ ⎯

Count Leading Zeros in
Word CLZ rd, rs ⎯ ⎯

Move Conditional on Not
Zero MOVN rd, rs, rt ⎯ ⎯

MOVZ rd, rs, rt ⎯ ⎯ Move Conditional on Zero

Appendix D Compatibility Among TX19, TX19A and TX39 Architectures

Category Instruction TX19A 32-Bit ISA TX19 32-Bit ISA TX39

Shift Left Logical SLL rd, rs, ra SLL rd, rs, ra SLL rd, rs, ra
Shift Left Logical Variable SLLV rd, rs, rt SLLV rd, rs, rt SLLV rd, rs, rt
Shift Right Logical SRL rd, rs, sa SRL rd, rs, sa SRL rd, rs, sa

D-4

Shift Right Logical Variable SRLV rd, rs, rt SRLV rd, rs, rt SRLV rd, rs, rt Shift

Shift Right Arithmetic SRA rd, rs, sa SRA rd, rs, sa SRA rd, rs, sa
Shift Right Arithmetic
Variable SRAV rd, rs, rt SRAV rd, rs, rt SRAV rd, rs, rt

MUL rd, rs, rt ⎯ ⎯
MULT rs, rt MULT rs, rt MULT rs, rt Multiply

MULT rd, rs, rt MULT rd, rs, rt MULT rd, rs, rt
MULTU rs, rt MULTU rs, rt MULTU rs, rt

Multiply Unsigned
MULTU rd, rs, rt MULTU rd, rs, rt MULTU rd, rs, rt

Divide DIV rs, rt DIV rs, rt DIV rs, rt
Divide Unsigned DIVU rs, rt DIVU rs, rt DIVU rs, rt
Move From HI MFHI rd MFHI rd MFHI rd
Move From LO MFLO rd MFLO rd MFLO rd

Multiply,
Divide,

Move To HI MTHI rd MTHI rd MTHI rd
Multiply-and-

Move To LO MTLO rd MTLO rd MTLO rd
Add and
Multiply-and-

MADD rs, rt MADD rs, rt MADD rs, rt Subtract
Multiply-and-Add

MADD rd, rs, rt MADD rd, rs, rt MADD rd, rs, rt
MADDU rs, rt MADDU rs, rt MADDU rs, rt

Multiply-and-Add Unsigned
MADDU rd, rs, rt MADDU rd, rs, rt MADDU rd, rs, rt
MSUB rs, rt ⎯ ⎯

Multiply and Subtract
MSUB rd, rs, rt ⎯ ⎯
MSUBU rs, rt ⎯ ⎯ Multiply and Subtract

Unsigned MSUBU rd, rs, rt ⎯ ⎯

Jump J target J target J target
Jump And Link JAL target JAL target JAL target
Jump and Link exchange JALX target JALX target ⎯ Jump
Jump Register JR rs JR rs JR rs

Jump And Link Register JALR (rd), rs JALR (rd), rs JALR (rd), rs

Unconditional Branch B offset ⎯ ⎯
Branch On Equal BEQ rs, rt, offset BEQ rs, rt, offset BEQ rs, rt, offset
Branch On Not Equal BNE rs, rt, offset BNE rs, rt, offset BNE rs, rt, offset
Branch On Greater Than
Zero BGTZ rs, offset BGTZ rs, offset BGTZ rs, offset

Branch On Greater Than
Zero or Equal to Zero BGEZ rs, offset BGEZ rs, offset BGEZ rs, offset

Branch On Less Than Zero BLTZ rs, offset BLTZ rs, offset BLTZ rs, offset
Branch

Branch On Less Than Zero
or Equal to Zero BLEZ rs, offset BLEZ rs, offset BLEZ rs, offset

Branch On Less Than Zero
And Link BLTZAL rs, offset BLTZAL rs, offset BLTZAL rs, offset

Branch On Greater Than
Zero And Link BGEZAL rs, offset BGEZAL rs, offset BGEZAL rs, offset

 Appendix D Compatibility Among TX19, TX19A and TX39 Architectures

Category Instruction TX19A 32-Bit ISA TX19 32-Bit ISA TX39

Branch And Link BAL offset ⎯ ⎯
Branch On Equal Likely BEQL rs, rt, offset BEQL rs, rt, offset BEQL rs, rt, offset
Branch On Not Equal Likely BNEL rs, rt, offset BNEL rs, rt, offset BNEL rs, rt, offset
Branch On Greater Than
Zero Likely BGTZL rs, offset BGTZL rs, offset BGTZL rs, offset

Branch On Greater Than
Zero or Equal to Zero Likely BGEZL rs, offset BGEZL rs, offset BGEZL rs, offset

D-5

Branch On Less Than Zero
Likely BLTZL rs, offset BLTZL rs, offset BLTZL rs, offset

Branch-Likel
y

Branch On Less Than Zero
or Equal to Zero Likely BLEZL rs, offset BLEZL rs, offset BLEZL rs, offset

Branch On Less Than Zero
And Link Likely BLTZALL rs, offset BLTZALL rs, offset BLTZALL rs, offset

Branch On Greater Than
Zero And Link Likely BGEZALL rs, offset BGEZALL rs, offset BGEZALL rs, offset

Trap If Equal TEQ rs, rt ⎯ ⎯
Trap If Equal Immediate TEQI rs, Immediate ⎯ ⎯
Trap If Greater Than or
Equal TGE rs, rt ⎯ ⎯

Trap If Greater Than or
Equal Immediate TGEI rs, Immediate ⎯ ⎯

Trap If Greater Than or
Equal Unsigned TGEU rs, rt ⎯ ⎯

Trap If Greater Than or
Equal Immediate Unsigned TGEIU rs, Immediate ⎯ ⎯ Trap

Trap If Less Than TLT rs, rt ⎯ ⎯
Trap If Less Than
Immediate TLTI rs, Immediate ⎯ ⎯

Trap If Less Than Unsigned TLTU rs, rt ⎯ ⎯
Trap If Less Than
Immediate Unsigned TLTIU rs, Immediate ⎯ ⎯

Trap If Not Equal TNE rs, rt ⎯ ⎯
TNEI rs, Immediate ⎯ ⎯ Trap If Not Equal Immediate

Move To Coprocessor ⎯ MTCz rt, rd MTCz rt, rd
Move From Coprocessor ⎯ MFCz rt, rd MFCz rt, rd
Move Control To
Coprocessor ⎯ CTCz rt, rd CTCz rt, rd

Move Control From
Coprocessor ⎯ CFCz rt, rd CFCz rt, rd

Coprocessor Operation ⎯ COPz cofun COPz cofun
Branch On Coprocessor z
True ⎯ BCzT offset BCzT offset

Coprocessor

Branch On Coprocessor z
True Likely ⎯ BCzTL offset BCzTL offset

Branch On Coprocessor z
False ⎯ BCzF offset BCzF offset

Branch On Coprocessor z
False Likely ⎯ BCzFL offset BCzFL offset

Appendix D Compatibility Among TX19, TX19A and TX39 Architectures

Category Instruction TX19A 32-Bit ISA TX19 32-Bit ISA TX39

Move To CP0 MTC0 rt, rd MTC0 rt, rd MTC0 rt, rd
Move From CP0 MFC0 rt, rd MFC0 rt, rd MFC0 rt, rd
Restore From Exception ⎯ RFE RFE
Exception Return ERET ⎯ ⎯
Debug Exception Return DERET DERET DERET

D-6

Cache ⎯ CACHE op, offset(base) CACHE op, offset(base)
Read Indexed TLB Entry
(*1) ⎯ (TLBR) (TLBR)

System
Control
Coprocessor

Write Indexed TLB Entry
(*1) ⎯ (TLBWI) (TLBWI)

Write Random TLB Entry
(*1) ⎯ (TLBWR) (TLBWR)

Probe TLB for Matching
Entry (*1) ⎯ (TLBP) (TLBP)

System Call SYSCALL code SYSCALL code SYSCALL code
Breakpoint BREAK code BREAK code BREAK code
Software Debug Breakpoint
Exception SDBBP code SDBBP code SDBBP code

Special

Enter Standby Mode WAIT ⎯ ⎯

(*1) Treated as a NOP.

 Appendix D Compatibility Among TX19, TX19A and TX39 Architectures

Table D-3 gives comparisons of the 16-bit ISA of the TX19A and the TX19, and the MIPS16 ASE.

Table D-3 Instruction Sets of the TX19A 16-bit ISA, the TX19 16-bit ISA and the MIPS16 ASE

Category Instruction TX19A16-Bit ISA TX19 16-Bit ISA MIPS16 ASE
Load Byte LB ry, offset(base) LB ry, offset(base) LB ry, offset(base)

LBU ry, offset(base) LBU ry, offset(base) LBU ry, offset(base)

D-7

LBU ry, offset(sp) ⎯ ⎯ Load Byte Unsigned

LBU ry, offset(fp) ⎯ ⎯
Load Halfword LH ry, offset(base) LH ry, offset(base) LH ry, offset(base)

LHU ry, offset(base) LHU ry, offset(base) LHU ry, offset(base)
LHU ry, offset(sp) ⎯ ⎯ Load Halfword Unsigned

LHU ry, offset(fp) ⎯ ⎯
LW ry, offset(base) LW ry, offset(base) LW ry, offset(base)
LW ry, offset(pc) LW ry, offset(pc) LW ry, offset(pc)
LW ry, offset(sp) LW ry, offset(sp) LW ry, offset(sp)

Load Word

LW ry, offset(fp) ⎯ ⎯
Load Word Unsigned ⎯ ⎯ LWU ry, offset(sp)

⎯ ⎯ LD ry, offset(base)
⎯ ⎯ LD ry, offset(pc) Load Doubleword

⎯ ⎯ LD ry, offset(sp)
Load/Store

SB ry, offset(base) SB ry, offset(base) SB ry, offset(base)
SB ry, offset(sp) ⎯ ⎯ Store Byte

SB ry, offset(fp) ⎯ ⎯
SH ry, offset(base) SH ry, offset(base) SH ry, offset(base)
SH ry, offset(sp) ⎯ ⎯ Store Halfword

SH ry, offset(fp) ⎯ ⎯
SW ry, offset(base) SW ry, offset(base) SW ry, offset(base)
SW ry, offset(sp) SW ry, offset(sp) SW ry, offset(sp)
SW ra, offset(sp) SW ra, offset(sp) SW ra, offset(sp)

Store Word

SW ry, offset(fp) ⎯ ⎯
⎯ ⎯ SD ry, offset(base)
⎯ ⎯ SD ry, offset(pc) Store Doubleword

SD ry, offset(sp) ⎯ ⎯

Synchronize SYNC ⎯ ⎯

Appendix D Compatibility Among TX19, TX19A and TX39 Architectures

Category Instruction TX19A 16-Bit ISA TX19 16-Bit ISA MIPS16 ASE

ADDIU ry, rx, immediate ADDIU ry, rx, immediate ADDIU ry, rx, immediate
ADDIU rx, immediate ADDIU rx, immediate ADDIU rx, immediate
ADDIU sp, immediate ADDIU sp, immediate ADDIU sp, immediate

D-8

ADDIU rx, pc, immediate ADDIU rx, pc, immediate ADDIU rx, pc, immediate
Add Immediate

ADDIU rx, sp, immediate ADDIU rx, sp, immediate ADDIU rx, sp, immediate
ADDIU fp, immediate ⎯ ⎯

⎯ ⎯ DADDIU ry, rx, immediate
⎯ ⎯ DADDIU ry, immediate
⎯ ⎯ DADDIU sp, immediate Doubleword Add Immediate

⎯ ⎯ DADDIU ry, pc, immediate
⎯ ⎯ DADDIU ry, sp, immediateALU

Set On Less Than
Immediate SLTI rx, immediate SLTI rx, immediate SLTI rx, immediate

Immediate

Set On Less Than
Immediate Unsigned SLTIU rx, immediate SLTIU rx, immediate SLTIU rx, immediate

Compare Immediate CMPI rx, immediate CMPI rx, immediate CMPI rx, immediate
Load Immediate LI rx, immediate LI rx, immediate LI rx, immediate
Logical AND Immediate ANDI rx, immediate ⎯ ⎯
Logical OR Immediate ORI rx, immediate ⎯ ⎯
Logical Exclusive-OR
Immediate XORI rx, immediate ⎯ ⎯

Load Upper Immediate LUI rx, immediate ⎯ ⎯

Add Unsigned ADDU rz, rx, ry ADDU rz, rx, ry ADDU rz, rx, ry
Doubleword Add Unsigned ⎯ ⎯ DADDU rz, rx, ry
Subtract Unsigned SUBU rz, rx, ry SUBU rz, rx, ry SUBU rz, rx, ry
Doubleword Subtract
Unsigned ⎯ ⎯ DSUBU rz, rx, ry

Set On Less Than SLT rx, ry SLT rx, ry SLT rx, ry
Set On Less Than Unsigned SLTU rx, ry SLTU rx, ry SLTU rx, ry
Compare CMP rx, ry CMP rx, ry CMP rx, ry
Negate NEG rx, ry NEG rx, ry NEG rx, ry
AND AND rx, ry AND rx, ry AND rx, ry
OR OR rx, ry OR rx, ry OR rx, ry
Exclusive-OR XOR rx, ry XOR rx, ry XOR rx, ry 2/3-Operand

Not NOT rx, ry NOT rx, ry NOT rx, ry
Register

MOVE ry, r32 MOVE ry, r32 MOVE ry, r32
Type

MOVE r32, rz MOVE r32, rz MOVE r32, rz Move

MOVE fp, r32 ⎯ ⎯
Bit Search One Forward BS1F ry, rx ⎯ ⎯
Bit Field Insert BFINS ry, rx, bit2, bit1 ⎯ ⎯
Maximum Signed MAX rz, rx, ry ⎯ ⎯
Minimum Signed MIN rz, rx, ry ⎯ ⎯
Sign-Extend Byte SEB rx ⎯ ⎯
Sign-Extend Halfword SEH rx ⎯ ⎯
Zero-Extend Byte ZEB rx ⎯ ⎯

ZEH rx ⎯ ⎯ Zero-Extend Halfword

 Appendix D Compatibility Among TX19, TX19A and TX39 Architectures

Category Instruction TX19A 16-Bit ISA TX19 16-Bit ISA MIPS16 ASE

SLL rx, ry, sa SLL rx, ry, sa SLL rx, ry, sa
Shift Left Logical

SLL ry, sa5 ⎯ ⎯
Shift Left Logical Variable SLLV ry, rx SLLV ry, rx SLLV ry, rx

SRL rx, ry, sa SRL rx, ry, sa SRL rx, ry, sa
Shift Right Logical

SRL ry, sa5 ⎯ ⎯
Shift Right Logical Variable SRLV ry, rx SRLV ry, rx SRLV ry, rx

SRA rx, ry, sa SRA rx, ry, sa SRA rx, ry, sa
Shift Right Arithmetic

SRA ry, sa5 ⎯ ⎯
Shift Right Arithmetic
Variable SRAV ry, rx SRAV ry, rx SRAV ry, rx

D-9

Doubleword Shift Left
Logical ⎯ ⎯ DSLL rx, ry, sa

Shift

Doubleword Shift Left
Logical Variable ⎯ ⎯ DSLLV ry, rx

Doubleword Shift Right
Logical ⎯ ⎯ DSRL rx, ry, sa

Doubleword Shift Right
Logical Variable ⎯ ⎯ DSRLV ry, rx

Doubleword Shift Right
Arithmetic ⎯ ⎯ DSRA rx, ry, sa

Doubleword Shift Right
Arithmetic Variable ⎯ ⎯ DSRAV ry, rx

SAVE reg_list3,
⎯ ⎯ framesize4

SAVE
SAVE reg_list3,

⎯ ⎯ xsregs, aregs, framesize8 SAVE/
RESTORE reg_list3,
framesize4 ⎯ ⎯

RESTORE

RESTORE
RESTORE reg_list3,

⎯ ⎯ xsregs, aregs, framesize8
MULT rx, ry MULT rx, ry MULT rx, ry

Mutiply
MULT ry, rx, ry ⎯ ⎯
MULTU rx, ry MULTU rx, ry MULTU rx, ry

Multiply Unsigned
MULTU ry, rx, ry ⎯ ⎯

Doubleword Mutiply ⎯ ⎯ DMULT rx, ry
Doubleword Multiply
Unsigned ⎯ ⎯ DMULTU rx, ry

Mutiply And Add MADD rx, ry ⎯ ⎯
Mutiply And Add Unsigned MADDU rx, ry ⎯ ⎯
Saturated Add SADD ry, rx, ry ⎯ ⎯
Saturated Subtract SSUB ry, rx, ry ⎯ ⎯

Multiply,

Divide DIV rx, ry DIV rx, ry DIV rx, ry
Divide and
Multiply-and-

Divide Unsigned DIVU rx, ry DIVU rx, ry DIVU rx, ry
Add

Doubleword Divide ⎯ ⎯ DDIV rx, ry
Doubleword Divide
Unsigned ⎯ ⎯ DDIVU rx, ry

Divide Exception DIVE rx, ry ⎯ ⎯
Divide Exception Unsigned DIVEU rx, ry ⎯ ⎯
Move From HI MFHI rx MFHI rx MFHI rx
Move From LO MFLO rx MFLO rx MFLO rx
Move To HI MTHI rx ⎯ ⎯

MTLO rx ⎯ ⎯ Move To LO

Appendix D Compatibility Among TX19, TX19A and TX39 Architectures

Category Instruction TX19A 16-Bit ISA TX19 16-Bit ISA MIPS16 ASE

BTST offset(base3), pos3 ⎯ ⎯

D-10

BTST offset(r0), pos3 ⎯ ⎯ Bit Test

BTST offset(fp), pos3 ⎯ ⎯
BEXT offset(base3), pos3 ⎯ ⎯
BEXT offset(r0), pos3 ⎯ ⎯ Bit Extract

BEXT offset(fp), pos3 ⎯ ⎯
BCLR offset(base3), pos3 ⎯ ⎯
BCLR offset(r0), pos3 ⎯ ⎯ Bit Clear

BCLR offset(fp), pos3 ⎯ ⎯ Bit

BSET offset(base3), pos3 ⎯ ⎯ Manipulation

BSET offset(r0), pos3 ⎯ ⎯ Bit Set

BSET offset(fp), pos3 ⎯ ⎯
BINS offset(base3), pos3 ⎯ ⎯
BINS offset(r0), pos3 ⎯ ⎯ Bit Insert

BINS offset(fp), pos3 ⎯ ⎯

ADDMIU offset(base3),
⎯ ⎯ imm3 Add Immediate to Memory

Word
ADDMIU offset(r0), imm3 ⎯ ⎯

Move To Coprocessor 0 MTC0 rx, cp0rd32 ⎯ ⎯
Move From Coprocessor 0 MFC0 ry, cp0rs32 ⎯ ⎯ Coprocessor
Add Coprocessor 0
Immediate Unsigned AC0IU cp0rt32, imm3 ⎯ ⎯

Jump And Link JAL target JAL target JAL target
Jump And Link exchange JALX target JALX target JALX target

JR rx JR rx JR rx
Jump Register

JR ra JR ra JR ra
JRC rx ⎯ ⎯ Jump

Jump Register Compact
JRC ra ⎯ ⎯

Jump And Link Register JALR ra, rx JALR ra, rx JALR ra, rx
Jump And Link Register
Compact JALRC ra, rx ⎯ ⎯

Branch On Equal To Zero BEQZ rx, offset BEQZ rx, offset BEQZ rx, offset
Branch On Not Equal To
Zero BNEZ rx, offset BNEZ rx, offset BNEZ rx, offset

Branch On T8 Equal To
Zero BTEQZ offset BTEQZ offset BTEQZ offset

Branch On T8 Not Equal To
Zero BTNEZ offset BTNEZ offset BTNEZ offset

Branch

Branch Unconditional B offset B offset B offset
Branch And Link BAL offset ⎯ ⎯

Breakpoint BREAK code BREAK code BREAK code
Software Debug Breakpoint
Exception SDBBP code SDBBP code SDBBP code

Extend EXTEND immediate EXTEND immediate EXTEND immediate
Disable Interrupt DI ⎯ ⎯
Enable Interrupt EI ⎯ ⎯ Special

System Call SYSCALL code ⎯ ⎯
Exception Return ERET ⎯ ⎯
Debug Exception Return DERET ⎯ ⎯
Enter Standby Mode WAIT ⎯ ⎯

 Appendix E 32-Bit ISA Instruction Bit Encodings

Appendix E 32-Bit ISA Instruction Bit Encodings

This appendix shows the encoding used for the 32-bit ISA.

Table E-1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning
Opcodes marked with this symbol are reserved for future use. Executing
such an instruction causes a Reserved Instruction Exception. *

Executing instructions marked with this symbol causes a Reserved
Instruction Exception. β

Executing instructions with an opcode marked with this symbol causes a
Coprocessor Unusable Exception or a Reserved θ
Instruction Exception.
Opcodes marked with this symbol represent an EJTAG support instruction.
If EJTAG is not implemented, executing such an instruction causes a
Reserved Instruction Exception.

σ

 E-1

Appendix E 32-Bit ISA Instruction Bit Encodings

 E-2

Table 0-1 MIPS32 Encoding of the Opcode Field

opcode bits 28..26
 0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111
0 000 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ
1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 010 COP0 (COP1) θ (COP2) θ (COP3) θ BEQL BNEL BLEZL BGTZL
3 011 β β β β SPECIAL2 JALX β *
4 100 LB LH LWL LW LBU LHU LWR β
5 101 SB SH SWL SW β β SWR (CACHE)
6 110 (LL) (LWC1) β (LWC2) β (PREF) β (LDC1) β (LDC2) β β
7 111 (SC) (SWC1) β (SWC2) β * β (SDC1) β (SDC2) β β

Table 0-2 MIPS32 SPECIAL Opcode Encoding of Function Field

function bits 2..0
 0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 SLL β SRL SRA SLLV * SRLV SRAV
1 001 JR JALR MOVZ MOVN SYSCALL BREAK * SYNC
2 010 MFHI MTHI MFLO MTLO β * β β
3 011 MULT MULTU DIV DIVU β β β β
4 100 ADD ADDU SUB SUBU AND OR XOR NOR
5 101 * * SLT SLTU β β β β
6 110 TGE TGEU TLT TLTU TEQ * TNE *
7 111 β * β β β * β β

Table 0-3 MIPS32 REGIMM Encoding of rt Field

rt bits 18..16
 0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111
0 00 BLTZ BGEZ BLTZL BGEZL * * * *
1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 10 BLTZAL BGEZAL BLTZALL BGEZALL * * * *
3 11 * * * * * * * *

Table 0-4 MIPS32 SPECIAL2 Encoding of Function Field

function bits 2..0
 0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 MADD MADDU MUL θ MSUB MSUBU θ θ
1 001 θ θ θ θ θ θ θ θ
2 010 θ θ θ θ θ θ θ θ
3 011 θ θ θ θ θ θ θ θ
4 100 CLZ CLO θ θ β β θ θ
5 101 θ θ θ θ θ θ θ θ
6 110 θ θ θ θ θ θ θ θ
7 111 θ θ θ θ θ θ θ SDBBPσ

 Appendix E 32-Bit ISA Instruction Bit Encodings

Table 0-5 MIPS32 COP0 Encoding of rs Field

rs bits 23..21
 0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111
* * * * 0 00 MFC0 β MTC0 β

* * * * * * * * 1 01
2 10 CO
3 11

Table 0-6 MIPS32 COP0 Encoding of Function Field When rs = CO

function bits 2..0
 0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111

* * * *

 E-3

0 000 (TLBR) (TLBWI) (TLBWR) *
* * * * * * * 1 001 (TLBP)

* * * * * * * * 2 010
* * * * * * 3 011 ERET DERETσ
* * * * * * * 4 100 WAIT

* * * * * * * * 5 101
* * * * * * * * 6 110
* * * * * * * * 7 111

Appendix E 32-Bit ISA Instruction Bit Encodings

 E-4

 Appendix F 16-Bit ISA Instruction Bit Encodings

Appendix F 16-Bit ISA Instruction Bit Encodings
This appendix shows the encoding used for the 16-bit ISA. Opcodes marked with * cause an
Reserved Instruction exception.

Table F-1 Major Opcode Map

 Instruction Bits [13:11]
[15:14] 000 001 010 011 100 101 110 111

00 addiusp addiupc b JAL(X) beqz bnez SHIFT FP-B

01 RRI-A addiu8 slti sltiu I8 li cmpi SP-B

10 lb lh lwsp lw lbu lhu lwpc FP-SP-H

11 sb sh swsp sw RRR RR extend SPECIAL

Table F-2 JAL(X) Minor Opcode Map

Instruction Bit [26]
0 1
jal jalx

Table F-3 FP-B and extend + FP-B Minor Opcode Map

Instruction Bit [7]
0 1

lbfp sbfp

Table F-4 SP-B and extend + SP-B Minor Opcode Map

Instruction Bit [7]
0 1

lbsp sbsp

Table F-5 FP-SP-H and extend + FP-SP-H Minor Opcode Map

 Instruction Bit [0]
[7] 0 1
0 lhsp lhfp

1 shsp shfp

 F-1

Appendix F 16-Bit ISA Instruction Bit Encodings

Table F-6 SPECIAL and extend + SPECIAL Minor Opcode Map

Instruction Bits [10:8]
000 001 010 011 100 101 110 111
btst bclr bset bins bal bext lwfp swfp

Table F-7 extend + addiu8 Minor Opcode Map

Instruction Bits [7:5]
000 001 010 011 100 101 110 111

addiu8 * addmiu * andi ori xori lui

Table F-8 RRI-A Minor Opcode Map

Instruction Bit [4]
0 1

addiu *

Table F-9 I8 and extend + I8 Minor Opcode Map

Instruction Bits [10:8]
000 001 010 011 100 101 110 111
bteqz btnez swrasp adjsp SVRS mov32r adjfp movr32

Table F-10 I8 + SVRS and extend + I8 + SVRS Minor Opcode Map

Instruction Bits [7]
0 1

restore save

Table F-11 RRR Minor Opcode Map

 Instruction Bits [1:0]
[7] 00 01 10 11
0 ac0iu sra/mthi

1 sll/INT
addu

srl/mtlo
subu

Note: mthi, mtlo and INT must have instruction bits [6:2] cleared.

 F-2

 Appendix F 16-Bit ISA Instruction Bit Encodings

Table F-12 RRR + INT Minor Opcode Map

Instruction Bits [10:8]
000 001 010 011 100 101 110 111

di ei * * * * * *

Table F-13 SHIFT Minor Opcode Map

 Instruction Bits [1:0]
[2] 00 01 10 11
0 mfc0

1
sll

mtc0
srl sra

Table F-14 RR Minor Opcode Map

 Instruction Bits [2:0]
[4:3] 000 001 010 011 100 101 110 111
00 J(AL)R(C) sdbbp slt sltu sllv break srlv srav

01 movfp * cmp neg and or xor not

10 mfhi CNVT mflo * sadd ssub madd maddu

11 mult multu div divu mult multu dive diveu

Table F-15 RR + J(AL)R(C) Minor Opcode Map

Instruction Bits [7:5]
000 001 010 011 100 101 110 111
jr rs jr ra jalr ra,rs * jrc rs jrc ra jalrc ra,rs *

Table F-16 RR + CNVT Minor Opcode Map

Instruction Bits [7:5]
000 001 010 011 100 101 110 111
zeb zeh * * seb seh * *

Table F-17 extend + RR Minor Opcode Map

 Instruction Bits [2:0]
[4:3] 000 001 010 011 100 101 110 111
00 wait (tlbr) (tlbwi) * * MAX/MIN (tlbwr) BS1F/BFINS

01 (tlbp) * * * syscall * * sync

10 * * * * * * * (cache)

11 eret * * * * * * deret

 F-3

Appendix F 16-Bit ISA Instruction Bit Encodings

Table F-18 extend + RR + MAX/MIX Minor Opcode Map

Instruction Bit [26]
0 1

max min

Table F-19 extend + RR + BS1F/BFINS Minor Opcode Map

Instruction Bit [26]
0 1

bfins bs1f

 F-4

	00_TYTLE_E_010.pdf
	Dislaimer

	はじめに E rev010.pdf
	Preface

	第1章 E rev010.pdf
	Chapter 1 Introduction
	1.1 Processor General Features
	1.2 What Is RISC?
	1.3 Features of the TX19A
	1.3.1 Instruction Set Architecture
	1.3.2 Instruction Format
	1.3.3 Instruction Pipelines

	第2章 E rev010.pdf
	2.1.3 Data Extensions
	2.2 Programming Model
	2.2.1 CPU Registers
	2.2.2 System Control Coprocessor (CP0) Registers

	2.3 32-Bit and 16-Bit ISA Modes
	2.4 Coprocessors
	2.5 Pipeline Architecture
	2.6 Write Buffer
	2.6.1 Instructions for Write Buffer
	2.6.2 Instruction Procedure
	2.6.3 Bit Computational Instructions/ ADDMIU Instructions
	2.6.4 SAVE Instruction
	2.6.5 SYNC Instructions

	2.7 Memory Management Summary

	第3章 E rev010.pdf
	Chapter 3 32-Bit ISA Summary and Programming Tips
	3.1 Instruction Formats
	 3.2 Load and Store Instructions
	3.2.1 Load and Store Address Calculation
	3.2.2 Load and Store Instructions for Aligned Accesses
	3.2.3 Load and Store Instructions for Misaligned Accesses
	3.2.4 Memory Synchronization Instruction
	3.2.5 32-Bit Address Generation

	3.3 Computational Instructions
	3.3.1 Overview of Computational Instructions
	3.3.2 32-Bit Constants
	3.3.3 64-Bit Addition and Subtraction
	3.3.5 64-Bit x 64-Bit Multiplication
	3.3.6 Rotate Instructions

	3.4 Jump, Branch and Branch-Likely Instructions
	3.4.3 Run-Time Switching of the ISA Modes
	3.4.4 Branch-Likely Instructions
	3.4.5 Branching on Arithmetic Comparisons
	3.4.6 Jumping to 32-Bit Addresses
	3.4.7 Subroutine Calls

	3.5 Coprocessor Instructions
	3.6 Special Instructions

	第4章 E rev010.pdf
	Chapter 4 16-Bit ISA Summary and Programming Tips
	4.1 Instruction Formats
	4.2 Load and Store Instructions
	4.2.1 Load and Store Address Calculation
	 4.2.2 Overview of Load and Store Instructions
	4.2.3 32-Bit Address Generation
	4.2.4 SYNC Instruction

	4.3 Computational Instructions
	4.3.1 Overview of Computational Instructions
	4.3.2 32-Bit Constants

	4.4 Jump and Branch Instructions
	4.4.1 Overview of Jump and Branch Instructions
	4.4.2 Branching on Arithmetic Comparisons
	4.4.3 Jumping to 32-Bit Addresses

	4.5 Bit Manipulation Instructions
	4.6 SAVE and RESTORE Instructions
	4.7 System Control Coprocessor (CP0) Instructions
	4.8 Special Instructions
	4.9 Instruction Summary

	第5章 E rev010.pdf
	Chapter 5 CPU Pipeline
	5.1 Architecture Overview
	5.2 Load, Store and SYNC Instructions
	5.2.1 Load Delays
	5.2.2 Non-blocking Loads
	5.2.3 Store Instructions (32 Bit ISA/ 16 Bit ISA)
	5.2.4 SYNC Instruction (32 Bit ISA/ 16 Bit ISA)
	5.2.5 Bit Manipulation Instruction (16 Bit ISA)

	5.3 Jump, Branch and Branch-Likely Instructions
	5.3.1 Jump and Regular Branch Instructions (32-Bit ISA)
	 5.3.2 Branch-Likely Instructions (32-Bit ISA)
	5.3.3 Jump Instructions (16-Bit ISA)
	5.3.4 Branch Instructions (16-Bit ISA)
	5.3.5 SAVE ・ RESTORE Instructions (16-Bit ISA)

	5.4 Divide Instructions
	 5.5 Multiply, Multiply-and-Add and Multiply-and-Subtract Instructions
	 5.6 EXTENDed Instructions (16-Bit ISA)

	第6章 E rev010.pdf
	Chapter 6 Memory Management
	6.1 Operating Modes
	6.2 Virtual Address Segments
	6.3 Address Translation

	第7章 E rev010.pdf
	Chapter 7 Internal I/O Bus Operation
	7.1 Internal Memory Interface
	 7.2 Operand Read and Instruction Fetch Operations
	 7.3 Write Operation

	第8章 E rev010.pdf
	Chapter 8 System Control Coprocessor (CP0)Registers
	8.1 Overview
	8.2 System Configuration Registers
	8.2.1 Config Register (16:SEL0)
	8.2.2 Config1 Register (16:SEL1)
	8.2.3 Config2 Register (16:SEL2)
	8.2.4 Config3 Register (16:SEL3)

	8.3 General Exception Handling Registers
	8.3.1 BadVAddr Register (8)
	8.3.2 Count Register (9:SEL0)
	8.3.3 Compare Register (11)
	8.3.4 Status Register (12)
	8.3.5 Cause Register (13)
	8.3.6 EPC Register (14)
	8.3.7 PRId Register (15)
	8.3.8 ErrorEPC Register (30)
	8.3.9 Shadow Register Set Control Register: SSCR (22　or　9：SEL6)
	8.3.10 IER Register (9:SEL7)

	8.4 Debug Exception Handling Registers
	8.4.1 Debug Register (23)
	8.4.2 DEPC Register (24)
	8.4.3 DESAVE Register (31)

	第9章 E rev010.pdf
	Chapter 9 Exception Handling
	9.1 General Exceptions
	9.1.1 How General Exception Processing Works
	9.1.2 General Exception Priorities
	9.1.3 Exception Vector Addresses (Exception Vectors)
	9.1.4 Reset Exception
	9.1.5 Nonmaskable Interrupt (NMI) Exception
	9.1.6 Address Error Exception
	9.1.7 Bus Error Exception
	9.1.8 Integer Overflow Exception
	9.1.9 Trap Exception
	9.1.10 System Call Exception
	9.1.11 Breakpoint Exception
	9.1.12 Reserved Instruction Exception
	9.1.13 Coprocessor Unusable Exception
	9.1.14 Maskable Interrupt Exception (Interrupts)

	9.2 Interrupts
	9.2.1 Interrupt Types
	9.2.2 Maskable Interrupt Vectors
	9.2.3 Maskable Interrupt Recognition
	 9.2.4 Shadow Register Sets

	9.3 Debug Exceptions
	9.3.1 How Debug Exception Processing Work
	9.3.2 Debug Exception Types
	9.3.3 Debug Exception Priorities
	9.3.4 Exception Masking
	9.3.5 Executing a Debug Exception Handler
	9.3.6 Returning from Debug Exceptions
	9.3.7 Single-Step Exception
	9.3.8 Debug Breakpoint Exception

	第10章 E rev010.pdf
	Chapter 10 Power Consumption Management
	10.1 Power-Saving Modes
	10.2 Halt Mode
	10.3 Doze Mode

	付録A E rev010.pdf
	Appendix A 32-Bit ISA Details

	付録B E rev010.pdf
	Appendix B 16-Bit ISA Details

	付録C E rev010.pdf
	Appendix C Programming Restrictions
	C.1 32-Bit ISA Restrictions
	C.2 16-Bit ISA Restrictions

	付録D E rev010.pdf
	Appendix D Compatibility Among TX19, TX19A andTX39 Architectures

	付録E E rev010.pdf
	Appendix E 32-Bit ISA Instruction Bit Encodings

	付録F E rev010.pdf
	Appendix F 16-Bit ISA Instruction Bit Encodings

