
TOSHIBA

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions".

CMOS 32-Bit Microcontrollers TMP92FD23AFG/ TMP92FD23ADFG

1. Outline and Device Characteristics

The TMP92FD23A is a high-speed advanced 32-bit Microcontroller developed for controlling equipment which processes mass data.

The TMP92FD23A has a high-performance CPU (900/H1 CPU) and various built-in I/Os. The TMP92FD23AFG and TMP92FD23ADFG are housed in a 100-pin flat package.

Device characteristics are as follows:

- (1) CPU: 32-bit CPU (900/H1 CPU)
 - Compatible with 900/L1 instruction code
 - 16 Mbytes of linear address space
 - General-purpose register and register banks
 - Micro DMA: 8 channels (250 ns/4 bytes at $f_{SYS} = 20$ MHz, best case)
- (2) Minimum instruction execution time: 50 ns (at $f_{SYS} = 20$ MHz)

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and

set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its
 use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third
 parties.
- Product names mentioned herein may be trademarks of their respective companies.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.

This product uses the Super Flash® technology under the license of Silicon Storage Technology,Inc. Super Flash® is a registered trademark of Silicon Storage Technology,Inc.

- (3) Internal memory
 - Internal RAM: 32-Kbytes
 - Internal ROM: 512-Kbytes Flash memory

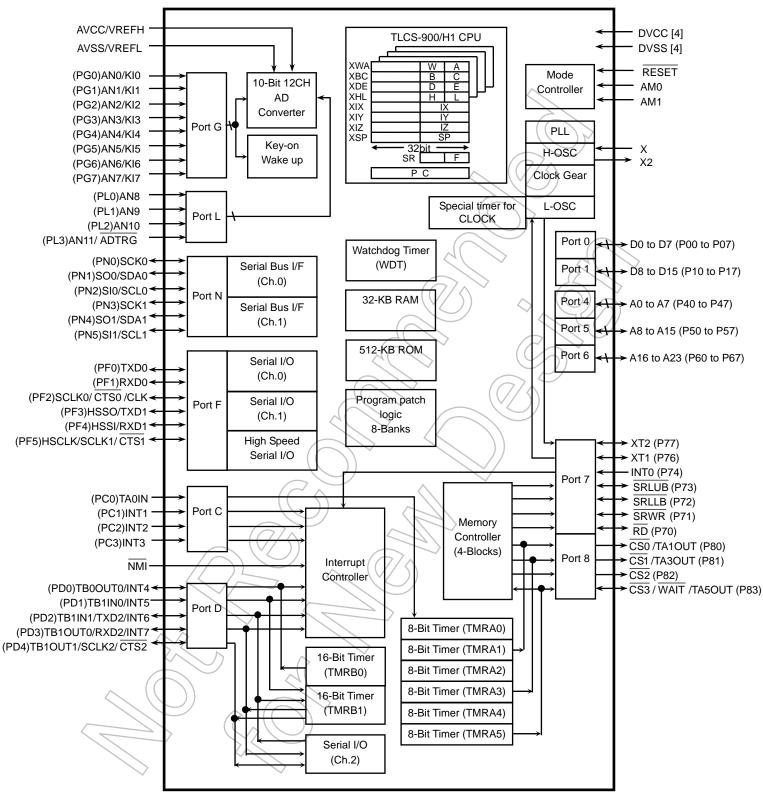
4Kbytes mask ROM (used for booting)

- (4) External memory expansion
 - Expandable up to 16 Mbytes (Shared program/data area)
 - Can simultaneously support 8- or 16-bit width external data bus ... Dynamic data bus sizing
 - Separate bus system
- (5) Memory controller
 - Chip select output: 4 channels
- (6) 8-bit timers: 6 channels
- (7) 16-bit timers: 2 channels
- (8) General-purpose serial interface: 3 channels
 - UART/synchronous mode: 3 channels (channel 0, 1 and 2)
 - IrDA ver.1.0 (115 kbps) mode selectable: 3 channels (channel 0, 1 and 2)
- (9) Serial bus interface: 2 channels
 - I²C bus mode
 - Clock synchronous mode
- (10) High Speed serial interface: 1 channels
- (11) 10-bit AD converter: 12 channels
- (12) Watchdog timer
- (13) Special timer for CLOCK
- (14) Key-on wake up (only for HALT release):8 channels
- (15) Program patch logic: 8 banks
- (16) Interrupts: 51 interrupts
 - 9 CPU interrupts Software interrupt instruction and illegal instruction
 - 33 internal interrupts: Seven selectable priority levels
 - 9 external interrupts (INT0 to INT7 and MMI): Seven selectable priority levels (INT0 to INT7 selectable edge or level interrupt)

(17) Input/output ports: 84 pins

(18) Standby function

Three HALT modes: IDLE2 (Programmable), IDLE1, STOP


(19) Clock controller

- Clock doubler (PLL)
- Clock gear function: Select high-frequency clock fc to fc/16
- Special timer for CLOCK (fs = 32.768 kHz)
- (20) Operating voltage
 - $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (fc max} = 40 \text{ MHz})$

(21) Package

100-pin QFP: LQFP100-P-1414-0.50F (TMP92FD23AFG)

QFP100-P-1420-0.65A (TMP92FD23ADFG)

(): Initial function after reset

Figure 1.1 TMP92FD23A Block Diagram

2. Pin Assignment and Functions

The assignment of input/output pins for the TMP92FD23A, their names and functions are as follows:

2.1 Pin Assignment Diagram

Figure 2.1.1 shows the pin assignment of the TMP92FD23AFG. \checkmark

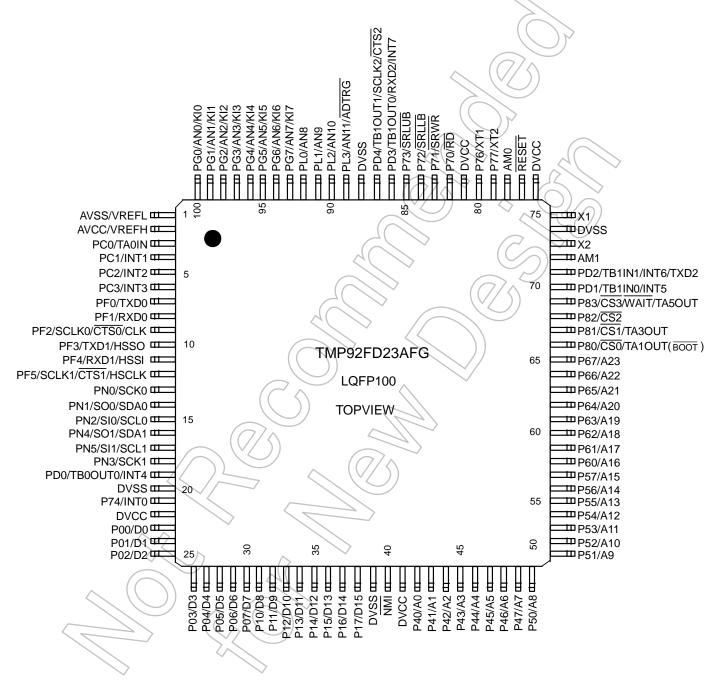


Figure 2.1.1 Pin Assignment Diagram (100-pin LQFP)

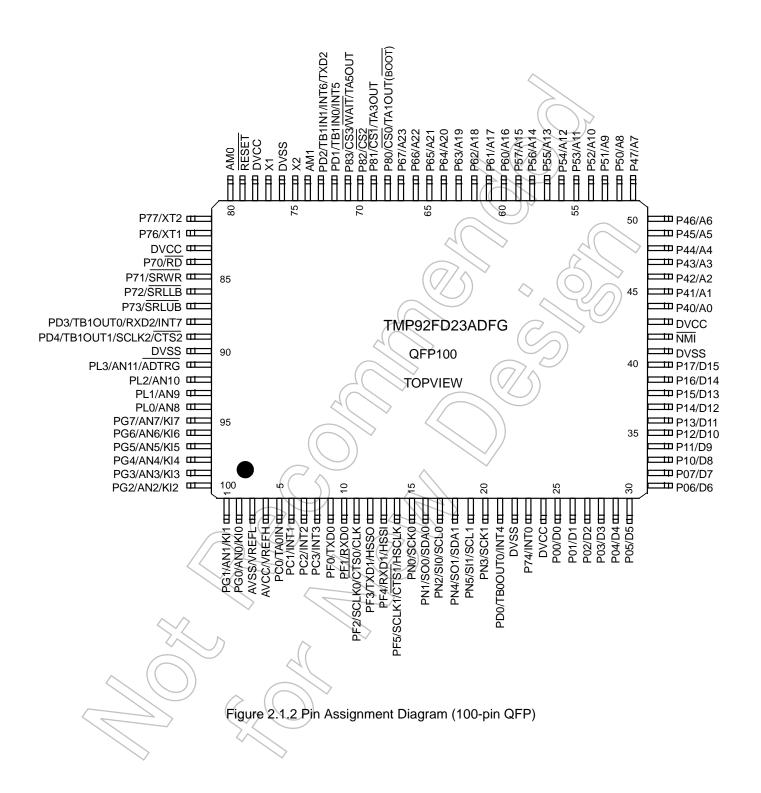


Figure 2.1.2 shows the pin assignment of the TMP92FD23ADFG.

2.2 Pin Names and Functions

The following table shows the names and functions of the input/output pins

Table 2.2.1 Pin Names and Functions (1/3)

Pin name	Number of Pin	I/O	Function
P00 to P07 D0 to D7	8	I/O I/O	Port 0: I/O port Input or output specifiable in units of bits Data: Data bus 0 to 7
P10 to P17	8	I/O	Port 1: I/O port Input or output specifiable in units of bits
D8 to D15	0	I/O	Data: Data bus 8 to 15
P40 to P47	8	I/O	Port 4: I/O port Input or output specifiable in units of bits
A0 to A7	Ŭ	Output	Address: Address bus 0 to 7
P50 to P57	8	I/O	Port 5: I/O port Input or output specifiable in units of bits
A8 to A15	Ŭ	Output	Address: Address bus 8 to 15
P60 to P67	8	I/O	Port 6: I/O port Input or output specifiable in units of bits
A16 to A23	-	Output	Address: Address bus 16 to 23
P70	1	I/O	Port 70: I/O port (Schmitt input, with pull-up resistor)
RD		Output	Read: Outputs strobe signal for read external memory.
P71	1	I/O	Port 71: I/O port (Schmitt input, with pull-up resistor)
SRWR		Output	Write enable for SRAM: Strobe signal for wiritng data.
P72	1	I/O	Port 72: I/O port (Schmitt input, with pull-up resistor)
SRLLB		Output	Data enable for SRAM on pins D0 to D7
P73	1	I/O	Port 73: I/O port (Schmitt input, with pull-up resistor)
SRLUB		Output	Data enable for SRAM on pins D8 to D15
P74	1	Input	Port 74: Input port (Schmitt input)
INT0		Input	Interrupt request pin 0: Interrupt request pin with programmable level/rising/falling edge
P76	1	I/O	Port 76: I/O port (Open drain output)
XT1		Input	Low-frequency oscillator connection Input pins
P77	1	I/O	Port 77: I/O port (Open drain output)
XT2		Output	Low-frequency oscillator connection Output pins
P80	1	Output	Port 80: Output port
CS0		Output	Chip select 0: Outputs "Low" when address is within specified address area
TA1OUT		Output	8-bit timer 1 Output: Output pin of 8-bit timer TMRA0 or TMRA1
(BOOT Note)	/	Input	This pin sets single boot mode (only during reset).
			(Note) The function of TMP92FD23A.
P81	1	Output	Port 81: Output port
CS1		Output	Chip select 1: Outputs "Low" when address is within specified address area
TA3OUT		Output	8-bit timer 3 Output: Output pin of 8-bit timer TMRA2 or TMRA3
P82	$\sim \uparrow$	Output	Port 82: Output port
CS2		Output	Chip select 2: Outputs "Low" when address is within specified address area
P83	1	1/0	Port 83: I/O port (Schmitt input)
CS3	\square	Output	Chip select 3: Outputs "Low" when address is within specified address area
TA5OUT	\bigcirc	Output	8-bit timer 5 Output: Output pin of 8-bit timer TMRA4 or TMRA5
WAIT		Input	Wait: Signal used to request CPU bus wait
PC0	> 1	Input	Port C0: Input port (Schmitt input)
TAOIN		Input	8-bit timer 0 input: Input pin of 8-bit timer TMRA0
PC1	1	Input	Port C1: Input port (Schmitt input)
INT1		Input	Interrupt request pin 1 : Interrupt request pin with programmable level/rising/falling edge
PC2	1	Input	Port C2: Input port (Schmitt input)
INT2	ļ	Input	Interrupt request pin 2 : Interrupt request pin with programmable level/rising/falling edge
PC3	1	Input	Port C3: Input port (Schmitt input)
INT3		Input	Interrupt request pin 3 : Interrupt request pin with programmable level/rising/falling edge

Table 2.2.2 Pin Names and Fur	nctions (2/3)
-------------------------------	---------------

Pin name	Number of Pin	I/O	Function
PD0	1	I/O	Port D0: I/O port (Schmitt input)
TB0OUT0		Output	16-bit timer 0 output 0: Output pin of 16-bit timer TMRB0
INT4		Input	Interrupt request pin 4 : Interrupt request pin with programmable level/rising/falling edge
PD1	1	Input	Port D1: Input port (Schmitt input)
TB1IN0		Input	16-bit timer 1 input 0: Input of count/capture trigger in 16-bit timer TMRB1
INT5		Input	Interrupt request pin 5 : Interrupt request pin with programmable level/rising/falling edge
PD2	1	I/O	Port D2: I/O port (Schmitt input)
TB1IN1		Input	16-bit timer 1 input 1: Input of count/capture trigger in 16-bit timer TMRB1
TXD2		Output	Serial 2 send data: Open drain output programmable
INT6		Input	Interrupt request pin 6 : Interrupt request pin with programmable level/rising/falling edge
PD3	1	I/O	Port D3: I/O port (Schmitt input)
TB1OUT0		Output	16-bit timer 1 output 0: Output pin of 16-bit timer TMRB1
RXD2		Input	Serial 2 receive data
INT7		Input	Interrupt request pin 7 : Interrupt request pin with programmable level/rising/falling edge
PD4	1	I/O	Port D4: I/O port (Schmitt input)
TB1OUT1		Output	16-bit timer 1 output 1: Output pin of 16-bit timer TMRB1
SCLK2		I/O	Serial 2 clock I/O
CTS2		Input	Serial 2 data send enable (Clear to send)
PF0	1	I/O	Port F0: I/O port (Schmitt input)
TXD0		Output	Serial 0 send data: Open drain output programmable
PF1	1	I/O	Port F1: I/O port (Schmitt input)
RXD0		Input	Serial 0 receive data
PF2	1	I/O	Port F2: I/O port (Schmitt input)
SCLK0		I/O	Serial 0 clock I/O
CTS0		Input	Serial 0 data send enable (Clear to send)
CLK		Output	Clock: System Clock output
PF3	1	I/O	Port F3: I/O port (Schmitt input)
TXD1		Output	Serial 1 send data: Open drain output programmable
HSSO		Output	High speed Serial send data
PF4	1	1/0	Port F4: I/O port (Schmitt input)
RXD1		Input	Serial 1 receive data
HSSI			High speed Serial receive data
PF5	1//	1/0	Port F5: I/Q port (Schmitt input)
SCLK1		1/0	Serial 1 clock I/O
CTS1		Input	Serial 1 data send enable (Clear to send)
HSCLK		Output	High speed Serial clock output
PG0 to PG7	8	Input	Port G: Input port (Schmitt input)
AN0 to AN7	$\langle \rangle$	力	Anatog input 0 to 7: Pin used to input to AD conveter
KI0 to KI7			Key input 0 to 7: Pin used of key-on wakeup 0 to 7
PL0 to PL3	4	Input	Port L: Input port (Schmitt input)
AN8 to AN11	\bigcirc	\sim	Analog input 8 to 11: Pin used to input to A/D conveter
ADTRG		(())	A/D trigger: Signal used for request A/D start (Shared with PL3)

Table 2.2.3 Pin Names and Functions (3/3)

Pin name	Number of Pin	I/O	Function
PN0	1	I/O	Port N0: I/O port (Schmitt input)
SCK0		I/O	Serial bus interface 0 clock I/O data at SIO mode
PN1	1	I/O	Port N1: I/O port (Schmitt input, Open drain output)
SO0		Output	Serial bus interface 0 send data at SIO mode
SDA0		I/O	Serial bus interface 0 send/receive data at I ² C mode
PN2	1	I/O	Port N2: I/O port (Schmitt input, Open drain output)
SI0		Input	Serial bus interface 0 receive data at SIO mode
SCL0		I/O	Serial bus interface 0 clock I/O data at I ² C mode
PN3	1	I/O	Port N3: I/O port (Schmitt input)
SCK1		I/O	Serial bus interface 1 clock I/O data at SIO mode
PN4	1	I/O	Port N4: I/O port (Schmitt input, Open drain output)
SO1		Output	Serial bus interface 1 send data at SIO mode
SDA1		I/O	Serial bus interface 1 send/receive data at I ² C mode
PN5	1	I/O	Port N5: I/O port (Schmitt input, Open drain output)
SI1		Input	Serial bus interface 1 receive data at SIO mode
SCL1		I/O	Serial bus interface 1 clock I/O data at I ² C mode
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with programmable falling edge levels programmable (Schmitt input)
AM0, AM1	2	Input	Operation mode: Fixed to AM1 = "1" and AM0 = "1"
X1 / X2	2	I/O	High-frequency oscillator connection I/O pins
RESET	1	Input	Reset: Intializes TMP92FD23A (Schmitt input, with pull-up resistor)
AVCC / VREFH	1	Input	Pin used to both power supply pin for AD converter and standard power supply for AD converter (H)
AVSS / VREFL	1	Input	Pin used to both GND pin for AD converter (0 V) and standard power supply pin for AD converter (L)
DVCC	4	_	Power supply pin (All DVCC pins should be connected with the power supply pin)
DVSS	4	_	GND pins (0 V) (All DVSS pins shold be connected with GND(0V))

3. Operation

This section describes the basic components, functions and operation of the TMP92FD23A.

3.1 CPU

The TMP92FD23A contains an advanced high-speed 32-bit CPU (TLCS-900/H1 CPU)

3.1.1 CPU Outline

The TLCS-900/H1 CPU is a high-speed, high-performance CPU based on the TLCS-900/L1 CPU. The TLCS-900/H1 CPU has an expanded 32-bit internal data bus to process instructions more quickly.

The following is an outline of the CPU:

Table 3.1.1 TMP92FD23A Outline						
Parameter	TMP92FD23A					
Width of CPU address bus	24 bits					
Width of CPU data bus	32 bits					
Internal operating frequency	Max 20 MHz					
Minimum bus cycle	1-clock access (50 ns at f _{SYS} = 20MHz)					
Internal RAM	32-bit 1-clock access					
Internal ROM	32-bit interleave 2-1-1-1-clock access					
Internal I/O	8-bit 2-clock access					
External SRAM, Masked ROM	8- or 16-bit 2-clock access					
	(waits can be inserted)					
Minimum instruction	1-clock (50 ns at f _{SYS} =20MHz)					
execution cycle						
Conditional jump	2-clock (100 ns at f _{SYS} =20MHz)					
Instruction queue buffer	12 bytes					
(notinuction act	Compatible with TLCS-900/L1					
Instruction set	(LDX instruction is deleted)					
CPU mode	Maximum mode only					
Micro DMA	8 channels					

Table 3.1.1 TMP92FD23A Outline

3.1.2 Reset Operation

When resetting the TMP92FD23A, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the $\overline{\text{RESET}}$ input low for at least 20 system clocks (64 µs at fc = 10 MHz).

At reset, since the clock doubler (PLL) is bypassed and the clock-gear is set to 1/16, the system clock operates at 312.5 KHz (fc = 10 MHz).

When the reset has been accepted, the CPU performs the following:

• Sets the program counter (PC) as follows in accordance with the reset vector stored at address FFFF00H to FFFF02H:

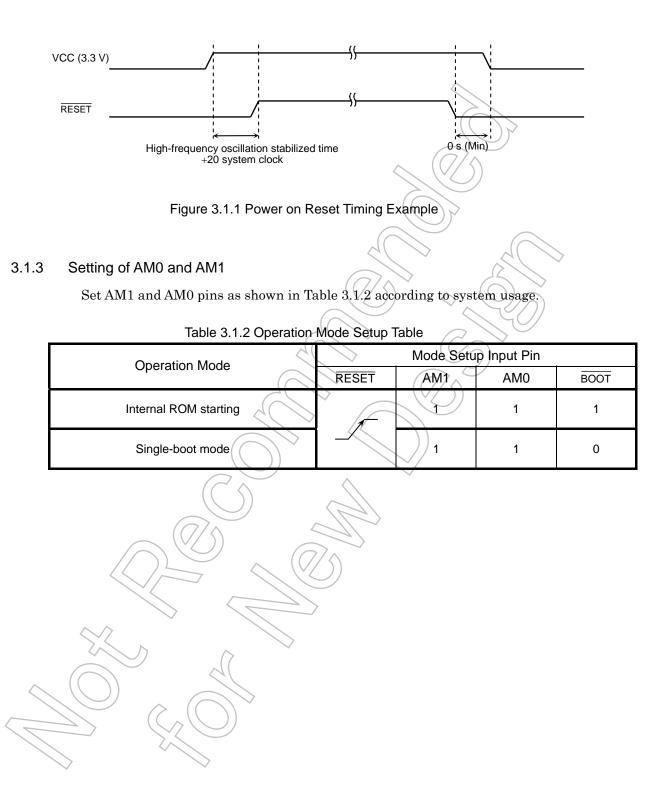
PC<7:0>	\leftarrow data in location FFFF00H
PC<15:8>	\leftarrow data in location FFFF01H
PC<23:16>	\leftarrow data in location FFFF02H

- Sets the stack pointer (XSP) to 0000000H,
- Sets bits <IFF2:0> of the status register (SR) to 111 (thereby setting the interrupt level mask register to level 7).
- Clears bits <RFP1:0> of the status register to 00 (there by selecting register bank 0).

When the reset is released, the CPU starts executing instructions according to the program counter settings. CPU internal registers not mentioned above do not change when the reset is released.

When the reset is accepted, the CPU sets internal I/O, ports and other pins as follows.

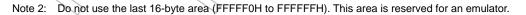
- Initializes the internal I/O registers.
- Sets the port pins, including the pins that also act as internal I/O, to general-purpose input or output port mode.


A RESET input terminal becomes "High", if reset release is carried out, a built-in FlashROM warm-up circuit (notes) will start operation, and internal reset will be canceled after the end of the circuit of operation.

The operation of memory controller cannot be insured until power supply becomes stable after power on reset. The external RAM data provided before turning on the TMP92FD23A may be spoiled because the control signals are unstable until power supply becomes stable after power on reset.

Note: The warm-up time of build-in FlashROM into becomes it as follows.

Figure 3.1.1 shows the example of operating the reset timing of TMP92FD23A.

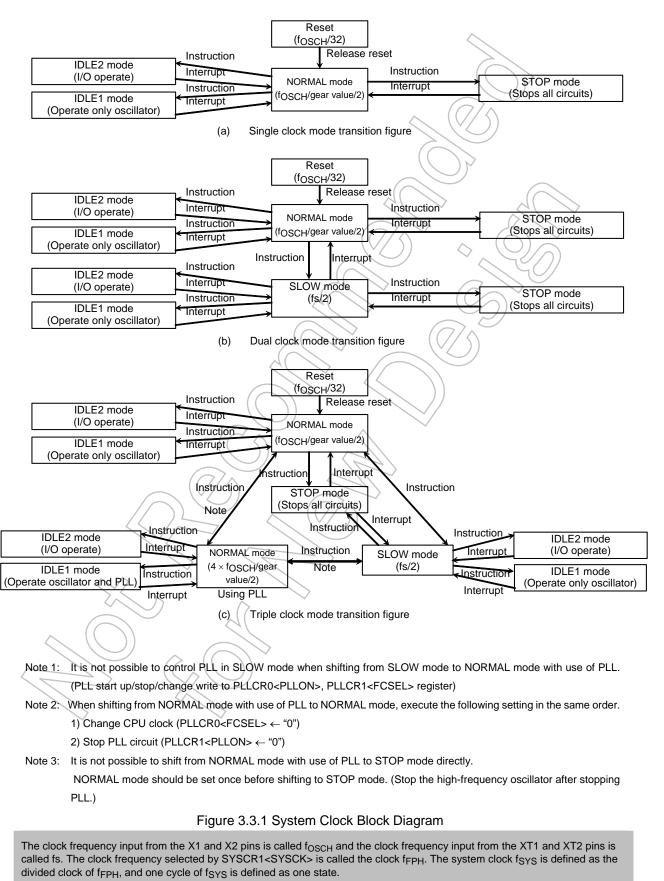


3.2 Memory Map

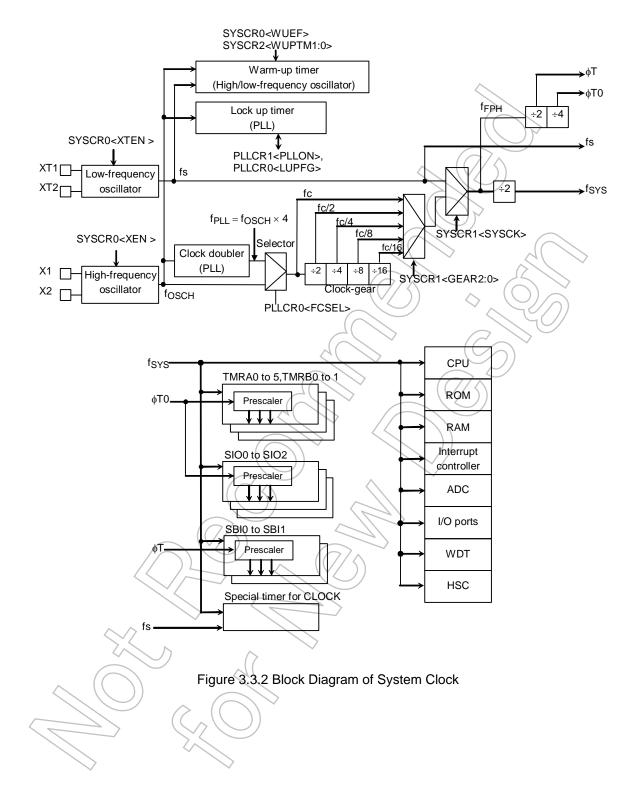
000000H ↑ Internal I/O Direct area (n) (8 Kbytes) 000100H 64-Kbytes area (nn) 002000H Internal RAM (32 Kbytes) 00A000H 010000H External memory F00000H Provisional emulator control (64 Kbytes) (Note 1) F10000H External memory 16-Mbytes area (R) (-R) (R+) (R + R8/16) (R + d8/16) F80000H Internal ROM (512 Kbytes) (nnn) FFFF00H (Note 2) Vector table (256 bytes) FFFFFF = Internal area) (Figure 3.2.1 Memory Map

Figure 3.2.1 is a memory map of the TMP92FD23A.

Note 1: The Provisional emulator control area, mapped F00000H to F0FFFH after reset, is for emulator use and so is not available. When emulator SRWR signal and RD signal are asserted, this area is accessed. Ensure external memory is used.


3.3 Clock Function and Stand-by Function

The TMP92FD23A contains (1) clock gear, (2) clock doubler (PLL), (3) stand-by controller and (4) noise reduction circuits. They are used for low power, low noise systems.


- This chapter is organized as follows:
 - 3.3.1 Block diagram of system clock
 - 3.3.2 SFR
 - 3.3.3 System clock controller
 - 3.3.4 Clock doubler (PLL)
 - 3.3.5 Noise reduction circuits
 - 3.3.6 Stand-by controller

The clock operating modes are as follows: (a) single clock mode (X1, X2 pins only), (b) dual clock mode (X1, X2, XT1 and XT2 pins) and (c) triple clock mode (X1, X2, XT1 and XT2 pins and PLL).

Figure 3.3.1 shows a transition figure.

3.3.1 Block Diagram of System Clock

3.3.2 SFR

		7	6	5	4	3	2	1	0
SYSCR0	Bit symbol	XEN	XTEN	/	/		WUEF		
(10E0H)	Read/Write	R/	W	/		\sim	R/W	\sim	\sim
	Reset State	1	0			\sim	0		\sim
	Function	High- frequency oscillator (f _{OSCH}) 0: Stop 1: Oscillation	Low- frequency oscillator (fs) 0: Stop 1: Oscillation				Warm-up timer 0: Write don't care 1: Write start timer 0: Read end warm-up 1: Read do not end warm-up		
		7	6	5	4 ((7/3	2	51	0
SYSCR1	Bit symbol	/		/		SYSCK	GEAR2	GEAR1	GEAR0
(10E1H)	Read/Write		\sim		À		R	W	
	Reset State					∕` o		○ 0	0
	Function		(2			Select system clock 0: fc 1: fs	Select gear v 000: fc 001: fc/2 010: fc/4 011: fc/8 100: fc/16 101: Reserve 110: Reserve	ed	equency (fc)
		7	6)) 5	4	3	2	1	0
SYSCR2	Bit symbol	_	177	WUPTM1	WUPTMO	HALTM1	HALTM0		DRVE
(10E2H)	Read/Write	R/W	\swarrow		R/	Ŵ			R/W
	Reset State	0)	\sim	(0	1	1		0
	Function	Always write "0"		Warm-up tim 00: Reserve 01: 2 ⁸ /input f 10: 2 ¹⁴ /input 11: 2 ¹⁶ /input	d requency frequency	HALT mode 00: Reserve 01: STOP m 10: IDLE1 m 11: IDLE2 m	ode Iode		1: The inside of STOP mode also drives a pin

Note 1: The unassigned registers, SYSCR0<bit5:3>, SYSCR0<bit1:0>, SYSCR1<bit7:4>, and SYSCR2<bit7:6,1> are read as undefined value.

Note 2: Low-frequency oscillator is enabled on reset.

Figure 3.3.3 SFR for System Clock

F

		7	6	5	4	3	2	1	0
EMCCR0	Bit symbol	PROTECT			/	/	-	-	DRVOSCL
(10E3H)	Read/Write	R						R/W	
	Reset State	0					0	1	1
	Function	Protect flag					Always	Always	fs oscillator
		0: OFF					write "0"	write "1"	driver ability
		1: ON							1: Normal
									0: Weak
EMCCR1 (10E4H)	Bit symbol							\mathcal{D}	
(Read/Write					\sim	$((// \uparrow)$		
	Reset State		Switch th	e protect ON/	OFF by writing	g the followin	g to 1st-KEY,	2nd-KEY	
EMOODO	Function		1st-	KEY: write in	sequence EN	ICCR1 = 5AH	, EMCCR2 = /	A5H	
EMCCR2 (10E5H)	Bit symbol		2nd	-KEY: write in	sequence EN	ICCR1 = A5H	I, EMCCR2 =	5AH	
(102011)	Read/Write								
	Reset State					41	>	$\lambda($	>
	Function								*
					((7/.5		\bigcirc	
		nen restarting			oscillation sta	ate (e.g. resta	rting the oscill	ator in STOP	mode), set
	EM	CCR0 <drvc< td=""><td>SCH>, <drv< td=""><td>OSCL>= "1".</td><td></td><td></td><td></td><td></td><td></td></drv<></td></drvc<>	SCH>, <drv< td=""><td>OSCL>= "1".</td><td></td><td></td><td></td><td></td><td></td></drv<>	OSCL>= "1".					
						\checkmark	(\mathcal{C})		
			Figur	e 3.3.4 SFI	R for Syste	m Clock)	
				G		($\overline{\partial}_{A} \mathcal{O}$		
		7	6	5	4	3	2	1	0
PLLCR0	Bit symbol		FCSEL	LUPFG	\sum	\searrow	\searrow		
(10E8H)	Read/Write		R/W	R		\square			
	Reset State		0	0	/	\downarrow			
	Function		Select fc	Lock up					
			clock	timer	\frown				
			0: fosch	status flag					
			1: fptL	0: Not end		\sim			
			(\langle / \rangle)	1: End					
	Note: Ensure t	hat the logic o	f PLLCR0 <ll< td=""><td>IPFG> is diffe</td><td>rent from 900</td><td>/L1's DFM.</td><td></td><td></td><td></td></ll<>	IPFG> is diffe	rent from 900	/L1's DFM.			
		7	6	5	4	3	2	1	0
PLLCR1	Bit symbol	PLLON		\sim					
(10E9H)	Read/Write			\mathcal{N}					
	Reset State	0							
	Function	Control							
0: OFF 1: ON									
)				1	
/									
	Figure 3.3.5 SFR for PLL								
	\checkmark		\checkmark						

3.3.3 System Clock Controller

The system clock controller generates the system clock signal (f_{SYS}) for the CPU core and internal I/O. It contains two oscillation circuits and a clock gear circuit for high-frequency (fc) operation. The register SYSCR1<SYSCK> changes the system clock to either fc or fs, SYSCR0<XEN> and SYSCR0<XTEN> control enabling and disabling of each oscillator, and SYSCR1<GEAR2:0> sets the high-frequency clock gear to either 1, 2, 4, 8 or 16 (fc, fc/2, fc/4, fc/8 or fc/16). These functions can reduce the power consumption of the equipment in which the device is installed.

The combination of settings $\langle XEN \rangle = 1$, $\langle SYSCK \rangle = 0$ and $\langle GEAR2:0 \rangle = 100$ will cause the system clock (f_{SYS}) to be set to fc/32 (fc/16 × 1/2) after reset.

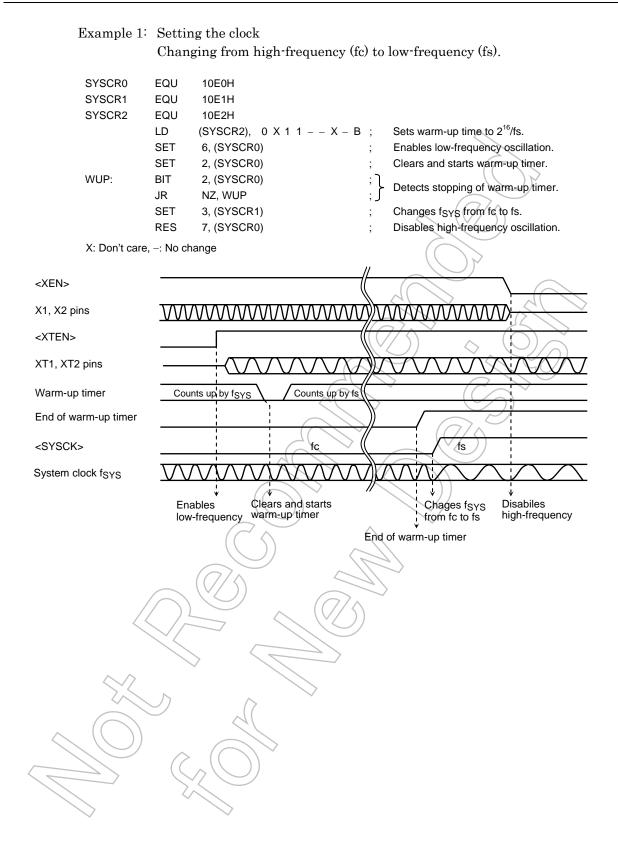
For example, f_{SYS} is set to 0.3125 MHz when the 10 MHz oscillator is connected to the X1 and X2 pins.

(1) Switching from normal mode to slow mode

When the resonator is connected to the XI and X2 pins, or to the XT1 and XT2 pins, the warm-up timer can be used to change the operation frequency after stable oscillation has been attained.

The warm-up time can be selected using SYSCR2<WUPTM1:0>.

This warm-up timer can be programmed to start and stop as shown in the following examples 1 and 2.


Table 3.3.1 shows the warm-up time.

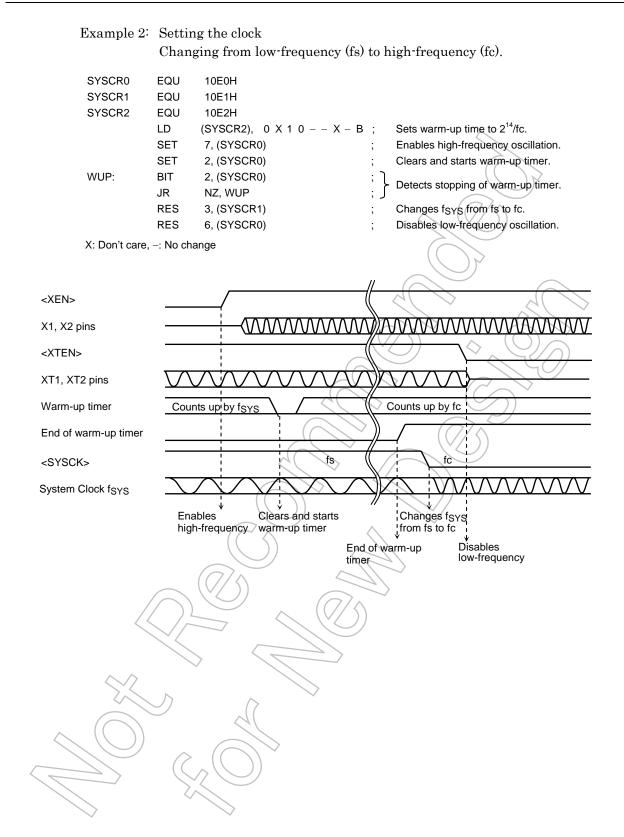

- Note 1: When using an oscillator (other than a resonator) with stable oscillation, a warm-up timer is not needed.
- Note 2: The warm-up timer is operated by an oscillation clock. Hence, there may be some variation in warm-up time.

Table 3.3.1 Warm-up Times

at f _{OSCH} = 10 MHz, fs = 32.768 kHz
--

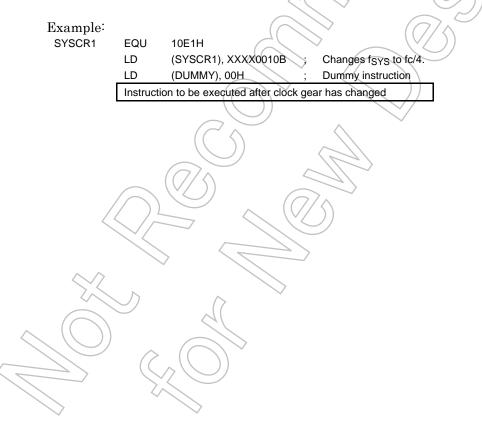
Warm-up Time SYSCR2 <wuptm1:0></wuptm1:0>	Change to Normal Mode	Change to Slow Mode
01 (2 ⁸ /frequency)	25.6 (μs)	7.8 (ms)
10 (2 ¹⁴ /frequency)	1.638 (ms)	500 (ms)
11 (2 ¹⁶ /frequency)	6.554 (ms)	2000 (ms)

(2) Clock gear controller

fFPH is set according to the contents of the clock gear select register SYSCR1<GEAR2:0> to either fc, fc/2, fc/4, fc/8 or fc/16. Using the clock gear to select a lower value of fFPH reduces power consumption.

Example 3: Changing to a high-frequency gear

SYSCR1 EQU 10E1H


LD (SYSCR1), XXXX0001B ; Changes f_{SYS} to fc/2

X: Don't care

(High-speed clock gear changing)

To change the clock gear, write the register value to the SYSCR1<GEAR2:0> register. It is necessary for the warm-up time to elapse before the change occurs after writing the register value.

There is the possibility that the instruction following the clock gear changing instruction is executed by the clock gear before changing. To execute the instruction following the clock gear switching instruction by the clock gear after changing, input the dummy instruction as follows (instruction to execute the write cycle).

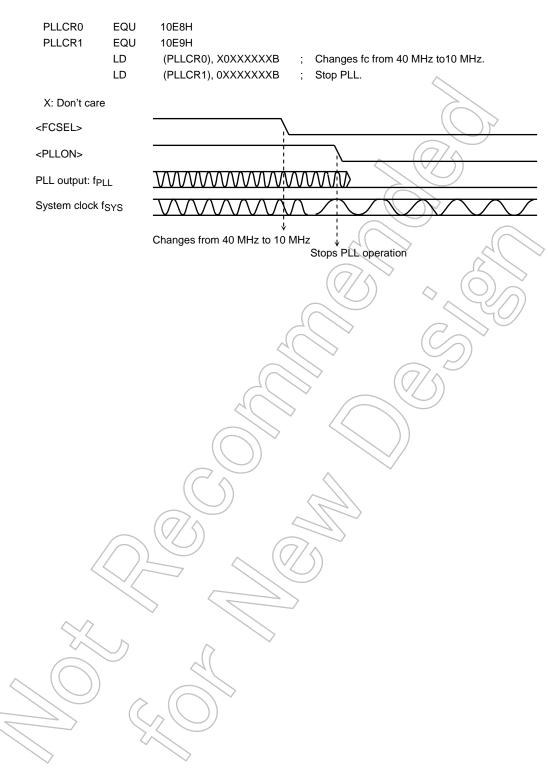
3.3.4 Clock Doubler (PLL)

PLL outputs the fPLL clock signal, which is four times as fast as fOSCH. A low-speed-frequency oscillator can be used, even though the internal clock is high-frequency.

A reset initializes PLL to stop status, so setting to PLLCR0, PLLCR1 register is needed before use.

As with an oscillator, this circuit requires time to stabilize. This is called the lock up time and it is measured by a 16-stage binary counter. Lock up time is about 1.6 ms at fOSCH = 10 MHz.

Note 1: Input frequency range for PLL


The input frequency range (High-frequency oscillation) for PLL is as follows: $f_{OSCH} = 6$ to 10 MHz (V_{CC} = 3.0 to 3.6 V)

Note 2: PLLCR0<LUPFG>

The logic of PLLCR0<LUPFG> is different from 900/L1's DFM. Exercise care in determining the end of lock up time.

The following is an example of settings for PLL starting and PLL stopping.

Example 1:	PLL st	tarting		>	(75)
PLLCR0	EQU	10E8H			
PLLCR1	EQU	10E9H			
	LD	(PLLCR1), 1	СХХХХХХВ	; Enables	s PLL operation and starts lock up.
LUP:	BIT	5, (PLLCR0)		;] Detects	s end of lock up.
	JR	Z, LUP		;J	
	LD	(PLLCR0), X 1	ІХХХХХХВ	; Change	es fc from 10 MHz to 40 MHz.
X: Don't care			$\langle \cdot \rangle$	\rightarrow	
		\square		\mathbb{N}	
		$(\vee \langle \rangle)$		$\overline{}$	
<pllon></pllon>	$\langle \rangle \rangle$		~ ((7/\$		
<fcsel></fcsel>	$\sqrt{\Gamma}$			/	
PLL output: f _{PLI}		\rightarrow	wwww	\mathcal{W}	
Lock up timer		/	Counts up by fo	DSCH	
<lupfg></lupfg>	D		During lo	ck up	After lock up
System clock fS	SYS		\sim	\sim	
	\sum	Starts PLL o	peration and		Changes from 10 MHz to 40 MHz
	\sim	starts lock up			Lock up ends
	\sim				

Example 2: PLL stopping

Limitations on the use of PLL

- It is not possible to execute PLL enable/disable control in the SLOW mode (fs) (writing to PLLCR0 and PLLCR1). PLL should be controlled in the NORMAL mode.
- 2. When stopping PLL operation during PLL use, execute the following settings in the same order.
 - LD (PLLCR0), 00H LD (PLLCR1), 00H
- Change the clock f_{PLL} to f_{OSCH} PLL stop
- 3. When stopping the high-frequency oscillator during PLL use, stop PLL before stopping the high-frequency oscillator.

Examples of settings are shown below:

(1) Start up/change control

LUP;

(OK) Low-frequency oscillator operation mode (fs) (high-frequency oscillator STOP) \rightarrow High-frequency oscillator start up \rightarrow High-frequency oscillator operation mode (fosch) \rightarrow PLL start up \rightarrow PLL use mode (fPLL)

	LD	(SYSCR0),	1 1 1 B; High-frequency oscillator start/warm-up start
WUP:	BIT	2, (SYSCR0)	
	JR	NZ, WUP	; } Check for warm-up end flag
	LD	(SYSCR1),	– – – 0 – – B ; Change the system clock fs to f _{OSCH}
	LD	(PLLCR1),	1 – – – – – B ; PLL start-up/lock up start
LUP:	BIT	5, (PLLCR0)	;] Check test back up and flag
	JR	Z, LUP	; Check for lock up end flag
	LD	(PLLCR0),	-1 B Change the system clock fOSCH to fPLL

(OK) Low-frequency oscillator operation mode (fs) (high-frequency oscillator Operate) \rightarrow High-frequency oscillator operation mode (fosch) \rightarrow PLL start up \rightarrow PLL use mode (fpLL)

LD	(SYSCR1),	0 B	\$;	Change the system clock fs to fOSCH
LD	(PLLCR1),	(1 B	\$;	PLL start-up/lock up start
BIT	5, (PLLCR0)		;	Check for lock up end flag
JR JR	Z, LUP		;]	1
	(PLLCR0),		s;	Change the system clock fOSCH to fPLL
\sim	~	7(

(Error) Low-frequency oscillator operation mode (fs) (high-frequency oscillator STOP) \rightarrow High-frequency oscillator start up \rightarrow PLL start up \rightarrow PLL use mode (fPLL)

\rightarrow	LD	(SYSCR0),	11B;	High-frequency oscillator start/warm-up start
WUP:	BIT JR	2, (SYSCR0) NZ, WUP	;] ;]	➤ Check for warm-up end flag
	LD	(PLLCR1),	1 B;	PLL start-up/lock up start
LUP:	BIT	5, (PLLCR0)	;]	➤ Check for lock up end flag
	JR	Z, LUP	; _	Check for lock up end hag
	LD	(PLLCR0),	– 1 – – – – – B ;	Change the internal clock fOSCH to fPLL
	LD	(SYSCR1),	0 B ;	Change the system clock fs to fPLL

- (2) Change/stop control

LD	(PLLCR0),	- 0 B ;	Change the system clock fPLL to fOSCH
LD	(PLLCR1),	0 B;	PLL stop
LD	(SYSCR1),		Change the system clock fOSCH to fs
LD	(SYSCR0),	0 B;	High-frequency oscillator stop

LD	(SYSCR1),	– – – 1 – – B; Change the system clock f _{PLL} to fs
LD	(PLLCR0),	– 0 – – – – – B; Change the internal clock (fc) fPLL to fOSCH
LD	(PLLCR1),	0 – – – – – – B ; PLL stop
LD	(SYSCR0),	0 – – – – – – B; High-frequency oscillator stop

(OK) PLL use mode (fPLL) \rightarrow Set the STOP mode \rightarrow High frequency oscillator operation mode (fOSCH) \rightarrow PLL stop \rightarrow Halt (High frequency oscillator stop)

LD	(SYSCR2),	– – – 0 1 – B ; Set the STOP mode
		(This command can be executed before use of PLL)
LD	(PLLCR0),	– 0 – – – – B; Change the system clock f _{PLL} to f _{OSCH}
LD	(PLLCR1),	0 B ; PLL stop
HALT		; Shift to STOP mode

(Error) PLL use mode (fpll) \rightarrow Set the STOP mode \rightarrow Halt (High-frequency oscillator stop)

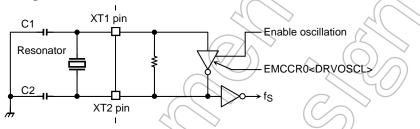
LD (SYSCR2), ----01-B; Set the STOP mode (This command can execute before use of PLL) HALT; Shift to STOP mode

TOSHIBA

3.3.5 Noise Reduction Circuits

Noise reduction circuits are built-in, allowing implementation of the following features.

- (1) Reduced drivability for low-frequency oscillator
- (2) SFR protection of register contents


These functions need a setup by EMCCR0, EMCCR1, and EMCCR2 register.

(1) Reduced drivability for low-frequency oscillator

(Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Block diagram)

(Setting method)

The drive ability of the oscillator is reduced by writing 0 to the EMCCR0<DRVOSCL> register. At reset, <DRVOSCL> is initialized to "1".

(2) Runaway prevention using SFR protection register

(Purpose)

Prevention of program runaway caused by introduction of noise.

Write operations to a specified SFR are prohibited so that the program is protected from runaway caused by stopping of the clock or by changes to the memory control register (memory controller) which prevent fetch operations.

Runaway error handling is also facilitated by INTPO interruption.

Specified SFR list

1. Memory controller

B0CSL/H, B1CSL/H, B2CSL/H, B3CSL/H, BEXCSL/H MSAR0, MSAR1, MSAR2, MSAR3, MAMR0, MAMR1, MAMR2, MAMR3, PMEMCR

- 2. Clock gear SYSCR0, SYSCR1, SYSCR2, EMCCR0
- 4. PLL

PLLCR0, PLLCR1

(Operation explanation)

Execute and release of protection (write operation to specified SFR) becomes possible by setting up a double key to EMCCR1 and EMCCR2 registers.

(Double key)

1st KEY: writes in sequence, 5AH at EMCCR1 and A5H at EMCCR2 2nd KEY: writes in sequence, A5H at EMCCR1 and 5AH at EMCCR2

Protection state can be confirmed by reading EMCCR0<PROTECT>. At reset, protection becomes OFF.

INTPO interruption also occurs when a write operation to the specified SFR is executed with protection in the ON state.

3.3.6 Stand-by Controller

(1) HALT modes and port drive register

When the HALT instruction is executed, the operating mode switches to IDLE2, IDLE1 or STOP mode, depending on the contents of the SYSCR2<HALTM1:0> register.

The subsequent actions performed in each mode are as follows:

1. IDLE2: only the CPU halts.

The internal I/O is available to select operation during IDLE2 mode by setting the following register.

Table 3.3.2 shows the register setting operation during IDLE2 mode.

Internal I/O	SFR
TMRA01	TA01RUN <i2ta01></i2ta01>
TMRA23	TA23RUN <i2ta23></i2ta23>
TMRA45	TA45RUN <i2ta45></i2ta45>
TMRB0	TB0RUN<12TB0>
TMRB1	TB1RUN <i2tb1></i2tb1>
SIO0	SC0MOD1 <i2s0></i2s0>
SIO1	SC1MOD1 <i2s1></i2s1>
SIO2	SC2MOD1 <i2s2></i2s2>
AD converter	ADMOD1 <i2ad></i2ad>
WDT C	WDMOD<12WDT>
SBI0	SBI0BR0 <i2sbi0></i2sbi0>
SBI1	SBI1BR0 <i2sbi1></i2sbi1>

Table 3.3.2 SFR Setting Operation during IDLE2 Mode

- 2. IDLE1: Only the oscillator and the Special timer for CLOCK continue to operate.
- 3. STOP: All internal circuits stop operating.

The operation of each of the different HALT modes is described in Table 3.3.3.

	HALT Mode		IDLE2	IDLE1	STOP
	SYSCR2 <haltm1:0></haltm1:0>		n Tí	10	01
ſ		CPU	Stop		
	VQ ports		The state at the time of "HALT" Table 3.3.7 and Table 3.3.8 m instruction execution is held.		e 3.3.8 references
\leq	\square	TMRA, TMRB SIO, SBI	Available to select		
Block		AD converter WDT	operation block	Stop	
		Interrupt controller			
		HSC	Operate		
		Special timer for CLOCK	epolate	Operate	

(2) How to release the HALT mode

These halt states can be released by resetting or requesting an interrupt. The halt release sources are determined by the combination between of the states of the interrupt mask register <IFF2:0> and the HALT modes. The details for releasing the halt status are shown in Table 3.3.4.

Release by interrupt requesting

The HALT mode release method depends on the status of the enabled interrupt .When the interrupt request level set before executing the HALT instruction exceeds the value of the interrupt mask register, the interrupt is processed depending on its status after the HALT mode is released, and the CPU status executing the instruction that follows the HALT instruction. When the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, HALT mode release is not executed. (in non-maskable interrupts, interrupt processing is processed after releasing the HALT mode regardless of the value of the mask register.) However only for INT0 to INT7, INTRTC interrupts, even if the interrupt request level set before executing the halt instruction is less than the value of the interrupt mask register, HALT mode release is executed. In this case, the interrupt is processed, and the CPU starts executing the instruction following the HALT instruction, but the interrupt request flag is held at "1".

Release by resetting

Release of all halt statuses is executed by resetting.

When the STOP mode is released by RESET, it is necessary to allow enough resetting time (see Table 3.3.5) for operation of the oscillator to stabilize.

When releasing the HALT mode by resetting, the internal RAM data keeps the state before the HALT instruction is executed. However the other settings contents are initialized. (Releasing due to interrupts keeps the state before the HALT instruction is executed.)

Interrupt Enabled Interrupt Disabl					d			
3	Status of Received Interrupt		(Interrupt level) ≥ (Interrupt mask)		(Interrupt level) < (Interrupt mask)			
		HALT Mode	IDLE2	IDLE1	STOP	IDLE2	IDLE1	STOP
		NMI	•	•	♦*1	-	-	-
		INTWDT	•	×	×	- (((_
		INT0 to INT4, INT7 (Note 1)	•	•	♦*1	0	$)$ $\gamma \circ$	0* 1
e		INT5,INT6 (PORT) (Note 1)	•	•	♦*1	8	0	0* 1
anc		INT5,INT6 (TMRB1)	•	×	× <	$(\sqrt{*})$	×	×
lear		INTTA0 to INTTA5	•	×	×	×	×	×
Halt State Clearance	Interrupt	INTB00, INTTB01, INTTB10, INTTB11, INTTB00, INTTB01	•	×	× ((×	×	×
of Halt S		INTRX0 to INTRX2, INTTX0 to INTTX2	•	×	×	×	×	×
e Se		INTAD	•	×	×	×	×	×
Source		KWI	•	•	**		$\langle \Delta \rangle$	Δ
Ŵ		INTRTC	•	•	\sim	\diamond		×
		INTSBE0 to INTSBE1	•	× (×	×	y ×	×
		INTHSC	•	×	×	X	×	×
		RESET		$\mathcal{A}(\mathbb{N})$	Initialize	LSI)	

Table 3.3.4 Source of Halt State Clearance and Halt Clearance Operation

- •: After clearing the HALT mode, CPU starts interrupt processing.
- After clearing the HALT mode, CPU resumes executing starting from the instruction following the HALT instruction.
- ×: Cannot be used to release the HALT mode.
- -: The priority level (interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. This combination is not available.
- \triangle : Since KWI does not have a function as interruption, this combination does not exist.
- *1: Release of the HALT mode is executed after warm-up time has elapsed.
 - Note 1: When the HALT mode is cleared by an INT0 to 7 interrupt of the level mode in the interrupt enabled status, hold level "H" until starting interrupt processing. If level "L" is set before holding level "L", interrupt processing is correctly started.
 - Note 2: Although a KWI can cancel all HALT mode states, the function as interruption does not have it.
 - Note 3: Specify the HSCSEL register when selecting INTTX1 or INTHSC interrupt with the same interrupt factor.

Example: Releasing IDLE1 mode An INT0 interrupt clears the halt state when the device is in IDLE1 mode.

Address 8200H 8203H 8206H 8209H 820BH 820EH 820FH	LD LD LD EI LD HALT	(P7FC), 10H (IIMC3), 00H (IIMC2), 00H (INTE01), 06H 5 (SYSCR2), 28H	 ; Sets P74 to INT0 interrupt. ; Selects INT0 interrupt rising edge. ; Selects INT0 interrupt edge Sets INT0 interrupt level to 6. ; Sets interrupt level to 5 for CPU. ; Sets HALT mode to IDLE1 mode. ; Halts CPU.
INT0_	_/	<u> </u>	INT0 interrupt routine
8210H		XX, XX	

(3) Operation

1. IDLE2 mode

In IDLE2 mode only specific internal I/O operations, as designated by the IDLE2 setting register, can take place. Instruction execution by the CPU stops.

Figure 3.3.6 illustrates an example of the timing for clearance of the IDLE2 mode halt state by an interrupt.

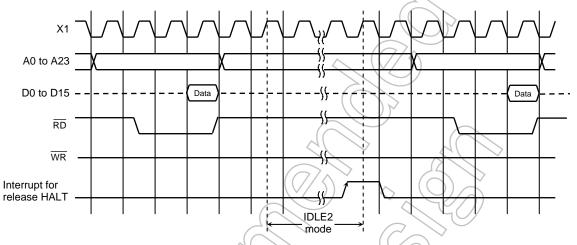


Figure 3.3.6 Timing Chart for IDLE2 Mode Halt State Cleared by Interrupt

2. IDLE1 mode

In IDLE1 mode, only the internal oscillator and Special timer for Clock continue to operate. The system clock stops.

In the halt state, the interrupt request is sampled asynchronously with the system clock: however, clearance of the halt state (e.g., restart of operation) is synchronous with it.

Figure 3.3.7 illustrates the timing for clearance of the IDLE1 mode halt state by an interrupt.

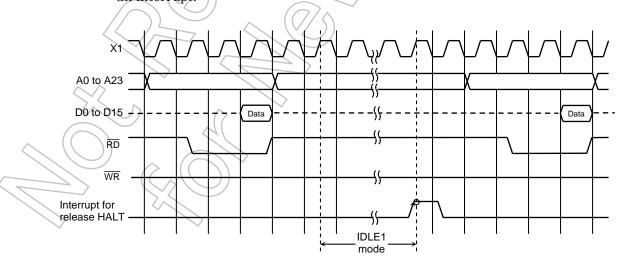


Figure 3.3.7 Timing Chart for IDLE1 Mode Halt State Cleared by Interrupt

3. STOP mode

When STOP mode is selected, all internal circuits stop, including the internal oscillator.

After STOP mode has been cleared system clock output starts when the warm-up time by the counter for a warm-up of internal oscillator and built-in FlashROM warm-up time.

The example of a setting of the Warm-up time at the time of STOP mode release is shown in Table 3.3.5. The warm-up time of built-in FlashROM is shown in Table 3.3.6.

Figure 3.3.8 illustrates the timing for clearance of the STOP mode halt state by an interrupt.

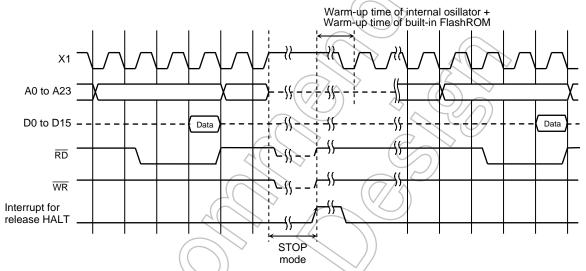


Figure 3.3.8 Timing Chart for STOP Mode Halt State Cleared by Interrupt

Table 2.2 E	Evenne of Morm	in Time offer Delee	aina CTOD Mada
1able 3.3.5	Example of Warm-u	jo mile anel Relea	sind STOP Mode
		the second se	

		at f _O	_{SCH} = 10 MHz, fs = 32.768 kHz			
SYSCR1	SYSCR2 <wuptm1:0></wuptm1:0>					
<sysck></sysck>	01 (<u>2</u> ⁸)	10 (2 ¹⁴)	11 (2 ¹⁶)			
0 (fc)	25.6 μs	∠ 1.638 ms	6.554 ms			
1 (fs)	7.8 ms	500 ms	2000 ms			
	\sim					

Table 3.3.6 Example of Warm-up Time after Built-in FlashROM (at the time of STOP mode release)

at foscu =	10 MHz. f	s = 32.768	kHz

		at IOSCH - I
0 (fc)	409.6 μs (2 ¹² /f _{OSCH})	
1 (fs)	125 ms (2 ¹² /fs)	

				,	Ing	out Buffer Sta	ate				
			When th	e CPU is				In HALT mode (STOP)			
Port Input			oper	ating	IN HALI MOO	HALT mode (IDLE1/2)		DRVE = 1		DRVE = 0	
Name	Function	During	When	When	When	When	When	When	When	When	
	Name	Reset	used as	used as	used as	used as	used as	used as	used as	used as	
			Function pin	Input pin	Function pin	Input pin	Function pin	Input pin	Function pin	Input pin	
P00-P07	D0-D7		ON upon		рш		рш	/ <	рш		
			external					()			
P10-P17	D8-D15		read (*1)					(\bigcirc)			
P40-P47	_	OFF					G				
P50-P57	—			ON	OFF	<	OFF(())	OFF		
P60-P67 P70(*2)	—		OFF				>//				
P71-P73	-						(\bigcirc)	>			
(*2)	—	ON					\bigcirc				
P74	INT0	0.11				6	ON		ON.		
	Oscillator		ON	OFF	ON	41	\sim	5			
P76	XT1 Port	OFF	OFF		OFF		OFF	$\widehat{\boldsymbol{\Sigma}}$	OFF		
P77	_		_		-	(7/s)		$(\bigcirc$			
P83	WAIT				OFF	(\bigcirc)	OFF 🛇		OFF		
PC0	TA0IN				$(\cap$						
PC1	INT1					\rightarrow	($\sim \sim$			
PC2	INT2				$\gamma($	\supset		$\langle \rangle$			
PC3	INT3					· ·		\mathcal{O}	ON		
PD0	INT4				\frown		$(7/\langle$				
PD1	INT5		ON	.(_)			
	TB1IN0				ON		$\backslash \backslash$		OFF		
PD2	INT6				\bigcirc	$\langle \langle \rangle$			ON		
	TB1IN1			(())		OFF		OFF	OFF	OFF	
PD3	INT7 RXD2	ON					\sim		ON		
	S <u>CLK2</u> ,		((\wedge		\land	ON				
PD4	CTS2				6						
PF0	_		OFF		OFE	$\langle \rangle$					
PF1	RXD0	\frown	$\left(\sqrt{3} \right)$	ON		\geq					
-	S <u>CLK0,</u>	$\langle \rangle$	ON		ON	~			OFF		
PF2	CTS0	$\langle \rangle_{r}^{\prime}$			$(\vee ())$						
PF3	-		OFF		OFF						
PF4	RXD1, HSSI										
PF5	SCLK1, CTS1		> ON		ΟŃ						
PG0-PG7	AN0-AN7(*3)	l.	OFF		OFF						
FG0-PG/	KI0-KI7	\sum	ON	\geq	ON		ON		ON		
PL0-PL2	AN8-AN10(*3)	OFF	OFF		OFF		OFF				
PL3	AN11(*3)										
	ADTRG	\land	$(\bigcirc$	γ							
PN0	SCK0			ワ							
PN1	SDA0	\geq	$\langle \rangle$						OFF		
PN2	SIO, SCLO	\sim									
PN3	SCK1						ON				
PN4	SDA1	ON	ON		ON						
PN5	SI1, SCL1										
NMI AM0,AM1	_								ON		
X1				—		-	OFF	-	OFF	-	
RESET							ON		ON		
INLOE1			od op A curro			1		1			

Table 3.3.7 Input Buffer State Table

ON: The buffer is always turned on. A current flows through the input *1: ON upon external read.

buffer if the input pin is not driven. OFF: The buffer is always turned off.

-: Not applicable

*2: Port having a pull-up/pull-down resistor.

*3: AIN input does not cause a current to flow through the buffer.

						utput Buffer S	tate					
	Output			e CPU is		T mode		In HALT mod	de (STOP) DRVE=0			
Port	Output Function	During		ating		.E1/2)		VE=1		VE=0		
Name	Name	During Reset	When used as Function pin	When used as Output pin	When used as Function pin	When used as Output pin	When used as Function pin	When used as Output pin	When used as Function pin	When used as Output pin		
P00-P07	D0-D7		ON upon					\geq				
P10-P17	D8-D15	OFF	external write (*1)		OFF		OFF	$(\bigcirc)^{2}$,			
P40-P47	A0-DA7							77				
P50-P57	A8-A15	ON		ON		ON	$>$ \lor	ON	OFF			
P60-P67	A16-A23	UN							OIT			
P70(*2)	RD		ON		ON			>				
P71(*2)	SRWR					6						
P72(*2)	SRLLB	OFF				λ		~	\frown			
P73(*2)	SRLUB											
P76	_		-	ON(*3)	-	ON(*3)	> -	ON(*3)	\rightarrow			
P77	XT2 Oscillator	OFF	ON	OFF	ON	(OFF)		OFE	\bigcirc			
	Port			ON(*3)	OFF	ON(*3)	_	ON(*3)	O			
P80	CS0,				a		(
	TA1OUT				$\langle \langle \rangle$	\triangleright	C	$\langle \rangle$				
P81	CS1,					>	$\overline{\mathbf{O}}$					
	TA3OUT	ON			$(\)$			\cap				
P82	CS2			AC			\sim		OFF			
P83			OFF		ON		ON		OIT	OFF		
PD0	TA5OUT			()								
PD0 PD2	TB0OUT0 TXD2			(\bigcirc)			\leq					
PD3	TB1OUT0		G			\land	\sim					
	TB1OUT1,				~							
PD4	SCLK2			\bigcirc		$\langle \rangle$						
PF0	TXD0		$(// \uparrow)$	ON		ON		ON				
PF1	_	$\langle \cap \rangle$			(\overline{A})		-		-			
PF2	SCLK0, CLK	$\left \left\langle \right\rangle \right _{r}$	OŃ		ON)	ON		OFF			
PF3	TXD1, HSSO	OFF	011				ON		OFF			
PF4	_		- \	$\langle -$	\rightarrow		-		-			
PF5	SCLK1, HSCLK		~									
PN0	SCK0	\sum	/	\geq	~							
PN1(*3)	SOO, SDA0	\bigcirc	4									
PN2(*3)	SCL0		ON		ON		ON		OFF			
PN3	SCK1	\land		γ								
PN4(*3)	SO1, SDA1		\sim	\mathcal{V}								
PN5(*3)	SCL1	2	\sim									
X2		ON		1		1	OFF	1				

Table 3.3.8 Output Buffer State Table

turned on. When the bus is The buffer is always released, however, output buffers for some pins are turned off.

OFF: The buffer is always turned off.

-: Not applicable

*2: Port having a pull-up resistor (programmable)

*3: Open-Drain output pin.

3.4 Interrupts

Interrupts are controlled by the CPU Interrupt mask register ${\rm <IFF2:0>}$ and by the built-in interrupt controller.

The TMP92FD23A has a total of 51 interrupts divided into the following five types:

Interrupts generated by CPU: 9 sources Software interrupts: 8 sources	
Illegal instruction interrupt: 1 source	
Internal interrupts: 33 sources Internal I/O interrupts: 25 sources	
Micro DMA transfer end interrupts: 8 sources	
External interrupts: 9 sources Interrupts on external pins (INT0 to INT7, NMI)	

A fixed individual interrupt vector number is assigned to each interrupt source.

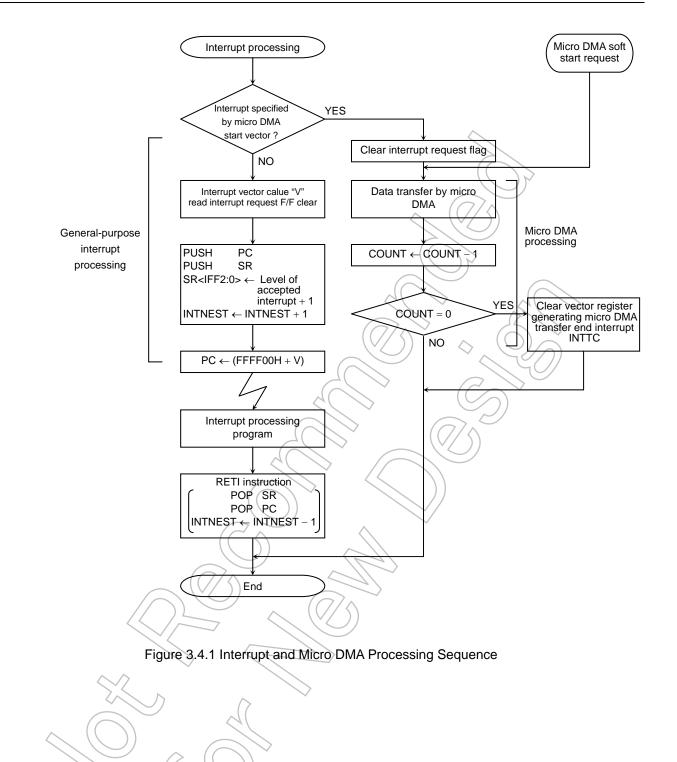
Any one of six levels of priority can also be assigned to each maskable interrupt. Non-maskable interrupts have a fixed priority level of 7, the highest level.

When an interrupt is generated, the interrupt controller sends the priority of that interrupt to the CPU. When more than one interrupt is generated simultaneously, the interrupt controller sends the priority value of the interrupt with the highest priority to the CPU. (The highest priority level is 7, the level used for non-maskable interrupts.)

The CPU compares the interrupt priority level which it receives with the value held in the CPU interrupt mask register <IFF2:0>. If the priority level of the interrupt is greater than or equal to the value in the interrupt mask register, the CPU accepts the interrupt.

However, software interrupts and illegal instruction interrupts generated by the CPU are processed irrespective of the value in <IFF2:0>.

The value in the interrupt mask register <IFF2:0> can be changed using the EI instruction (EI num sets <IFF2:0> to num). For example, the command EI 3 enables the acceptance of all non-maskable interrupts and of maskable interrupts whose priority level, as set in the interrupt controller, is 3 or higher. The commands EI and EI 0 enable the acceptance of all non-maskable interrupts and of maskable interrupts with a priority level of 1 or above (hence both are equivalent to the command EI 1).


The DI instruction (sets <IFF2:0> to 7) is exactly equivalent to the EI 7 instruction. The DI instruction is used to disable all maskable interrupts (since the priority level for maskable interrupts ranges from 1 to 6). The EI instruction takes effect as soon as it is executed.

In addition to the general purpose interrupt processing mode described above, there is also a micro DMA processing mode.

In micro DMA mode the CPU automatically transfers data in one-byte, two-byte or four-byte blocks; this mode allows high-speed data transfer to and from internal and external memory and internal I/O ports.

In addition, the TMP92FD23A also has a software start function in which micro DMA processing is requested in software rather than by an interrupt.

Figure 3.4.1 is a flowchart showing overall interrupt processing.

3.4.1 General-purpose Interrupt Processing

When the CPU accepts an interrupt, it usually performs the following sequence of operations. However, in the case of software interrupts and illegal instruction interrupts generated by the CPU, the CPU skips steps (1) and (3), and executes only steps (2), (4) and (5).

(1) The CPU reads the interrupt vector from the interrupt controller.

When more than one interrupt with the same priority level has been generated simultaneously, the interrupt controller generates an interrupt vector in accordance with the default priority and clears the interrupt requests.

(The default priority is determined as follows: the smaller the vector value, the higher the priority.)

- (2) The CPU pushes the program counter (PC) and status register (SR) onto the top of the stack (pointed to by XSP).
- (3) The CPU sets the value of the CPU's interrupt mask register <IFF2:0> to the priority level for the accepted interrupt plus 1. However, if the priority level for the accepted interrupt is 7, the register's value is set to 7.
- (4) The CPU increments the interrupt nesting counter INTNEST by 1
- (5) The CPU jumps to the address given by adding the contents of address FFFF00H + the interrupt vector, then starts the interrupt processing routine.

On completion of interrupt processing, the RETI instruction is used to return control to the main routine. RETI restores the contents of the program counter and the status register from the stack and decrements the interrupt nesting counter INTNEST by 1.

Non-maskable interrupts cannot be disabled by a user program. Maskable interrupts, however, can be enabled or disabled by a user program. A program can set the priority level for each interrupt source. (A priority level setting of 0 or 7 will disable an interrupt request.)

If an interrupt request is received for an interrupt with a priority level equal to or greater than the value set in the CPU interrupt mask register <IFF2:0>, the CPU will accept the interrupt. The CPU interrupt mask register <IFF2:0> is then set to the value of the priority level for the accepted interrupt plus 1.

If during interrupt processing, an interrupt is generated with a higher priority than the interrupt currently being processed, or if, during the processing of a non-maskable interrupt processing, a non-maskable interrupt request is generated from another source, the CPU will suspend the routine which it is currently executing and accept the new interrupt. When processing of the new interrupt has been completed, the CPU will resume processing of the suspended interrupt.

If the CPU receives another interrupt request while performing processing steps (1) to (5), the new interrupt will be sampled immediately after execution of the first instruction of its interrupt processing routine. Specifying DI as the start instruction disables nesting of maskable interrupts.

A reset initializes the interrupt mask register ${\rm <IFF2:0>}$ to 111, disabling all maskable interrupts.

Table 3.4.1 shows the TMP92FD23A interrupt vectors and micro DMA start vectors. FFFF00H to FFFFFFH (256 bytes) is designated as the interrupt vector area.

1 2 3		Micro DMA Request	Value	to Vector	Start Vector
2 3		Reset or [SWI0] instruction	0000H	FFFF00H	
3	-	[SWI1] instruction	0000H	✓ FFFF04H	
	-	Illegal instruction or [SWI2] instruction	000411 0008H	FFFF08H	
4	-	[SWI3] instruction	000011 000CH	FFFEOCH	
	Non-	[SWI4] instruction	000CI1	FEFF10H	
<u> </u>	maskable	[SWI5] instruction	0010H	FFFF14H	
7		[SWI6] instruction	<001411	FFFF18H	
8	-	[SWI7] instruction	0010H	FFFF1CH	
9	-	NMI: External interrupt input pin	001011 0020H	FFF20H	
10	-	INTWD: Watchdog Timer	002011 0024H	FFFF24H	
10		Micro DMA	002411		- (Note1)
11	-	INTO: INTO pin input	0028H	FFFF28H	OAH (Note 2)
12	-	INT1: INT1 pin input	0020H	FFFF2CH	0BH (Note 2)
12	-	INT2: INT2 pin input	002CH	FFFF30H	0CH (Note 2)
13	F	INT3: INT3 pin input	0030H	FFFF34H	0CH (Note 2) 0DH (Note 2)
14	-	INT4: INT4 pin input	0034H 0038H	FFFF34H	0DH (Note 2) 0EH (Note 2)
16	-	INT5: INT5 pin input	0030H	FFFF3CH	0FH (Note 2)
17	-	INT6: INT6 pin input	0040H	FFFF40H	10H (Note 2)
17	-	INT7: INT7 pin input	004011 0044H	PFFF40H	11H (Note 2)
19	-	INTTA0: 8-bit timer 0	004411	FFFF48H	12H
20	-	INTTA: 8-bit timer 1	00400 004CH	FFFF4CH	12H
20	-	INTTA: 8-bit timer 2	004CH	FFF50H	1311 14H
21	-	INTTA2: 8-bit timer 3	0050H	FFF54H	14H 15H
22	-	INTTA4: 8-bit timer 4	005411 0058H	FFF58H	16H
24	-	INTTA5: 8-bit timer 5	005CH	FFF5CH	1011 17H
25	-	(Reserved)	0050H	FFF60H	18H
26	-	(Reserved)	0064H	FFFF64H	10H
20	-	INTRX0: Serial receive (Channel 0)	0068H	FFFF68H	1AH (Note 2)
28	-	INTTX0: Serial transmission (Channel 0)	006CH	FFFF6CH	1BH
29	-	INTRX1: Serial receive (Channel 1)	000011 0070H	FFF70H	1CH (Note 2)
	Maskable	INTTX1: Serial transmission (Channel 1) INTHSC: High speed serial	0074H	FFFF74H	1DH
31	-	INTRX2: Serial receive (Channel 2)	0078H	FFFF78H	1EH (Note 2)
31	~	INTTX2: Serial transmission (Channel 2)	007811 007CH	FFFF7CH	1FH
33		(Reserved)	0080H	FFFF80H	20H
34	$\langle \rangle$	(Reserved)	0084H	FFFF84H	2011 21H
35	\square	INTNSBE0: SBI0 I2Cbus transfer end	0088H	FFFF88H	2111 22H
36	/ / /	(Reserved)	008CH	FFFF8CH	23H
37		INTNSBE1: SBI1 I2Cbus transfer end	0090H	FFFF90H	24H
38		(Reserved)	0094H	FFFF94H	25H
39	\sim	(Reserved)	0098H	FFFF98H	26H
40	\searrow	(Reserved)	009CH	FFFF9CH	27H
41	-	(Reserved)	00A0H	FFFFA0H	28H
42	ŀ	(Reserved)	00A4H	FFFFA4H	29H
43	ŀ	INTTB00: 16-bit timer 0	00A8H	FFFFA8H	2AH
44	ŀ	INTTB01: 16-bit timer 0	00ACH	FFFFACH	2BH
45	ŀ	INTTBO0: 16-bit timer 0 (Overflow)	00B0H	FFFFB0H	2CH
46	ŀ	INTTB10: 16-bit timer 1	00B4H	FFFFB4H	2DH
40	-	INTTB11: 16-bit timer 1	00B4H	FFFFB8H	2EH
48	-	INTTBO1: 16-bit timer 1 (Overflow)	00BCH	FFFFBCH	2FH
49	F	INTAD: AD conversion end	00C0H	FFFFC0H	30H

Table 3.4.1 TMP92FD23A Interrupt Vectors and Micro DMA Start Vectors

TOSHIBA

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value	Address Refer to Vector	Micro DMA Start Vector
50		INTP0: Protect 0 (Write to SFR)	00C4H	FFFFC4H	31H
51		INTRTC: Special timer for CLOCK	00C8H	FFFFC8H	32H
52		(Reserved)	00CCH	FFFFCCH	33H
53		INTTC0: Micro DMA end (Channel 0)	00D0H	FFFFD0H	34H
54		INTTC1: Micro DMA end (Channel 1)	00D4H	FFFFD4H	35H
55		INTTC2: Micro DMA end (Channel 2)	00D8H	(FFFFD8H	36H
56	Maskable	INTTC3: Micro DMA end (Channel 3)	00DCH	FFFFDCH	37H
57	Mashabio	INTTC4: Micro DMA end (Channel 4)	00E0H	FFFE0H	38H
58		INTTC5: Micro DMA end (Channel 5)	00E4H	FFFFE4H	39H
59		INTTC6: Micro DMA end (Channel 6)	00E8H	FFFFE8H	3AH
60		INTTC7: Micro DMA end (Channel 7)	00ECH	FFFECH	3BH
-			00F0H	FFFFF0H	-
to		(Reserved)		:	to
-			00FCH	FFFFFCH	> -

Note 1: When initiating micro DMA, set at edge detect mode.

Note 2: Micro DMA default priority.

Micro DMA initiation takes priority over other maskable interrupts.

Note 3: Specify the HSCSEL register when selecting INTTX1 or INTHSC that have the same interrupt factor in the default priority 30.

3.4.2 Micro DMA Processing

In addition to general purpose interrupt processing, the TMP92FD23A also includes a micro DMA function. Micro DMA processing for interrupt requests set by micro DMA is performed at the highest priority level for maskable interrupts (level 6), regardless of the priority level of the interrupt source.

Because the micro DMA function is implemented through the CPU, when the CPU is placed in a stand-by state by a Halt instruction, the requirements of the micro DMA will be ignored (pending).

Micro DMA supports 8 channels and can be transferred continuously by specifying the micro DMA burst function as below.

(1) Micro DMA operation

When an interrupt request is generated by an interrupt source specified by the micro DMA start vector register, the micro DMA triggers a micro DMA request to the CPU at interrupt priority level 6 and starts processing the request. The eight micro DMA channels allow micro DMA processing to be set for up to eight types of interrupt at once.

When micro DMA is accepted, the interrupt request flip-flop assigned to that channel is cleared. Data in one-byte, two-byte or four-byte blocks, is automatically transferred at once from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decremented by 1. If the value of the counter after it has been decremented is not 0, DMA processing ends with no change in the value of the micro DMA start vector register. If the value of the decremented counter is 0, a micro DMA transfer end interrupt (INTTCO to INTTC7) is sent from the CPU to the interrupt controller. In addition, the micro DMA start vector register is cleared to 0, the next micro DMA operation is disabled and micro DMA processing terminates.

If micro DMA requests are set simultaneously for more than one channel, priority is not based on the interrupt priority level but on the channel number: the lower the channel number, the higher the priority (channel 0 thus has the highest priority and channel 7 the lowest).

If an interrupt request is triggered for the interrupt source in use during the interval between the time at which the micro DMA start vector is cleared and the next setting, general purpose interrupt processing is performed at the interrupt level set. Therefore, if the interrupt is only being used to initiate micro DMA (and not as a general-purpose interrupt), the interrupt level should first be set to 0 (i.e., interrupt requests should be disabled).

If using micro DMA and general-purpose interrupts together, first set the level of the interrupt used to start micro DMA processing lower than all the other interrupt levels. (Note) In this case, the cause of general interrupt is limited to the edge interrupt.

The priority of the micro DMA transfer end interrupt (INTTC0 to INTTC3) is defined by the interrupt level and the default priority as the same as the other maskable interrupt.

Note: If the priority level of micro DMA is set higher than that of other interrupts, CPU operates as follows. In case INTxxx interrupt is generated first and then INTyyy interrupt is generated between checking "Interrupt specified by micro DMA start vector" (in the Figure 3.4.1) and reading interrupt vector with setting below. The vector shifts to that of INTyyy at the time.

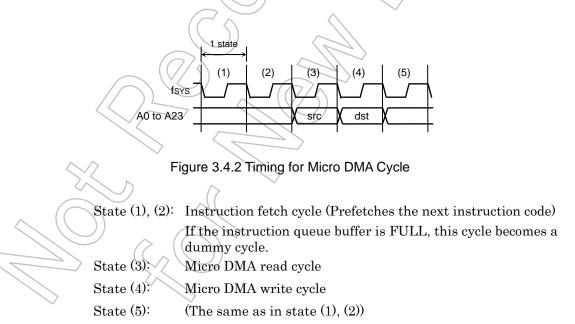
This is because the priority level of INTyyy is higher than that of INTxxx.

In the interrupt routine, CPU reads the vector of INTyyy because cheking of micro DMA has finished.

And INTyyy is generated regardless of transfer counter of micro DMA.

- INTxxx: level 1 without micro DMA
- INTyyy: level 6 with micro DMA

If micro DMA and general purpose interrupts are being used together as described above, the level of the interrupt which is being used to initiate micro DMA processing should first be set to a lower value than all the other interrupt levels. In this case, edge triggered interrupts are the only kinds of general interrupts which can be accepted.


Although the control registers used for setting the transfer source and transfer destination addresses are 32 bits wide, this type of register can only output 24-bit addresses. Accordingly, micro DMA can only access 16 Mbytes.

Three micro DMA transfer modes are supported: one-byte transfers, two-byte transfer and four-byte transfer. After a transfer in any mode, the transfer source and transfer destination addresses will either be incremented or decremented, or will remain unchanged. This simplifies the transfer of data from memory to memory, from I/O to memory, from memory to I/O, and from I/O to I/O. For details of the various transfer modes, see section 3.4.2 (4), detailed description of the transfer mode register.

Since a transfer counter is a 16-bit counter, up to 65536 micro DMA processing operations can be performed per interrupt source (provided that the transfer counter for the source is initially set to 0000H).

Micro DMA processing can be initiated by any one of 40 different interrupts – the 39 interrupts shown in the micro DMA start vectors in Table 3.4.1 and a micro DMA soft start.

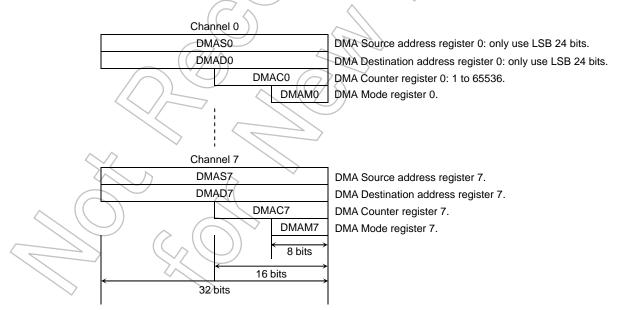
Figure 3.4.2 shows a 2-byte transfer carried out using a micro DMA cycle in transfer destination address INC mode (micro DMA transfers are the same in every mode except counter mode). (The conditions for this cycle are as follows: this cycle is based on an external 8-bit bus, 0 waits, source/transfer destination addresses both even-numbered values.)

(2) Soft start function

The TMP92FD23A can initiate micro DMA either with an interrupt or by using the micro DMA soft start function, in which micro DMA is initiated by a write cycle which writes to the register DMAR.

Writing 1 to any bit of the register DMAR causes micro DMA to be performed once (If write "0" to each bit, micro DMA doesn't operate). On completion of the transfer, the bits of DMAR which support the end channel are automatically cleared to 0.

Only one channel can be set for DMA request at once. (Do not write 1 to plural bits)


When writing again 1 to the DMAR register, check whether the bit is 0 before writing 1. If read "1", micro DMA transfer isn't started yet.

When a burst is specified by the register DMAB, data is transferred continuously from the initiation of micro DMA until the value in the micro DMA transfer counter is 0 after start up of the micro DMA. If execute soft start during micro DMA transfer by interrupt source, micro DMA transfer counter doesn't change. Don't use Read-modify-write instruction to avoid writing to other bits by mistake.

Symbol	Name	Address	7	6	5	(4)	3 <	20)	0
		40011	DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0
DMAR	DMA	109H (Drobibit			20	R/	W	\supset	U	
DIVIAIN	Request	(Prohibit RMW)	0	0	0	0	o ((θ	0	0
		,				DMA reque	est in softwa	re		

(3) Transfer control registers

The transfer source address and the transfer destination address are set in the following registers. An instruction of the form LDC cr, r can be used to set these registers.

	Mode DMAM0 to DMAM7	
DMAMn[4:0]	Mode Description	Execution State Number
0 0 0 z z	Destination INC mode $(DMADn+) \leftarrow (DMASn)$ $DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INTTCn	5 states
0 0 1 z z	Destination DEC mode $(DMADn-) \leftarrow (DMASn)$ $DMACn \leftarrow DMACn - 1$ if DMACn = 0 then INTTCn	5 states
0 1 0 z z	Source INC mode $(DMADn) \leftarrow (DMASn+)$ $DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INTTCn	5 states
0 1 1 z z	Source DEC mode $(DMADn) \leftarrow (DMASn-)$ $DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INTTCn	5 states
1 0 0 z z	Source and destination INC mode $(DMADn+) \leftarrow (DMASn+)$ $DMACn \leftarrow DMACn - 1$ If DMACn = 0 then INTTCn	6 states
1 0 1 z z	Source and destination DEC mode $(DMADn-) \leftarrow (DMASn-)$ $DMACn \leftarrow DMACn - 1$ If DMACn = 0 then INTTCn	6 states
1 1 0 z z	Source and destination Fixed mode (DMADn) ← (DMASn) DMACn ← DMACn – 1 If DMACn = 0 then INTTCn	5 states
11100	Counter mode DMASn \leftarrow DMASn + 1 DMACn \leftarrow DMACn - 1 if DMACn = 0 then INTTCn	5 states

(4) Detailed description of the transfer mode register

ZZ: 00 = 1-byte transfer 01 = 2-byte transfer 10 = 4-byte transfer 11 = (Reserved)

Note1: The execution state number shows number of best case (1-state memory access). 1state = 50ns at $f_{SYS} = 20MHz$

Note2: N stands for the micro DMA channel number (0 to 7)

DMADn+/DMASn+: Post-increment (register value is incremented after transfer) DMADn-/DMASn-: Post-decrement (register value is decremented after transfer) "I/Q" signifies fixed memory addresses: "memory" signifies incremented or decremented m

"I/O" signifies fixed memory addresses; "memory" signifies incremented or decremented memory addresses.

Note3: The transfer mode register should not be set to any value other than those listed above.

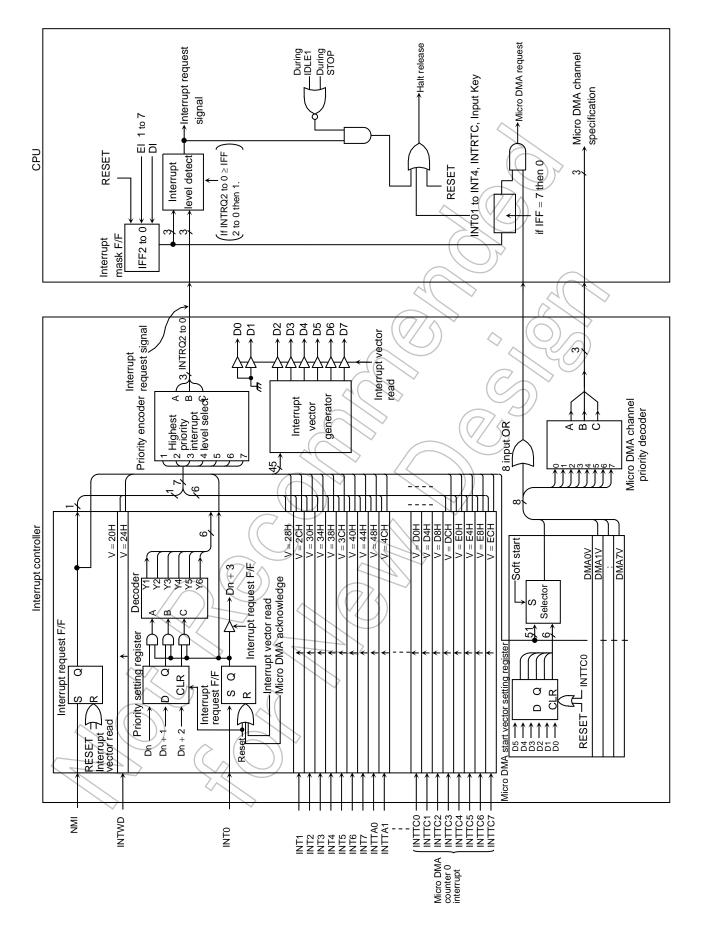
3.4.3 Interrupt Controller Operation

The block diagram in Figure 3.4.3 shows the interrupt circuits. The left hand side of the diagram shows the interrupt controller circuit. The right hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each of the 50 interrupts channels there is an interrupt request flag (consisting of a flip-flop), an interrupt priority setting register and a micro DMA start vector register.

The interrupt request flag latches interrupt requests from the peripherals. The flag is cleared to 0 in the following cases: when a reset occurs, when the CPU reads the channel vector of an interrupt it has received, when the CPU receives a micro DMA request (when micro DMA is set), when a micro DMA burst transfer is terminated, and when an instruction that clears the interrupt for that channel is executed (by writing a micro DMA start vector to the INTCLR register).

An interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g., INTEPAD or INTEO1). 6 interrupt priorities levels (1 to 6) are provided. Setting an interrupt source's priority level to 0 (or 7) disables interrupt requests from that source. The priority of non-maskable interrupt (watchdog timer interrupts) is fixed at 7.


If more than one interrupt request with a given priority level are generated simultaneously, the default priority (the interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request is accepted first.

The 3rd and 7th bit of the interrupt priority setting register indicate the state of the interrupt request flag and thus whether an interrupt request for a given channel has occurred.

If several interrupts are generated simultaneously, the interrupt controller sends the interrupt request for the interrupt with the highest priority and the interrupt's vector address to the CPU. The CPU compares the mask value set in $\langle IFF2:0 \rangle$ of the status register (SR) with the priority level of the requested interrupt; if the latter is higher, the interrupt is accepted. Then the CPU sets SR $\langle IFF2:0 \rangle$ to the priority level of the accepted interrupt, new interrupt requests with a priority value equal to or higher than the value set in SR $\langle IFF2:0 \rangle$ (e.g., interrupts with a priority higher than the interrupt being processed) will be accepted.

When interrupt processing has been completed (e.g., after execution of a RETI instruction), the CPU restores to SR<IFF2:0> the priority value which was saved on the stack before the interrupt was generated.

The interrupt controller also includes eight registers which are used to store the micro DMA start vector. Writing the start vector of the interrupt source for the micro DMA processing (see Table 3.4.1), enables the corresponding interrupts to be processed by micro DMA processing. The values must be set in the micro DMA parameter registers (e.g., DMAS and DMAD) prior to micro DMA processing.

TMP92FD23A

Figure 3.4.3 Block Diagram of Interrupt Controller

	(1) Ir	iterrupt l	evel settir	ng regist	ers						
Symbol	Name	Address	7	6		5	4	3	2	1	0
					INT1			INTO			
	INT0 &		I1C	I1M2	1	M1	I1M0	I0C	10M2	I0M1	IOMO
INTE01	INT1	00D0H	R		R	/W		R		R/W	
	Enable		0	0		0	0	0 <	0	0	0
			1:INT1	Int	errupt re	equest leve	el	1:INT0	Inter	rupt request	level
					NT3					T2	
	INT2&		I3C	I3M2	13	M1	I3M0	I2C	12M2	I2M1	I2M0
INTE23	INT3	00D1H	R		R	/W		R		R/W	
	Enable		0	0		0	0 <	o))0	0	0
			1:INT3	Int	errupt re	equest leve	el	1:INT2	Inter	rupt request	level
					NT5			$\left(\left(\right) \right)$	> IN	T4	
	INT4&		I5C	I5M2	15	M1	I5M0	14C	I4M2	I4M1	I4M0
INTE45	INT5	00D2H	R		R	/W	.((R	(RAW	
	Enable		0	0		0	0	0	0 <	0	0
			1:INT5	Int	errupt re	equest levé		1:INT4	Inter	rupt request	level
					NT7	((// 5)	\sim		T6	
	INT6&		I7C	I7M2	17	M1	17M0	16C	(6M2)	J6M1	16M0
INTE67	INT7	00D3H	R		R	/w(R	$\sum \int \int$	R/W	
	Enable		0	0		0	0	0 ((0	0	0
			1:INT7	Int	errupt re	equest leve	el	1:INT6	Inter	rupt request	level
				INTTA	1(TMR/	(m)		\square	INTTA0	TMRA0)	
	INTTA0 &		ITA1C	ITA1M2			TA1M0	ITA0C) ITA0M2	ITA0M1	ITA0M0
INTETA01	INTTA1	00D4H	R	7	R	7W	\square	R		R/W	
	Enable		0	0		õ <	4	0	0	0	0
			1: INTTA1 Interrupt request level					1:INTTA0	Inter	rupt request	level
		3 00D5H		INTTA	INTTA3(TMRA3)			\leq	INTTA2	TMRA2)	
	INTTA2 &		ITA3C			ITA3M1 ITA3M0 R/W		ITA2C	ITA2M2	ITA2M1	ITA2M0
INTETA23	INTTA3		R ((R		R/W	
	Enable		0			0 0		0	0	0	0
			1: INTTA3	Int	errupt re	equest leve	я	1:INTTA2 Interrupt request level			
				INTTA	5(TMRA	A5)	~	INTTA4(TMRA4)			
	INTTA4 &		ITA5C	ITA5M2	TA	5M1)) IT	TA5M0	ITA4C	ITA4M2	ITA4M1	ITA4M0
INTETA45	INTTA5	00D6H	R		R	AW .		R		R/W	
	Enable		0	0	\rightarrow	0	0	0	0	0	0
			1: INTTA5	Int	errupt re	equest leve	el	1: INTTA4	Inter	rupt request	level
	\sim	2	<u> </u>		\rightarrow	1		·	- ·	1	
	4	\bigtriangledown	•	\wedge	~						
	\square	\sim	<	$\mathcal{I}($		•					
\sim))									
)	> (V V V	xM2	IxxM1	lxxI/	10	Functio	on (Write)	
$\langle -$	\rightarrow	(ノノ 🗖	0	0	0	Disable	es interrupt re		
		0		0	1		terrupt priorit	•			
					0	1	0		terrupt priorit	-	
Interr	↓ ✓ Interrupt request flag				0	1	1	Sets in	terrupt priorit	y level to 3	
interi	interrupt request hag				1	0	0		terrupt priorit	-	
						0	1		terrupt priorit	-	
					1	1	0		terrupt priorit		
					1	1	1	Disable	es interrupt re	quests	

(1) Interrupt level setting registers

Symbol	Name	Address	7	6	5	4	3	2	1	0		
				INT	TX0			INTRX0				
	INTRX0 &		ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0		
INTES0	INTTX0	00D8H	R		R/W		R		R/W			
	Enable		0	0	0	0	0	0	0	0		
			1:INTTX0	Inter	rupt request	level	1:INTRX0	Inter	rupt request	level		
				INTTX1/I	NTHSC			INTE	RX1			
	INTRX1 &		ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0		
INTES1HSC	INTTX1/ INTHSC	00D9H	R		R/W		R		R/W			
	Enable		0	0	0	0	0(7	0	0	0		
	LIIADIe		1:INTTX1	Inter	rupt request	level	1:INTRX1) Inter	rupt request	level		
				INT	ГХ2			INTE	RX2			
	INTRX2 &		ITX2C	ITX2M2	ITX2M1	ITX2M0	IRX2C	IRX2M2	IRX2M1	IRX2M0		
INTES2	INTTX2	00DAH	R		R/W		R		R/W			
	Enable		0	0	0	0	Q	0	0	0		
			1:INTTX2	Inter	rupt request	level	1:INTRX2	Inter	rupt request	level		
				_		\square	\searrow	INTS				
			_	_	_		ISBE0C	ISBE0M2	/ISBE0M1	ISBE0M0		
INTESB0	INTSBE0	00DCH	_		- 6		R	AV	R/W			
	Enable		_	_	(0	2 0	0	0		
				Always	write 0		1:INTSBE0	Inter	rupt request	level		
				-		\sim						
			-	-		- 1	ISBE1C	ISBE1M2	ISBE1M1	ISBE1M0		
INTESB1	INTSBE1	00DDH	_	G	$\sqrt{-2}$)	R/W			
	Enable		_	-4(1	0	0	0	0		
				Always	write 0	$\langle \langle \rangle$	1:INTSBE1	Inter	rupt request	level		
				INTTB01	~			INTTB00(
	INTTB00 &		ITB01C	ITB01M2	· · · · ·	ITB01M0	ITB00C	ITB00M2	ITB00M1	ITB00M0		
INTETB0	INTTB01	00E0H	R		R/W	\land	R		R/W			
	Enable		0)0	0 /	a	0	0	0	0		
			1:INTTB01	Inter	rupt request	level	1:INTTB00	Inter	rupt request	level		
			((7/5))) –	\sim	1/2		INTTBO0				
	INTTBO0			-		-	ITBO0C	ITBO0M2	ITBO0M1	ITBO0M0		
INTETBO0	(Overflow)	00E1H		\sim)	R		R/W			
	Enable			`	$\overline{)}$	_	0	0	0	0		
				Always	write 0		1:INTTBO0	-	rupt request	-		
			\sim	INTTB11				INTTB10				
	INTTB10 &	2	ITB11C	ITB11M2	ITB11M1	ITB11M0	ITB10C	ITB10M2	ITB10M1	ITB10M0		
INTETB1	INTTB11	00E2H	R	\wedge	R/W		R		R/W			
	Enable		0 <	0	0	0	0	0	0	0		
\sim			1:INTTB11		rupt request		1:INTTB10		rupt request			
	$\mathcal{D}\mathcal{D}$	9 /	$\rightarrow (\frown)$						1			
			\square))								
				/								
			\sim		T							

\searrow				
	lxxM2	IxxM1	lxxM0	Function (Write)
	0	0	0	Disables interrupt requests
	0	0	1	Sets interrupt priority level to 1
	0	1	0	Sets interrupt priority level to 2
	0	1	1	Sets interrupt priority level to 3
	1	0	0	Sets interrupt priority level to 4
	1	0	1	Sets interrupt priority level to 5
	1	1	0	Sets interrupt priority level to 6
	1	1	1	Disables interrupt requests

Interrupt request flag

Symbol	Name	Address	7	6		5	4	3		2	1	0
					_					INTTBO1((MRB1)	
	INTTBO1		_	_		_	_	ITBO ⁻	1C	ITBO1M2	ITBO1M1	ITBO1M0
INTETBO1	(Overflow)	00E3H	_					R			R/W	
_	Enable		_	_		_	_	0		0	0	0
				ΔΙωαν	s write 0)		1:INTTI	BO1		upt request le	
					ITP0	,		1	001	INTA		
	INTP0 &		IP0C	IP0M2		DM1	IP0M0	IAD	^	ADM2	IADM1	IADM0
INTEPAD	INTED &	00E4H	R	11 01012	R/			R	5		R/W	IADIVIO
	Enable	002411	0	0		0	0		(O	70	0	0
	2.10.010		-					1:INT				
			1:INTP0	IIIte	errupt ree	questie	VEI	1.0017			upt request le	evei
				_	_		_	IRG	\rightarrow	INTR [®] IRM2	IRM1	IRM0
INTERTC	INTRTC	00E5H		_		_				IRM2	-	IRIVIU
INTERIO	Enable	002511			_		(R	>	0 1	R/W	0
			_		s write 0		-	1:INTR			upt request le	
)	$\overline{(\overline{\alpha})}$					evei
	NMI &		INCNM		IMI		VE					
INTNMWDT	INIVII &	00EFH	R			- 6		R	עי		<u>×//</u>	-
	Enable	UULFII	0 R		-		\rightarrow			\rightarrow		
				_	Always		5					-
			1: NMI		Always		~	1:INTV		101	ways write 0	
	INTTC0 &		ITC4C		1(DMA1			ITCO	2/1			
INTETC01	INTTC0 &	00F0H	ITC1C R	ITC1M2	R	~	ITC1M0	ITC0 R	$\overline{\mathbf{v}}$	ITC0M2	ITC0M1 R/W	ITC0M0
INTEICOT	Enable	001011	0 R	0		0	0			0	0	0
	Enable		1:INTTC1		errupt ree	•	<u> </u>	1:INTT	<u> </u>		upt request le	
			1.1111101		3(DMA3		vei		00			evei
	INTTC2 &		ITC3C				ЛСЗМ0	ITC2	C	INTTC2(E ITC2M2	ITC2M1	ITC2M0
INTETC23	INTTC2 &	00F1H	R		R/		nesivio	R	.0	TI GZIVIZ	R/W	TT CZIVIU
111121020	Enable	001 111	0			0 1	$\overline{)}$	0		0	0	0
			1:INTTC3		errupt ree			1:INTT	- <u>C</u> 2	-	upt request le	
					5(DMA5	-		1.11411	02	INTTC4(E		
	INTTC4 &		ITC5C	ITC5M2			ITC5M0	ITC4	C	ITC4M2	ITC4M1	ITC4M0
INTETC45		00F2H		TTOOM2		6 7 1	11001110	R	0	TIOTINE	R/W	110-1110
	Enable			_0_	/	0	0	0		0	0	0
			1:INTTC5		errupt ree	<u> </u>		1:INTT	C4		upt request le	
	\sim		1		7(DMA7		101		01	INTTC6(E		
	INTTC6 &	$\leq \sim$	ITC7C	ATC7M2			ITC7M0	ITC6	C.	ITC6M2	ITC6M1	ITC6M0
INTETC67	INTTC7	00F3H	R		R/		1101110	R	Ū	TTOOINE	R/W	TT Collie
~	Enable	\sim	0	0		0	0	0		0	0	0
	\mathcal{A}	ノ	1:INTTC7	1	errupt ree	-		1:INTT	C6		upt request le	
		(\rightarrow		1	-				1	
			\times	9								
	\geq					↓						
	\searrow		\sim									
				h	xM2	* IxxN	11 Ixx	(MO		Functio	n (Write)	
				<u> </u>	0	0)isahl	es interrupt re	. ,	
					0	0				terrupt priority	•	
					0	1				terrupt priority		
	↓				0	1				terrupt priority		
Interrup	t request flag)			1	0				terrupt priority		
					1	0				terrupt priority		
					1	1		0 S	Sets in	terrupt priority	v level to 6	
					1	1		1 C	Disabl	es interrupt ree	quests	

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			/	/	/	/	/	/	/	NMIREE	
		00F6H	\backslash			\sim	\sim	\sim	\sim	W	
	Interrupt		\sim	\sim		\sim	\sim	\sim	\sim	0	
IIMC	Input	(Prohibit								NMI	
	mode	RMW)						(\bigcirc)		0:Falling	
	Control	,							Y	1:Falling	
							6	77~		and	
							\land ()	(/ 5)		Rising	
			I7LE	I6LE	I5LE	I4LE	I3LE	12LE	I1LE	IOLE	
	Interrupt	00FAH				١	N(>			
IIMC2	Input	nput node (Prohibit RMW)	0	0	0	0	0	0	0	0	
mmoz	mode		INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0	
	Control2	,	0:Edge	0:Edge	0:Edge	0:Edge	0:Edge	0:Edge	0:Edge	0:Edge	
			1:Level	1:Level	1:Level	1:Level	1;Level	1:Level	1:Level	1:Level	
			17EDGE	I6EDGE	15EDGE	I4EDGE	I3EDGE	I2EDGE	I1EDGE	10EDGE	
	Interrupt	00FBH	0	0	0	0	0	0	6	0	
IIMC3	Input	(Prohibit	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0	
	mode	RMW)	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	
	Control3	,	/High	/High	High	/High	/High	/High	/High	/High	
			1: Falling	1: Falling	1: Falling	1: Falling	1: Falling	1: Falling	1: Falling	1: Falling	
			/Low	/Low	Low	/Low	Low	/Low	/Low	/Low	
	La farman f	005014	CLRV7	CLRV6	CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0	
INTCLR	Interrupt Clear	00F8H			\sim		N))				
	Control	(Prohibit RMW)	0		0	0	0	0	0	0	
		,	(A	lear the inte	rrupt reques	st flag by the	writing of a	micro DMA	starting vect	or	

(2) External interrupt control

Note 1: Disable INT0 to INT7 requests before changing INT0 to INT7 pins mode from level sense to edge sense.

Setting example for case of INTO:

DI LD (IIMC2) ,XXXXXX0-B

LD (INTCLR), 0AH

NOP

NOP NOP EI Change from "level" to "edge". Clear interrupt request flag.

Wait EI execution.

X: Don't care, -: No change

Note 2:

See electrical characteristics in section 4 for external interrupt input pulse width.

Note 3: In a setup of a port, when choosing a 16-bit timer input and performing capture control, INT5 and INT6 operate not according to a setup of IIMC2 and IIMC3 register but according to a setup of TB1MOD<TB1CPM1:0>.

Interrupt PinShared PinModeSetting MethodINT0P74 \int Rising edgeIIMC2 <i0le> = 0, IIMC3<i0edge> = 0\neg Falling edgeIIMC2<i0le> = 0, IIMC3<i0edge> = 1\neg High levelIIMC2<i0le> = 1, IIMC3<i0edge> = 0\neg Low levelIIMC2<i0le> = 1, IIMC3<i0edge> = 1INT1PC1\int Rising edgeIIMC2<i1le> = 0, IIMC3<i1edge> = 1\neg High levelIIMC2<i1le> = 0, IIMC3<i1edge> = 1\neg High levelIIMC2<i1le> = 0, IIMC3<i1edge> = 1\neg High levelIIMC2<i1le> = 1, IIMC3<i1edge> = 1\neg Rising edgeIIMC2<i1le> = 0, IIMC3<i1edge> = 1\neg Rising edgeIIMC2<i1le> = 0, IIMC3<i1edge> = 1\neg Rising edgeIIMC2<i2le> = 0, IIMC3<i2edge> = 1</i2edge></i2le></i1edge></i1le></i1edge></i1le></i1edge></i1le></i1edge></i1le></i1edge></i1le></i1edge></i1le></i1edge></i1le></i1edge></i1le></i1edge></i1le></i1edge></i1le></i0edge></i0le></i0edge></i0le></i0edge></i0le></i0edge></i0le>	
INTO P74 $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
INT0P74 $\overrightarrow{}$ High levelIIMC2 <i0le> = 1, IIMC3<i0edge> = 0IMC2<i0le> = 1, IIMC3<i0edge> = 1IIMC2<i0le> = 1, IIMC3<i0edge> = 1IIMC2<i0le> = 1, IIMC3<i0edge> = 1INT1PC1$\overrightarrow{}$ Rising edgeIIMC2<i1le> = 0, IIMC3<i1edge> = 0INT1PC1$\overrightarrow{}$ Falling edgeIIMC2<i1le> = 0, IIMC3<i1edge> = 1INT1IMC2<i1le> = 1, IIMC3<i1edge> = 1$\overrightarrow{}$ Low levelIIMC2<i1le> = 1, IIMC3<i1edge> = 1</i1edge></i1le></i1edge></i1le></i1edge></i1le></i1edge></i1le></i0edge></i0le></i0edge></i0le></i0edge></i0le></i0edge></i0le>	
IIMC2 <i0le> = 1, IIMC3<i0edge> = 0 <math display="block">IIMC2<i0le> = 1, IIMC3<i0edge> = 1</i0edge></i0le></math> <math display="block">IIMC2<i0le> = 1, IIMC3<i0edge> = 1</i0edge></i0le></math> <math display="block">IIMC2<i1le> = 0, IIMC3<i1edge> = 0</i1edge></i1le></math> <math display="block">IIMC2<i1le> = 0, IIMC3<i1edge> = 1</i1edge></i1le></math> <math display="block">IIMC2<i1le> = 0, IIMC3<i1edge> = 1</i1edge></i1le></math> <math display="block">IIMC2<i1le> = 1, IIMC3<i1edge> = 0</i1edge></i1le></math> <math display="block">IIMC2<i1le> = 1, IIMC3<i1edge> = 1</i1edge></i1le></math></i0edge></i0le>	
INT1 PC1 $\begin{array}{c c} \hline & Rising edge \\ \hline & Rising edge \\ \hline & Falling edge \\ \hline & Falling edge \\ \hline & High level \\ \hline & High level \\ \hline & Low level \\ \hline & HIMC2 = 0, IIMC3 = 0 \\ \hline & Low level \\ \hline & HIMC2 = 1, IIMC3 = 1 \\ \hline & Falling edge \\ \hline & High level \\ \hline & High level \\ \hline & HIMC2 = 1, IIMC3 = 1 \\ \hline & Falling edge \\ \hline & High level \\ \hline & High level \\ \hline & High level \\ \hline & HIMC2 = 1, IIMC3 = 1 \\ \hline & Falling edge \\ \hline & Falling edge \\ \hline & Falling edge \\ \hline & High level \\ \hline & High level \\ \hline & High level \\ \hline & HIMC2 = 1, IIMC3 = 1 \\ \hline & Falling edge \\ \hline & Falling edge \\ \hline & Falling edge \\ \hline & High level \\ \hline & HIMC3 = 1 \\ \hline & Falling edge \\ \hline & Falling edge \\ \hline & Falling edge \\ \hline & High level \\ \hline & H$	
INT1 PC1 Falling edge IIMC2 <i1le> = 0, IIMC3<i1edge> = 1 \neg High level IIMC2<i1le> = 1, IIMC3<i1edge> = 0 \neg Low level IIMC2<i1le> = 1, IIMC3<i1edge> = 1</i1edge></i1le></i1edge></i1le></i1edge></i1le>	
INT1 PC1 \checkmark High level IIMC2 <i1le> = 1, IIMC3<i1edge> = 0 \checkmark \checkmark Low level IIMC2<i1le> = 1, IIMC3<i1edge> = 1</i1edge></i1le></i1edge></i1le>	
\checkmark High levelIIMC2 <i1le> = 1, IIMC3<i1edge> = 0$\checkmark$$\checkmark$Low levelIIMC2<i1le> = 1, IIMC3<i1edge> = 1</i1edge></i1le></i1edge></i1le>	
Rising edge IIMC2 <i2le>=0, IIMC3<i2edge>=0</i2edge></i2le>	
Falling edge IIMC2 <i2le> = 0, IIMC3<i2edge> = 1</i2edge></i2le>	
INT2 PC2 $\overrightarrow{}$ High level $IIMC2 < I2LE > = 1, IIMC3 < I2EDGE > = 0$	
Low level IIMC2 <i2le> = 1, IIMC3<i2edge> = 1</i2edge></i2le>	
Rising edge IIMC2 <i3le> = 0, IIMC3<i3edge> = 0</i3edge></i3le>	
Falling edge IIMC2 <i3le> = 0, IIMC3<i3edge> = 1</i3edge></i3le>	
INT3 PC3 $\overrightarrow{}$ High level IIMC2 <i3le> = 1, IIMC3<i3edge> = 0</i3edge></i3le>	
Low level IIMC2 <i3le> = 1, IIMC3<i3edge> = 1</i3edge></i3le>	
Falling edge IIMC2 <i4le> = 0, IIMC3<i4edge> = 1</i4edge></i4le>	
INT4 PD0 High level HIMC2 <i4le> = 1, IIMC3<i4edge> = 0</i4edge></i4le>	
Low level IIMC2 <i4le> = 1, IIMC3<i4edge> = 1</i4edge></i4le>	
Rising edge IIMC2 <i5le> = 0, IIMC3<i5edge> = 0</i5edge></i5le>	
Falling edge IIMC2 <i5le> = 0, IIMC3<i5edge> = 1</i5edge></i5le>	
INT5 PD1 High level IIMC2 <i5le> = 1, IIMC3<i5edge> = 0</i5edge></i5le>	
Low level IIMC2 <i5le> = 1, IIMC3<i5edge> = 1</i5edge></i5le>	
Rising edge IIMC2 <i6le> = 0, IIMC3<i6edge> = 0</i6edge></i6le>	
Falling edge IIMC2 <i6le> = 0, IIMC3<i6edge> = 1</i6edge></i6le>	
INT6 PD2 $-$ High level IIMC2 <i6le> = 0, IMC3<i6edge> = 0</i6edge></i6le>	
Low level IIMC2 <i6le> = 1, IIMC3<i6edge> = 1</i6edge></i6le>	
Rising edge IIMC2 <i7le> = 0, IIMC3<i7edge> = 0</i7edge></i7le>	
Falling edge IIMC2 <i7le> = 0, IIMC3<i7edge> = 1</i7edge></i7le>	
INT7 PD3 $\overrightarrow{}$ High level IIMC2 <i7le> = 1, IIMC3<i7edge> = 0</i7edge></i7le>	
Low level IIMC2 <i7le> = 1, IIMC3<i7edge> = 1</i7edge></i7le>	

Table 3.4.2 Settings of External Interrupt Pin Function

SIMC SIO F5H (Prohibit RMW) F5H (Prohibit RMW) Write "1" (Note)		(3) S	SIO receiv	e interru	pt control						
SIMC SIO interrupt mode control F5H (Prohibit RMW) W 0 1 1 1 Always write "1" (Note) 0 Always write "1" (Note) 0: INTRX2 edge mode 0: INTRX1 edge mode 0: INTRX1 edge 1 "H" level INTRX1 ITRX1 edge ITRX1	Symbol	Name	Address	7	6	5	4	3	2	1	0
SIMC SIO interrupt mode control F5H (Prohibit RMW) 0 Always write "1" (Note) 0 Always write "1" (Note) 0 Interrupt edge mode 0 Edge mode 0 Interrupt edge mode 0 Interrupt edge mode 0 Interrupt edge mode 0 Interrupt edge mode 0 Interrupt edge mode 0 Interrupt edge mode 1 Interrupt edge mode 1 Interrupt edge mode 1 Interrupt edge mode 1 Interrupt edge mode 1 Interrupt interrupt mode 1 Interrupt interrupt interrupt interrupt 1 Interrupt interrupt interrupt 1 Interrupt interrupt interrupt 1 Interrupt interrupt 1 Interrupt interrupt interrupt 1 Interrupt interrupt 1 Interrupt 1 Interrupt 1 Interrupt 1 Interrupt Interrupt Interupt Interrupt Interrupt <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>IR2LE</td> <td></td> <td>IR0LE</td>									IR2LE		IR0LE
SIMC interrupt mode control F5H (Prohibit RMW) Always write "1" (Note) Always write "1" (Note) 0: INTRX2 edge mode 0: INTRX1 edge mode 0: INTRX1 edge mode 0: INTRX1 edge mode 0: INTRX1 edge mode 0: INTRX1 edge mode 1: INTR edge mode 1: INTRX2 ievel mode 0: INTRX1 edge mode 1: INTRX1 ievel mode 1: INTRX1 ievel mod											1
SIMC mode control (Prohibit RMW) write "1" (Note) it "ITRX2 edge mode edge			F5H								
Image: control RMW) (Note) mode mod	SIMC		(Prohibit	Always write "1"							
1: INTRX2 1: INTRX1 1: INTRX1 1: INTRX1 level mode mode mode weil mode mode mode ITRX2 level enable mode mode 0 Edge detect INTRX2 mode mode ITRX1 level enable mode mode 0 Edge detect INTRX1 mode mode 1 "H" level INTRX1 mode mode 0 Edge detect INTRX1 mode mode 0 Edge detect INTRX0 mode mode			RMW)							mode	mode
ITRX2 level enable mode mode mode mode mode 0 Edge detect INTRX2 1 "H" level INTRX2 ITRX1 level enable ITRX1 0 Edge detect INTRX1 1 "H" level INTRX1		control		. ,							1: INTRX
When you use interruption, be sure to set "1" as the bit 7 of a SIMC register. ITRX2 level enable 0 Edge detect INTRX2 1 "H" level INTRX1 0 Edge detect INTRX1 1 "H" level INTRX1 0 Edge detect INTRX1								(
1 "H" level INTRX2 ITRX1 level enable 0 Edge detect INTRX1 1 "H" level INTRX1 ITRX0 rising edge enable 0 Edge detect INTRX0											>
ITRX1 level enable 0 Edge detect INTRX1 1 "H" level INTRX1 ITRX0 rising edge enable 0 Edge detect INTRX0				2			$-\overline{\alpha}$	>	52		
0 Edge detect INTRX1 1 "H" level INTRX1 ITRX0 rising edge enable 0 Edge detect INTRX0	1 "	'H" level l	NTRX2						\diamond (C)/5	
0 Edge detect INTRX1 1 "H" level INTRX1 ITRX0 rising edge enable 0 Edge detect INTRX0	JTRX1 le	evel enab	le			G	\sim		\sim	<u>40</u> //	
1 "H" level INTRX1 ITRX0 rising edge enable 0 Edge detect INTRX0				1		G		/	\mathcal{C}	\rightarrow	
0 Edge detect INTRX0						<(\searrow	(()		
0 Edge detect INTRX0							\geq	$\overline{\Omega}$			
				0		$\frac{1}{\sqrt{2}}$	<u> </u>	$\leq \langle \langle \langle \rangle \rangle$))		
		-		0	- 41	\rightarrow		\sim			
			NIKAU			\rightarrow					
				()	\wedge				
					\bigcirc						
			\square)	$\overline{\Box}$	$\langle \rangle$				
			$\langle \langle \rangle \rangle$		\sim		リ				
						\geq					
				\searrow	\sim	/					
		\sim	2.			\geq					
			\searrow		$\left(\right)$	~					
	~	$(\bigcirc$		<	76						
		$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$))								
		\geq	- ((> _ ((
	\backslash			XV	シ						
\sim		\geq	4	\sim							
		\checkmark		\sim							

(0**)**

(4) Interrupt request flag clear register

The interrupt request flag is cleared by writing the appropriate micro DMA start vector, as given in Table 3.4.1, to the register INTCLR.

For example, to clear the interrupt flag INTO, perform the following register operation after execution of the DI instruction.

								(\bigcirc)		
Symbol	Name	Address	7	6	5	4	3	2	<u>}</u> 1	0
Interrupt INTCLR clear	5011	CLRV7	CLRV6	CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0	
	Interrupt clear	F8H	w ((//))							
INTOLIX	control	(Prohibit RMW)	0	0	0	0	0))	0	0
		,				Interrup	t vector	\geq		

INTCLR $\leftarrow 0AH$ Clears interrupt request flag INTO.

(5) Micro DMA start vector registers

These registers assign micro DMA processing to sets which source corresponds to DMA. The interrupt source whose micro DMA start vector value matches the vector set in one of these registers is designated as the micro DMA start source.

When the micro DMA transfer counter value reaches 0, the micro DMA transfer end interrupt corresponding to the channel is sent to the interrupt controller, the micro DMA start vector register is cleared, and the micro DMA start source for the channel is cleared. Therefore, in order for micro DMA processing to continue, the micro DMA start vector register must be set again during processing of the micro DMA transfer end interrupt.

If the same vector is set in the micro DMA start vector registers of more than one channel, the lowest numbered channel takes priority.

Accordingly, if the same vector is set in the micro DMA start vector registers for two different channels, the interrupt generated on the lower numbered channel is executed until micro DMA transfer is complete. If the micro DMA start vector for this channel has not been set in the channel's micro DMA start vector register again, micro DMA transfer for the higher-numbered channel will be commenced. (This process is known as micro DMA chaining.)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	DMA0				DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	start	100H					R/	W		
Billinitet	vector	10011		/	0	0	0	0	0	0
			_	-			DMA0/st	art vector		
	DMA1	101H			DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	start						R/	W		
	vector	-			0	0	0	0	0	0
							DMA1 st			
	DMA2				DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	start	102H						W	1	1
	vector	vector			0	0 ((0)	0	0	0
							DMA2 st			
	DMA3				DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA3V	DMA3V start	103H			-		→ R/			
vector				0			0	0	0	
					DMA4V5	DMA4V4	DMA3 sta DMA4V3	DMA4V2	DMA4V1	DMA4V0
	DMA4	104H			DIMA4Vo	DIVIA4V4		W DIMA4V2	DIVIA4V1	DIVIA4V0
DMA4V	start					0	0	0	0	0
	vector								0	0
					DMA5V5	DMA5V4	DMA4 st DMA5V3	DMA5V2	DMA5V1	DMA5V0
	DMA5		\backslash	\longrightarrow	DMASVS	DIVIA3V4	R/		DIVIASVI	DIVIASVU
DMA5V	start	105H		Å	0	0		0	0	0
	vector			\sim				art vector	0	0
			\sim (\square	DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0
	DMA6		\bigwedge	\square	DIVIAUVJ		R/		DIVIAUVI	DIVIAUVU
DMA6V start	106H	$\overline{\langle}$		0	0	0	0	0	0	
	vector))		0		art vector	0	0
				\sim	DMA7V5	DMA7V4	DMA0 St	DMA7V2	DMA7V1	DMA7V0
	DMA7		$\forall \Delta$		DIVITATIVS		R/			DIVIATIVU
DMA7V	start	107H			$\overline{0}$	0	0	0	0	0
	vector	K/=		$\langle \rangle$	$\langle \mathcal{O} \rangle$	0	DMA7 st	Ţ	0	0
	1		~				DIVIAT SL			

,

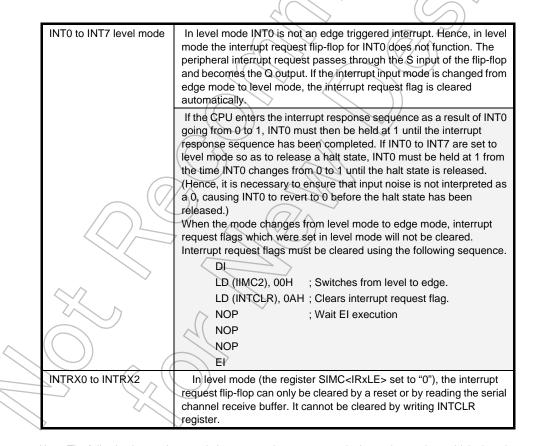
(6) Specification of a micro DMA burst

Specifying the micro DMA burst function causes micro DMA transfer, once started, to continue until the value in the transfer counter register reaches 0. Setting any of the bits in the register DMAB which correspond to a micro DMA channel (as shown below) to 1 specifies that any micro DMA transfer on that channel will be a burst transfer.

Symbol	Name	Address	7	6	5	4	3	2	1	0
			DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0
DMAB	DMA	108H	R/W							
DIVIAD	burst	10011	0	0	0	0	0 ((7/0	0	0
						1: DMA bu	rst request	$\langle O \rangle$		

$\langle \langle \rangle$
(//)

(7) Notes


The instruction execution unit and the bus interface unit in this CPU operate independently. Therefore, immediately before an interrupt is generated, if the CPU fetches an instruction which clears the corresponding interrupt request flag, the CPU may execute this instruction in between accepting the interrupt and reading the interrupt vector. In this case, the CPU will read the default vector 0004H and jump to interrupt vector address FFFF04H.

To avoid this, an instruction which clears an interrupt request flag should always be placed after a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 3-instructions (e.g., "NOP" × 3 times).

If it placed EI instruction without waiting NOP instruction after execution of clearing instruction, interrupt will be enabled before request flag is cleared.

In the case of changing the value of the interrupt mask register <IFF2:0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, please note that the following two circuits are exceptional and demand special attention.

Note: The following instructions or pin input state changes are equivalent to instructions which clear the

interrupt request flag.

INT0 to INT7: Instructions which switch to level mode after an interrupt request has been generated in edge mode.

The pin input changes from high to low after an interrupt request has been generated in level mode. ("H" \rightarrow "L")

INTRX: Instructions which read the receive buffer.

INTRX0 to INTRX2: Instructions which read the receive buffer.

3.5 Function of Ports

TMP92FD23A has I/O port pins that are shown in Table 3.5.1 in addition to functioning as general-purpose I/O ports, these pins are also used by internal CPU and I/O functions. Table 3.5.2 to Table 3.5.4 list I/O registers and their specifications.

	(R: PU =)	with prograr	nmable pull-ι	up resi	stor, U = with pu	ll-up resistor)
Port Name	Pin Name	Number of Pins	I/O	R	I/O Setting	Pin Name for Built-in Function
Port 0	P00 to P07	8	I/O	-	Bit	D0 to D7
Port 1	P10 to P17	8	I/O	-	Bit	D8 to D15
Port 4	P40 to P47	8	I/O	-	Bit	A0 to A7
Port 5	P50 to P57	8	I/O	-	Bit	A8 to A15
Port 6	P60 to P67	8	I/O	-	Bit	A16 to A23
Port 7	P70	1	I/O	PU	Bit	RD
	P71	1	I/O	PU	Bit	SRWR
	P72	1	I/O	PU	Bit	SRLLB
	P73	1	I/O	PU	Bit	SRLUB
	P74	1	Input		(Fixed)	INTO
	P76	1	I/O <	4(Bit	XT1
	P77	1	I/O		Bit	XT2
Port 8	P80	1	Output		(Fixed)	CSO, TA1OUT
	P81	1	Output		(Eixed)	CSI, TA3OUT
	P82	1	Output	\searrow	(Fixed)	CS2
	P83	1	TVO	_	Bit	CS3, WAIT, TA5OUT
Port C	PC0	1	Input	_	(Fixed)	TAOIN
	PC1	1 (Input	_	(Fixed)	INT1
	PC2	1 ((Input	_	(Fixed)	INT2
	PC3	1		_	(Fixed)	INT3
Port D	PD0	(π)	1/0		Bit	INT4,TB0OUT0
	PD1		Input	((Fixed)	INT5,TB1IN0
	PD2		J/O	77	Bit	INT6,TB1IN1,TXD2
	PD3	17	7/0	(\bigcirc)	Bit	INT7,TB1OUT0,RXD2
	PD4	1	1/0	_	Bit	TB1OUT1,SCLK2, CTS2
Port F	PF0	1		\sum	Bit	TXD0
	PE1	1	1/0	_	Bit	RXD0
	PF2	1	1/0	_	Bit	SCLK0, CTS0, CLK
	PF3	1 (1/0	_	Bit	TXD1, HSSO
. (PF4	1	1/0	_	Bit	RXD1, HSSI
$\langle \langle \rangle$	PE5	1)/O	_	Bit	SCLK1, CTS1, HSCLK
Port G	PG0 to PG7	8	Input	_	(Fixed)	AN0 to AN7,KI0 to KI7
PortL	PL0 to PL3	$\sqrt{4}$	Input	_	(Fixed)	AN8 to AN11, ADTRG (PL3)
Port N	PN0		I/O	_	Bit	SCK0
\sim	PN1	1	I/O	_	Bit	SO0,SDA0
*	PN2	1	I/O	_	Bit	SI0,SCL0
	PN3	1	I/O	_	Bit	SCK1
	PN4	1	I/O	_	Bit	SO1,SDA1
	PN5	1	I/O	_	Bit	SI1,SCL1

Table 3.5.	1 Port Functions	

Port	Pin Name	Specification			I/O Reg	ister	
FOIL	Fin Name	Specification	Pn	PnCR	PnFC	PnFC2	PnODE
Port 0	P00 to P07	Input port	Х	0	$\langle \rangle$		
		Output port	Х	1		None	None
		D0 to D7 bus	Х	Х	(1		
Port 1	P10 to P17	Input port	Х	0		75	
		Output port	Х	1 (None	None
		D8 to D15 bus	- x <	$\sum x [0]$	(\mathbf{A})		
Port 4	P40 to P47	Input port	Х	0			
		Output port	Х		0	None	None
		A0 to A7 output	X		1		
Port 5	P50 to P57	Input port	. x	0			
		Output port	X	Y	0	None	None
		A8 to A15 output	X.	> x	1	2 > > >	
Port 6	P60 to P67	Input port	(/x))	0 /			
		Output port	\leq	1	$\sim \sim$	None)	None
		A16 to A23 output	X	X	_1	90	
Port 7	P70	Input port (Without pull-up)	0	0		$\overline{\mathbf{a}}$	
		Input port (With pull-up)	1	0			
		Output port	X		<u> </u>		
		RD output	X		$)_1$		
	P71	Input port (Without pull-up)	0		0		
		Input port (With pull-up)	1	0	0		
		Output port	X		0		
		SRWR ())	X	/x	1		
	P72	Input port (Without pull-up)	0	0	0		
		Input port (With pull-up)	1	0	0		
		Output port	X	1	0		
		SRLLB	X	x	1		
	P73	Input port (Without pull-up)	0	0	0		
		Input port (With pull-up)	1	0	0	None	None
		Output port	X	1	0		
		SRLUB	X	X	1		
	P74	Input port	X	0	0		
	$\sim \land$	INTO	X	0	1		
	P76	Input port	X	0			
		Output port ("0" output)	0	1	1		
~		Output port ("HZ" output)	1	1	None		
\sim		XT1 input	X	X	1		
	P77	Input port	X	0			
		Output port ("0" output)			1		
		Output port ("HZ" output)	0	1	None		
	>	XT2 output	1	1	1		
	*		Х	Х			

Table 3.5.2	I/O Registers	and Specifications	(1/3)
	" O 1 togiotoro	and opcomoutone	(1,0)

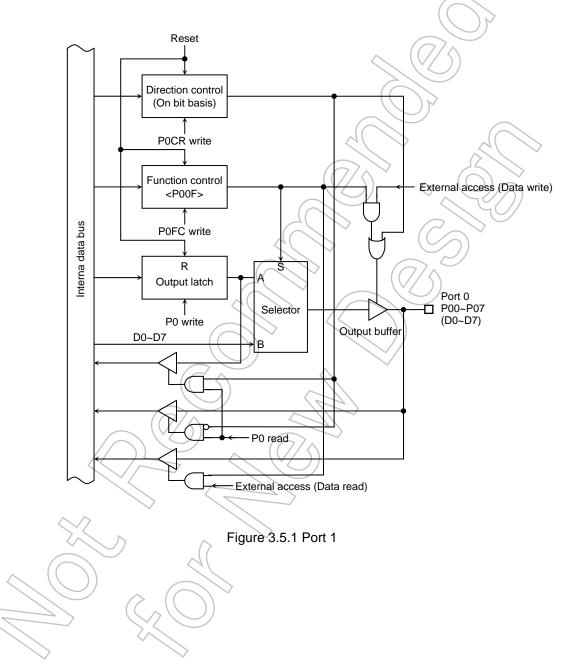
X: Don't care

Dort	Din Nome	Specification		I,	/O Regis	ster	
Port	Pin Name	Specification	Pn	PnCR	PnFC	PnFC2	PnODE
Port 8	P80 to P81	Output port	Х	4	0	0	
	P80	CS0 output	Х		1	0	
		TA1OUT	Х		(\mathbf{x})	1	
	P81	CS1 output	X	None	\sim	0	
		TA3OUT	X		7/x	1	
	P82	Output port	x		- D		
		CS2 output	X	\geq		None	None
	P83	Input port	X	0	0	0	
		Output port	X		0	0	-
		WAIT input	X	0	1	0	
		CS3 output		1	1		\supset
		TASOUT	7.X	1	0		
Port C	PC0	Input port	(x)				
		TA0IN input	×	\sim		$V \cap$	
	PC1	Input port	\sum_{x}				
	-	INT1 input	X		1	/	
	PC2	Input port	X	None		None	None
		INT2 input	X	$\left(\overline{\Omega} \right)$	1		
	PC3	Input port	X		0		
		INT3 input	X		1		
Port D	PD0	Input port	X	0	0		
		Output port	X	//1	0	1	
		INT4 input	X	0	1	None	
		TB0OUT0	Х	1	1		
	PD1	Input port	X		0	0	
		INT5Input	X	None	0	1	
		TBOINO	X		1	0	
	PD2	Input port	× x	0	0	0	
		Output port	Х	1	0	0	
		INT6 input	Х	0	0	1	
		TB0IN1 input	Х	0	1	0	
	~ ~	TXD2 output (3-state)	Х	1	1	0	None
		TXD2 (Open drain)output	Х	1	1	1	
	PD3	Input port	Х	0	0	0	
	\bigcirc	Output port	Х	1	0	0	
	())	INT7 input	Х	0	0	1	-
		RXD2 input	Х	0	1	0	
$\langle -$		TB10UT0 output	Х	1	1	0	
	PD4	Input port	Х	0	0	0	
	>	Output port	Х	1	0	0	
		SCLK2 input, CTS2 input	Х	0	0	1	
		SCLK2 output	Х	1	0	1	
		TB1OUT1	Х	1	1	0	

Table 3 5 3	I/O Registers	and Specifications	(2/3)
10010-0.0.0	"O registero	and opcomoutions	(2,0)

X: Don't care

							X: Don't c	alo
Port	Pin Name	Specification			I/O I	Register		
Foll	FILINALLE	Specification	Pn	PnCR	PnFC	PnFC2	SIOCNT	PnOD
Port F	PF0	Input port	х	0	0 <			
		Output port	Х	1	0			
		TXD0 output (Open drain output)	Х	0	1	None	>	
		TXD0 output (3-state)	Х	1	1	\bigcirc	Ý	
	PF1	Input port	Х	0	0	7^		
		Output port	Х	1		None	News	
		RXD0 input	Х	0			None	
	PF2	Input port	Х	o (0		
		Output port	Х	1		0		
		SCLK0 input, CTS0 input	Х	(p	1	0	\bigcirc	
		SCLK0 output	Х	1	\sim_1	0 <	$\langle \rangle$	
		CLK output	X		0	14		
	PF3	Input port	x ((0	0) _ Q	
		Output port	X		0	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	None
		TXD1 output (Open drain output)	(\mathbf{x})	0	1	None	0	
		TXD1 output (3-state)	X	1	1((\sim	0	
		HSSO output (3-state)	X	1	1	$\langle \rangle \rangle$	1	
	PF4	Input port	X	0	070		0	
		Output port	×	1	$(\sqrt{0})$)	0	
		RXD1 input	X	0		None	0	
		HSSI input	x	0	1		1	
	PF5	Input port	X	0	// 0		0	
		Output port	X	1	0		0	
		SCLK1 input, CTS1 input	x	0	1	None	0	
		SCLK1 output	X	1	1		0	
		HSCLK output	X	\searrow_1	1		1	
Port G	PG0 to PG7	Input port	X	>	0		•	
		ANO to AN7-input	$\overline{\langle \mathbf{x} \rangle}$	None	1	None	None	None
		KI0 to KI7 input	$D_{\mathbf{x}}^{2}$, tono	X		Nono	1 tonio
Port L	PL0 to PL3	Input port	X		0			
		AN8 to AN11 input	X	None	1	None	None	None
	PL3 \land \land	ADTRG	X		0		Nono	1 tono
Port N	PN0 ~ PN5	Input port	X	0	0			
		Output port	X	1	0			
	PN0	SCK0 input	X	0	1			
\sim		SCK0 output	X	1	1			
_	RN1	SO0 output	X	0	1			
$\langle \in$	$ \geq $	SDA0 input/output	X	1	1			
	PN2	SI0 input	X	0	1			
	\searrow	SCL0 input/output	X	1	1	None	None	None
	PN3	SCK1 input	X	0	1			
		SCK1 output	X	1	1			
	PN4	SO1 output	X	0	1			
		SDA1 input/output	X	1	1			
	PN5	SI1 input	X	0	1			
		SCL1 Input/output	X	1	1			


Table 3.5.4	I/O Registers	and Specifications	(3/3)
10010 0.0.1	1/ O 1 (Ogiotore	and opcomoutone	(0,0)

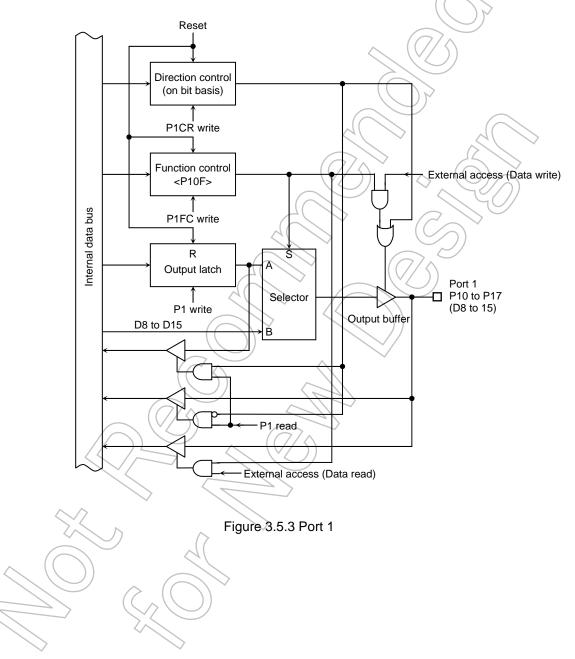
3.5.1 Port 0 (P00 to P07)

Port 0 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P0CR and function register P0FC.

In addition to functioning as a general-purpose I/O port, port0 can also function as a data bus (D0 to D7).

Moreover, after reset release, since a device is set as an input port, when using it as a data bus (D0 to D7), it needs to set it as P0CR and P0FC.

				Port 0	register				
		7	6	5	4	3	2	1	0
P0	Bit symbol	P07	P06	P05	P04	P03	P02	P01	P00
(0000H)	Read/Write				R/\	W			
	Reset State		Dat	a from externa	al port (Output	latch register	is cleared t	o "0")	
				Port 0 Cor	ntrol registe	er	\sim		
		7	6	5	4	3	2	1	0
P0CR	Bit symbol	P07C	P06C	P05C	P04C	P03C	P02C	P01C	P00C
(0002H)	Read/Write		•		N		XO)	•	
	Reset State	0	0	0	0	0	0	0	0
	Function				Refer to follo	owing table)7		
	l				•				
				Port 0 Fun	ction registe	er			\supset
		7	6	5	4 ((7/3	2	51	0
P0FC	Bit symbol					\mathcal{O}	\downarrow	5×2)	P00F
(0003H)	Read/Write				A		/		W
	Reset State						$\neg \neg \neg$		0
	Function			C		(77.0		Refer to following table
						Port 0 fur	nction setting]	
			rite is prohibit of P0CR regi	ed for P0CR a ster.		P0FC P0CR <p0xc< td=""><td><p00f></p00f></td><td>0</td><td>1</td></p0xc<>	<p00f></p00f>	0	1
))		0		Input port	Data bus
				(1		Output port	(D0~D7)
٤			Fig	ure 3.5.2 R	egister for F	Port 0			
		\leq)					

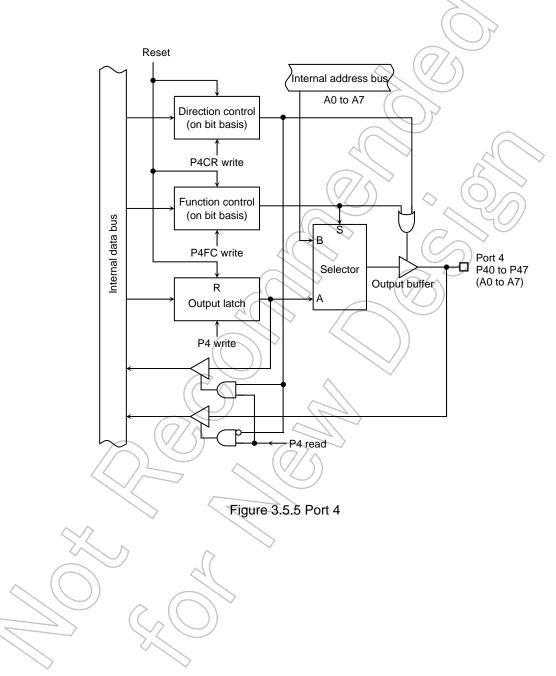

Port 0 register

3.5.2 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P1CR and function register P1FC.

In addition to functioning as a general-purpose I/O port, port1 can also function as a data bus (D8 to D15).

Moreover, after reset release, since a device is set as an input port, when using it as a data bus (D8 to D15), it needs to set it as P1CR and P1FC.

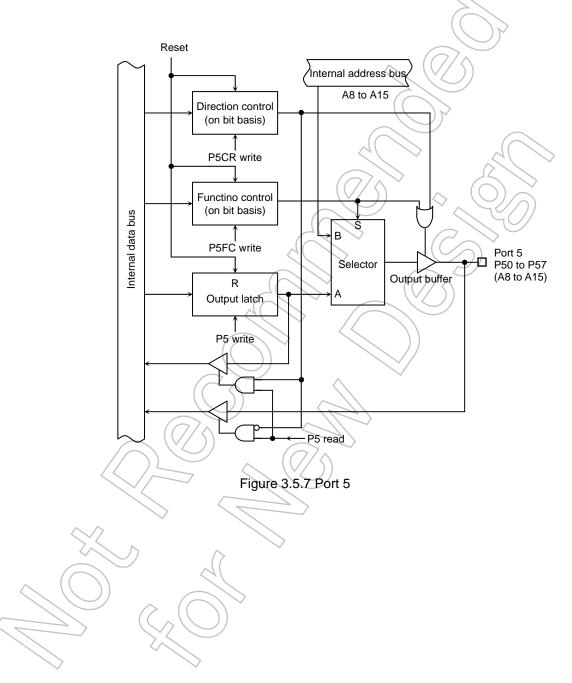


				Port 1	l register				
		7	6	5	4	3	2	1	0
	Bit symbol	P17	P16	P15	P14	P13	P12	P11	P10
004H)	Read/Write				R/	W			
	Reset State		Da	ta from extern	al port (Outpu	t latch registe	r is cleared t	o "0")	
				Port 1 Co	ontrol registe	er	$\left\{ \right\}$		
		7	6	5	4	3	2	J 1	0
CR	Bit symbol	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
06H)	Read/Write				V				
	Reset State	0	0	0	0	0	0	0	0
	Function				Refer to foll	owing table	_)/		
	l				•				
				Port 1 Fur	nction regist	er	~		\checkmark
		7	6	5	4 ((7/3	2	51	0
FC	Bit symbol		/			\rightarrow	$\overline{\mathbf{A}}$		P10F
07H)	Read/Write						\square	1964	W
	Reset State						$\gamma \gamma \rightarrow$		0
	Function				$\langle \langle \rangle \rangle$				Refer to
				G		($\overline{\mathcal{D}}$		following
						(($\langle \langle \rangle \rangle$		table
	Note1: Re	ead-modify-w	rite is prohibit	ed for P1CR a	and P1FC.	P1FC	nction settin C <p10f></p10f>	g O	1
	Note2: <f< td=""><td>P1xC> is bit x</td><td>of P1CR reg</td><td>ister.</td><td>$\langle \rangle$</td><td>P1CR<p1xc< td=""><td>»</td><td></td><td></td></p1xc<></td></f<>	P1xC> is bit x	of P1CR reg	ister.	$\langle \rangle$	P1CR <p1xc< td=""><td>»</td><td></td><td></td></p1xc<>	»		
				\mathcal{D}		0		Input port	Data bus
			(//)			1		Output port	(D8 to D15
			Fig	ure 3.5.4 F	Register for	Port 1			
			$\overline{}$						

3.5.3 Port 4 (P40 to P47)

Port4 is 8-bit general-purpose I/O ports. Bits can be individually set as either inputs or outputs by control register P4CR and function register P4FC. In addition to functioning as a general-purpose I/O port, port4 can also function as an address bus (A0 to A7).

Moreover, after reset release, since a device is set as an input port, when using it as an address bus (A0 to A7), it needs to set it as P4CR and P4FC.

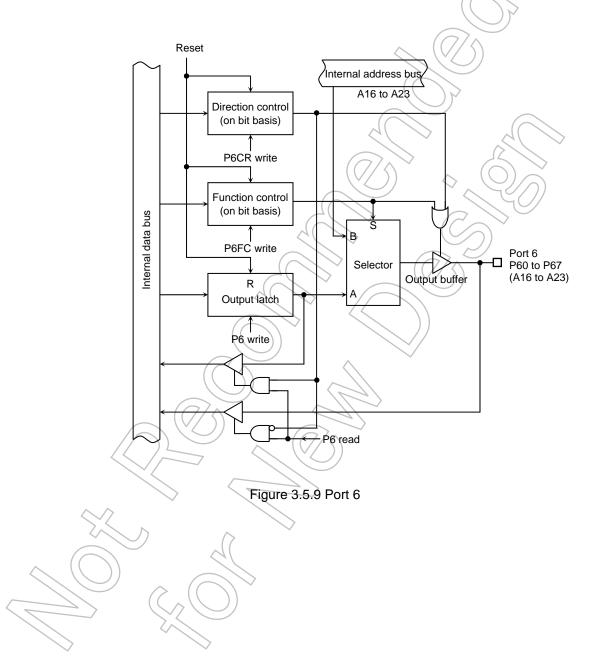

				Port 4	register				
		7	6	5	4	3	2	1	0
P4	Bit symbol	P47	P46	P45	P44	P43	P42	P41	P40
0010H)	Read/Write				R/	W			
	Reset State		Da	ta from externa	al port (Outpu	t latch registe	r is cleared to	o "O")	
				Port 4 Co	ntrol registe	er	\langle		
		7	6	5	4	3	_2	2 1	0
1	Bit symbol	P47C	P46C	P45C	P44C	P43C	(P42C)	P41C	P40C
012H)	Read/Write				V				
	Reset State	0	0	0	0	0 (0	0	0
	Function				0: Input	1: Output	7(
				Port 4 Fun	ction regist	er	\rightarrow		
		7	6	5	4	3	2		0
4FC	Bit symbol	P47F	P46F	P45F	P44F ((P43F	P42F	P41F	P40F
)013H)	Read/Write		•		V	\leq //		SUN)	
	Reset State	0	0	0	0	0	6		0
	Function			0: P	ort 1: Addres	ss bus (A0 to	A7)	\sim	
							//))		
			Fig	ure 3.5.6 R	egister for	Port 4			
			Fig	ure 3.5.6 R	egister for	Port 4			
			Fig	ure 3.5.6 R	egister for	Port 4			

92FD23A-66

3.5.4 Port 5 (P40 to P47)

Port4 is 8-bit general-purpose I/O ports. Bits can be individually set as either inputs or outputs by control register P5CR and function register P5FC. In addition to functioning as a general-purpose I/O port, port5 can also function as an address bus (A8 to A15).

Moreover, after reset release, since a device is set as an input port, when using it as an address bus (A8 to A15), it needs to set it as P5CR and P5FC.

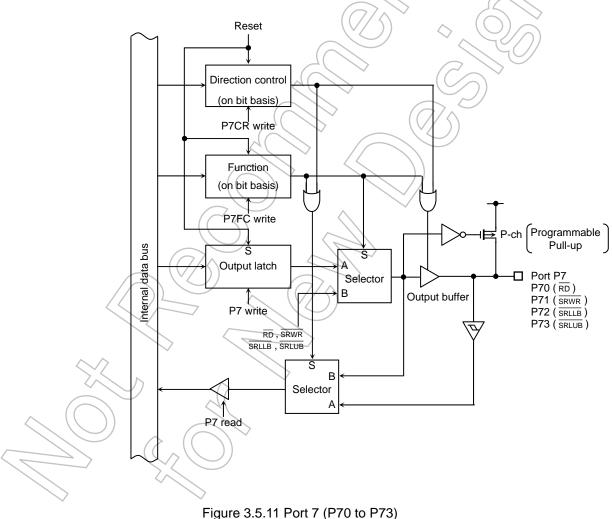

7 6 5 4 3 2 1 0 Bit symbol P57 P56 P55 P54 P53 P52 P51 P50 Read/Write R/W Read/Write R/W Read/Write R/W Port 5 Control register 7 6 5 4 3 2 1 0 Port 5 Control register 7 6 5 4 3 2 1 0 Port 5 Control register 7 6 5 4 3 2 1 0 Port 5 Function register W W Reset State 0 <th></th> <th></th> <th></th> <th></th> <th>Port 5</th> <th>register</th> <th></th> <th></th> <th></th> <th></th>					Port 5	register				
Read/Write R/W Reset State Data from external port (Output latch register is cleared to "0") Port 5 Control register 7 6 5 4 3 2 1 0 5 Dits symbol P57C P56C P55C P54C P53C P52C P51C P50C 8 Bit symbol P57C P56C P55C P54C P53C P52C P51C P50C 9 Read/Write W W 0 <			7	6			3	2	1	0
Reset State Data from external port (Output latch register is cleared to "0") Port 5 Control register 7 6 5 4 3 2 1 0 Bit symbol P57C P56C P55C P54C P53C P52C P51C P500 Read/Write W <th>5</th> <td>Bit symbol</td> <td>P57</td> <td>P56</td> <td>P55</td> <td>P54</td> <td>P53</td> <td>P52</td> <td>P51</td> <td>P50</td>	5	Bit symbol	P57	P56	P55	P54	P53	P52	P51	P50
Port 5 Control register 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7	0014H)					R/	W			
7 6 5 4 3 2 1 0 5 016H) Bit symbol P57C P56C P55C P54C P53C P52C P51C P50C Read/Write W W W W W W W Reset State 0 0 0 0 0 0 0 0 0 Function 0: Input 1: Output I: Output		Reset State		Dat	ta from externa	al port (Output	t latch registe	r is cleared to	o "O")	
7 6 5 4 3 2 1 0 5 Bit symbol P57C P56C P55C P54C P53C P52C P51C P50C Read/Write W <th></th> <td></td> <td></td> <td></td> <td>Port 5 Cor</td> <td>ntrol registe</td> <td>er</td> <td></td> <td></td> <td></td>					Port 5 Cor	ntrol registe	er			
Read/Write W Reset State 0			7	6				2) 21	0
Read/Write W Reset State 0 <th>5</th> <td>Bit symbol</td> <td>P57C</td> <td>P56C</td> <td>P55C</td> <td>P54C</td> <td>P53C</td> <td>P52C</td> <td>P51C</td> <td>P50C</td>	5	Bit symbol	P57C	P56C	P55C	P54C	P53C	P52C	P51C	P50C
Function 0: Input 1: Output Port 5 Function register OFC 7 6 5 4 3 2 1 0 SFC 7 6 5 4 3 2 1 0 SFC 7 6 5 4 3 2 1 0 SFC 957F P56F P55F P54F P53F P52F P51F P50F 017H) Read/Write W W W Output W Output W Output Output Output W Output Display Output							-	$(// \hat{S})$		
Port 5 Function register FC 7 6 5 4 3 2 1 0 Bit symbol P57F P56F P55F P54F P53F P52F P51F P50F Read/Write W W W W W W W Reset State 0 0 0 0 0 0 0 0 0 0 Function 0: Port 1: Address bus (A8 to A15) W		Reset State	0	0	0	0	0	0	0	0
T 6 5 4 3 2 1 0 FC Bit symbol P57F P56F P55F P54F P53F P52F P51F P50F 017H) Read/Write W		Function				0: Input	1: Output			
T 6 5 4 3 2 1 0 DFC Bit symbol P57F P56F P55F P54F P53F P52F P51F P50F Read/Write W </td <th></th> <td></td> <td></td> <td></td> <td>Port 5 Fun</td> <td>ction regist</td> <td>er</td> <td>\mathcal{O}</td> <td></td> <td></td>					Port 5 Fun	ction regist	er	\mathcal{O}		
017H) Read/Write W Reset State 0 0 0 0 0 Function 0: Port 1: Address bus (A8 to A15) 0 0 0 Note1: Read-modify-write is prohibited for P5CR and P5FC. Note2: When set to address bus A8 to A15, set P5FC after set P5CR. 0 0			7	6	1		AL I	2	267	> 0
017H) Read/Write W Reset State 0 0 0 0 0 Function 0: Port 1: Address bus (A8 to A15) 0 0 Note1: Read-modify-write is prohibited for P5CR and P5FC. Note2: When set to address bus A8 to A15, set P5FC after set P5CR.	FC	Bit symbol	P57F	P56F	P55F	P54F	P53F	P52F	P51F	P50F
Reset State 0 <th< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td>// \ \</td><td>\diamond (</td><td>0)</td><td></td></th<>							// \ \	\diamond (0)	
Function 0: Port 1: Address bus (A8 to A15) Note1: Read-modify-write is prohibited for P5CR and P5FC. Note2: When set to address bus A8 to A15, set P5FC after set P5CR.			0	0	0	0	0	0		0
Note1: Read-modify-write is prohibited for P5CR and P5FC. Note2: When set to address bus A8 to A15, set P5FC after set P5CR.					0: Pc	ort 1: Addres	s bus (A8 to	A15)		

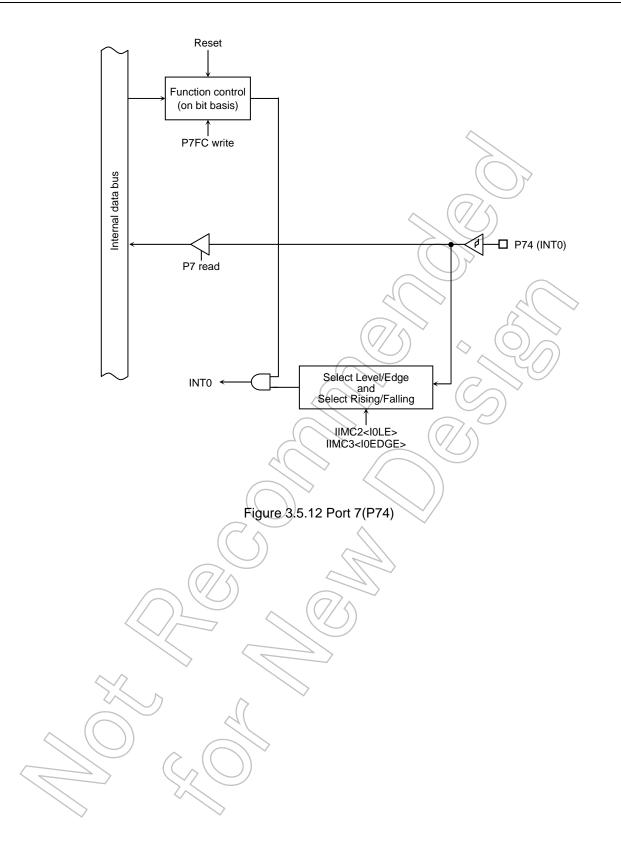
3.5.5 Port 6 (P60 to P67)

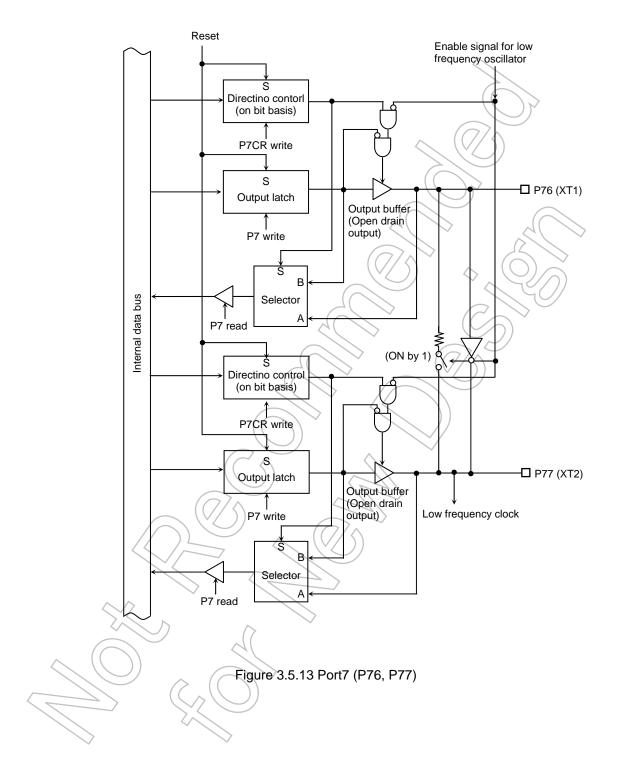
Port 6 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P6CR and function register P6FC.

In addition to functioning as a general-purpose I/O port, port 6 can also function as an address bus (A16 to A23).

Moreover, after reset release, since a device is set as an input port, when using it as a address bus (A16 to A23), it needs to set it as P6CR and P6FC.


Read/Write R/W Reset State Data from external port (Output latch register is cleared to "0") Port 6 Control register Port 6 Control register 7 6 5 4 3 2 1 0 GCR Bit symbol P67C P66C P65C P64C P63C P62C P61C P60C										
Read/Write RW Reset State Data from external port (Output latch register is cleared to "0") Port 6 Control register SCR 01AH) Read/Write Read/Write Read/Write Read/Write Read/Write Read/Write W Reset State 0 0 0 Function 0: Input 1: Output Port 6 Function register Port 6 Function register Port 6 Function register Bit symbol P67F P66F P63F Bit symbol P67F P66F P63F Read/Write W Read/Write W Read/Write W Read/Write W Reset State 0 0 Reset State 0 0 0 Reset State 0 0 0 0 Read/Write W Read/Write W Read/Write			7	6	5	4	3	2	1	0
Read/Write RW Reset State Data from external port (Output latch register is cleared to "0") Port 6 Control register SCR 01AH) Read/Write Read/Write Read/Write Read/Write Read/Write Read/Write W Reset State 0 0 0 Function 0: Input 1: Output Port 6 Function register Port 6 Function register Port 6 Function register Bit symbol P67F P66F P63F Bit symbol P67F P66F P63F Read/Write W Read/Write W Read/Write W Read/Write W Reset State 0 0 Reset State 0 0 0 Reset State 0 0 0 0 Read/Write W Read/Write W Read/Write	6	Bit symbol	P67	P66	P65	P64	P63	P62	P61	P60
Port 6 Control register SCR 7 6 5 4 3 2 1 0 Bit symbol P67C P66C P65C P64C P63C P62C P61C P60C Read/Write W)018H)					R/	W			
T 6 5 4 3 2 1 0 Bit symbol P67C P66C P65C P64C P63C P62C P61C P60C Read/Write W <td></td> <td>Reset State</td> <td></td> <td>Dat</td> <td>ta from externa</td> <td>al port (Outpu</td> <td>t latch register</td> <td>is cleared to</td> <td>o "0")</td> <td></td>		Reset State		Dat	ta from externa	al port (Outpu	t latch register	is cleared to	o "0")	
Bit symbol P67C P66C P65C P64C P63C P62C P61C P60C Read/Write W <td></td> <td></td> <td></td> <td></td> <td>Port 6 Cor</td> <td>ntrol registe</td> <td>er</td> <td>\sim</td> <td></td> <td></td>					Port 6 Cor	ntrol registe	er	\sim		
Notation Read/Write W Reset State 0<			7	6	5	4	3	2	J 1	0
Read/Write W Reset State 0	6CR	Bit symbol	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
Function 0: Input 1: Output Port 6 Function register OFC 7 6 5 4 3 2 1 0 SFC Bit symbol P67F P66F P65F P64F P63F P62F P61F P60F Bit symbol P67F P66F P65F P64F P63F P62F P61F P60F Read/Write W	01AH)							(\bigcirc)		
Port 6 Function register OFC 7 6 5 4 3 2 1 0 Bit symbol P67F P66F P65F P64F P63F P62F P61F P60F 01BH) Reset State 0 0 0 0 0 0 0 Keset State 0 0 0 0 0 0 0 0 Function 0: Port 1: Address bus (A16 to A23) Note1: Read-modify-write is prohibited for P6CR and P6FC. Note2: When set to address bus A16 to A23, set P6FC after set P6CR.		Reset State	0	0	0	0	0	0	0	0
T 6 5 4 3 2 1 0 Bit symbol P67F P66F P65F P64F P63F P62F P61F P60F Read/Write W <td></td> <td>Function</td> <td></td> <td></td> <td></td> <td>0: Input '</td> <td>I: Output</td> <td>7(</td> <td></td> <td></td>		Function				0: Input '	I: Output	7(
T 6 5 4 3 2 1 0 Bit symbol P67F P66F P65F P64F P63F P62F P61F P60F Read/Write W <td></td> <td></td> <td></td> <td></td> <td>Port 6 Fun</td> <td>ction regist</td> <td>er</td> <td>7</td> <td></td> <td></td>					Port 6 Fun	ction regist	er	7		
Bit symbol P67F P66F P65F P64F P63F P62F P61F P60F 01BH) Read/Write W			7	6				2		0
Note1: Read-modify-write is prohibited for P6CR and P6FC. Note2: When set to address bus A16 to A23, set P6FC after set P6CR.	SFC	Bit symbol	P67F		P65F	P64F	7/A		P61F	
Reset State 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SUN</td><td></td></th<>									SUN	
Note1: Read-modify-write is prohibited for P6CR and P6FC. Note2: When set to address bus A16 to A23, set P6FC after set P6CR.			0	0	0	0	0	0		0
Note1: Read-modify-write is prohibited for P6CR and P6FC. Note2: When set to address bus A16 to A23, set P6FC after set P6CR.		Function			_		1 (110)		\sim	
		Note1: Re	-	dress bus A16	ed for P6CR a 6 to A23, set P	nd P6FC. 6FC after set	P6CR.)	
		Note1: Re	-	dress bus A16	ed for P6CR a 6 to A23, set P	nd P6FC. 6FC after set	P6CR.)	


3.5.6 Port 7 (P70 to P74, P76, P77)

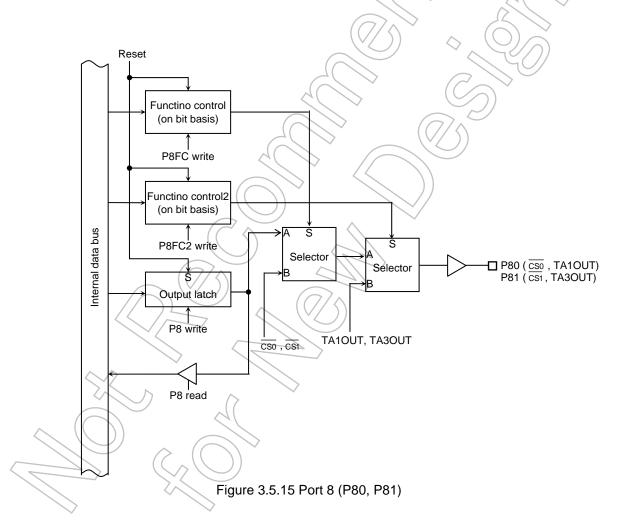

As for a port7, P70 to P73, and P76 and P77 are general-purpose I/O ports, and P74 is a port only for inputs.

P76 and P77 become an open drain output, when it is set as an output port. Moreover, P70 to P73 are ports with pull-up resistance. Bits can be individually set as either inputs or outputs by control register P7CR and function register P7FC.

In addition to functioning as a general-purpose I/O port, port7 can also function as a CPU's control. P70 to P73 has the function of RD strobe signal output as an object for external memory connection, and the output for SRAM control (SRWR, SRLLB and SRLUB). P74 has the function of an external interrupt input (INTO). P76 and P77 have the function of a low-frequency resonator connection (XT1, XT2). These setups become effective by setting "1" as the applicable bit of P7CR and a P7FC register. The edge of the external interruption INT0 and level selection are set up in IIMC2 and IIMC3 register in an interruption controller. P70 to P74 become input mode by the reset action, and P76 and P77 become output mode (high impedance output).

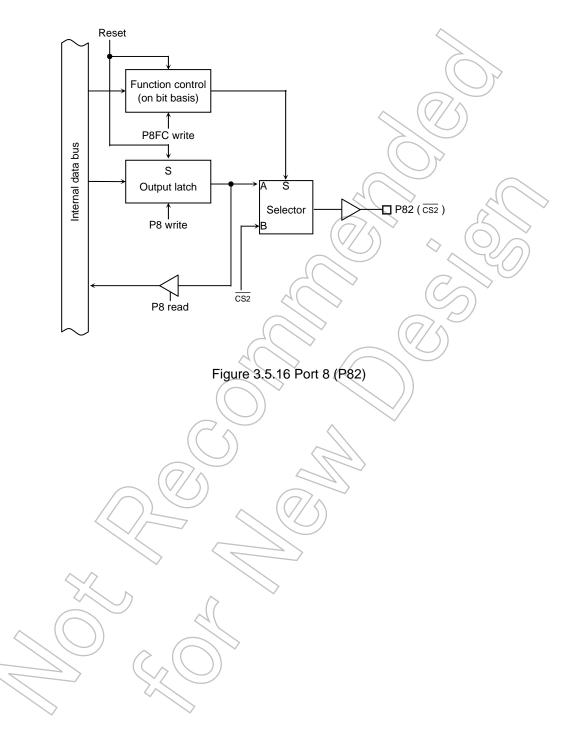
				1 01	t 7 registe	•			
		7	6	5	4	3	2	1	0
	Bit symbol	P77	P76	/	P74	P73	P72	P71	P70
CH)	Read/Write	R	W		R		R	/W	
	Reset State	Data from e	external port		Data from				
		(Output late	h register is		external	(0)		external port	
		set te	o "1")		port	(00	tput latch reg	gister is set to	51)
	Function		_		_	0(Output	latch registe	r): Pull-up re	sistor OFF
			_		-	1(Output	t latch registe	er): Pull-up re	esistor ON
				Port 7 C	Control reg	ister	$\langle \langle \langle \rangle \rangle$	(5)	
		7	6	5	4	3	2	1	0
R	Bit symbol	P77C	P76C			P73C	P72C	P71C	P70C
EH)	Read/Write		V 1700	\backslash		1750		N (
,	Reset State	1	1	\backslash		a		0	0
	Function		1: Output	/				1: Output	
	1 dilotion	0. mput	1. Output			(7/3)	0. mput		~
				Port 7 F	unction reg	gister	\Diamond		\sum
		7	6	5	<u>A</u>	3	2		V O
С	Bit symbol				(P74F	P73F	P72F	P71F	P70F
FH)	Read/Write				\sim	*	W	I	
	Reset State				0	0	((ø/ <	0	0
	Function			.((0: Port	0: Port	0: Port	0: Port	0: Port
					1: INT0	1: SRLUB	1: SRLLB	1: SRWR	1: RD
	Note 1:	When port I	P70 to P73	is used in t		$\langle \langle -$		s the built-i	•
	Re de Note 2: R Note 3: C co •c P7	ead-modify-w pended on the cead-modify-w on using low- nsumption per- onnecting to CR <p76c,f onnecting an</p76c,f 	rite is prohibi ne states of th write prohibite frequency res ower supply. a resonator 777C> = "11",	ted in the inp ted in put pin. ed for registe sonator to P7 , P7 <p76,p< td=""><td>the input motor the put mode or the product mode or the product of the product o</td><td>ode, P7 reg he I/O mode</td><td>gister control b. Setting the</td><td>built-in pull-</td><td>n pull-up re up resistor n</td></p76,p<>	the input motor the put mode or the product mode or the product of the product o	ode, P7 reg he I/O mode	gister control b. Setting the	built-in pull-	n pull-up re up resistor n

3.5.7 Port 8 (P80 to P83)

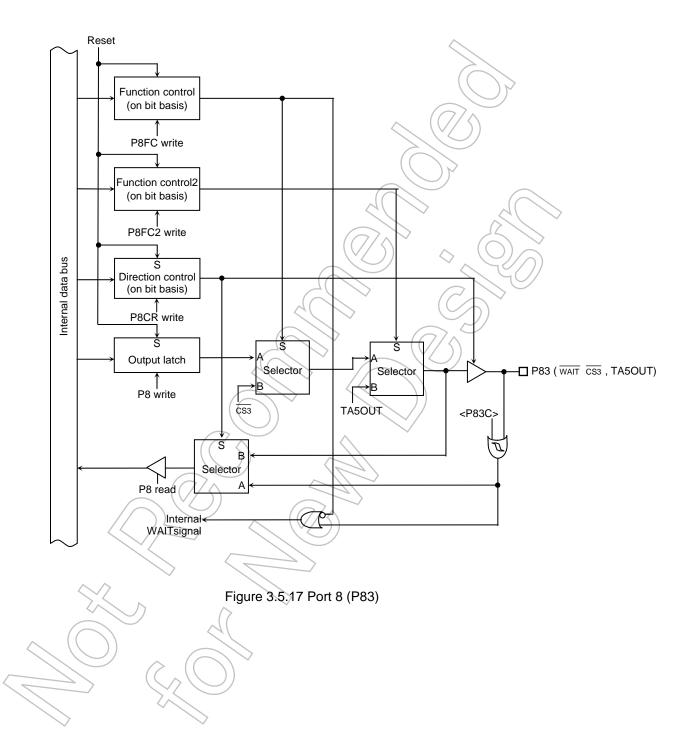

Port 80 to 82 are 3-bit output ports, and Port 83 is 1-bit I/O port.

In addition to an output and an I/O port function, as for P80 and P81, a standard chip select signal output ($\overline{CS0}$, $\overline{CS1}$) and a 8-bit timer output (TA1OUT, TA3OUT), and P82 have a standard chip select signal output ($\overline{CS2}$), and P83 has the function of a standard chip select signal output ($\overline{CS3}$), a 8-bit timer output (TA5OUT), and a wait input (\overline{WAIT}).

These functions operate by setting the bit concerned of P8CR, P8FC, and P8FC2 register as "1". All the bits of P8FC and P8FC2 are cleared to "0" by the reset action, and P80 to P83 becomes an output port. Moreover, the output latch of P82 is cleared to "0" and the output latch of P80 to P81 and P83 is set to "1".


(1) P80 ($\overline{CS0}$, TA1OUT), P81 ($\overline{CS1}$, TA3OUT)

In addition to an output port function, ports P80 and P81 function as a standard chip select signal output ($\overline{\text{CS0}}$, $\overline{\text{CS1}}$) and a 8-bit timer output (TA1OUT, TA3OUT).


(2) P82 ($\overline{\text{CS2}}$)

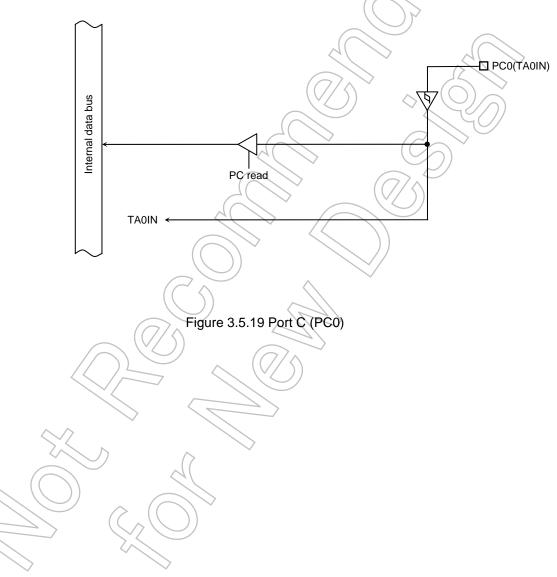
In addition to an output port function, a port P82 functions as a standard chip select signal output ($\overline{\rm CS2}$).

(3) $P83(\overline{CS3}, \overline{WAIT}, TA5OUT)$

In addition to an I/O port function, a port P83 functions as a standard chip select signal output ($\overline{\text{CS3}}$) and an 8-bit timer output (TA5OUT), and a wait input ($\overline{\text{WAIT}}$).

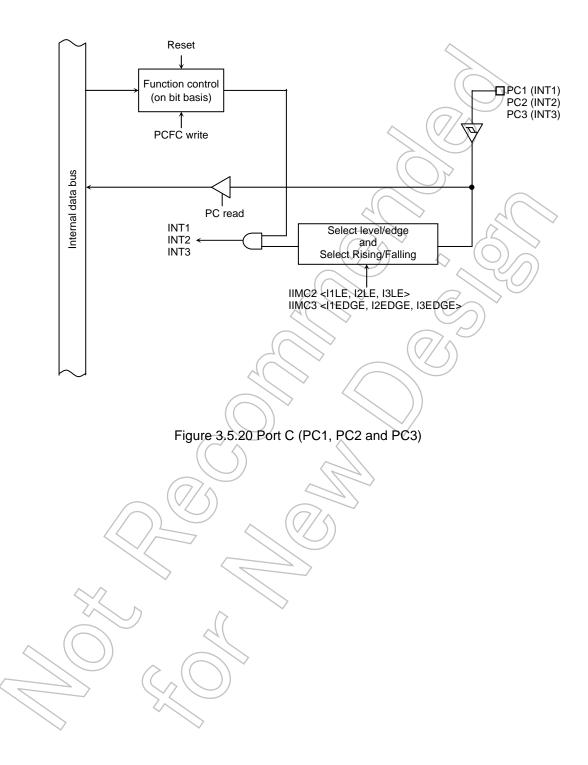
				Port 8 R	egister				
		7	6	5	4	3	2	1	0
P8	Bit symbol					P83	P82	P81	P80
(0020H)	Read/Write						R	/W	
	Reset State					Data from external port	~ ⁰	1	1
						(Note1)			
			Р	ort 8 Contr	ol Register			5	
		7	6	5	4	3	2	1	0
P8CR	Bit symbol		/			P83C	\forall		
(0022H)	Read/Write					W	V		
	Reset State					1			
						0: Input	<u>ک</u>		
					$ \rightarrow $	1: Output			
			Po	ort 8 Functi	on Registe				,
		7	6	5	4))3	♦ 2 (0
P8FC	Bit symbol					P83F	P82F		P80F
(0023H)	Read/Write		\sim	\sim	H	1 001			1 001
(002011)	Reset State	\sim	\sim			0	(\bigcirc)	0	0
	Function					0: Port	0: Port	0: Port	0: Port
				\square	\sim	1: WAIT,	1: CS2	1: CS1	1: CS0
						CS3))		
			Po	rt 8 Functio	n Register	2			
		7	6 (\	5	4	3/	2	1	0
P8FC2	Bit symbol		\searrow			P83F2	//	P81F2	P80F2
(0021H)	Read/Write		\mathcal{A}		\mathcal{A}	W	/	,	N
	Reset State				1	0	/	0	0
	Function	($(7/ \land$		$\langle \rangle$	0: <p83f></p83f>		0: <p81f></p81f>	0: <p80f></p80f>
			$\langle O \rangle$	6	\rightarrow	1: TA5OUT		1: TA3OUT	1: TA1OUT
	<	$\langle \rangle \rangle$			(\mathcal{S})		$\rightarrow \overline{\text{WAIT}}, \overline{\text{CSS}}$,TA5OUT se	tting
		\sim	\Box				<p83c></p83c>	0	1
		\sim			_/	<p8< td=""><td>3F:P83F2></td><td>0</td><td>I</td></p8<>	3F:P83F2>	0	I
	\sim					C) 0	Input port	Output port
		\square	\wedge	\sim		C) 1	Reserved	TA5OUT
		\smile	21			1	0	WAIT	CS3
\sim	$\langle (()) \rangle$)				1	1	Reserved	Reserved
		\wedge		\sim					
$\langle -$	Note 1: Outp	out latch regi	ster is set to "1	".					
	Note 2: Rea	d-modify-writ	e instructions	are prohibited	for P8CR, P8	3FC and P8FC	22.		
	Note 3: Whe	n using P83	as a WAIT inp	ut, while settir	ng it as P8CR	<p83c>="0"</p83c>	, P8FC <p83f< td=""><td>=> = "1", it is n</td><td>ecessary</td></p83f<>	=> = "1", it is n	ecessary
			ntrol register B						
		-	andard chip se					after setting u	ıp P8FC.

Figure 3.5.18 Register for Port 8


3.5.8 Port C (PC0 to PC3)

Port C is a 4-bit input port.

In addition to the input port function, Port C has the input function (TA0IN) of a 8-bit timer, and an external interrupt input function (INT1 to INT3). These functions operate by setting the bit concerned of PCFC register as "1". Edge selection of external interrupt is set up in IIMC2 and IIMC3 register in an interrupt controller. All the bits of PCFC are cleared to "0" by the reset action, and all bits serve as an input port.

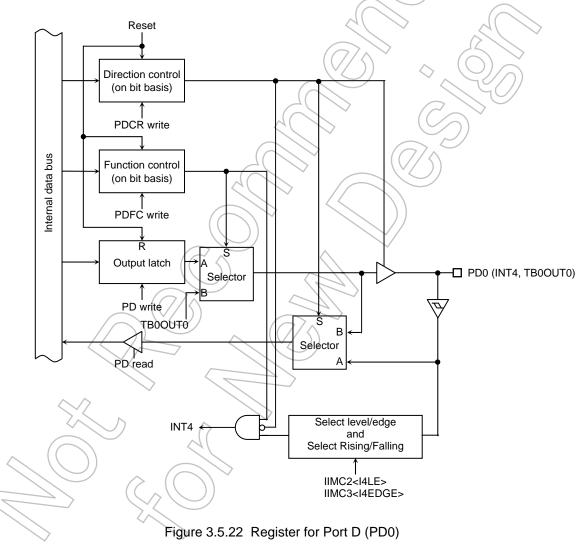

(1) PC0 (TA0IN)

In addition to an I/O port function, a port PCO has a function as a TA0IN input of the timer channel 0.

(2) PC1 (INT1), PC2 (INT2), PC3 (INT3)

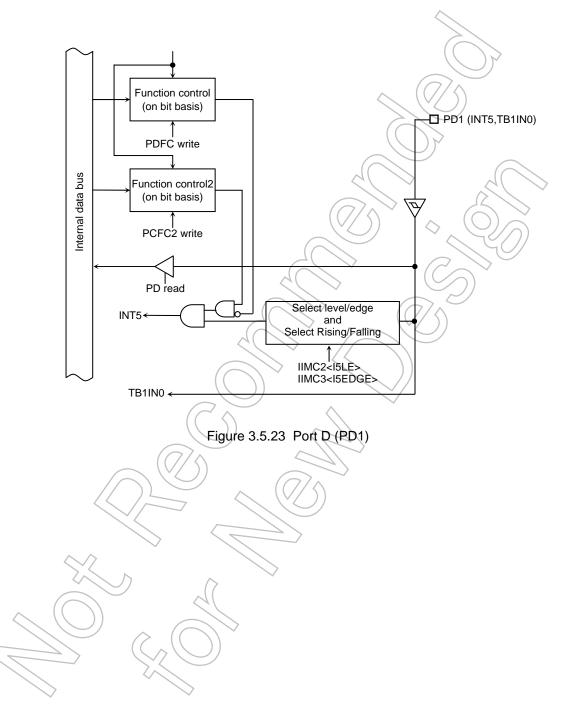
In addition to an Input port function, port PC1 to PC3 has a function as an external interrupt input (INT1 to INT3).

C 030H) 7 6 5 4 3 2 1 0 Read/Write Read/Write R Read/Write R Read/Write R Port C Function Register 0 0 0 0 0 Read/Write 0 0 0 0 0 0 Read/Write 0 0 0 0 0 0 0 Read/Write 0										
Bit symbol PC3 PC2 PC1 PC0 Read/Write R R R R Reset State Data from external port Data from external port R Port C Function Register Image: CFC 033H) T 6 5 4 3 2 1 0 Read/Write PC3F PC2F PC1F PC0F Read/Write 0 0 0 0 Reset State 0 0 0 0 Function 0 0 0 0 0 Note1: Read-modify-write instructions are prohibited for PCFC. Note2: PC0 is not based on a functional setup of a port, but is inputted into TA0IN of a 8-bit timer (TMRA0).			7	6	5	4	3	2	1	0
Read/Write R Reset State Data from external port Port C Function Register Port C Function Register Read/Write PC3F PC2F PC1F PC0F Disset State 0 <th< th=""><th></th><td>Bit symbol</td><td></td><td></td><td></td><td>\sim</td><td></td><td></td><td>PC1</td><td>PC0</td></th<>		Bit symbol				\sim			PC1	PC0
Reset State Data from external port Port C Function Register FC 33H) 7 6 5 4 3 2 1 0 Bit symbol 7 6 5 4 3 2 1 0 Bit symbol PC3F PC2F PC1F PC0F Read/Write W W W Reset State 0 0 0 0 Function 0: Port 0: Port 0: Port 0: Port 0: Port Note1: Read-modify-write instructions are prohibited for PCFC. Note2: PC0 is not based on a functional setup of a port, but is inputted into TA0IN of a 8-bit timer (TMRA0).	30H)		\sim					. 01		
Port C Function Register FC 33H) Image: State in the set set set set set set set set set se	,							Data from		t
AFC (33H) 7 6 5 4 3 2 1 0 Bit symbol PC3F PC2F PC1F PC0F Read/Write W W W Reset State 0 0 0 0 Function 0: Port 0: Port 0: Port 0: Port Note1: Read-modify-write instructions are prohibited for PCFC. Note2: PC0 is not based on a functional setup of a port, but is inputted into TA0IN of a 8-bit timer (TMRA0).				P	ort C Func	tion Regis	ter			
Bit symbol PC3F PC2F PC1F PC0F (33H) Reset State 0 0 0 0 Function 0: Port 0: Port 0: Port 0: Port 0: Port Note1: Read-modify-write instructions are prohibited for PCFC. Note2: PC0 is not based on a functional setup of a port, but is inputted into TA0IN of a 8-bit timer (TMRA0).			7					2	1	0
Read/Write W Reset State 0 0 0 0 Function 0: Port 0: Port 0: Port 0: Port 0: Port Note1: Read-modify-write instructions are prohibited for PCFC. Note2: PC0 is not based on a functional setup of a port, but is inputted into TA0IN of a 8-bit timer (TMRA0).	FC	Bit symbol			\sim	<u> </u>				
Reset State 0 0 0 0 0 Function 0: Port 0: Port 0: Port 0: Port 0: Port Note1: Read-modify-write instructions are prohibited for PCFC. Note2: PC0 is not based on a functional setup of a port, but is inputted into TA0IN of a 8-bit timer (TMRA0).			\backslash	\frown	\backslash					1001
Function 0: Port 1: INT3 1: INT2 1: INT1 1: TAOIN Note1: Read-modify-write instructions are prohibited for PCFC. Note2: PC0 is not based on a functional setup of a port, but is inputted into TAOIN of a 8-bit timer (TMRA0). Image: Comparison of the setup of a port, but is inputted into TAOIN of a 8-bit timer (TMRA0).	,		/	\sim	/	\sim	0			0
1: INT3 1) INT2 1: INT1 1: TAOIN Note1: Read-modify-write instructions are prohibited for PCFC. Instructional setup of a port, but is inputted into TAOIN of a 8-bit timer (TMRA0). Note2: PC0 is not based on a functional setup of a port, but is inputted into TAOIN of a 8-bit timer (TMRA0).										
Note2: PC0 is not based on a functional setup of a port, but is inputted into TA0IN of a 8-bit timer (TMRA0).										1: TA0IN
								Z))	


3.5.9 Port D (PD0 to PD4)

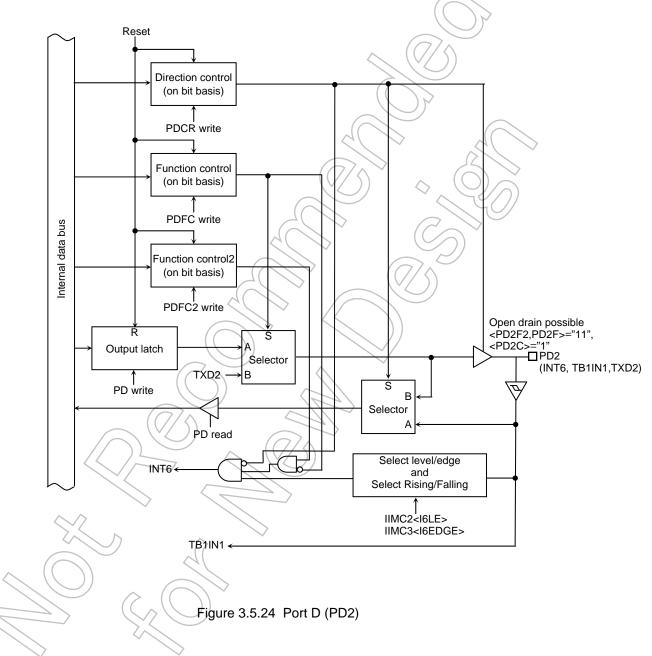
Port D is 4-bit I/O port (PD0, PD2 to PD4) and 1-bit input port (PD1).

There are I/O of the serial channel 2, I/O of a 16-bit timer (TMRB0, TMRB1), and an external interrupt input (INT4 to INT7) function in addition to an I/O port function. These functions operate by setting the bit concerned of PDCR, PDFC and PDFC2 register as "1". Edge selection of external interrupt is set up in IIMC2 and IIMC3 register in an interrupt controller. All the bits of PDCR, PDFC and PDFC2 are cleared to "0" by the reset action, and all bits serve as an input port.

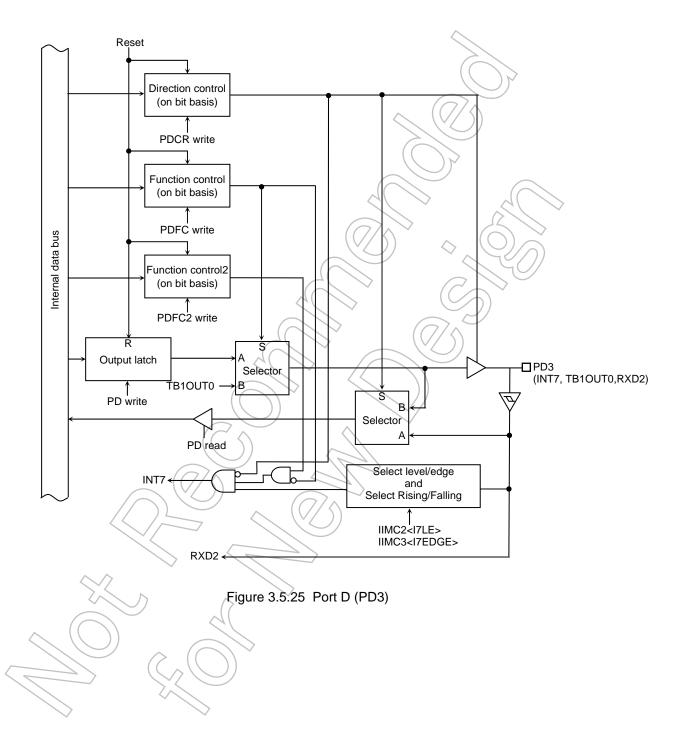

(1) PD0 (INT4, TB0OUT0)

In addition to an I/O port function, a port PD0 has a function as a 16-bit timer output (TB0OUT0) and an external interrupt input (INT4).

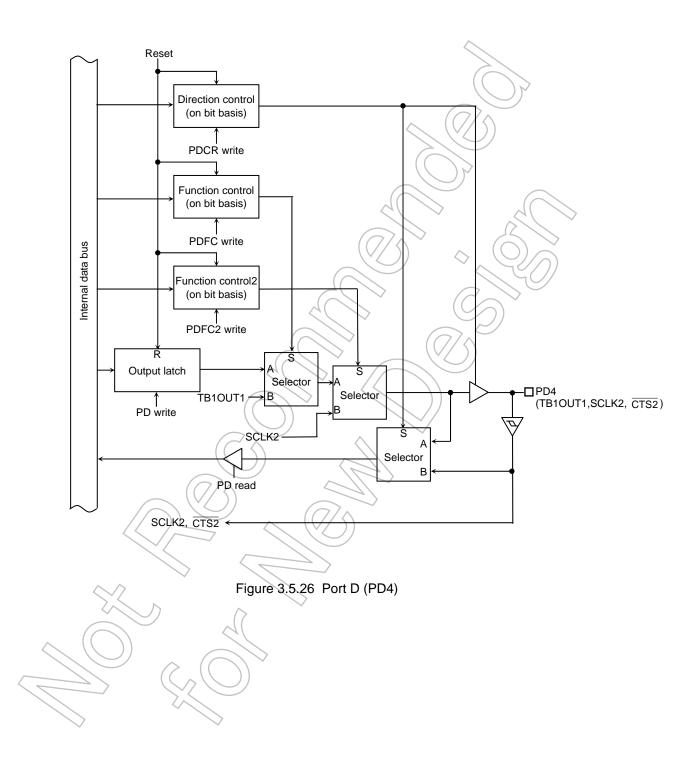
(2) PD1 (INT5,TB1IN0)


In addition to the input port function, the port PD1 has a function as a 16-bit timer input (TB1IN0) and an external interrupt input (INT5). In a port setup, when choosing a 16-bit timer input and performing capture control, INT5 disregards a setup of IIMC2 and IIMC3 register, and operates according to a setup of TB1MOD <TB1CPM1:0>.

(3) PD2 (INT6, TB1IN1, TXD2)


In addition to the I/O port, PD2 has a function as a 16-bit timer input (TB1IN1), an external interrupt input (INT6), and a TXD output (TXD2) of the serial channel 2. When using this port as TXD output (TXD2), it can be set as open drain.

In a port setup, when choosing a 16-bit timer input and performing capture control, INT6 disregards a setup of IIMC2 and IIMC3 register, and operates according to a setup of TB1MOD <TB1CPM1:0>.


(4) PD3 (INT7, TB1OUT0, RXD2)

In addition to the I/O port function, the portD3 has a function as a 16-bit timer output (TB1OUT0), an external interrupt input (INT7), and a RXD input (RXD2) of the serial channel 2.

(5) PD4 (TB1OUT1, SCLK2, $\overline{\text{CTS2}}$)

In addition to the I/O port function, PD4 has a function as a 16-bit timer output (TB10UT1), SCLK I/O (SCLK2) of the serial channel 2, or a CTS input ($\overline{\text{CTS2}}$).

PD		7	6	5	4	3	2	1	0	
1.41.1	Pit ovmbol	· ·		, ,	PD4	PD3	PD2	-	PD0	
PD (0034H)	Bit symbol Read/Write				1 04	R/W	TDZ		R/W	
(000411)	Reset State	/				10,00			Data from	
	Nesel State				Data fror	n external po	rt (Note1)	Data from	external po	
		\sim			2 4 4 1 6	in external per		external port	(Note1)	
									()	
				Port D Cont	Control Register					
		7	6	5	4	3	2	1	0	
PDCR	Bit symbol	/	\frown		PD4C	PD3C	PD2C	/	PD0C	
0036H)	Read/Write	/	\sim		_	w	$\overline{\mathbf{\nabla}}$	\backslash		
. ,	Reset State	/			0	0	0		0	
	Function	/						0: Input		
					0:	Input 1: Outp	but	\bigcirc	1: Output	
							/		>	
				Port D Funct	ion Regist	er 🔪	6	\leq		
		7	6	5	4 🗸	3	<2 (<		0	
PDFC	Bit symbol				PD4F	PD3F	PD2F	PDIF	PD0F	
(0037H)	Read/Write	\backslash					W	PD1 R Data from external port 1 1 PD1F 0 able 1 PD1F2 0 PD0 (f Inpu N	1 DOI	
(00011)	Reset State		\sim			0			0	
	Function						er to following t		0	
					$\overline{}$	((//			
				Port D Functi	on Registe	r2	\bigcirc			
		7	6	5	4 (3	2	1	0	
PDFC2	Bit symbol		\sim		PD4F2	PD3F2	PD2F2	PD1F2	/	
(0035H)	Read/Write		\sim			/v	V			
. ,	Reset State	\backslash		$\overline{2}$	0 🔨	0	0	0	/	
	Function	\backslash	$\neg t$			Refer to foll	owing table			
	D0 function s	ettina		\bigcirc		\sim				
D4 to PI					4		PD1 (Note 3)	PD0 (N	lote 4)	
	P. PDxF. PDxC>	-	4 (/)	PD3		2				
<pdxf2< td=""><td>2, PDxF, PDxC></td><td>PD</td><td>$\langle \langle \rangle$</td><td>PD3</td><td></td><td>1</td><td></td><td></td><td>nort</td></pdxf2<>	2, PDxF, PDxC>	PD	$\langle \langle \rangle$	PD3		1			nort	
<pdxf2< td=""><td>),0,0</td><td>PD- Input</td><td>port</td><td>Input port</td><td></td><td>port</td><td>Input port</td><td>Input</td><td></td></pdxf2<>),0,0	PD- Input	port	Input port		port	Input port	Input		
<pdxf2 0</pdxf2),0,0),0,1	PD- Input Output	port	Input port Output port	Input	port t port	Input port	Input Outpu	it port	
<pdxf2 0 0 0</pdxf2),0,0),0,1	PD- Input Output Reser	port ved	Input port Output port RXD2	Input Outpu TB1	port t port IN1		Input Outpu	it port T4	
<pdxf2 0 0 0 0</pdxf2),0,0),0,1),1,0),1,1	PD- Input Output Reser TB10	port ved JT1	Input port Output port RXD2 TB1OUT0	Input Outpu TB1 TXD2(3	port t port IN1 -state)	Input port TB1IN0	Input Outpu	it port	
<pdxf2 0 0 0 0</pdxf2),0,0),0,1	PD- Input Output Reser	port ved JT1 CTS2	Input port Output port RXD2	Input Outpu TB1	port t port IN1 -state)	Input port	Input Outpu	it port T4	
<pdxf2 0 0 0 0 1</pdxf2),0,0),0,1),1,0),1,1	PD- Input Output Reser TB10 SCLK2,	port port ved JT1 CTS2 ut	Input port Output port RXD2 TB1OUT0	Input Outpu TB1 TXD2(3	port t port IN1 -state) 6	Input port TB1IN0	Input Outpu	it port T4	
<pdxf2 0 0 0 0 1 1</pdxf2), 0, 0), 0, 1), 1, 0), 1, 1 , 0, 0	PD Input Output Reser TB10 SCLK2, inpu	port port ved UT1 CTS2 ut poutput	Input port Output port RXD2 TB1OUT0 INT7	Outpu TB1 TXD2(3	port t port N1 -state) 76 rved	Input port TB1IN0	Input Outpu	it port T4	
<pdxf2 0 0 0 0 1 1</pdxf2), 0, 0), 0, 1), 1, 0), 1, 1 , 0, 0 , 0, 1	PD Input Output Reser TB10 SCLK2, inpu SCLK2 of	port ved JT1 CTS2 ut putput ved	Input port Output port RXD2 TB1OUT0 INT7 Reserved	Input Outpu TB1 TXD2(3 INT Rese	port t port IN1 -state) ⁷ 6 rved	Input port TB1IN0 INT5	Input Outpu	it port T4	
<pdxf2 0 0 0 0 1 1</pdxf2) , 0 , 0) , 0 , 1) , 1 , 0) , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1	PD Input Output Reser TB10 SCLK2, inpu SCLK2 o Reser Reser	ved UT1 CTS2 ut butput ved ved ved	Input port Output port RXD2 TB1OUT0 INT7 Reserved Reserved	Input Outpu TB1 TXD2(3 INT Rese Rese TXD2(port t port IN1 -state) -f6 rved rved (O.D)	Input port TB1IN0 INT5 Reserved	Input Outpu	it port T4	
<pdxf2 0 0 0 0 1 1</pdxf2) , 0 , 0) , 0 , 1) , 1 , 0) , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1	PD Input Output Reser TB10 SCLK2, inpu SCLK2 o Reser Reser	ved UT1 CTS2 ut butput ved ved ved	Input port Output port RXD2 TB1OUT0 INT7 Reserved Reserved Reserved	Input Outpu TB1 TXD2(3 INT Rese Rese TXD2(port t port IN1 -state) -f6 rved rved (O.D)	Input port TB1IN0 INT5 Reserved	Input Outpu	it port T4	
<pdxf2 0 0 0 0 1 1</pdxf2) , 0 , 0) , 0 , 1) , 1 , 0) , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1	PD Input Output Reser TB10 SCLK2 (SCLK2 (Reser Reser Reser	oort port ved JT1 CTS2 ut output ved ved > and <p[< td=""><td>Input port Output port RXD2 TB1OUT0 INT7 Reserved Reserved Reserved Reserved DxC> are the bits ></td><td>Input Outpu TB1 TXD2(3 INT Rese Rese TXD2(</td><td>port t port IN1 -state) -f6 rved rved (O.D)</td><td>Input port TB1IN0 INT5 Reserved</td><td>Input Outpu</td><td>it port T4</td></p[<>	Input port Output port RXD2 TB1OUT0 INT7 Reserved Reserved Reserved Reserved DxC> are the bits >	Input Outpu TB1 TXD2(3 INT Rese Rese TXD2(port t port IN1 -state) -f6 rved rved (O.D)	Input port TB1IN0 INT5 Reserved	Input Outpu	it port T4	

Note 3: Read-modify-write instructions are prohibited for PDCR, PDFC and PDFC2.

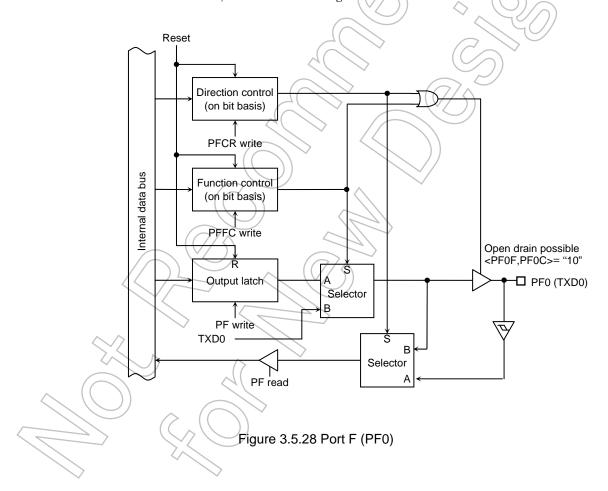
Note 4: TB1IN0 and TB1IN1 input is inputted into the 16-bit timer TMRB1 irrespective of a functional setup of a port. Note 5: RXD2, SCLK2 input, and $\overline{CTS2}$ input are inputted into the serial channel 2 irrespective of a functional setup of a port.

Note 6: PD2 does not have a register for 3-state/open drain setup. Moreover, there is no open drain function at the time of an output port.

Figure 3.5.27 Register for Port D

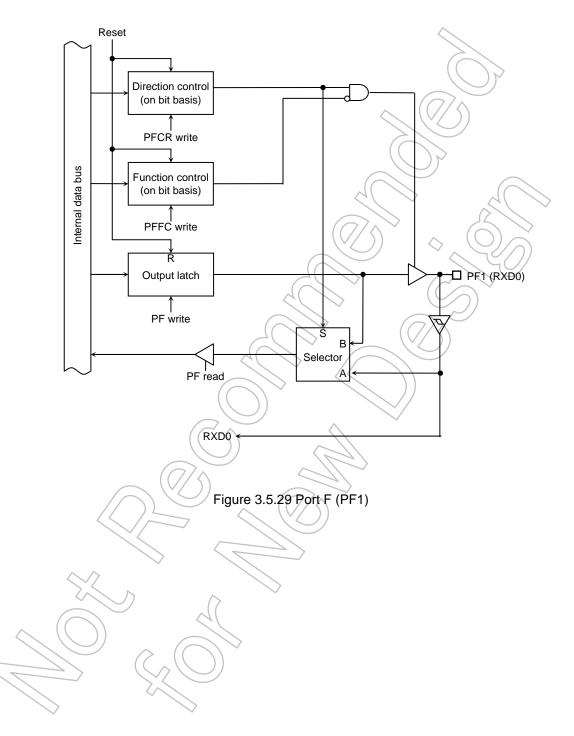
3.5.10 Port F (PF0 to PF5)

Port F is a 6-bit general-purpose I/O ports.

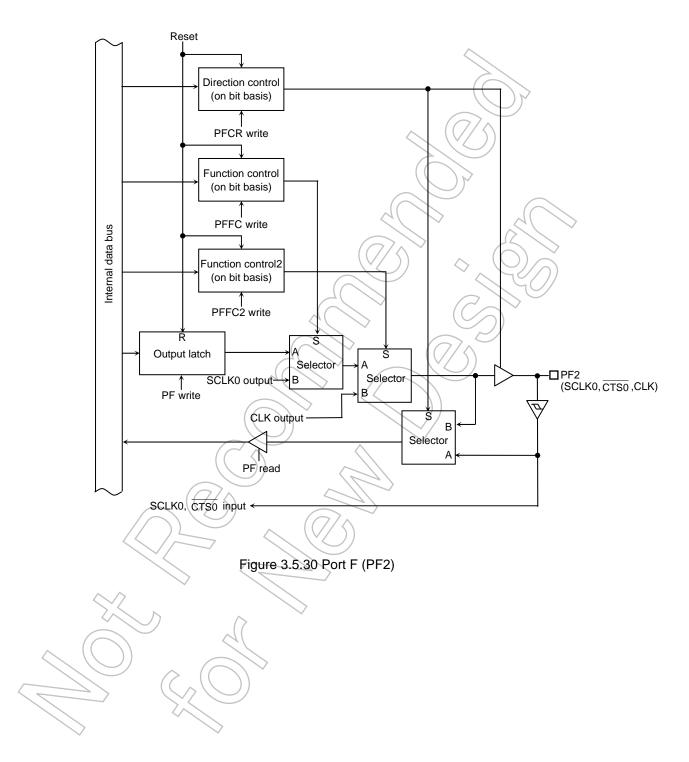

All the bits of PFCR, PFFC and PFFC2 are cleared to "0" by the reset action, and all bits serve as an input port.

In addition to an I/O port, there are I/O of the serial channels 0 and 1, high speed serial channel and an internal clock output function. These functions operate by setting the bit concerned of PFCR, PFFC, PFFC2, HSCSEL register as "1". All the bits of PFCR, PFFC, PFFC2 and HSCSEL are cleared to "0" by the reset action, and all bits serve as an input port.

(1) Port F0 (TXD0)

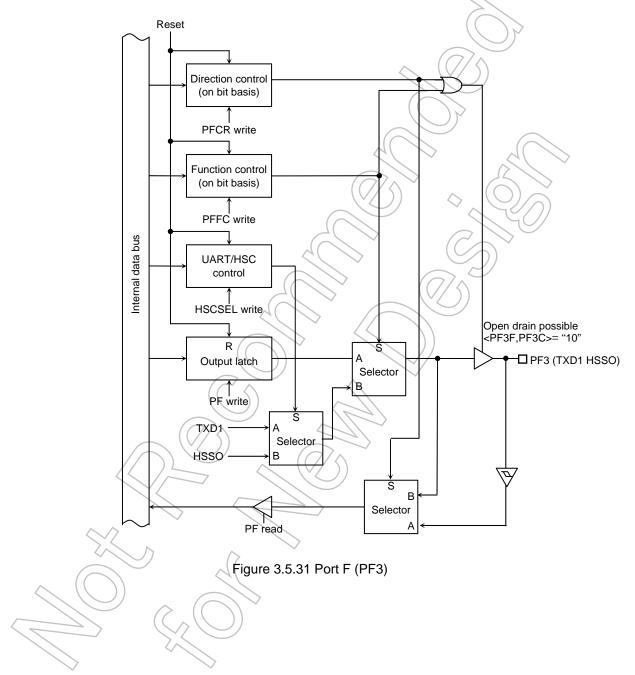

In addition to an I/O port function, PF0 have a function as an output (TXD0) of the serial channels 0 .

Moreover, when using it as a TXD output terminal, the output buffer has the open drain function in which a program is possible. An open drain function can be set up by the PFFC <PF0F>, PFCR <PF0C> register.

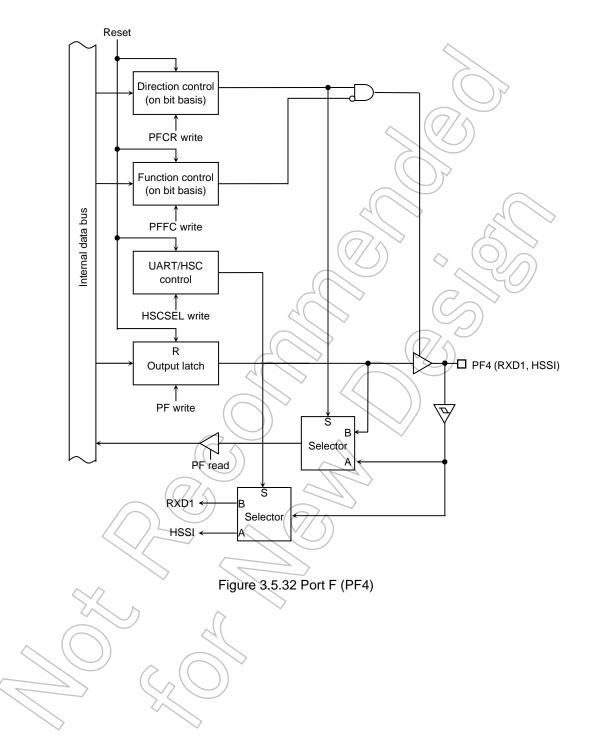

(2) PF1(RXD0)

In addition to the I/O port, PF1 have a function as an input (RXD0) of the serial channels $\mathbf{0}$.

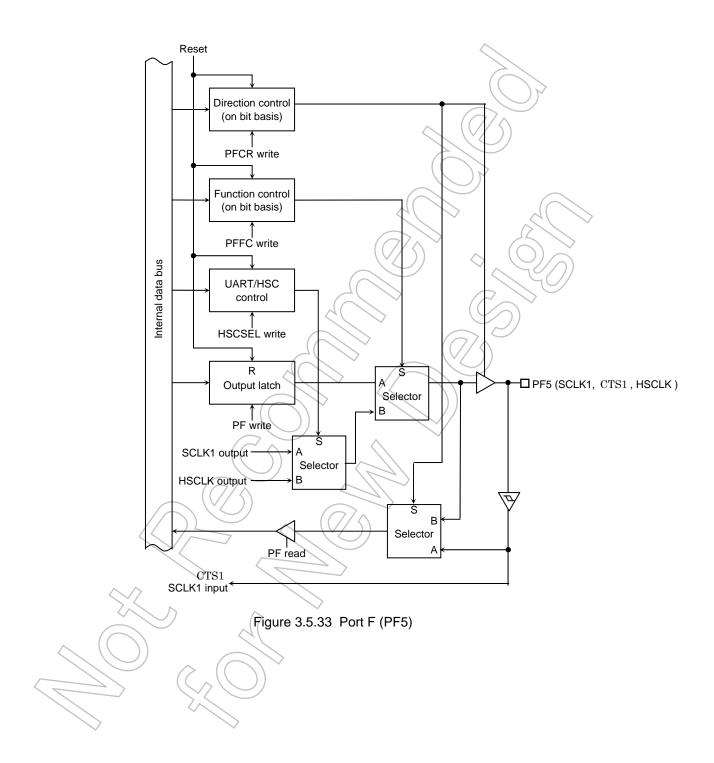
(3) PF2 ($\overline{CTS0}$, SCLK0, CLK)


In addition to the I/O port, PF2 has a function as the CTS input ($\overline{\text{CTS0}}$), SCLK I/O (SCLK0), and the internal clock output (CLK) of the serial channel 0.

(4) Port F3 (TXD1, HSSO)


In addition to an I/O port function, PF3 have a function as an output (TXD1) of the serial channels 1 and output (HSSO) of the high speed serial channels.

Moreover, when using it as a TXD output terminal, the output buffer has the open drain function in which a program is possible. An open drain function can be set up by the PFFC <PF3F>, PFCR <PF3C> register.


(5) PF4(RXD1, HSSI)

In addition to the I/O port, PF4 have a function as an input (RXD1) of the serial channels 0 and input (HSSI) of high speed serial channels.

(6) PF5 ($\overline{CTS1}$, SCLK1, HSCLK)

In addition to the I/O port function, PF5 has a function as the input $(\overline{\text{CTS1}})$ or I/O (SCLK1) of the serial channel 1 and output (HSCLK) of high speed serial channels.

				FUILI	Register				
		7	6	5	4	3	2	1	0
PF	Bit symbol			PF5	PF4	PF3	PF2	PF1	PF0
(003CH)	Read/Write					R	/W		
	Reset State			Da	ta from extern	al port (Outpu	it latch registe	er is cleared to	o "0")
				Port F Cor	ntrol Registe	er			
		7	6	5	4	3	2	DY 1	0
PFCR	Bit symbol			PF5C	PF4C	PF3C	PF2C	PF1C	PF0C
(003EH)	Read/Write	\sim	\sim	1130	1140		M ()	1110	1100
()	Reset State		//	0	0	0	0	0	0
	Function				, ,		1: Output	J J	
					oton Dogiot		9	\bigcirc	
		7			cton Regist		2		
		7	6	5	4	3	2	21	0
PFFC	Bit symbol		\sim	PF5F	PF4F((PF3F	PF2F	PF1E	PF0F
(003FH)	Read/Write		\sim			y v	v V		
	Reset State			0	0	0	0	0	0
	Function			0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
				1: SCLK1	1: RXD1	1: TXD1	1: SCLK0	1: RXD0	1: TXD0
				CTS1		6	CTS0		
			F	Port F Func	ton Registe	er 2	())	1	-
		7	6	5	4	3	2	1	0
PFFC2	Bit symbol			\geq		\sim	PF2F2		
(003DH)	Read/Write			T T		\checkmark	W		
	Reset State						0		
	Function		(C'	\land	\land		0: <pf2f></pf2f>		
))			1: CLK		
			SI	O1/ HSC C	control Reg	ister			
		1	(6)	5	4	3	2	1	0
HSCSEL	Bit symbol	$((-))^{L}$		$\langle \langle \rangle$	(/)	-	-	-	SIOCNT
(00F4H)	Read/Write				R	1		i	R/W
	Reset State	0	0 <	0	0	0	0	0	0
	Function		/						0: SIO1
									1: HSC

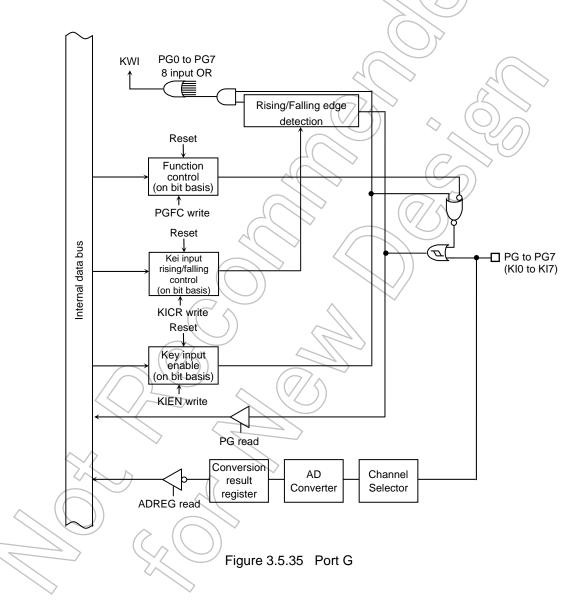
<pfxf2, pfxc="" pfxf,=""></pfxf2,>	PF2	PF1	PF0	
0,0,0	Input port	Input port	Input port	
0,0,1	Output port	Output port	Output port	
0,1,0	SCLK0, CTS0 input	RXD0 input	TXD0 (O.D output)	
0,1,1	SCLK0 output	Reserved	TXD0 (3-state)	
1 , 0 , 0	Reserved			
1 , 0 , 1	CLK output			>
1 , 1 , 0	Reserved			
1 , 1 , 1	Reserved		(7/1)	
<siocnt, pfxc="" pfxf,=""></siocnt,>	PF5	PF4	PF3	
<siocnt, pfxc="" pfxf,=""></siocnt,>	PF5 Input port	PF4 Input port	PF3	
<siocnt, pfxc="" pfxf,=""> 0 , 0 , 0 0 , 0 , 1</siocnt,>	Input port	Input port Output port	Input port	\sim
<siocnt, pfxc="" pfxf,=""> 0 , 0 , 0</siocnt,>	Input port Output port	Input port	Input port Output port	\bigcirc
<siocnt, pfxc="" pfxf,=""> 0 , 0 , 0 0 , 0 , 1</siocnt,>	Input port Output port SCLK1,	Input port Output port	Input port Output port TXD1	\bigcirc
<siocnt, pfxc="" pfxf,=""> 0,0,0 0,0,1 0,1,0</siocnt,>	Input port Output port SCLK1, CTS1 input	Input port Output port RXD1 input	Input port Output port TXD1 (O.D output)	
<siocnt, pfxc="" pfxf,=""> 0,0,0 0,0,1 0,1,0 0,1,1</siocnt,>	Input port Output port SCLK1, CTS1 input SCLK1 output	Input port Output port RXD1 input Reserved	Input port Output port TXD1 (O.D output) TXD1 (3-state)	
<siocnt, pfxc="" pfxf,=""> 0,0,0 0,0,1 0,1,0 0,1,1 1,0,0</siocnt,>	Input port Output port SCLK1, CTS1 input SCLK1 output Reserved	Input port Output port RXD1 input Reserved Reserved	Input port Output port TXD1 (O.D output) TXD1 (3-state) Reserved	\bigcirc

PF5 to PF0 function setting

Note : <PFxF2>,<PFxF> and <PFxC> are the bits x of PFFC2,PFFC and PFCR registers.

Note 1: Read-modify-write instructions are prohibited for PDCR, PDFC and PDFC2.

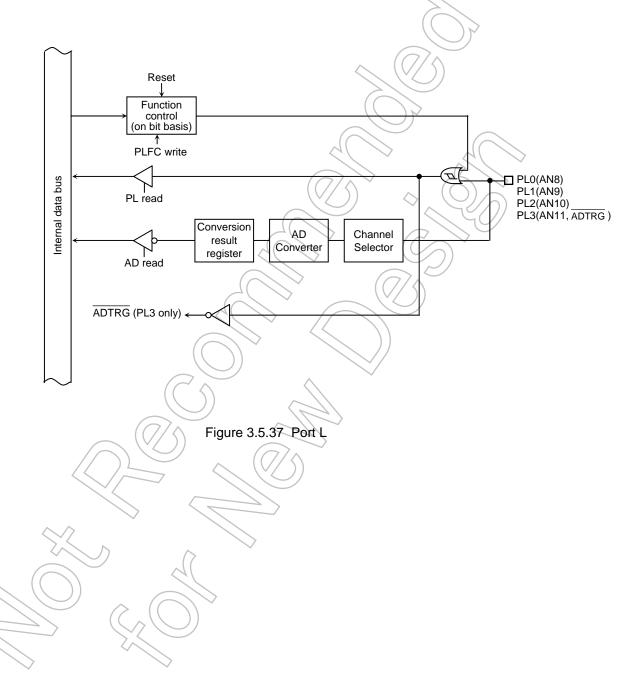
Note 2: PF0 and PF3 does not have a register for 3-state/open drain setup. Moreover, there is no open drain function at the time of an output port.


Figure 3.5.34 Register for Port F

3.5.11 Port G (PG0 to PG7)

Port G is 8-bit general-purpose input ports. In addition to an input port function, there are an analog input for AD converters (AN0 to AN7) and a key input (KI0 to KI7) function for a Key on wake up. These functions operate by setting the bit concerned of PGFC, KIEN register as "1". Moreover, edge selection of a key input is set up by the KICR register.

By the reset action, all the bits of PGFC are set to "1", and all the bits of KIEN are cleared to "0", and it becomes all bit analog input ports (port input disable).


A key input is enabled by the KIEN register, and when the edge chosen in the KICR register is detected, the Key on wake up input KWI occurs. Although a Key on wake up input can release all HALT mode states, there is no function as interrupt.

				Port G	Register				
		7	6	5	4	3	2	1	0
PG	Bit symbol	PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0
(0040H)	Read/Write				F	R			
	Reset State			Da	ata from exter	nal port (Note	1)		
			F	Port G Fund	ction Regist	ter			
		7	6	5	4	3	2	1	0
PGFC	Bit symbol	PG7F	PG6F	PG5F	PG4F	PG3F	PG2F	PG1F	PG0F
(0043H)	Read/Write		•		V		$(\Omega \wedge)$		
	Reset State	1	1	1	1		(1)	1	1
	Function			0: An	alog input 1: l	Input port/Key	input		
			к	ey input Er	hable Regis	ster	$\sum_{i=1}^{n}$		
		7	6	5	4	$\langle 3 \rangle$	2		0
KIEN	Bit symbol	KI7FN	KI6FN	KI5FN	KI4FN	KI3FN	KI2FN	KHEN	KI0EN
(13A0H)				1.0211		7/ ~ ~			
	Reset State	0	0	0	0	\bigcirc_0		5/0)	0
	Function	KI7 input	KI6 input	KI5 input	KI4 input	KI3 input	KI2 input	KI1 input	KI0 input
		0: Disable	0: Disable		0: Disable	0: Disable	0: Disable	0: Disable	0: Disable
		1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable
			к	ey input Co	ontrol Regis	ster	75		
		7	6	5	4 /	3	2	1	0
KICR	Bit symbol	KI7EDGE	KI6EDGE	KI5EDGE	KI4EDGE	KI3EDGE	KI2EDGE	KI1EDGE	KI0EDGE
(13A1H)	Read/Write		(V	\sim		_	-
	Reset State	0	0	Ø	0	0	0	0	0
	Function	KI7 edge	17	< \ -	KI4 edge	-	KI2 edge	-	KI0 edge
		0	-	//		0	-	-	0: Rising
		1: Falling	1: Falling	1: Falling	1: Falling	1) Falling	1: Falling	1: Falling	1: Falling
PG7 to P	G0 function	setting				>			
< KIXEN	<pgxf></pgxf>	0		1	\bigcirc				
		Input port	Anal	og input					
	1		~						
	Note · < P	/			C and KIEN re	eaisters			
						sglotoro.			
	PG 0040H) Bit symbol PG7 PG6 PG5 PG4 PG3 PG2 PG1 PG6 Read/Write R R Data from external port (Note1) R								
<))				KIEN and KICF	ર.		
		~ ~>				D mode contr		MOD1.	
$\langle \langle \langle \rangle \rangle$					~,~,~,~,~,		- 3-2-20 / 10		
		$\langle \rangle$							
	\checkmark		Figu	re 3.5.36 R	egister for I	Port G			

3.5.12 Port L (PL0 to PL3)

Port L is a 4-bit input port. In addition to an input port function, Port L has the analog input function of an AD converter. Moreover, PL3 has the $\overline{\text{ADTRG}}$ function of an AD converter. When you use PL3 as an $\overline{\text{ADTRG}}$, set PLFC <PL3F> as "0". All the bits of a PLFC register are set to "1" by the reset action, and Port L become analog input port (port input disable).

				Port L Re	egister								
		7	6	5	4	3	2	1	0				
PL	Bit symbol					PL3	PL2	PL1	PL0				
(0054H)	Read/Write	/				R Data from external port (Note1)							
	Reset State												

		Po	ort L Functio	on Register				
	7	6	5	4	3	2	1	0
Bit symbol					PL3F	PL2F	PL1F	PL0F
Read/Write			/		. (1	
Reset State						()	1	1
Function					0: A	nalog input 1:	nput port (No	ote3)

PLFC (0057H)

Note 1: It operates as an analog input port (Input port disable).

Note 2: Read-modify-write instructions are prohibited for PLFC.

Note 3: Input channel selectino of an AD converter is set up by AD mode control register ADMOD1<ADCH3:0>.

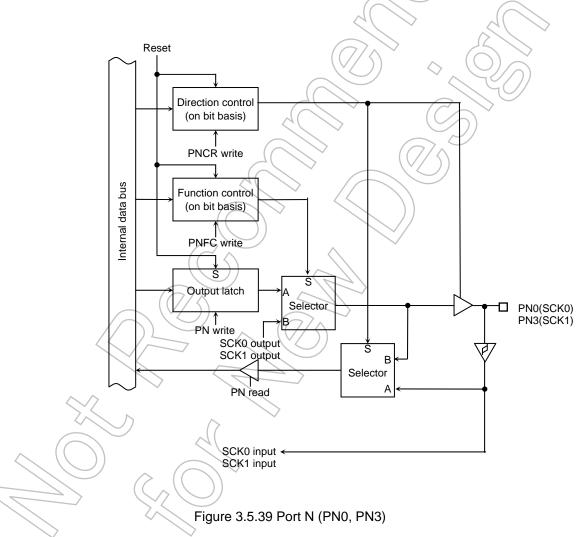
Moreover, a set up of AD trigger (ADTRG) input oermission is set up by ADMOD2<ADTRGE>.

Figure 3.5.38 Register for Port L

3.5.13 Port N (PN0 to PN5)

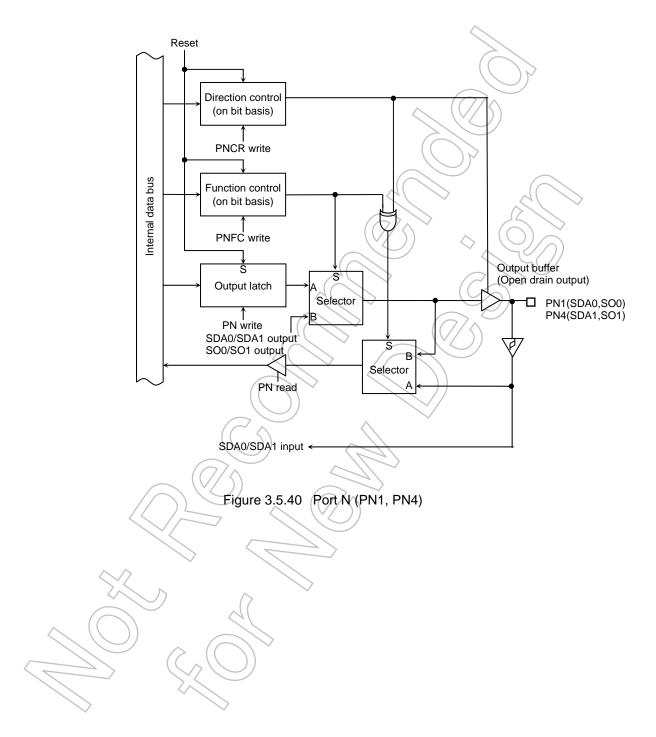
Port N is 6-bit general-purpose I/O ports. Moreover, PN1, PN2, PN4, and PN5 serve as an open drain output, when it is set as an output.

There are the following functions in addition to an I/O port.

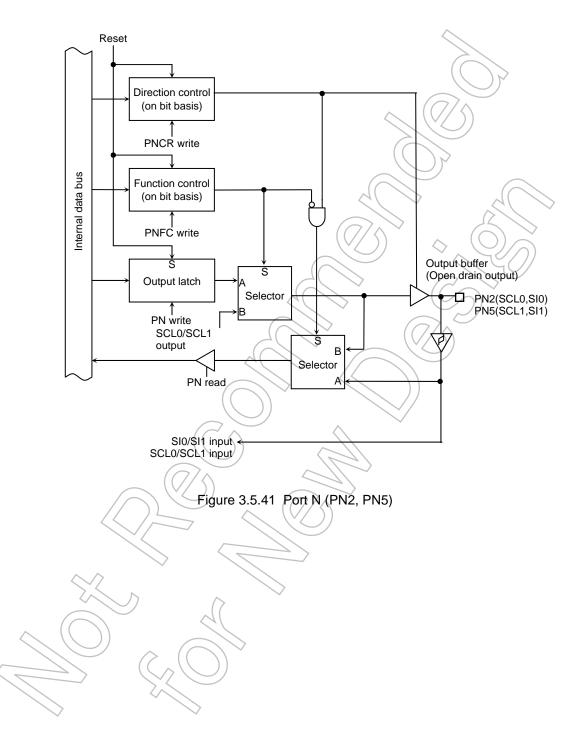

• The I/O function of the serial bus interface 0 (SCK0, SO0/SDA0, SI0/SCL0)

• The I/O function of the serial bus interface 1 (SCK1, SO1/SDA1, SI1/SCL1)

These functions operate by setting the bit concerned of PNCR, PNFC register as "1". All the bits of PNCR and PNFC are cleared to "0" by the reset action, and all bits serve as an input port. Moreover, all the bits of an output latch are set to "1".


(1) PN0 (SCK0), PN3 (SCK1)

PN0 and PN3 are general-purpose I/O ports. It is also used as a SCK (clock I/O signal in SIO mode).


(2) PN1 (SDA0/SO0), PN4 (SDA1/SO1)

PN1 and PN4 are general-purpose I/O ports. It is also used as a SO (data output signal in SIO mode), and SDA (data signal in I2CBUS mode). Moreover, these ports serve as an open drain output.

(3) PN2 (SCL0/SI0), PN5 (SCL1/SI1)

PN2 and PN5 are general-purpose I/O ports. It is also used as a SI (data input signal in SIO mode), and SCL (clock signal in I²CBUS mode). Moreover, these ports serve as an open drain output.

		7	6	5	4	3	2	1	0	
PN	Bit symbo	_		PN5	PN4	PN3	PN2	PN1	PN0	
(005CH)	Read/Writ	ie				R/	W			
	Reset Sta	te		[Data from ex	kternal port (Outp	out latch regis	ter is set	to "1")	
				Port N Co	ntrol Regi	ster				
		7	6	5	4	3	2	1	0	
PNCR	Bit symbo			PN5C	PN4C	PN3C	PN2C	PN1	C PN0C	
(005EH)	Read/Wri	te				V	VAIA			
	Reset Sta	ate		0	0	0	((0))	0	0	
	Function					0: Input	1: Output			
				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
		7	6	5	4	$\langle 3 \rangle$	2	$\lambda(1)$	0	
PNFC	Bit symbo			PN5F	PN4F	PN3F	PN2F	PN1	F PN0F	
(005FH)	Read/Wri	/			(V V)		
	Reset Sta	ate		0	0	0	0	500)) 0	
	Function			0: Port	0: Port		0: Port	0: Port	0: Port	
				1: SI1, SCL ²	1: SO1,SD	A1 1: SCK1	1: SI0, SCL0	0 1:/SO0 8	SDA01: SCK0	
PN5 to P	N0 functio	on setting		G		, (77.			
<pnxf< td=""><td>, PNxC></td><td>PN5</td><td>PN4</td><td>(</td><td>PN3</td><td>PN2</td><td>() PN</td><td>1</td><td>PN0</td></pnxf<>	, PNxC>	PN5	PN4	(PN3	PN2	() PN	1	PN0	
0,	0,0	Input port	Input por	t Inp	ut port	Input port	Input	port	Input port	
0,	0,1	Output port	Output po	rt Out	out port	Output port	Output	port	Output port	
0,	1,0	SI1 input	SO1 outpu	lt SCI	(1 input	SI0 input	SO0 ot	utput	SCK0 input	
0,	1,1	SCL1 input/output	SDA1 input/outp	SCK	1 output	SCL0 input/output	SDA input/or	-	SCK0 output	

Port N Register

Note : <PNxF> and <PNxC> are the bits x of PNFC and PNCR registers.

Note 1: Read-modify-write instructions are prohibited for PNFC and PNCR.

Figure 3.5.42 Register for Port N

3.6 Memory Controller

3.6.1 Functions

TMP92FD23A has a memory controller with a variable 4-block address area that controls as follows.

(1) 4-block address area support

Specifies a start address and a block size for 4-block address area.

- (2) Connecting memory specifications
 Specifies SRAM and ROM as memories to connect with the selected address areas.
- (3) Data bus size selection

Whether 8 bits, 16 bits is selected as the data bus size of the respective block address areas.

(4) Wait control

Wait specification bit in the control register and WAIT input pin control the number of waits in the external bus cycle. Read cycle and write cycle can specify the number of waits individually. The number of waits is controlled in 6 modes mentioned below.

0 waits, 1 wait,

2 waits, 3 waits, 4 waits N waits (control with WAIT pin)

3.6.2 Control Register and Operation after Reset Release

This section describes the registers to control the memory controller, the state after reset release and necessary settings.

(1) Control register

The control registers of the memory controller are as follows.

- Control register: BnCSH/BnCSL (n = 0 to 3, EX) Sets the basic functions of the memory controller, that is the connecting memory type, the number of waits to be read and written.
- Memory start address register: MSARn (n = 0 to 3) Sets a start address in the selected address areas.
- Memory address mask register: MAMR (n = 0 to 3)
 Sets a block size in the selected address areas.
- Page ROM control register: PMEMCR Sets to executed ROM page mode accessing.

(2) Operation after reset release

After reset, only control register (B2CSH/B2CSL) of the block address area 2 is automatically valid (B2CSH<B2E> is set to "1" by reset).

Since the bus width specification bit of the control register of the block address area 2 becomes unfixed, please be sure to set up before accessing the external block address area 2.

The block address area 2 is set to address from 000000H to FFFFFFH after reset (B2CSH<B2M> is cleared to "0").

After reset release, the block address areas are specified by the memory start address register (MSARn) and the memory address mask register (MAMRn). Then the control register (BnCSH/L) is set.

Set the enable bit (BnCSH<BnE>) of the control register to "1" to enable the setting

3.6.3 Basic Functions and Register Setting

In this section, setting of the block address area, the connecting memory, and the number of waits out of the memory controller's functions are described.

(1) Block address area specification

The block address area is specified by two registers.

The memory start address register (MSARn) sets the start address of the block address areas. The memory controller compares between the register value and the address every bus cycles. The address bit which is masked by the memory address mask register (MAMRn) is not compared by the memory controller. The block address area size is determined by setting the memory address mask register. The set value in the register is compared with the block address area on the bus. If the compared result is a match, the memory controller sets the chip select signal $(\overline{\text{CSn}})$ to "low".

(i) Setting memory start address register

The <MS23:MS16> bits of the memory start address register respectively correspond with addresses from A23 to A16. The lower start addresses from A15 to A0 are always set to address 0000H. Therefore the start addresses of the block address area are set to addresses from 000000H to FF0000H every 64 Kbytes.

(ii) Setting memory address mask registers

The memory address mask register sets whether an address bit is compared or not. Set the register to "0" to compare, or to "1" not to compare.

The address bit to be set is depended on the block address area.

Block address area 0: A20 to A8

Block address area 1: A21 to A8

Block address area 2 to 3: A22 to A15

The above-mentioned bits are always compared. The block address area size is determined by the compared result.

Size (bytes) CS Area	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS0	0	0	0	6	0	0	0	0	0		
CS1	ク。	0	$\langle \rangle$	0	0	0	0	0	0	0	
CS2 to CS3			0	0	0	0	0	0	0	0	0

The size to be set depending on the block address area is as follows.

Note: After reset release, only the control register of the block address area 2 is valid. The control register of the block address area 2 has <B2M> bit. Setting <B2M> bit to "0" sets the block address area 2 to addresses from 000000H to FFFFFFH. Setting <B2M> bit to "1" specifies the start address and the address area size as it is in the other block address area.

(iii) Example of register setting

To set the block address area from 1 to 512 bytes from address 110000H, set the register as follows.

	7	6	5	4	3	2	1	0
Bit symbol	M1S23	M1S22	M1S21	M1S20	M1S19	M1S18	M1S17	M1S16
Specified value	0	0	0	1	0	0	Ø	1

<M1S23:16> bits of the memory start address register MSAR1 correspond with
address from A23 to A16.

From A15 to A0 are cleared to "0". Therefore setting MSAR1 to the above-mentioned value specifies the start address of the block address area to address 110000H.

			MAN	IR1 Regist	er		2	
	7	6	5	4	(73)	2		> 0
Bit symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15 to M1V9) M1V8
Specified value	0	0	0	0		0		1
							$\langle \rangle$	

<M1V21:M1V16> and <M1V8> bits of the memory address mask register MAMR1 set whether address from A21 to A16 and A8 are compared or not. Set the register to "0" to compare, or to "1" not to compare. From M1V15 to M1V9 bits set whether address from A15 to A9 are compared or not with 1 bit. A23 and A22 are always compared.

If set like above setting, from A23 to A9 compare with the values set as the start addresses. Therefore 512 bytes of addresses 110000H to 1101FFH are set as the block address area 1. If compared with the addresses on the bus, the chip select signal $\overline{\text{CS1}}$ is set to "LOW".

A23 to A21 are always compared in the block address area 0. Whether from A20 to A8 are compared or not is set to register.

Similarly, A23 is always compared in block address areas 2 to 3. Whether A22 to A15 are compared or not is set to register.

Note: When the set block address area overlaps with the built-in memory area, or both two address areas overlap, the block address area is processed according to priority as follows.

Built-in I/0 > Built-in memory > Block address area 0 > 1 > 2 > 3

Also that any accessed areas outside the address areas set by $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ are processed as the $\overline{\text{CSEX}}$ space. Therefore, settings of $\overline{\text{CSEX}}$ (BEXCSH/L) apply for the control of wait cycles, data bus width, etc.

(2) Connection memory specification

Setting the <BnOM1:0> bit of the control register (BnCSH) specifies the memory type to be connected with the block address areas. The interface signal is output according to the set memory as follows.

	<buoinut:0></buoinut:0>	Bit (BNCSH register)
BnOM1	BnOM0	Function
0	0	SRAM/ROM (Default)
0	1	(Reserved)
1	0	(Reserved)
1	1	(Reserved)

<bnom1:0> Bit</bnom1:0>	(BnCSH register)
-------------------------	------------------

(3) Data bus width specification

The data bus width is set for every block address area. The bus size is set by the <BnBUS1:0> bits of the control register (BnCSH) as follows.

_		<bnbus1:0< th=""><th>> Bit (BnCSH register)</th><th></th></bnbus1:0<>	> Bit (BnCSH register)	
	BnBUS1	BnBUS0	Function	$\left \right $
ĺ	0	0	8-bit bus mode (Note 2)	2
	0	1	16-bit bus mode	
	1	0	(Reserved)	
	1	1	(Reserved)	

This way of changing the data bus size depending on the address being accessed is called "dynamic bus sizing". The part where the data is output to is depended on the

Note1: Since there is a possibility of abnormal writing/reading of the data if two memories with different bus width are

put in consecutive address, do not execute a access to placed on both memories with one command.

data size, the bus width and the start address.

Note2: Since after reset becomes unfixed, please be sure to set up bus width specification bit B2CSH <B2BUS1:0> of the control register of the block address area 2 before accessing the external block address area 2.

Operand Data	Operand	Memory Data	CPU		CPU	Data	
Size (Bit)	Start Address	Size (Bit)	Address	D32 to D24	D23 to D16	D15 to D8	D7 to D0
	4n + 0	8/16	4n + 0	XXXXX	XXXXX	XXXXX	b7 to b0
	4n + 1	8	4n + 1	XXXXX	XXXXX	XXXXX	b7 to b0
0		16	4n + 1	XXXXX	XXXXX	b7 to b0	XXXXX
8	4n + 2	8/16	4n + 2	XXXXX	xxxxx	xxxxx	b7 to b0
	4n + 3	8	4n + 3	XXXXX	XXXXX	xxxxx	b7 to b0
		16	4n + 3	XXXXX	xxxxx	b7 to b0	XXXXX
	4n + 0	8	(1) 4n + 0	xxxxx	xxxxx	XXXXX	b7 to b0
			(2) 4n + 1	XXXXX	XXXXX	XXXXX	b15 to b8
		16	4n + 0	XXXXX	xxxxx	b15 to b8	b7 to b0
	4n + 1	8	(1) 4n + 1	xxxxx	XXXXX	XXXXX	b7 to b0
			(2) 4n + 2	XXXXX	XXXXX	XXXXX	b15 to b8
		16	(1) 4n + 1	xxxxx	XXXXX	b7 to b0	XXXXX
			(2) 4n + 2	XXXXX	XXXXX	XXXXX	b15 to b8
16	4n + 2	8	(1) 4n + 2	XXXXX	XXXXX	XXXXX	b7 to b0
		Ŭ	(2) 4n + 1	XXXXX	XXXXX	XXXXX	b15 to b8
		16	4n + 2	XXXXX	XXXXX	b15 to b8	b7 to b0
	4n + 3	8	(1) 4n + 3	XXXXX	XXXXX	XXXXX	b7 to b0
	in r o	Ŭ	(2) 4n + 4	XXXXX	XXXXX	XXXXX	b15 to b8
		16	(1) 4n + 3	XXXXX	XXXXX	b7 to b0	XXXXX
		10	(1) (1) (2)	XXXXX	XXXXX	XXXXX	b15 to b8
	4n + 0	8	(1) 4n + 0	XXXXX	XXXXX	XXXXX	b7 to b0
		U	(1) 4n + 0 (2) 4n + 1	XXXXX	XXXXX	XXXXX	b15 to b8
			(3) 4n + 2	XXXXX	XXXXX	XXXXX	b13 to b16
			(4) 4n + 3	XXXXX	XXXXX	XXXXX	b31 to b24
		16	(1) 4n + 0	XXXXX	XXXXX	b15 to b8	b7 to b0
		10	(1) 4n + 0 (2) 4n + 2	XXXXX	XXXXX	b31 to b24	b23 to b16
	4n + 1	8	(1) 4n + 0	XXXXX	XXXXX	XXXXX	b23 to b10
		ů ((2) 4n + 1	XXXXX	XXXXX	XXXXX	b15 to b8
			(3) 4n + 2	XXXXX	XXXXX	XXXXX	b13 to b16
			(4) 4n + 3	XXXXX	XXXXX	XXXXX	b31 to b24
		16	(1) 4n + 1	XXXXX	XXXXX	b7 to b0	XXXXX
			(1) 4n + 1 (2) 4n + 2	XXXXX	XXXXX	b23 to b16	b15 to b8
			(3) 4n + 4	XXXXX	XXXXX	XXXXX	b31 to b24
32	4n + 2	018	(0) 411 + 4 (1) 4n + 2	XXXXX	XXXXX	XXXXX	b7 to b0
		((// 5))	(1) 4n + 2 (2) 4n + 3	XXXXX	XXXXX	XXXXX	b15 to b8
			(3) 4n/+/4	XXXXX	XXXXX	XXXXX	b13 to b16
	//)]	\sim \sim	(3) 4n + 4 (4) 4n + 5	XXXXX	XXXXX	XXXXX	b31 to b24
		16	(4) 4n + 3 (1) 4n + 2			b15 to b8	b7 to b0
	\sim	10	(1) 4n + 2 (2) 4n + 4	XXXXX	XXXXX XXXXX	b13 to b24	b23 to b16
	4n + 3	8	(2) 4n + 4 (1) 4n + 3	XXXXX XXXXX	XXXXX	XXXXX	b23 to b10
			(1) $4n + 3$ (2) $4n + 4$	XXXXX	XXXXX	XXXXX	b15 to b8
4	$\geq l$		(3) 4n + 5	XXXXX	XXXXX	XXXXX	b13 to b0
	$\langle \rangle \rangle$	\land					b31 to b24
	\sim	16	(4) 4n + 6 (1) 4n + 3	XXXXX	XXXXX	xxxxx b7 to b0	XXXXX
				XXXXX	XXXXX	b7 to b0 b23 to b16	b15 to b8
$\langle \langle \rangle$			(2) 4n + 4 (3) 4n + 6	XXXXX	XXXXX		b31 to b24
	<u> </u>		(3) 411 + 0	XXXXX	XXXXX	XXXXX	JJ1 10 JZ4

xxxxx:

During a read, data input to the bus is ignored. At write, the bus is at high impedance and the write strobe signal remains to non active.

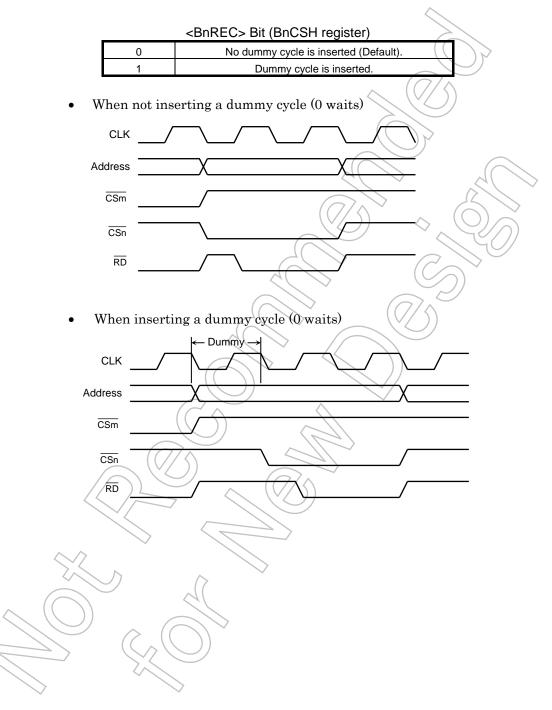
(4) Wait control

The external bus cycle completes a wait of two states at least (100 ns at $f_{SYS} = 20$ MHz).

Setting the <BnWW2:0> and <BnWR2:0> of BnCSL specifies the number of waits in the read cycle and the write cycle. <BnWW2:0> is set with the same method as <BnWR2:0>. A setup is performed as follows.

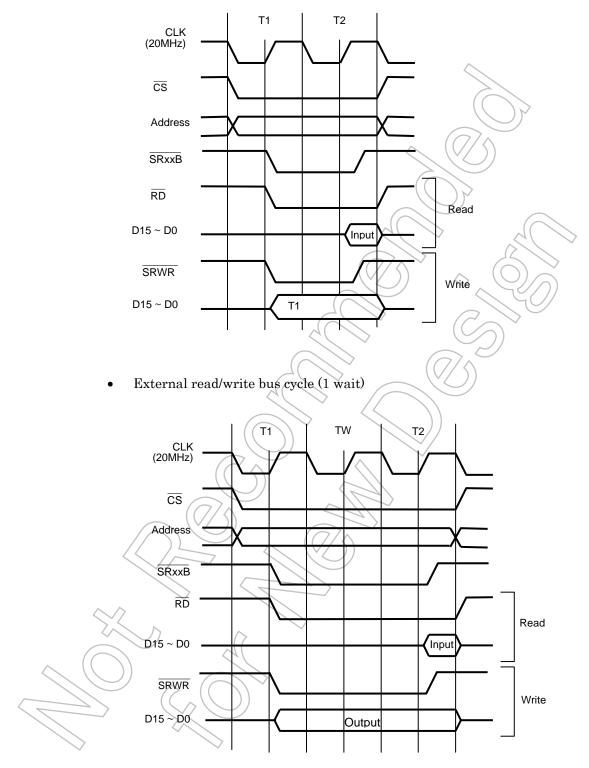
	<bn< th=""><th>WW2:0>/<e< th=""><th>3nWR2:0> Bit (BnCSL Register)</th></e<></th></bn<>	WW2:0>/ <e< th=""><th>3nWR2:0> Bit (BnCSL Register)</th></e<>	3nWR2:0> Bit (BnCSL Register)
BnWW2	BnWW1	BnWW0	Function
BnWR2	BnWR1	BnWR0	Pulcion
0	0	1	2states (0 waits) access fixed mode
0	1	0	3states (1 wait) access fixed mode (Default)
1	0	1	4states (2 waits) access fixed mode
1	1	0	5states (3 waits) access fixed mode
1	1	1	6states (4 waits) access fixed mode
0	1	1	WAIT pin input mode
	Others		(Reserved)

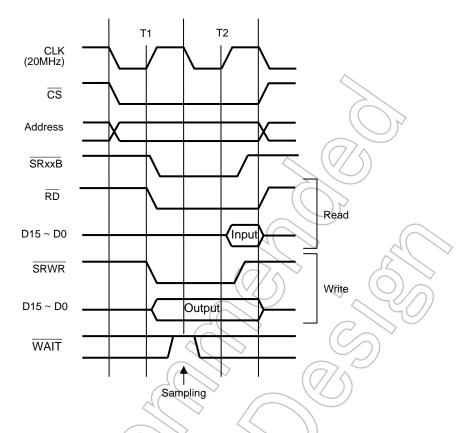
(i) Waits number fixed mode


The bus cycle is completed with the set states. The number of states is selected from 2 states (0 waits) to 6 states (4 waits).

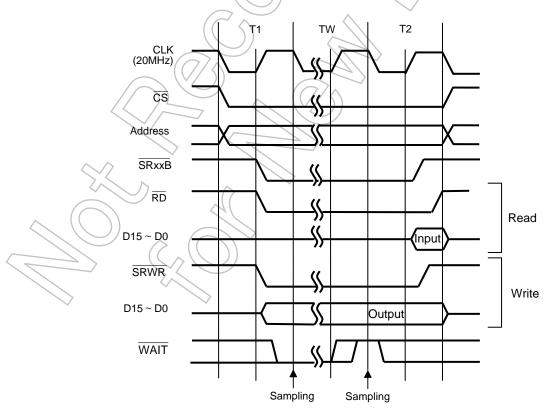
(ii) \overline{WAIT} pin input mode

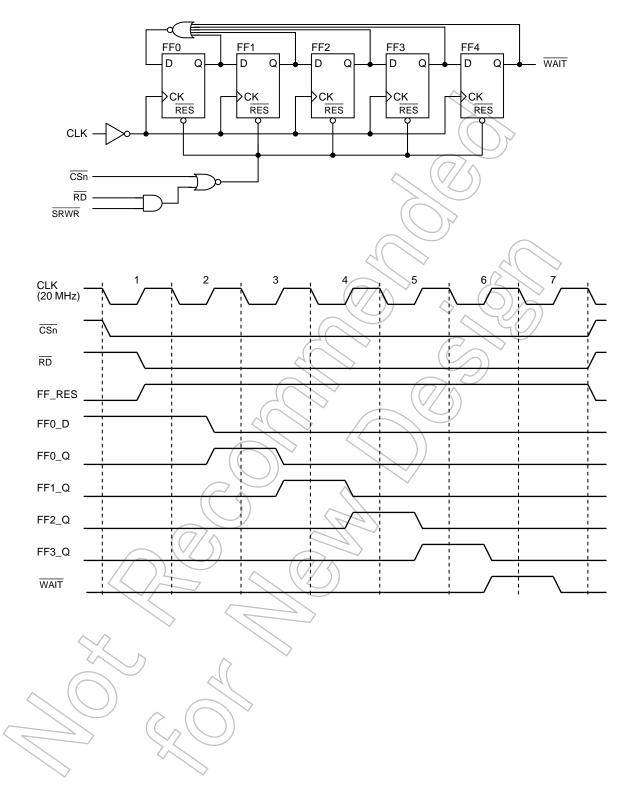
This mode samples the $\overline{\text{WAIT}}$ input pins. It continuously samples the $\overline{\text{WAIT}}$ pin state and inserts a wait if the pin is active. The bus cycle is minimum 2 states. The bus cycle is completed when the wait signal is non-active ("High" level) at 2 states. The bus cycle extends if the wait signal is active at 2 states and more.


(5) Insert recovery cycle


If a lot of connected pertain ROM and etc. (Much data-output-floating-time (t_{DF})), each other's data-bus-output-recovery-time is trouble. However, by setting <BnREC> of control register (BnCSH), can to insert dummy cycle of 1-state just before first bus cycle of starting access another block address

(6) Basic bus timing


• External read/write bus cycle (0 waits)



• External read/write bus cycle (0 waits at \overline{WAIT} pin input mode)

• External read/write bus cycle (n waits at WAIT pin input mode)

• Example of \overline{WAIT} input cycle (5 waits)

3.6.4 ROM Control (Page mode)

This section describes ROM page mode accessing and how to set registers. ROM page mode is set by the page ROM control register.

(1) Operation and how to set the registers

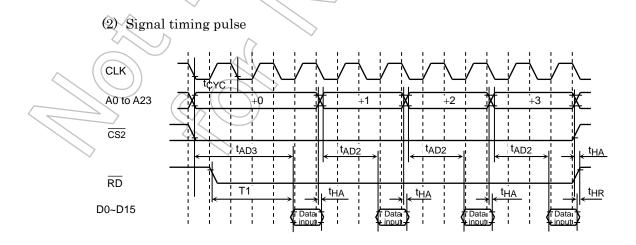
TMP92FD23A supports ROM access of the page mode. The ROM access of the page mode is specified only in the block address area 2.

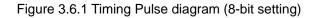
ROM page mode is set by the page ROM control register (PMEMCR).

Setting <OPGE> bit of the PMEMCR register to "1" sets the memory access of the block address area to ROM page mode access.

The number of read cycles is set by the <OPWR1:0> bits of the PMEMCR register.

	COF WINT.0		_ ((\)
OPWR1	OPWR0	Number of Cycle in a Page	
0	0	1 state (n-1-1-1 mode) (n ≥ 2)	5
0	1	2 state (n-2-2-2 mode) (n ≥ 3)	
1	0	3 state (n-3-3-3 mode) (n ≥ 4)	<i>G0</i> /
1	1	(Reserved)	\diamond


<OPWR1:0> Bit (PMEMCR register)


Note: Set the number of waits "n" to the control register (B2CSL) in block address area 2.

The page size (the number of bytes) of ROM in the CPU size is set to the <PR1:0> bit of the PMEMCR register. When data is read out until a border of the set page, the controller completes the page reading operation. The start data of the next page is read in the normal cycle. The following data is set to page read again.

		FIN(.0 2	
	PR1	PR0	ROM Page Size
	0 ((7/_0	64 bytes
	0	())1	32 bytes
) 0 <	16 bytes
4			8 bytes

<PR1:0> Bit (PMEMCR register)

3.6.5 List of Registers

The memory control registers and the settings are described as follows. For the addresses of the registers, see Section 5 "Table of Special Function Registers (SFRs)".

(1) Control registers

The control register is a pair of BnCSL and BnCSH. ("n" is a number of the block address area.) BnCSL has the same configuration regardless of the block address areas. In BnCSH, only B2CSH which is corresponded to the block address area 2 has a different configuration from the others.

			Br	nCSL		$\langle \bigcirc \rangle$			
	7	6	5	4	3	2	1	0	
Bit symbol		BnWW2	BnWW1	BnWW0	\mathbb{Z}	BnWR2	BnWR1	BnWR0	
Read/Write			W		X.		W		
After reset		0	1	0	T T	> 0	1	0	
After reset 0 1 0 1 0 1 0 <bnww2:0> Specifies the number of write waits. 001 = 2 states (0 waits) access 010 = 3 states (1 wait) access 010 = 3 states (1 wait) access 101 = 4 states (2 waits) access 010 = 5 states (3 waits) access 011 = 0 11 = 6 states (4 waits) access 010 = 5 states (3 waits) access 011 = WAIT pin input mode Others = (Reserved) 010 = 3 states (1 wait) access 010 = 3 states (1 wait) access 101 = 4 states (2 waits) access 010 = 3 states (1 wait) access 101 = 4 states (2 waits) access 010 = 5 states (3 waits) access 101 = 4 states (4 waits) access 011 = WAIT pin input mode Others = (Reserved) 011 = WAIT pin input mode B2CSH B2CSH</bnww2:0>									
	7	6	5	4	3	2	1	0	
Bit symbol	B2E	B2M	IJ-	B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0	
Read/Write		$(\overline{\Omega})$			V				
After reset	1	$\langle \langle 0 \rangle \rangle$	0	0	0	0	Undefined	Undefined	
0 = No o 1 = Chip	<b2e>: Enable bit 0 = No chip select signal output. 1 = Chip select signal output (Default). Note: After reset release, only the enable bit <b2e> of B2CS register is valid ("1").</b2e></b2e>								

<B2M>: Block address area specification

0 = Sets the block address area of CS2 to addresses 000000H to FFFFFH (Default).

1 = Sets the block address area of CS2 to programmable.

Note: After reset release, the block address area 2 is set to addresses 000000H to FFFFFH.

<B2REC>: Sets the dummy cycle for data output recovery time.

```
0 = Not insert a dummy cycle (Default).
```

1 = Insert a dummy cycle.

<B2OM1:0>

00 = SRAM or ROM (Default)

Others = (Reserved)

<B2BUS1:0> Sets the data bus width.

00 = 8 bits

01 = 16 bits

- 10 = (Reserved)
- 11 = (Reserved)

Note: The value of <B2BUS> bit is set according to the state of AM<1:0> pin after reset release.

	7	6	5	4	3	2	1	0
Bit symbol	BnE	/	/	BnREC	BnOM1	BnOM0	BnBUS1	BnBUS0
Read/Write	W	\backslash	\backslash	Diliteo	Bilowii	W	DIDOOI	BIBCCO
After reset	0			0	0	0	0	0
	0			Ŭ	•	Ŭ	Ŭ	Ū
<bne>: Enab</bne>	le bit							
0 = No (chip select sig	nal output (D	efault).					
	o select signal					((\sum	
	-		enable bit B2E	of B2CS reg	ister is valid ("	'1").	\mathcal{I}	
	ets the dumm	-		-		$(\overline{\Omega} \overline{\Lambda} $		
	insert a dumr				\sim	$(\vee /))$		
	ert a dummy c		,		\geq			
<bnom1:0></bnom1:0>	<i>,</i>				((
	RAM or ROM (Default)				\bigcirc		
	eserved)							
	eserved)				$\mathcal{A}(\mathcal{A})$	>	λ	>
	eserved)							~
	Sets the data	bus width		(($7/\Lambda^{\vee}$	(\sim	
	bits (Default)	bus width.			(_))	\diamond (\cup	
00 = 01								
	eserved)				\geq			
	eserved)				~	$(C \frown$	\sim	
11 – (10	cocived)			$\langle \langle \rangle \rangle$)	
			6	XCSL	(77~		
	7	6	5	4	3		1	0
					\bigcirc			
Bit symbol		BEXWW2	BEXWW1	BEXWWO		BEXWR2	BEXWR1	BEXWR
Read/Write		-	W				W	
After reset		0		0	\sim	0	1	0
	On a sift so th		\wedge	\wedge				
	> Specifies th		vrite waits.	040				
	states (0 wait		2		es (1 wait) acc			
	states (2 wait				es (3 waits) ac			
	states (4 wait	s) access		011 = WAIT	pin input mod	le		
	= (Reserved)	<u> </u>	\sim ((// 5)				
	> Specifies the		ead waits.					
	states (0 wait	•			es (1 wait) acc			
	states (2 wait	\checkmark	\square		es (3 waits) ac			
	states (4 wait	s) access		011 = WAIT	pin input mod	le		
Others :	= (Reserved)	~	\sim					
\sim			>					
		(1)	BE	XCSH				-
ZC	7	6	5	4	3	2	1	0
Bit symbol	$\neg \hat{\mathcal{L}}$	\mathcal{H}		BEXREC	BEXOM1	BEXOM0	BEXBUS1	BEXBUS
Read/Write	\searrow	\sim	\sim			W		
After reset		\checkmark	\sim	0	0	0	0	0
		\rightarrow		- ~	. ~	- ~	, v	
<bexom1:0></bexom1:0>	>							
	> RAM or ROM (Default)						
	eserved)	_ oradity						
01 = (R)	,							

- 10 = (Reserved)
- 11 = (Reserved)

<BEXBUS1:0>

- 00 = 8 bits (Default)
- 01 = 16 bits
- 10 = (Reserved)
- 11 = (Reserved)

(2) Block address register

A start address and an address area of the block address are specified by the memory start address register (MSARn) and the memory address mask register (MAMRn). The memory start address register sets all start address similarly regardless of the block address areas.

The bit to be set by the memory address mask register is depended on the block address area.

			MSARn	(n = 0 to 3)		\square					
	7	6	5	4	3	(2)	1	0			
Bit symbol	MnS23	MnS22	MnS21	MnS20	MnS19	MnS18	MnS17	MnS16			
Read/Write		R/W									
After reset	1	1	1	1	T T	\mathcal{I}_1	1	1			

<MnS23:16> Sets a start address.

Sets the start address of the block address areas. </ms23:16> are corresponding to the address from A23 to A16.

			MA	MR0	\bigcirc		$\langle U \rangle$	
	7	6	5	4	> 3	2		0
Bit symbol	M0V20	M0V19	M0V18	MOV17	M0V16	M0V15	M0V14 to M0V9	M0V8
Read/Write				✓ R/\	N (($7/\diamond^-$		
After reset	1	1		<u>1</u>		(\bigcirc)	1	1
			21	\sim /				

<M0V20:8>

Enables or masks comparison of the addresses. <M0V20:8> are corresponding to addresses from A20 to A8. <M0V14:9> are corresponding to address from A14 to A9 by 1 bit. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

MAMR1												
	7 6 5 4 3 2 1 0											
Bit symbol	M1V21 M1V20	M1V19	M1V18	M1V17	M1V16	M1V15 to M1V9	M1V8					
Read/Write	R/W											
After reset	1 1		2 > 1	1	1	1	1					

<M1V21:8>

Enables or masks comparison of the addresses. <M1V21:8> are corresponding to addresses from A21 to A8. </M1V15:9> are corresponding to address from A15 to A9 by 1 bit. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

	7	6	5	4	3	2	1	0				
Bit symbol	MnV22	MnV21	MnV20	MnV19	MnV18	MnV17	MnV16	MnV15				
Read/Write		R/W										
After reset	1	1	1	1	1	1	1	1				

MAMRn ($n = 2$ to 3)	
-----------------------	--

<MnV22:15>

Enables or masks comparison of the addresses. </n>

After a reset, MASR0 to MSAR3 and MSAR0 to MAMR3 are set to "FFH". B0CSH<B0E>, B1CSH<B1E>, and B3CSH<B3E> are reset to "0". This disabling the CS0, CS1, and CS3 areas. However, B2CSH<B2M> is reset to "0" and B2CSH<B2E> to "1", and CS2 is enabled 000000H to FFFFFFH. Also the bus width and number of waits specified in BEXCSH/L are used for accessing address except the specified CS0 to CS3 area.

(3) Page ROM control register (PMEMCR)

The page ROM control register sets page ROM accessing. ROM page accessing is executed only in block address area 2.

	7	c			2		4	0
	7	6	5	4	3	2	1	0
Bit symbol				OPGE	OPWR1	OPWR0	PR1	PR0
Read/Write			$ \rightarrow$	-		R/W)r	1
After reset				0	0	0	ン 1	0
<opge> enabl</opge>	o hit				\sim	$(\sqrt{2})$		
		de accessing	(Default)		\geq			
	page mode		(Delault)			\sum		
<0PWR1:0> S			its.			\mathcal{I}		
		node) (n \ge 2)						
01 = 2 sta	tes (n-2-2-2	mode) (n \ge 3))				$\mathcal{A}()$	\supset
		mode) (n \ge 4))	6	$\overline{\gamma}$	6	14 \	
11 = (Res				((//))	\diamond ((
		of waits "n" to	the control	register (BnCS	SL) in block ac	ldress area.	~///	
<pr1:0> ROM</pr1:0>				$\square(\square)$	\geq	\square	$\leq \bigcirc$	
00 = 64 b 01 = 32 b	-			$\langle \rangle$	~	(C)	\checkmark	
	ytes ytes (Default	e)		\sim				
10 = 10 b 11 = 8 by		•)	((\sim	((7/~		
11 = 0 by			a			$\langle O \rangle$		
			$\langle \langle \rangle$	\rightarrow /				
				, <	$\leq \gamma$			
		(())	×		/		
			\bigcirc					
			\bigwedge	\wedge				
))					
		$\overline{\Box}$			\rightarrow			
	\frown	$(\sqrt{5})$			\rangle			
	/)		~ ((7/s)				
4				$\langle O \rangle$				
				\sim				
		\rangle						
\sim								
		\wedge	\sim	2				
	\bigcirc							
		\sim						
\mathbb{N}								
	((()))					
	\sim	X						
$\langle \rangle$	~							
\sim		\sim						

			Tuble	0.0.1 00	nitol Regist				
		7	6	5	4	3	2	1	0
B0CSL	Bit symbol	/	B0WW2	B0WW1	B0WW0		B0WR2	B0WR1	B0WR0
(0140H)	Read/Write	/		W				W	
	After reset	/	0	1	0		0	1	0
B0CSH	Bit symbol	B0E	-	-	BOREC	B0OM1	B0OM0	B0BUS1	B0BUS0
(0141H)	Read/Write				V				
	After reset	0	0 (Note1)	0 (Note1)	0	0	0	JYo	0
MAMR0	Bit symbol	M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-V9	M0V8
(0142H)	Read/Write				R/	w 🚫	(\vee)		
	After reset	1	1	1	1	1		1	1
MSAR0	Bit symbol	M0S23	M0S22	M0S21	M0S20	M0S19	M0S18	M0S17	M0S16
(0143H)	Read/Write				R/	w	\mathcal{I}		
	After reset	1	1	1	1		1		1
B1CSL	Bit symbol	/	B1WW2	B1WW1	B1WW0	f	B1WR2	B1WR1	B1WR0
(0144H)	Read/Write	/		W				K W	
	After reset	/	0	1	o ((74	_0 (()	0
B1CSH	Bit symbol	B1E	_	_	B1REC	B10M1	B1OM0	B1BUS1	B1BUS0
(0145H)	Read/Write					V			
	After reset	0	0 (Note)	0 (Note)	0	0	(0)	✓ 0	0
MAMR1	Bit symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15-V9	M1V8
(0146H)	Read/Write			6	R/	w (774		
	After reset	1	1	1		_1	() ₁)	1	1
MSAR1	Bit symbol	M1S23	M1S22	M1S21	M1S20	M1S19	M1S18	M1S17	M1S16
(0147H)	Read/Write				R/	w			
	After reset	1	1	$(\uparrow) $	1		1	1	1
B2CSL	Bit symbol		B2WW2	B2WW1	B2WW0		B2WR2	B2WR1	B2WR0
(0148H)	Read/Write	/	(C)	W	\land			W	
	After reset		0))1	0		0	1	0
B2CSH	Bit symbol	B2E	B2M	- J	B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
(0149H)	Read/Write					<u>v</u>		11	
	After reset	1	0	0 (Note1)	$\bigcirc 0$	0	0	Note3	Note3
MAMR2	Bit symbol	M2V22	M2V21	M2V20	M2V19	M2V18	M2V17	M2V16	M2V15
(014AH)	Read/Write				R/	W			
	After reset	1		_1	1	1	1	1	1
MSAR2	Bit symbol	M2S23	M2S22	M2S21	M2S20	M2S19	M2S18	M2S17	M2S16
(014BH)	Read/Write				R/	W			
	After reset		1	≥ 1	1	1	1	1	1
B3CSL	Bit symbol		B3WW2	B3WW1	B3WW0		B3WR2	B3WR1	B3WR0
(014CH)	Read/Write	\sum		W	h			W	
	After reset	4	(0	1	0		0	1	0
взсян -	Bit symbol	B3E	<u> </u>	/ -	B3REC	B3OM1	B3OM0	B3BUS1	B3BUS0
(014DH)	Read/Write	ζ	\frown		V	V		·i	
	After reset	0	0 (Note)	0 (Note)	0	0	0	0	0
MAMR3	Bit symbol	M3V22	M3V21	M3V20	M3V19	M3V18	M3V17	M3V16	M3V15
(014EH)	Read/Write			r	R/			,	
	After reset	1	1	1	1	1	1	1	1
MSAR3	Bit symbol	M3S23	M3S22	M3S21	M3S20	M3S19	M3S18	M3S17	M3S16
(014FH)	Read/Write			i	R/				
	After reset	1	1	1	1	1	1	1	1

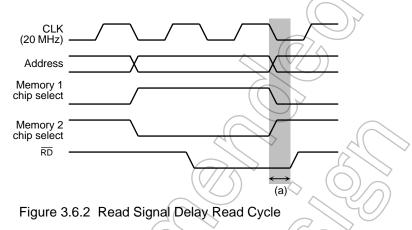
Table 3.6.1	Control Register (1/2)
-------------	------------------------

					-				
		7	6	5	4	3	2	1	0
BEXCSH	Bit symbol				BEXREC	BEXOM1	BEXOM0	BEXBUS1	BEXBUS0
(0159H)	Read/Write						W		
	After reset	/			0	0	0	0	0
BEXCSL	Bit symbol		BEXWW2	BEXWW1	BEXWW0		BEXWR2	BEXWR1	BEXWR0
(0158H)	Read/Write			W)) w	
	After reset		0	1	0			1	0
PMEMCR	Bit symbol	/			OPGE	OPWR1	OPWR0	PR1	PR0
(0166H)	Read/Write	/	/	/		\geq	R/W		
	After reset				0	0 (0	1	0

Table 3.6.2 Control Register (1/2)

Note 1: Always write "0".

Note 2: Read-modify-write instruction is prohibited for BnCSL, BnCSH registers (n=0 to 3, EX).


Note3: Since after reset release becomes undefined, please be sure to set up before accessing the block address

space 2.

3.6.6 Cautions

(1) The notes of the timing between $\overline{\text{CS}}$ and $\overline{\text{RD}}$.

If the parasitic capacitance of the read signal (Output enable signal) is greater than that of the chip select signal, it is possible that an unintended read cycle occurs due to a delay in the read signal. Such an unintended read cycle may cause a trouble as in the case of (a) in Figure 3.6.2.

Example: When using an externally connected flash EEPROM which users JEDEC standard commands, note that the toggle bit may not be read out correctly. If the read signal in the cycle immediately preceding the access to the flash EEPROM does not go "high" in time, as shown in Figure 3.6.3 an unintended read cycle like the one shown in (b) may occur.

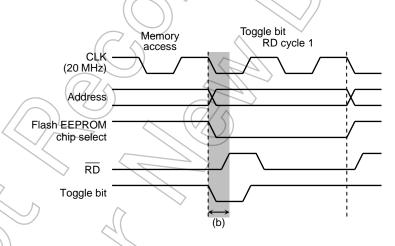
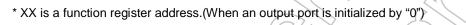
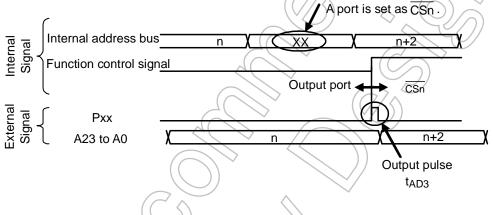


Figure 3.6.3 Flash EEPROM Toggle Bit Read Cycle

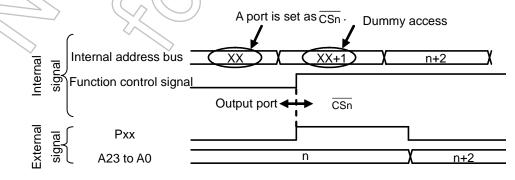

When the toggle bit reverse with this unexpected read cycle, TMP92FD23A always reads same value of the toggle bit, and cannot read the toggle bit correctly. To avoid this phenomenon, the data polling control recommended.


(2) The cautions at the time of the functional change of a $\overline{\text{CSn}}$.

A chip select signal output has the case of a combination terminal with a general-purpose port function. In this case, an output latch register and a function control register are initialized by the reset action, and an object terminal is initialized by the port output ("1" or "0") by it.

Functional change

Although an object terminal is changed from a port to a chip select signal output by setting up a function control register (PnFC register), the short pulse for several ns may be outputted to the changing timing. Although it does not become especially a problem when using the usual memory, it may become a problem when using a special memory.



The measure by software

The countermeasures in S/W for avoiding this phenomenon are explained.

Since CS signal decodes the address of the access area and is generated, an unnecessary pulse is outputted by access to the object CS area immediately after setting it as a CSn function. Then, if internal area is accessed also immediately after setting a port as CS function, an unnecessary pulse will not output.

- 1. Prohibition of use of an NMI function
- 2. The ban on interruption under functional change (DI command)
- 3. A dummy command is added in order to carry out continuous internal access.
- 4. (Access to a functional change register is corresponded by 16-bit command. (LDW command))

3.7 8-Bit Timers (TMRA)

The TMP92FD23A features 6 built-in 8-bit timers.

These timers are paired into three modules: TMRA01, TMRA23 and TMRA45. Each module consists of two channels and can operate in any of the following four operating modes.

- 8-bit interval timer mode
- 16-bit interval timer mode
- 8-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)
- 8-bit pulse width modulation output mode (PWM: Variable duty cycle with constant period)

Figure 3.7.1 to Figure 3.7.3 show block diagrams for TMRA01, TMRA23 and TMRA45.

Each channel consists of an 8-bit up counter, an 8-bit comparator and an 8-bit timer register. In addition, a timer flip-flop and a prescaler are provided for each pair of channels.

The operation mode and timer flip-flops are controlled by five controls SFR (special function registers).

Each of the three modules (TMRA01, TMRA23 and TMRA45) can be operated independently. All modules operate in the same manner; hence only the operation of TMRA01 is explained here.

Specification	Module	TMRA01	TMRA23	TMRA45	
External pin	Input pin for external clock	TA0IN (Shared with PC0)	None	None	
External pin	Output pin for timer	TA1OUT	TA3OUT	TA5OUT	
	flip-flop	(Shared with P80)	(Shared with P81)	(Shared with P83)	
	Timer RUN register	TA01RUN (1100H)	TA23RUN (1108H)	TA45RUN (1110H)	
	Timer register	TAOREG (1102H)	TA2REG (110AH)	TA4REG (1112H)	
SFR (Address)	Timer register	TA1REG (1103H)	TA3REG (110BH)	TA5REG (1113H)	
OF R (Address)	Timer mode register	TA01MOD(1104H)	TA23MOD(110CH)	TA45MOD(1114H)	
<u> </u>	Timer flip-flop control register	TA1FFCR(1105H)	TA3FFCR(110DH)	TA5FFCR(1115H)	

Table 3.7.1 Registers and Pins for Each Module



Figure 3.7.1 TMRA01 Block Diagram

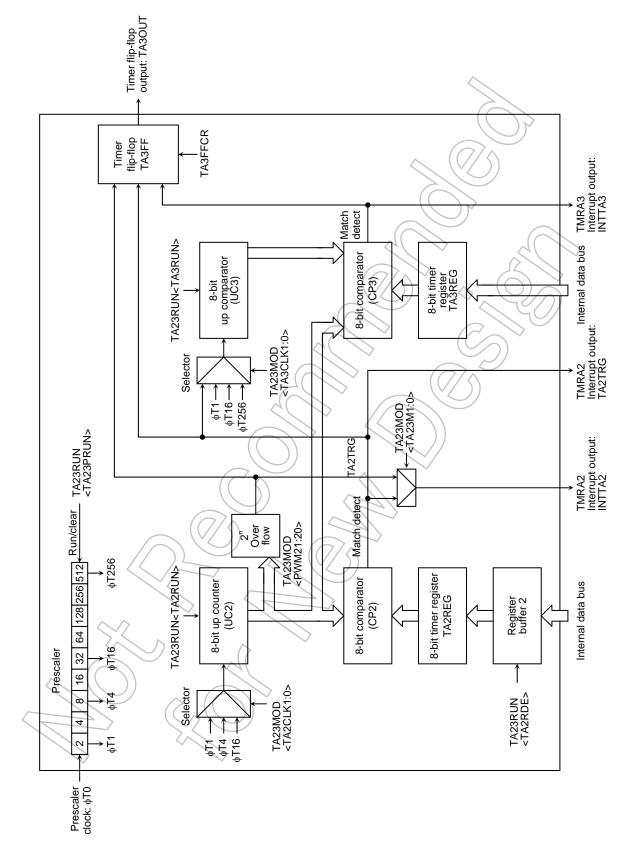


Figure 3.7.2 TMRA23 Block Diagram

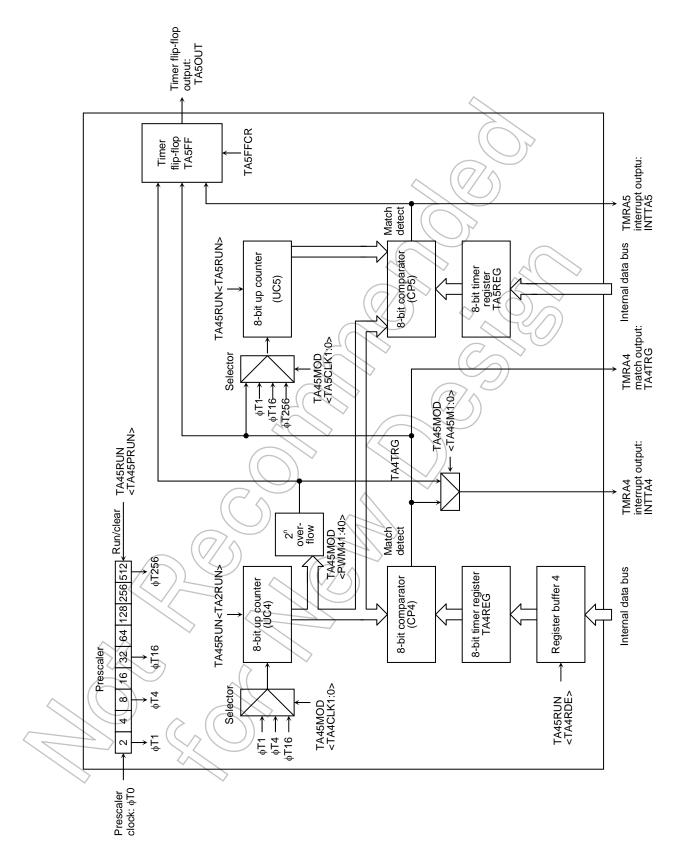


Figure 3.7.3 TMRA45 Block Diagram

3.7.2 Operation of Each Circuit

(1) Prescalers

A 9-bit prescaler generates the input clock to TMRA01.

The clock $\phi T0$ is divided by 4 the CPU clock f_{FPH} and input to this prescaler.

The prescaler's operation can be controlled using TA01RUN <TA0PRUN> in the timer control register. Setting <TA0PRUN> to "1" starts the count; setting <TA0PRUN> to "0" clears the prescaler to "0" and stops operation. Table 3.7.2 shows the various prescaler output clock resolutions.

Clock Value SYSCR1 <gear2:0></gear2:0>	System clock SYSCR1	_		Timer counter input clock TMRA prescaler TAxMOD <taxclk1:0></taxclk1:0>						
	<sysck></sysck>		φT1(1/2)	\$T4(1/8)	φT16(1/32)	φT256(1/512)				
-	1 (fs)		fs/8	fs/32	fs/128) /fs/2048				
000 (1/1)			fc/8	fc/32	fc/128	fc/2048				
001 (1/2)		1/4	fc/16	fc/64	fc/256	fc/4096				
010 (1/4)	0 (fc)	1/4	fc/32	fc/128	fc/512	fc/8192				
011 (1/8)			fc/64	fc/256	fc/1024	fc/16384				
100 (1/16)			fc/128	fc/512	fc/2048	fc/32768				

Table 3.7.2 Prescaler Output Clock Resolution

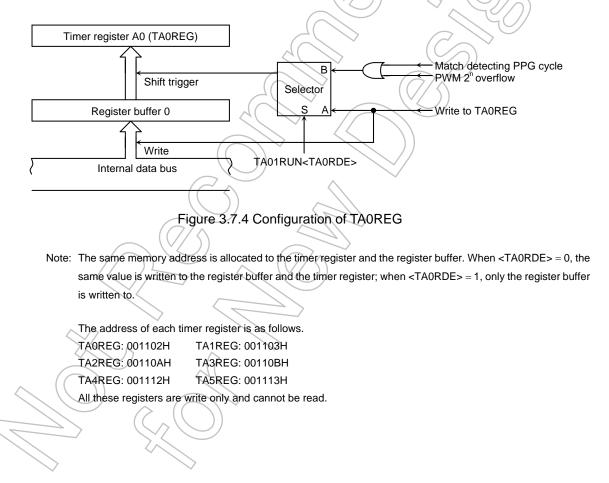
(2) Up counters (UC0 and UC1)

These are 8-bit binary counters which count up the input clock pulses for the clock specified by TA01MOD.

The input clock for UC0 is selectable and can be either the external clock input via the TA0IN pin or one of the three internal clocks ϕ T1, ϕ T4 or ϕ T16. The clock setting is specified by the value set in TA01MOD<TA0CLK1:0>.

The input clock for UC1 depends on the operation mode. In 16-bit timer mode, the overflow output from UC0 is used as the input clock. In any mode other than 16-bit timer mode, the input clock is selectable and can either be one of the internal clocks ϕ T1, ϕ T16 or ϕ T256, or the comparator output (the match detection signal) from TMRA0.

For each interval timer the timer operation control register bits TA01RUN<TA0RUN> and TA01RUN<TA1RUN> can be used to stop and clear the up counters and to control their count. A reset clears both up counters, stopping the timers. (3) Timer registers (TA0REG and TA1REG)


These are 8-bit registers, which can be used to set a time interval. When the value set in the timer register TAOREG or TA1REG matches the value in the corresponding up counter, the comparator match detect signal goes Active. If the value set in the timer register is 00H, the signal goes Active when the up counter overflows.

The TAOREG are double buffer structure, each of which makes a pair with register buffer.

The setting of the bit TA01RUN<TA0RDE> determines whether TA0REG's double buffer structure is enabled or disabled. It is disabled if <TA0RDE> = "0" and enabled if <TA0RDE> = "1".

When the double buffer is enabled, data is transferred from the register buffer to the timer register when a 2ⁿ overflow occurs in PWM mode, or at the start of the PPG cycle in PPG mode. Hence the double buffer cannot be used in timer mode.

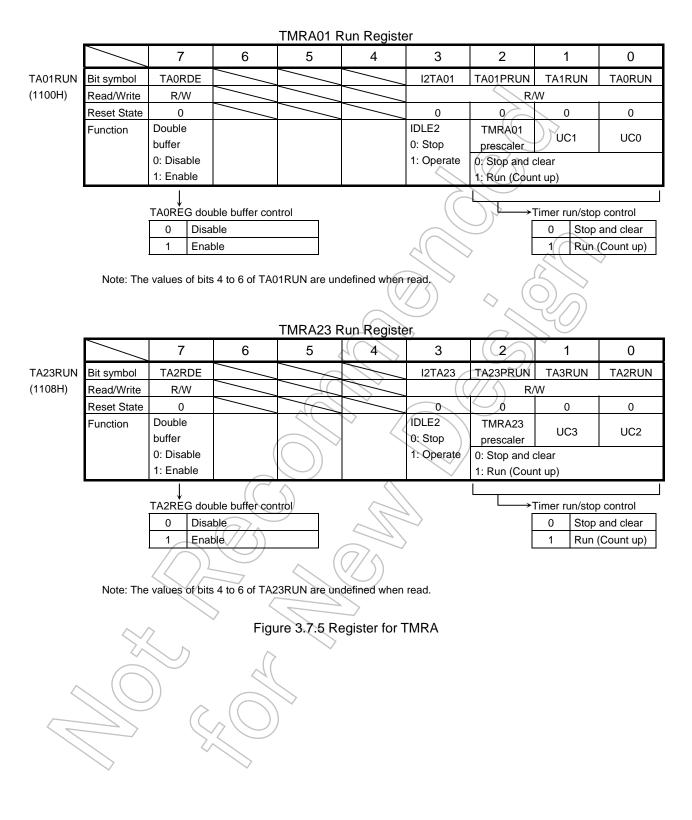
A reset initializes <TAORDE> to "0", disabling the double buffer. To use the double buffer, write data to the timer register 0, set <TAORDE> to "1", and write the following data to the register buffer. Figure 3.7.4 show the configuration of TAOREG.

(4) Comparator (CP0, CP1)

The comparator compares the value in an up counter with the value set in a timer register. If they match, the up counter is cleared to "0" and an interrupt signal (INTTA0 or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

(5) Timer flip-flop (TA1FF)

The timer flip-flop (TA1FF) is a flip-flop inverted by the match detects signal (8-bit comparator output) of each interval timer.


Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TA1FFIE> in the timer flip-flops control register a reset clears the value of TA1FF to "0". Writing "01" or "10" to TA1FFCR<TA1FFC1:0> sets TA1FF to "0" or "1". Writing "00" to these bits inverts the value of TA1FF (this is known as software inversion).

The TA1FF signal is output via the TA1OUT pin (which can also be used as P80).

When this pin is used as the timer output, the timer flip-flop should be set beforehand using the port 8 function register P8CR and P8FC.

92FD23A-131

3.7.3 SFR

				TIMRA45 P	tun Registe				
		7	6	5	4	3	2	1	0
TA45RUN	Bit symbol	TA4RDE				I2TA45	TA45PRUN	TA5RUN	TA4RUN
(1110H)	Read/Write	R/W					R/	W	
	Reset State	0				0	0	0	0
	Function	Double buffer				IDLE4	TMRA45	UC5	UC4
		0: Disable				0: Stop 1: Operate	0: Stop and clear		
		1: Enable				n operato	1: Run (Cour		
		TA4REG dou	ble buffer cor	itrol			\lor	Fimer run/stop	control
		0 Disa	ble			Ĉ		0 Stop	and clear
		1 Enat	ole				7	1 Run (Count up)
		and the second bits			de Carada da a	$\mathcal{A}(\mathcal{A})$	>	$\langle \langle \rangle$	>
	Note: The	values of bits	5 4 to 6 of 1 A4	ISRUN are un	defined when	read.		2	¢.
			- '	0700				$) \gtrsim$	
			Figu	ure 3.7.6 Re	egister for	KMIRA		$\overline{\langle U \rangle}$	
						>			
						\sim	(C)	\checkmark	
					\sim				
					\searrow	((7/5		
							(\bigcirc)		
					\rightarrow /				
			,	\bigcirc	$\langle \langle \rangle$	\geq			
			(())					
			\square		~				
				J					
			(7/s)		$\langle \rangle$				
			$\langle \bigcirc \rangle$	($\overline{\alpha}$	7			
		$\left(\left(\right) \right) \right)$		$\langle \langle \rangle$	$\langle \langle \rangle \rangle$				
			, <	\sim	\geq				
	\sim	~ ```							
		\leq \sim	~	\sim					
	\sim								
~		\mathcal{D}	<1						
$\langle \rangle$	$> \bigcirc$	リ 、		\rightarrow					
		5)	(()))					
1		\sim	XV	7					
	$\langle \rangle$	4							
	\sim		\sim						

TMRA45 Run Register

TMRA01 Mode Register										
		7	6	5	4	3	2	1	0	
TA01MOD	Bit symbol	TA01M1	TA01M0	PWM01	PWM00	TA1CLK1	TA1CLK0	TA0CLK1	TA0CLK0	
(1104H)	Read/Write		_		R/W					
	Reset State	0	0	0	0	0	Q	0	0	
	Function	Operation me	ode	PWM cyc	le	Source cloc	k for TMRA1	Source clock	for TMRA0	
		00: 8-bit time	er mode	00: Rese	rved	00: TA0TRO	3	00: TA0IN pir	n input (Note)	
		01: 16-bit tim	er mode	01: 2 ⁶						
		10: 8-bit PPC	G mode	10: 2 ⁷		10: φT16		10: _{\$} T4		
		11: 8-bit PW	M mode	11: 2 ⁸		11: φT256	$(\Omega \wedge$	11: φT16		
		TMRA0 input	t clock				\bigcirc			
				00	TA0IN (Externa	al input)	\sum			
			Г	01	φT1		\mathcal{D}			
		<ta0cl< td=""><td>K1:0></td><td>10</td><td>φT4</td><td></td><td></td><td></td><td></td></ta0cl<>	K1:0>	10	φ T 4					
				11	φT16	$\langle \rangle$		21	\geq	
		TMRA1 input	t clock		($\overline{\gamma}$		$\overline{\mathcal{A}}$		
					TA01MOD <ta< td=""><td>01M1:0>≠01</td><td>TA01MOD<ta< td=""><td>01M1:0>=01</td><td></td></ta<></td></ta<>	01M1:0>≠01	TA01MOD <ta< td=""><td>01M1:0>=01</td><td></td></ta<>	01M1:0>=01		
				00	Matching output			~~/)		
				01	φT1 Overflow output from TMRA0					
		<ta1cl< td=""><td>K1:0></td><td>10</td><td>φT16</td><td></td></ta1cl<>	K1:0>	10	φT16					
				11	φT256	er mode)				
		PWM cycle s	election	(($\overline{\overline{\gamma}}$			
				00	Reserved					
			1.00	01	2 ⁶ ×Clock sour					
		<pwm0< td=""><td>1:00></td><td>10</td><td>2⁷ ×Clock sour</td><td>ce</td><td></td><td></td><td></td></pwm0<>	1:00>	10	2 ⁷ ×Clock sour	ce				
				(11)	2 ⁸ × Clock sour					
		TMRA01 ope	eration mode	selection						
			A	00	8-bit timer × 2c	h				
				01	16-bit timer					
		<ta01m< td=""><td>A1:0></td><td>10</td><td>8-bit PPG</td><td>\rightarrow</td><td></td><td></td><td></td></ta01m<>	A1:0>	10	8-bit PPG	\rightarrow				
			$\left(\left(// \right) \right)$	11	8-bit PWM (TM	IRA0),				
			$\langle \bigcirc \rangle$		8-bit timer (TM	RA1)				
		$\langle \langle \rangle \rangle^{\perp}$		\sim	$(\vee \langle \rangle)$					
	Note: Wh	en set TA0IN,	set TA01MC	DD after set	port C0.					
			<pre></pre>		\geq					
	~	~	Fig	ure 3.7.7	Register for	TMRA				
<					>					
\sim		\sim	K –							

TMRA01 Mode Register

				TMRA23	Mode Regis	ter					
		7	6	5	4	3	2	1	0		
A23MOD	Bit symbol	TA23M1	TA23M0	PWM2	1 PWM20	TA3CLK1	TA3CLK0	TA2CLK1	TA2CLK		
110CH)	Read/Write				R	R/W					
	Reset State	0	0	0	0	0	0	0	0		
	Function	Operation m		PWM cyc			k for TMRA3	Source clock			
		00: 8-bit time		00: Rese	rved	00: TA2TR	G	00: Reserve	d		
		01: 16-bit timer mode 10: 8-bit PPG mode		01: 2^{6}		01: φT1		01: φT1			
				10: 2 ⁷ 11: 2 ⁸		10: \phiT16					
		11: 8-bit PW	IVI mode	11: Z		11:		11:			
		TMRA2 input	clock								
				00	Reserved		75				
		<ta2cli< td=""><td colspan="2">01</td><td>φT1</td><td></td><td>\mathcal{D}</td><td></td><td></td></ta2cli<>	01		φT1		\mathcal{D}				
		STAZULI	1.02	10	φT4	Δh	>				
				11	φT16		~		7		
	r	TMRA3 input	clock		(77~		5			
					TA23MOD <ta23< td=""><td>\sim $//$</td><td>1:0>=01</td><td></td></ta23<>	\sim $//$	1:0>=01				
				00	Matching outpu			4//			
			-		TMRA2 Overflow output from 01 \phiT1 TMRA2						
		<ta3clk1:0></ta3clk1:0>			φT1		TMRA2				
			-	10	φT16		(16-bit timer m	iode)			
	l				ф Т 256		7/				
	I	PWM cycle s	election	00	Destrued						
				00	Reserved 2 ⁶ × Clock sour	60					
		<pwm2< td=""><td>3:00></td><td colspan="8">$10 2^{4} \times \text{Clock source}$</td></pwm2<>	3:00>	$10 2^{4} \times \text{Clock source}$							
			_	$11 2^8 \times \text{Clock source}$							
	L	TMRA23 ope	ration mode								
				00	8-bit timer × 2ch	ì					
				01	16-bit timer						
		<ta23m< td=""><td>A1:0≯∕ ∧</td><td>10</td><td>8-bit PPG</td><td></td><td></td><td></td><td></td></ta23m<>	A1:0≯∕ ∧	10	8-bit PPG						
			$\langle O \rangle$	11	8-bit PWM (TM	RA2),					
	l	()		\frown	8-bit timer (TMF	RA3)					
				$\langle -$	\geq						
	~ /		Fiç	gure 3.7.8	Register for	TMRA					
<					\geq						

				TMRA45	5 Mode Re	egist	er				
		7	6	5	4		3		2	1	0
TA45MOD	Bit symbol	TA45M1	TA45M0	PWM4	1 PWM	40	TA5CL	(1	TA5CLK0	TA4CLK1	TA4CLK0
(1114H)	Read/Write				 R/		/W				
	Reset State	0	0	0	0		0		0	0	0
	Function	Operation m		PWM cyc			Source c	lock	for TMRA5	Source clock	
		00: 8-bit time	er mode	00: Rese	rved		00: TA4TRG 00: Reserved			b	
		01: 16-bit tim	ner mode	01: 2 ⁶			01: φT1			01: φT1	
		10: 8-bit PPC	G mode	10: 2 ⁷			10:			10:	
		11: 8-bit PW	M mode	11: 2 ⁸			11:	6	$(\Omega \wedge)$	11:	
		TMRA4 input	clock						\bigvee		
		nviit A4 input	CIOCK	00	Reserved			\bigcirc	12		
			-	00	φT1			$\overline{}$	\mathcal{F}		
		<ta4cli< td=""><td>≺1:0></td><td>10</td><td>φT4</td><td></td><td></td><td>$\overline{\ }$</td><td></td><td></td><td></td></ta4cli<>	≺1:0>	10	φT4			$\overline{\ }$			
			F	11	φT16		\mathcal{C}	\rightarrow		<u> 15</u>	>
		TMRA5 input	clock		Ţ.,,	6	77.	>		55	
					TA45MOD<	TA45	M1:0>≠01	ΤA	45MOD <ta45m< td=""><td>41:0>=01</td><td></td></ta45m<>	41:0>=01	
				00	Matching o	utput	for			2///	
					TMRA4		\geq	С	verflow output		
		<ta5clk1:0></ta5clk1:0>		01	φT1						
				10	φT16	\sim		((16-bit timer r	node)	
				11	фT256	2		(_	7/		
		PWM cycle selection									
			-	00 Reserved							
		<pwm4< td=""><td>5:00></td><td colspan="7">01 2⁶ ×Clock source</td><td></td></pwm4<>	5:00>	01 2 ⁶ ×Clock source							
			-	(10)	2 ⁷ × Clock			//			
				11 2 ⁸ ×Clock source							
		TMRA45 operation mode selection 00 8-bit timer × 2ch									
				00							
		<ta45m< td=""><td>A1.05</td><td><u> </u></td><td>16-bit timer 8-bit PPG</td><td>\overline{f}</td><td>\rightarrow</td><td></td><td></td><td></td><td></td></ta45m<>	A1.05	<u> </u>	16-bit timer 8-bit PPG	\overline{f}	\rightarrow				
			(\mathbb{V})	10	8-bit PWM		244)				
		$ \rangle$		\sim	8-bit timer (
				\sim			., (0)				
			Fic		Register	for T	ΓMRΔ				
	\sim	>	1 10	Jule S.r.s	Register						
	22	\searrow	(>	\checkmark						
	\square	\sim	A								
\sim))		$\langle \rangle$							
	$\langle / \rangle \subset$		$(\bigcirc$	$\gamma \sim$							
$\langle $	$ \rightarrow $		$\sim \sim$	ワー							
		- Z	$\langle \rangle$								

TMRA45 Mode Register

		7	6	5	4	3	2	1	0	
TA1FFCR	Bit symbol					TA1FFC1	TA1FFC0	TA1FFIE	TA1FFIS	
(1105H)	Read/Write				/		R/	/W		
	Reset State					1	$\langle 1 \rangle$	0	0	
Read modify write instruction is prohibited.	Function					00: Invert TA 01: Set TA1F 10: Clear TA 11: Don't car	FF 1FF	TA1FF control for inversion 0: Disable 1: Enable	TA1FF inversion select 0: TMRA0 1: TMRA1	

TMRA1 Flip-Flop Control Register

Inversion signal for timer flip-flop 1 (TA1FF) (Don't care except in 8-bit timer mode)

	-	
TA1FFIS	0	Inversion by TMRA0
TATETS	1	Inversion by TMRA1
Inversion of TA1FF		$\left(\frac{1}{2} \right)^{\vee}$
TA1FFIE	0	Disabled
TATFFIE	1	Enabled
Control of TA1FF		
	00	Inverts the value of TA1FF (Software inversion)
	01	Sets TA1FF to "1"
<ta1ffc1:0></ta1ffc1:0>	10	Clears TA1FF to "0"
	11((Don't care
	< 1	

Note: The values of bits4 to 6 of TA1FFCR are undefined when read.

Figure 3.7.10 Register for TMRA

TMRA3 Fli	p-Flop (Control	Reaister
		001101	riegierei

		7	6	5	4	3	2	1	0	
TA3FFCR	Bit symbol					TA3FFC1	TA3FFC0	TA3FFIE	TA3FFIS	
(110DH)	Read/Write						R/	2/W		
	Reset State	/	/			1	1	0	0	
Read modify write instruction is prohibited.	Function					00: Invert TA 01: Set TA3F 10: Clear TA 11: Don't car	FF 3FF	TA3FF control for inversion 0: Disable 1: Enable	TA3FF inversion select 0: TMRA2 1: TMRA3	

Inversion signal for timer flip-flop 3 (TA3FF) (Don't care except in 8-bit timer mode)

	0	Inversion by TMRA2
TA3FFIS	1	Inversion by TMRA3
Inversion of TA3FF		
	0	Disabled
TA3FFIE	1	Enabled
Control of TA3FF		
	00	Inverts the value of TA3FF (Software inversion)
	01	Sets TA3FF to "1"
<ta3ffc1:0></ta3ffc1:0>	10	Clears TA3FF to "0"
	11	Don't care

Note: The values of bits4 to 6 of TA3FFCR are undefined when read.

Figure 3.7.11 Register for TMRA

TMRA5 Fli	p-Flop (Control F	Reaister
		201101011	logioloi

		7	6	5	4	3	2	1	0	
TA5FFCR	Bit symbol					TA5FFC1	TA5FFC0	TA5FFIE	TA5FFIS	
(1115H)	Read/Write						R/	2/W		
	Reset State	/				1	1	0	0	
Read modify write instruction is prohibited.	Function					00: Invert TA 01: Set TA5F 10: Clear TA 11: Don't car	F 5FF	TA5FF control for inversion 0: Disable 1: Enable	TA5FF inversion select 0: TMRA4 1: TMRA5	

Inversion signal for timer flip-flop 5 (TA5FF) (Don't care except in 8-bit timer mode)

	0	Inversion by TMRA4
TA5FFIS	1	Inversion by TMRA5
Inversion of TA5FF		
	0	Disabled
TA5FFIE	1	Enabled
Control of TA5FF		
	00	Inverts the value of TA5FF (Software inversion)
	01	Sets TA5FF to "1"
<ta5ffc1:0></ta5ffc1:0>	10	Clears TA5FF to "0"
	11	Don't care

Note: The values of bits4 to 6 of TA5FFCR are undefined when read.

Figure 3.7.12 Register for TMRA

				TMRA	Register								
		7	6	5	4	3	2	1	0				
TA0REG	Bit symbol					_							
(1102H)	Read/Write					W							
	Reset State				Und	efined	~						
TA1REG	Bit symbol					-							
(1103H)	Read/Write	W											
	Reset State				Und	efined)7					
TA2REG	Bit symbol		_										
(110AH)	Read/Write					W 🔨	$\left(\left(// \right) \right)$						
	Reset State	Undefined											
TA3REG	Bit symbol					- ((
(110BH)	Read/Write					w (\	JY						
	Reset State	Undefined											
TA4REG	Bit symbol					-41 /	>		>				
(1112H)	Read/Write					W			¥.				
	Reset State				Und	efined	. (\Im					
TA5REG	Bit symbol					\underline{O}		$\leq 1/n$					
(1113H)	Read/Write					Ŵ		50					
	Reset State				Und	efined	\mathcal{C}	\searrow					

Note: Read-modify-write instruction is prohibited for above registers.

Figure 3.7.13 Register for TMRA

3.7.4 Operation in Each Mode

(1) 8-bit timer mode

Both TMRA0 and TMRA1 can be used independently as 8-bit interval timers. When set function and count data, TMRA0 and TMRA1 should be stopped.

1. Generating interrupts at a fixed interval (using TMRA1)

To generate interrupts at constant intervals using TMRA1 (INTTA1), first stop TMRA1 then set the operation mode, input clock and a cycle to TA01MOD and TA1REG register, respectively. Then, enable the interrupt INTTA1 and start TMRA1 counting.

Example:	To generate an	INTTA1 interrup	t every 40 μs at f(c = 40 MHz, set each
	register as follov	vs:		
	*Clock state:	Clock gear : 1/1(fc)		$\langle \langle \rangle \rangle$
	MSB	LSB		

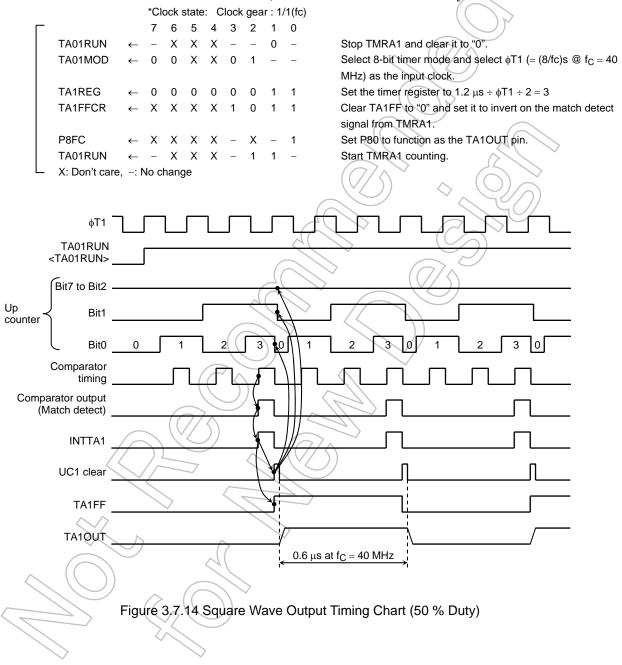
		7	6	5	4	3	2	1	0	(\vee)
TA01RUN	\leftarrow	-	Х	Х	Х	-	-	0	-	Stop TMRA1 and clear it to "0".
TA01MOD	\leftarrow	0	0	Х	Х	0	1	_	-	Select 8-bit timer mode and select ϕ T1 (= (8/fc)s @f _C = 40
									(MHz) as the input clock.
TA1REG	\leftarrow	1	1	0	0	1	0	0	0	Set 40 μ s ÷ ϕ T1 = 200 = C8H to TAREG.
INTETA01	\leftarrow	Х	1	0	1	_	_	-		Enable INTTA1 and set it to level 5.
TA01RUN	\leftarrow	-	Х	Х	Х	_	1	1	16 /	Start TMRA1 counting.
X: Don't care,	-: N	lo ch	nang	e				(
								11		

Select the input clock using Table 3.7.3.

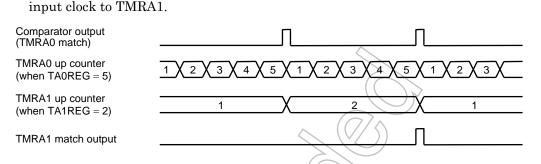
	~
Table 3.7.3 Selecting Interrupt Interval	
I SUDA 3 / 3 SOLOCTING INTERFLINT INTER/SI	and the induit (lock Liging 8-Rit Limer

Input Clock	Interrupt Interval (at f _C = 40 MHz)	Resolution
φT1 (8/fC)	0.2 μs to 51.2 μs	0.2 μs
φT4 (32/fC)	0.8 μs to 204.8 μs	0.8 μs
φT16 (128/fC)	3.2 µs to 819.2µs	3.2 μs
φT256 (2048/fC)	51.2 μs to 13.11 ms	51.2 μs

Note: The input clocks for TMRA0 and TMRA1 differ as follows:


TMRA0: Uses TMRA0 input (TA0IN) and can be selected from ϕ T1, ϕ T4 or ϕ T16

TMRA1: Match output of TMRA0 (TA0TRG) and can be selected from ϕ T1, ϕ T16, ϕ T256


2. Generating a 50 % duty ratio square wave pulse

The state of the timer flip-flop (TA1FF) is inverted at constant intervals and its status output via the timer output pin (TA1OUT).

Example: To output a 1.2- μ s square wave pulse from the TA1OUT pin at f_C = 40 MHz, use the following procedure to make the appropriate register settings. This example uses TMRA1; however, either TMRA0 or TMRA1 may be used.

3. Making TMRA1 count up on the match signal from the TMRA0 comparator Select 8-bit timer mode and set the comparator output from TMRA0 to be the

(2) 16-bit timer mode

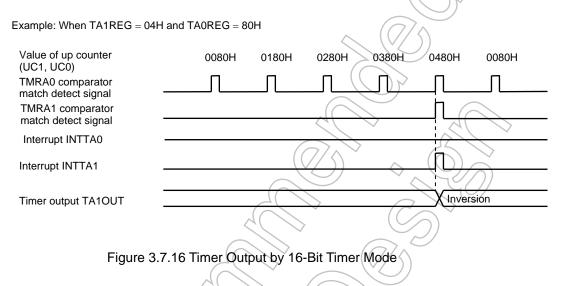
A 16-bit interval timer is configured by pairing the two 8-bit timers TMRA0 and TMRA1.

To make a 16-bit interval timer in which TMRA0 and TMRA1 are cascaded together, set TA01MOD<TA01M1:0> to "01".

In 16-bit timer mode, the overflow output from TMRA0 is used as the input clock for TMRA1, regardless of the value set in TA01MOD<TA01CLK1:0>. Table 3.7.2 shows the relationship between the timer (interrupt) cycle and the input clock selection.

To set the timer interrupt interval, set the lower eight bits in timer register TA0REG and the upper eight bits in TA1REG. Be sure to set TA0REG first (as entering data in TA0REG temporarily disables the compare, while entering data in TA1REG starts the compare).

Setting example: To generate an INTTA1 interrupt every 0.2 s at $f_C = 40$ MHz, set the timer registers TA0REG and TA1REG as follows:


*Clock state: Clock gear : 1/1(fc)

If ϕ T16 (=(128/fc)s @fc = 40 MHz) is used as the input clock for counting, set the following value in the registers:

 $0.2 \text{ s} \div (128/\text{fc})\text{s} = 62500 = F424\text{H}; \text{ e.g. set TA1REG to F4H and TA0REG to 24H}.$

The comparator match signal is output from TMRA0 each time the up counter UC0 matches TA0REG, though the up counter UC0 is not be cleared.

In the case of the TMRA1 comparator, the match detect signal is output on each comparator pulse on which the values in the up counter UC1 and TA1REG match. When the match detect signal is output simultaneously from both the comparator TMRA0 and TMRA1, the up counters UC0 and UC1 are cleared to "0" and the interrupt INTTA1 is generated. Also, if inversion is enabled, the value of the timer flip-flop TA1FF is inverted.

(3) 8-bit PPG (Programmable pulse generation) output mode

Square wave pulses can be generated at any frequency and duty ratio by TMRA0. The output pulses may be active low or active high. In this mode TMRA1 cannot be used.

TMRA0 outputs pulses on the TA1OUT pin (which can also be used as P80).

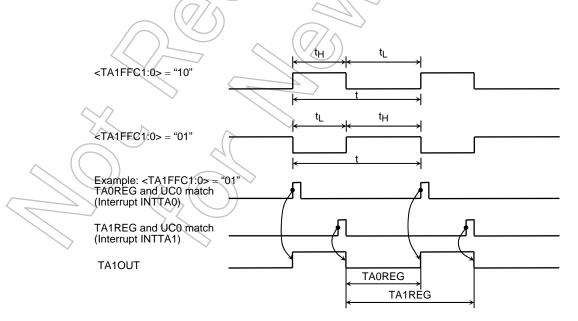
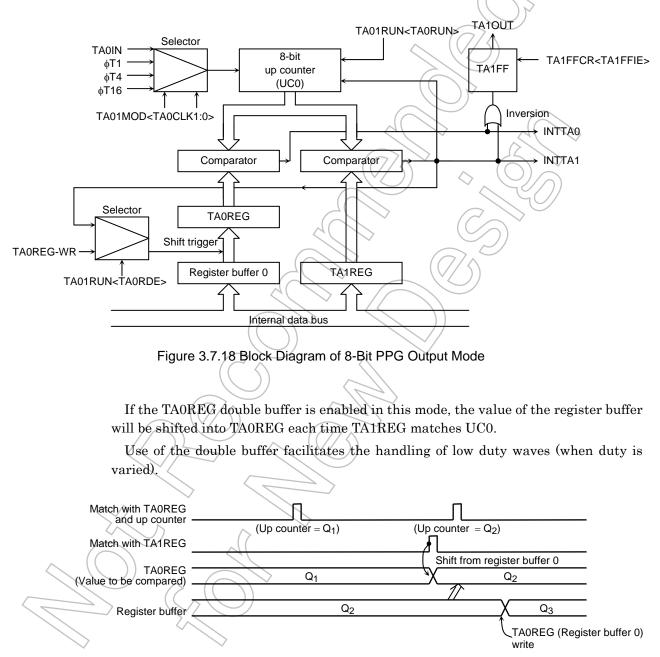


Figure 3.7.17 8-Bit PPG Output Waveforms

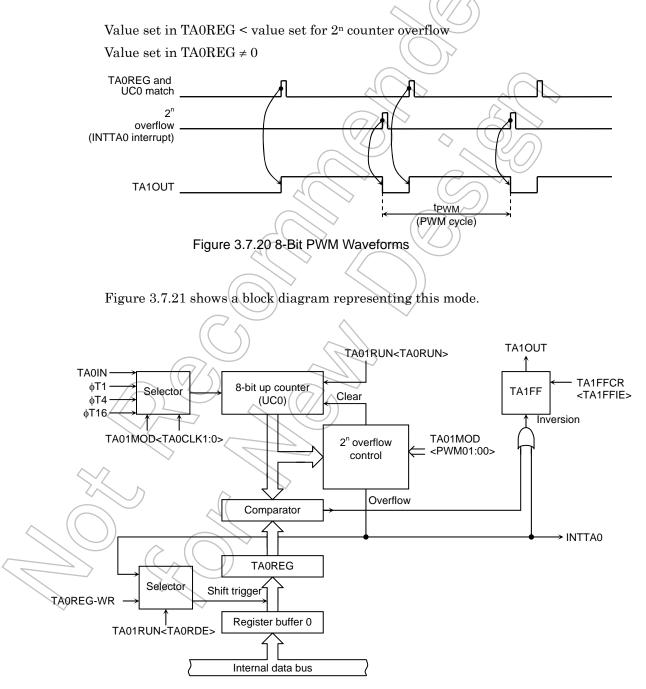

In this mode a programmable square wave is generated by inverting the timer output each time the 8-bit up counter (UC0) matches the value in one of the timer registers TA0REG or TA1REG.

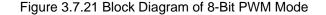

The value set in TAOREG must be smaller than the value set in TA1REG.

Although the up counter for TMRA1 (UC1) is not used in this mode,

TA01RUN<TA1RUN> should be set to "1" so that UC1 is set for counting.

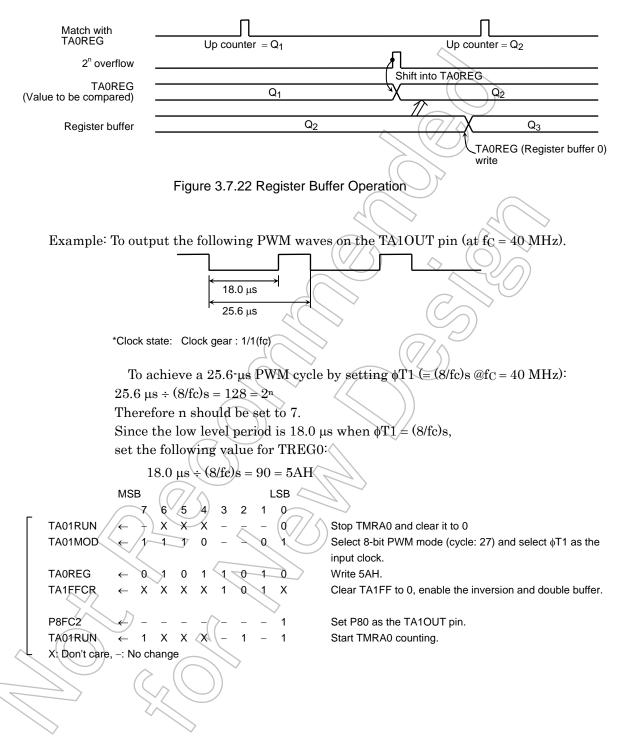
Figure 3.7.18 shows a block diagram representing this mode.


To generate 1/4 duty 62.5 kHz pulses (at $f_C = 40$ MHz) Example: 16 μs *Clock state: Clock gear : 1/1(fc) Calculate the value that should be set in the timer register. To obtain a frequency of 62.5 kHz, the pulse cycle t should be: $t = 1/62.5 \text{ kHz} = 16 \mu s$ $\phi T1 (= (8/fc)s @f_C = 40 MHz);$ $16 \,\mu s \div (8/fc)s = 80$ Therefore set TA1REG = 80 = 50HThe duty is to be set to 1/4: t × $1/4 = 16 \ \mu s \times 1/4 = 4 \ \mu s$ $4 \ \mu s \div (8/fc)s = 20$ Therefore, set TAOREG = 20 = 14H3 2 0 6 5 4 1 TA01RUN 0 0 Stop TMRA0 and TMRA1 and clear it to "0". Х Х 0 Х Set the 8-bit PPG mode, and select $\phi T1$ as input clock. TA01MOD Х 0 Х Х Х 0 0 Write 14H. **TA0REG** 0 1 0 0 0 0 Write 50H. TA1REG 0 1 0 1 0 0 0 0 TA1FFCR Х Set TA1FF, enabling both inversion and the double buffer. Х Х Х х 10 generate a negative logic pulse. Set P80 as the TA1OUT pin. P8FC2 Х Х Х Х TA01RUN Х Х Start TMRA0 and TMRA1 counting. ← 1 Х X: Don't care, -: No change


(4) 8-bit PWM output mode

This mode is only valid for TMRA0. In this mode, a PWM pulse with the maximum resolution of 8 bits can be output.

When TMRA0 is used the PWM pulse is output on the TA1OUT pin (which is also used as P80). TMRA1 can also be used as an 8-bit timer.


The timer output is inverted when the up counter (UC0) matches the value set in the timer register TA0REG or when 2^n counter overflow occurs (n = 6, 7 or 8 as specified by TA01MOD<PWM01:00>). The up counter UC0 is cleared when 2^n counter overflow occurs. The following conditions must be satisfied before this PWM mode can be used.

In this mode the value of the register buffer will be shifted into TAOREG if 2^n overflow is detected when the TAOREG double buffer is enabled.

Use of the double buffer facilitates the handling of low duty ratio waves.

Clock gear	System	-		PWM cycle TAxxMOD <pwmx1:0></pwmx1:0>									
value SYSCR1	clock SYSCR0	-		2 ⁶ (x64)			2 ⁷ (x128)			2 ⁸ (x256)			
<gear2:0></gear2:0>	<sysck></sysck>		TAxxM	OD <tax(< td=""><td>CLK1:0></td><td>TAxxM</td><td>OD<taxc< td=""><td>LK1:0></td><td colspan="3">TAxxMOD<taxclk1:0></taxclk1:0></td></taxc<></td></tax(<>	CLK1:0>	TAxxM	OD <taxc< td=""><td>LK1:0></td><td colspan="3">TAxxMOD<taxclk1:0></taxclk1:0></td></taxc<>	LK1:0>	TAxxMOD <taxclk1:0></taxclk1:0>				
			φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)		
-	1(fs)		512/fs	2048/fs	8192/fs	1024/fs	4096/fs	16384/fs	2048/fs	8192/fs	32768/fs		
000(x1)			512/fc	2048/fc	8192/fc	1024/fc	4096/fc	16384/fc	2048/fc	8192/fc	32768/fc		
001(x2)		×4	1024/fc	4096/fc	16384/fc	2048/fc	8192/fc 🗸	32768/fc	4096/fc	16384/fc	65536/fc		
010(x4)	0(fc)	~4	2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc		
011(x8)			4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc		
100(x16)			8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc		

Table 3.7.4 PWM Cycle

(5) Settings for each mode

Table 3.7.5 shows the SFR settings for each mode.

	15.	\sim
	$\langle 2 \rangle$	
(\searrow
(\mathcal{O}	
	27	//

Table 3.7.5 Timer Mode Setting Registers	
TANKING	7

Register name		TAOI	MOD		TA1FFCR
<bit symbol=""></bit>	<ta01m1:0></ta01m1:0>	<pwm01:00></pwm01:00>	<ta1clk1:0></ta1clk1:0>	<ta0clk1:0></ta0clk1:0>	<ta1ffis></ta1ffis>
Function	Timer Mode	PWM Cycle	Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select
8-bit timer × 2 channels	00		Lower timer match, φT1, φT16, φT256 (00, 01, 10, 11)	· / · · ·	0: Lower timer output 1: Upper timer output
16-bit timer mode	01			External clock, φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PPG × 1 channel	10		-	External clock, φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PWM × 1 channel	T	2 ⁶ , 2 ⁷ , 2 ⁸ (01, 10, 11)	-	External clock, φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit timer × 1 channel) 11	(7 -	φT1, φT16, φT256 (01, 10, 11)	_	Output disabled

-: Don't care

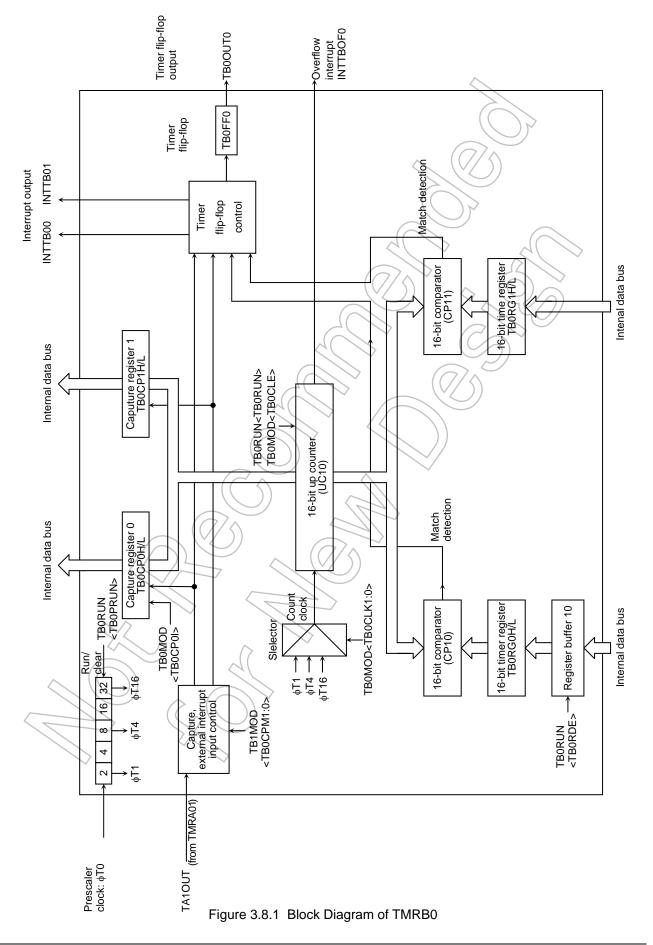
3.8 16-Bit Timer/Event Counters (TMRB0)

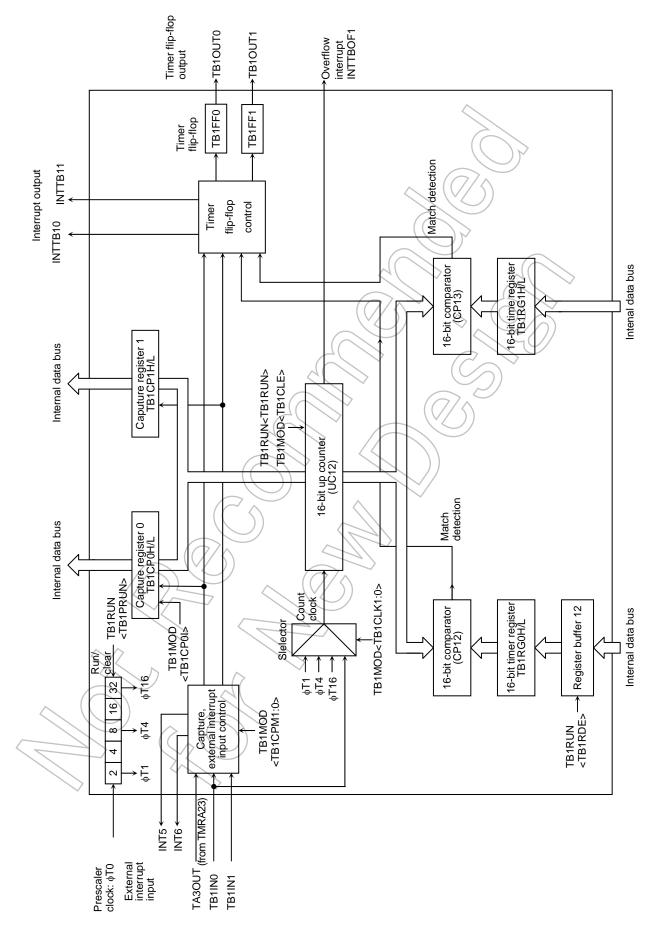
The TMP92FD23A incorporates two multifunctional 16-bit timer/event counter (TMRB0 and TMRB1) which has the following operation modes:

- 16-bit interval timer
- 16-bit event counter
- 16-bit programmable pulse generation (PPG)

Can be used following operation modes by capture function.

- Frequency measurement mode
- Pulse width measurement mode
- Time differential measurement mode


Figure 3.8.1 to Figure 3.8.2 show block diagram of TMRB0 and TMRB1. Timer/event counter consists of a 16-bit up counter, two 16-bit timer registers (One of them with a double buffer structure), two 16-bit capture registers, two comparators, a capture input controller, a timer flip-flop and a control circuit.


Timer/event counter is controlled by an 11 byte control SFR.Each channel(TMRB0,TMRB1) operate independently.In this section, the explanation describes only for TMRB1 because each channel is identical operation except for the difference as follows;

Spec	Channel	TMRBO	TMRB1
	External clock/ Caputre triggr input pin	None	TB1IN0 (Share with PD1) TB1IN1 (Share with PD2)
External pin	Timer flip-flop output pin	TB0OUT0 (Share with PD0)	TB1OUT0 (Share with PD3 TB1OUT1 (Share with PD4
	Timre run register	TB0RUN (1180H)	TB1RUN (1190H)
	Timrer mode register	TB0MOD (1182H)	TB1MOD (1192H)
	Timre flip-flop control register	// TB0FFCR (1183H)	TB1FFCR (1193H)
		TBORGOL (1188H)	TB1RG0L (1198H)
050	Timet register	TB0RG0H (1189H)	TB1RG0H (1199H)
SFR (Address)	Timer register	TB0RG1L (118AH)	TB1RG1L (119AH)
(Address)		TB0RG1H (118BH)	TB1RG1H (119BH)
Ň		TB0CP0L (118CH)	TB1CP0L (119CH)
(\bigcirc)		TB0CP0H (118DH)	TB1CP0H (119DH)
	Capture register	TB0CP1L (118EH)	TB1CP1L (119EH)
		TB0CP1H (118FH)	TB1CP1H (119FH)

Table 3.8.1 Pins and SFR of TMRB

3.8.1 Block Diagrams

3.8.2 Operation of Each Block

(1) Prescaler

The 5-bit prescaler generates the source clock for TMRB1. The prescaler clock (ϕ T0) is divided clock (Divided by 4) from selected clock by the register SYSCR1<SYSCK> of clock gear.

This prescaler can be started or stopped using TB1RUN<TB1PRUN>. Counting starts when <TB0PRUN> is set to 1; the prescaler is cleared to 0 and stops operation when <TB0PRUN> is cleared to 0.

Gear Value SYSCR1 <gear2:0></gear2:0>	System clock SYSCR1	_	Timer counter input clock TMRB prescaler TBxMOD <tbxclk1:0></tbxclk1:0>						
_	<sysck> 1 (fs)</sysck>		φT1(1/2) fs/8	φT4(1/8) fs/32	φT16(1/32) fs/128				
000 (1/1) 001 (1/2)		1/4	fc/8 fc/16	fc/32 fc/64	fc/128 fc/256				
010 (1/4) 011 (1/8) 100 (1/16)	0 (fc)		fc/64 fc/64 fc/128	fc/128 fc/256 fc/512	fc/512 fc/1024 fc/2048				

Table 3.8.2	Prescaler (Clock	Resolution

(2) Up counter (UC12)

UC12 is a 16-bit binary counter which counts up pulses input from the clock specified by TB0MOD<TB0CLK1:0>.

Any one of the prescaler internal clocks ϕ T1, ϕ T4 and ϕ T16 can be selected as the input clock. Counting or stopping and clearing of the counter is controlled by TB1RUN<TB1RUN>. TMRB0 cannot choose an external clock as an input clock (there is no external clock input terminal).

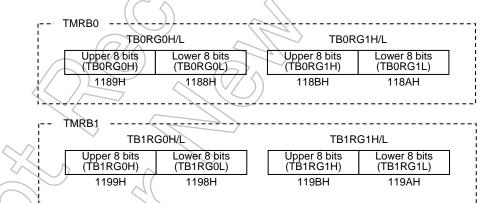
When clearing is enabled, the up counter UC12 will be cleared to 0 each time its value matches the value in the timer register TB1RG1H/L. If clearing is disabled, the counter operates as a free-running counter. Clearing can be enabled or disabled using TB1MOD<TB1CLE>.

A timer overflow interrupt (INTTBOF1) is generated when UC12 overflow occurs.

(3) Timer registers (TB1RG0H/L and TB1RG1H/L)

These 16-bit registers are used to set the interval time. When the value in the up counter UC12 matches the value set in this timer register, the comparator match detect signal will go active.

Setting data for both Upper and Lower timer registers is always needed. For example, either using 2-byte data transfer instruction or using 1-byte data transfer instruction twice for lower 8 bits and upper 8 bits in order.

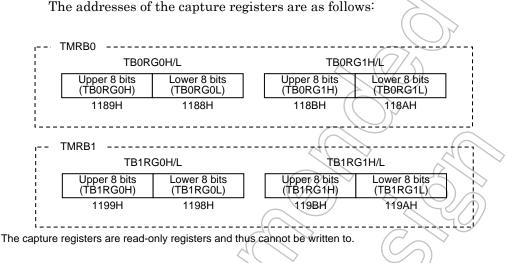

The TB1RG0 timer register has a double-buffer structure, which is paired with register buffer. The value set in TB1RUN<TB1RDE> determines whether the double-buffer structure is enabled or disabled: it is disabled when $\langle TB1RDE \rangle = 0$, and enabled when $\langle TB1RDE \rangle = 1$.

When the double buffer is enabled, data is transferred from the register buffer to the timer register when the values in the up counter (UC12) and the timer register TB1RG1 match.

After a reset, TB1RG0H/L and TB1RG1H/L are undefined. If the 16-bit timer is to be used after a reset, data should be written to it beforehand.

On a reset <TB1RDE> is initialized to 0, disabling the double buffer. To use the double buffer, write data to the timer register, set <TB1RDE> to 1, then write data to the register buffer as shown below.

TB1RG0H/L and the register buffer both have the same memory addresses (1188H and 1189H) allocated to them. If $\langle TB1RDE \rangle = 0$, the value is written to both the timer register and the register buffer. If $\langle TB1RDE \rangle = 1$, the value is written to the register buffer only.


The addresses of the timer registers are as follows:

The timer registers are write only registers and thus cannot be read.

(4) Capture registers (TB1CP0H/L and TB1CP1H/L)

These 16-bit registers are used to latch the values in the up counters UC12.

Data in the capture registers should be read all 16 bits. For example, using a 2-byte data load instruction or two 1-byte data load instructions twice for lower 8 bits and upper 8 bits in order.

(5) Capture input control

This circuit controls the timing to latch the value of up counter UC12 into TB1CP0H/L and TB1CP1H/L.

Interrupt timing of capture register and selection edge of external interrupt are set by TB1MOD<TB1CPM1:0>. (TMRB0 does not include the selection edge of external interrupt.)

The value in the up counter can be loaded into a capture register by software. Whenever 0 is programmed to TB1MOD<TB1CP0I>, the current value in the up counter is loaded into capture register TB1CP0H/L. It is necessary to keep the prescaler in run mode (e.g., TB1RUN<TB1PRUN> must be held at a value of 1).

(6) Comparators (CP12, CP13)

CP12 is 16-bit comparators which compare the value in the up counter UC12 with the value set in TB1RG0H/L or TB1RG1H/L respectively, in order to detect a match. If a match is detected, the comparator generates an interrupt (INTTB10 or INTTB11 respectively).

(7) Timer flip-flops (TB1FF0 and TB1FF1)

These flip-flops are inverted by the match detect signals from the comparators and the latch signals to the capture registers. Inversion can be enabled and disabled for each element using TB1FFCR<TB1C0T1, TB1E1T1 and TB1E0T1>.

After a reset the value of TB1FF0 is undefined. If "00" is programmed to TB1FFCR <TB1FF0C1:0> or <TB1FF1C1:0>, TB1FF0 will be inverted. If "01" is programmed to the capture registers, the value of TB1FF0 will be set to "1". If "10" is programmed to the capture registers, the value of TB1FF0 will be cleared to "0".

The values of TB1FF0 and TB1FF1 can be output via the timer output pins TB1OUT0 (which is shared with PD3), TB1OUT1 (which is shard with PD4). The timer output pin of TMRB0 is one pin (TB0OUT0: which is shard with PD0). Timer output should be specified using the port D function register.

3.8.3 SFRs

TMRB0 Run Register												
		7	6	5	4	3	2	1	0			
TBORUN	Bit symbol	TB0RDE	-			I2TB0	TB0PRUN		TBORUN			
(1180H)	Read/Write	R	/W			R	w 🔍		R/W			
	Reset State	0	0			0	0		0			
	Function	Double	Always			IDLE2	TMRB0)2	Up counter			
		buffer	write "0"			0: Stop	prescaler	9	(UC10)			
		0: Disable				1: Operate	0: Stop and o					
	1: Enable 1: Run (Count up)											
Count operation												
	0 Stop and clear											
	<tb0prun>, <tb0run> 1 Count up</tb0run></tb0prun>											
	-				G	$\overline{\gamma}$		$\overline{\langle \rangle}$				
	Note: The	1, 4 and 5 of	TB0RUN are	read as unde	rfined value.	(\mathcal{S})	\diamond					
						>						
				TMRB1 R	un Registe	r	(C)	\checkmark				
		7	6	5	4	3	2	1	0			
TB1RUN	Bit symbol	TB1RDE	-	-4	\mathbb{N}	I2TB1	TB1PRUN		TB1RUN			
(1190H)	Read/Write	R	/W	\rightarrow		R	Ŵ		R/W			
	Reset State	0	0	\checkmark		0	0		0			
	Function	Double	Always write "0"	\frown		IDLE2	TMRB1		Up counter			
		buffer	white 0	())		0: Stop	prescaler		(UC12)			
		0: Disable 1: Enable	\square	\sim	\wedge	1: Operate	0: Stop and o					
		1. LITADIE					1: Run (Cour	it up)				
		_				\geq						
	Г	Count operat		0	Chan and all	,		٦				
		<tb1prun< td=""><td>l>, <tb1run:< td=""><td></td><td>Stop and clear</td><td>ar</td><td></td><td>-</td><td></td></tb1run:<></td></tb1prun<>	l>, <tb1run:< td=""><td></td><td>Stop and clear</td><td>ar</td><td></td><td>-</td><td></td></tb1run:<>		Stop and clear	ar		-				
	L											
	Note: The	1 4 and 5 of	TB0RUN are	read as unde	rfined value							
		.,										
		ζ.										
	\sim	\bigtriangledown	Figure	3.8.3 The	Registers for	or TMRB						
~			41									
<	$> \bigcirc$))		\supset								
		5)	(())									
/7			X									
	$\langle \rangle$	~										
	\sim		\sim									

TMRB0 Mode Register											
		7	6	5	4	3	2	1	0		
TB0MOD	Bit symbol	-	_	TB0CP0I	TB0CPM1	TB0CPM0	TB0CLE	TB0CLK1	TB0CLK0		
(1182H)	Read/Write	R/	W	W*			R/W				
	Reset State	0	0	1	0	0	0	0	0		
Read-modify	Function	Always write	"0"	Software	Capture timir	ng	Up counter	TMRB0 sour	ce clock		
-write				capture	00: Disable		control	00: Reserved	b		
instruction is				control	01: Reserved	d	0: Disable	01:			
prohibited.				0: Software	10: Reserved	d	1: Enable	10:			
				capture	11: TA1OU	11:					
				1: Undefined	TA1OU	лт↓ 🦳	$\langle \cup \rangle$				
	TMRB0 source clock										
				00	Reserved	\langle / \rangle					
		<tb0c< td=""><td>I K1·0></td><td></td><td>φT1</td><td></td><td>(</td><td></td><td></td></tb0c<>	I K1·0>		φT1		(
				10	фT4 (7/~~	G	\sum			
				11	φT16	(_))	0 (
		Control close	ring for up or	suptor (LIC10)		7	C	\leq			
		Control clear		ounter (UC10)	Disable		$\left(\bigcirc \right)$				
		<tb0< td=""><td>CLE></td><td>(</td><td>Enable clearin</td><td></td><td></td><td>/1</td><td></td></tb0<>	CLE>	(Enable clearin			/1			
		Capture timi	ng		\rightarrow		\bigcirc				
			(\square		Capture c	ontrol				
				00	Disable						
			\square	01	Reserved	\sim					
		<tb0c< td=""><td>PM1:0></td><td>10</td><td>Reserved</td><td></td><td></td><td></td><td></td></tb0c<>	PM1:0>	10	Reserved						
					Capture to TB	OCP0H/L at ri	sing edge of -	TA1OUT			
		($(7/\Lambda)$	11	Capture to TB	OCP1H/L at fa	alling edge of	TA1OUT			
	4	Software ca	pture		75)						
			-	-0-T	he value of up	o counter is ca	aptured to TB	CP0H/L			
		<tb00< td=""><td>P0I></td><td></td><td>Indefined</td><td></td><td></td><td></td><td></td></tb00<>	P0I>		Indefined						
			Figure 3	.8.4 The R	egisters for	TMRB0					

	TMRB0 Mode Register										
		7	6	5	4	3	2	1	0		
TB1MOD	Bit symbol	TB1CT1	TB1ET1	TB1CP0I	TB1CPM1	TB1CPM0	TB1CLE	TB1CLK1	TB1CLK0		
(1192H)	Read/Write	R	R/W		R/W						
	Reset State	0	0	1	0	0	0	0	0		
Read-modify	Function	TB1FF1 Inv	ersion trigger	Software	Capture timi	ng	Up counter	TMRB1 sour	ce clock		
-write		0: Trigger di		capture	00: Disable		clear	00: TB1IN0	pin input		
instruction is		1: Trigger er	nable	control		rising edge	control 0:	01:			
prohibited.		Invert when	Invert when	0: Software capture) ↑ TB1IN1 ↑ rising edge	10: ¢T4				
		the UC10	match UC10	1:) ↑ TB1IN0 ↓	e// \	11: φT16			
		value is	with	Undefined	INT5 is						
		loaded in to	TB1RG1H/L								
		TB1CP1H/L			TA3OL	JT ↓ rising edge) M				
					111313	Tising euge					
$\langle \langle \rangle \rangle \sim \langle \langle \rangle \rangle$											
		TMRB1 sou	rce clock	00				\leq			
					TB1IN0 pin in	put	\diamond ((
		<tb1c< td=""><td>CLK1:0></td><td></td><td>φT1 φT4</td><td></td><td>\rightarrow</td><td>401</td><td></td></tb1c<>	CLK1:0>		φT1 φT4		\rightarrow	401			
					φ14 φT16	7	77	\mathbf{S}			
							(\bigcirc)				
		Control clea	ring for up cou	unter (UC12)			~ 2				
			CLE>	0	Disable		//				
		<101	ULE>	1	Enable clearin	g by match w	ith TB1RG1H	′∟			
		Conturo/inte	errupt timing		~ _{{						
		Capture/Inte			(Capture contro	ol	INT5	control		
				00 [Disable				rs at the rising		
			(01	Capture to TB1C	P0H/L at rising	edge of TE	31IN0 🖵			
					Capture to TB1C	P1H/L at rising	1				
		<tb0c< td=""><td>PM1:0></td><td>10</td><td>Capture to TB1C</td><td></td><td></td><td></td><td>rs at the rising</td></tb0c<>	PM1:0>	10	Capture to TB1C				rs at the rising		
			$(\vee /))$		Capture to TB1C						
		//)			//))	pture to TB1CP0H/L at rising edge of TA3OUT INT5 occurs at					
	4			-	Capture to TB1C	P1H/L at falling	edge of TA3OU	T edge of TE	31IN0/`		
		Cofficience									
		Software ca		0	The value of u	in counter is a	anturad to TR				
	\sim	<pre>Content </pre>	CP0I>		Undefined						
		\bigcirc	\land		Undenned						
		TB1FF1 cor									
\sim	(())		en UC12 valu	e matches the	e valued in TB	1RG1H/L					
	$\langle \langle \subseteq$			0	Disable invers	ion					
		<1B1		1	Enable inversi						
		22	$\langle -$								
	\searrow	TB1FF1 cor	ntrol								
	~	Inverted wh	en UC10 valu	e is captured	into TB1CP1H	I/L		_			
			CT1>	0	Disable invers	ion					
		<1D		1	Enable inversi	on					

Note:When controlling capture by using TB1MOD<TB1CPM1:0>, control capture after setting SYSCR2<DRVE> to "0".

Figure 3.8.5 The Registers for TMRB0

				טרווף-רוט	p Control R	kegistei							
		7	6	5	4	3	2	1	0				
TB0FFCR	Bit symbol	-	-	TB0C1T1	TB0C0T1	TB0E1T1	TB0E0T1	TB0FF0C1	TB0FF0C0				
(1183H)	Read/Write	W	*		R	/W		W	/*				
	Reset State	1	1	0	0	0	0	1	1				
Read-modify	Function	Always w	rite "11".		ersion trigger			Control TB0	-F0				
-write				0: Disable tr			00: Invert						
instruction is				1: Enable tr	1	1		01: Set					
prohibited.					Invert when	Invert when	Invert when	10: Clear					
					the UC value			11: Don't car * Always rea					
				is loaded in	is loaded in	matches the		Always lea	u as TI.				
					to TB0CP0H/L	value in TB0RG1H/L.	value in						
						TIBUNG (TVL.							
		Timer flip-flo	op control (T	B0FF0)				\bigcirc					
				00	Invert	$\overline{\langle \cdot \rangle}$		21/	>				
		TDOF	FC4.0	01	Set to "11"	$\overline{\gamma}$	/	\mathbb{Z}					
		<180F	FC1:0>	10	Clear to "00"	\langle / \rangle	() j					
				11	Don't care	\subseteq							
					(\geq	a	50					
		TB0FF0 co	otrol										
				lue matches th	ne valued in T	B0RG0H/L							
				0	Disable inver		7/\		0				
		<180	E0T1>	1	Enable invers	()	\bigcirc						
					\sim /								
				\bigcirc	>	>))						
		TB0FF0 con		(())									
		Inverted whe	en UC10 val		e valued in TE								
		<tb0< td=""><td>E1T1></td><td>0</td><td>Disable inver</td><td></td><td></td></tb0<>	E1T1>	0	Disable inver								
				1 Enable inversion									
			$(0/1)^{-1}$		$\langle \rangle$								
		TB0FF0 con		/		>							
		Inverted whe	en UC10 val	ue is captured	into TB0CP0								
		<тво	C0T1>	0	Disable inver								
					Enable invers	sion							
		TB0FF0 cont	7 trol										
		/		le is captured	into TB0CP1H	H/L							
	$\langle \wedge$	\sim	\cap	0	Disable inver								
	\square	<tb00< td=""><td>:1T1></td><td>1</td><td>Enable invers</td><td></td><td></td><td></td><td></td></tb00<>	:1T1>	1	Enable invers								
\langle				$\langle \rangle$									
		5)	(()))									
$\langle \langle \rangle$		\sim	Figure	3.8.6 The	Registers f	or TMRB							
	$\langle \rangle$	4			0								
	\sim		\sim										

TMRB0 Flip-Flop Control Register

TMRB1 Flip-Flop Control Register											
		7	6	5	4	3	2	1	0		
TB1FFCR	Bit symbol	TB1FF1C1	TB1FF1C0	TB1C1T1	TB1C0T1	TB1E1T1	TB1E0T1	TB1FFC1	TB1FFC0		
(1193H)	Read/Write	W	/*		R	<u>/</u> W	•	W	/*		
	Reset State	1	1	0	0	0	0	1	1		
Read-modify	Function	TB1FF1 cont	trol		ersion trigger		\sim	Control TB1	-F0		
-write		00: Invert		0: Disable tr				00: Invert			
instruction is		01: Set		1: Enable tri	1			01: Set			
prohibited.		10: Clear				Invert when	Invert when	10: Clear			
		11: Don't car * Always rea			the UC value			11: Don't car * Always rea			
		Always lea	uas II.			matches the		Aiways iea	u as TI.		
				to TB1CP1H/I	to TB1CP0H/L	value in	value in TB1RG0H/L.				
Timer flip-flop control(TB1FF0)											
				00	Invert	$\langle \langle \rangle$	/	21 1	>		
			F04.0	01	Set to "11"	77.		\mathcal{L}			
		<1816	FC1:0>	10	Clear to "00"	(/ 5)	(O)			
				11 Don't care							
		TB1FF0 co Inverted wh			ne valued in TI		\mathcal{S}				
		<tb1< td=""><td>E0T1></td><td></td><td>Disable inver</td><td></td><td><u> </u></td><td></td><td></td></tb1<>	E0T1>		Disable inver		<u> </u>				
					Enable invers	sion					
		TB1FF0 cor	1	ie matches the	e valued in TB	1RG1H/L)				
				<u> </u>	Disable inver	sion					
		<181	E1T1>)) 1	Enable invers	ion					
		TB1FF0 cor	\sim								
		inverted with			Into TB1CP0		1				
		<tb1< td=""><td>C0T1></td><td></td><td>Disable inverse Enable inverse</td><td></td><td></td><td></td><td></td></tb1<>	C0T1>		Disable inverse Enable inverse						
			<u> </u>			SION					
		TB1FF0 con		e is captured i	into TB1CP1F	ł/L					
	\sim		C1T1>	0	Disable inver	sion					
~	$(\bigcirc$			1	Enable invers	sion					
\langle	\mathcal{I}	リ		\rightarrow							
/		TB1FF1 con	trol ()							
/7		\sim	$\langle \checkmark \rangle$	00	Invert value c						
	$\langle \rangle$	<tb1ff< td=""><td>=1C1:0></td><td>01</td><td>Set TB1FF1</td><td></td><td></td><td></td><td></td></tb1ff<>	=1C1:0>	01	Set TB1FF1						
	\searrow		\searrow	10	Set TB1FF1 1	to "0"					
				11	Don't care						

TMRB1 Flip-Flop Control Register

Figure 3.8.7 The Registers for TMRB

				Tin	ner register	ſ						
		7	6	5	4	3	2	1	0			
TB0RG0L	bit Symbol				-	_						
(1188H)	Read/Write	W										
	Reset State				Unde	fined						
TB0RG0H	bit Symbol				-	-						
(1189H)	Read/Write				V	V		$\langle \rangle$				
	Reset State	Undefined										
TB0RG1L	bit Symbol				-	-	6					
(118AH)	Read/Write	$w \wedge (7/5)$										
	Reset State	Undefined										
TB0RG1H	bit Symbol				-	-	$\left(\right)$					
(118BH)	Read/Write	w ())										
	Reset State	Undefined										
TB1RG0L	bit Symbol				-	- 21	\searrow	7				
(1198H)	Read/Write	W										
	Reset State				Unde	fined	~	\bigcirc	\searrow			
TB1RG0H	bit Symbol					$\langle \bigcirc \rangle$	\Diamond		$\langle \rangle$			
(1199H)	Read/Write	W YU										
	Reset State				Unde	fined	6					
TB1RG1L	bit Symbol				$\langle \langle \rangle$	\sim	C	$\langle \rangle$				
(119AH)	Read/Write					V		\mathcal{D}				
	Reset State				Unde	fined						
TB1RG1H	bit Symbol			20		-		/				
(119BH)	Read/Write			$\langle \langle \rangle$	V V	v/[
	Reset State				Unde	fined))					

Note: Read-modify-write instructuio is prohibited.

Figure 3.8.8 The Registers for TMRB

				Cap	ture registe	er							
		7	6	5	4	3	2	1	0				
TB0CP0L	bit Symbol				-	=							
(118CH)	Read/Write				F	२							
	Reset State				Unde	efined							
TB0CP0H	bit Symbol				-	_							
(118DH)	Read/Write				F	२		$\langle \rangle$					
	Reset State				Unde	efined		$\left(\left(\right) \right)$					
TB0CP1L	bit Symbol				-	-	6						
(118EH)	Read/Write	R											
	Reset State				Unde	efined	$\langle \langle $	\mathcal{I}					
TB0CP1H	bit Symbol				-	-	()						
(118FH)	Read/Write	R											
	Reset State	Undefined											
TB1CP0L	bit Symbol				-	- 21	\searrow	4					
(119CH)	Read/Write				V	N	<u> </u>						
	Reset State				Unde	fined	~	(\bigcirc)	\searrow				
TB1CP0H	bit Symbol					$\overline{(0)}$	\Diamond		$\langle \rangle$				
(119DH)	Read/Write	R											
	Reset State				Unde	efined	6						
TB1CP1L	bit Symbol				$\langle \langle \rangle$	\rightarrow	C	())					
(119EH)	Read/Write					२		\mathcal{O}					
	Reset State				Unde	efined							
TB1CP1H	bit Symbol			40		-		/					
(119FH)	Read/Write					२//							
	Reset State				V Unde	efined))						

Note: Read-modify-write instructuio is prohibited.

Figure 3.8.9 The Registers for TMRB

3.8.4 Operation in Each Mode

(1) 16-bit interval timer mode

Generating interrupts at fixed intervals in this example, the interval time is set the timer register TB1RG1H/L to generate the interrupt INTTB11.

Stop TMRB1.

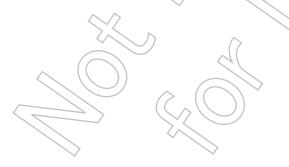
Start TMRB1.

```
5
                               ٦
                                   2
                                      1 0
                     6
                            4
                 7
TB1RUN
                 0
                     0
                        Х
                            Х
                                   0
                                      Х
                                          0
INTETB1
                 Х
                     1
                        0
                            0
                               Х
                                   0
                                      0
                                          0
TB1FFCR
                        0
                            0
                                0
                                   0
                                       1
                                          1
TB1MOD
                            0
                                0
                                   1
                                 10.11
                              01
TB1RG1H/L
TB1RUN
                 0
                     0
                                      Х
                                          1
                            Х
                                   1
                        Х
X: Don't care, -: No change
```

Enable INTTB11 and set interrupt level 4. Disable INTTB10.

Disable the trigger. Select internal clock for input and disable the capture function.

Set the interval time (16 bits).

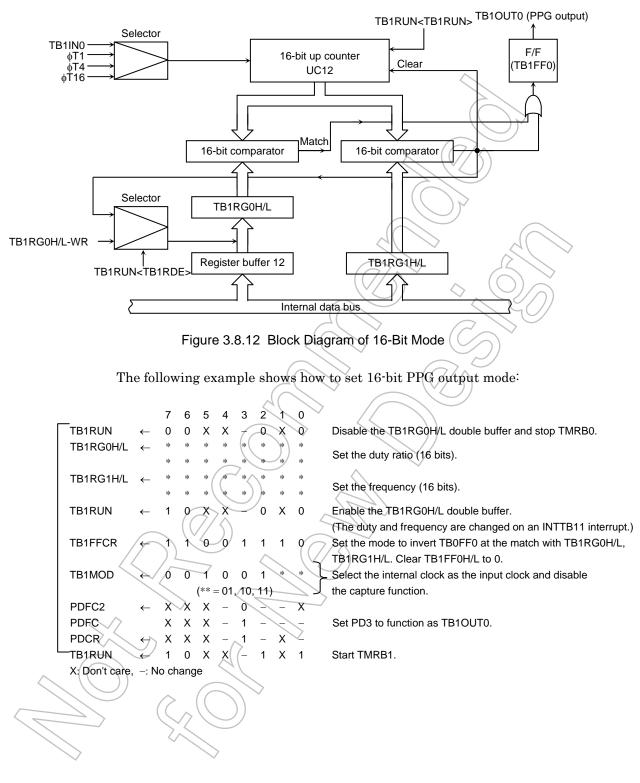

(2) 16-bit event counter mode

In 16-bit timer mode as described in above, the timer can be used as an event counter by selecting the external clock (TB1IN0 pin input) as the input clock.

Up counter counting up by rising edge of TB1IN0 pin input. And execution software capture and reading capture value enable reading count value.)

_		7	6	5	4	3	2	1/	0	
TB1RUN	←	0	0	Х	Х	_	0	X	0	Stop TMRB1.
PDCR	←	Х	Х	Х	Х	-	~	0	7	
PDFC2	\leftarrow	Х	Х	Х	Х	-	_	0	X	Set PD1 to TB1IN0 input mode.
PDFC	\leftarrow	Х	Х	Х	Х	F	-	1	\searrow	
INTETB1	\leftarrow	Х	1	0	0	X	0	0)	0	Set INTTB11 to enable (Interrupt level4).
						~	\sim)		Set INTTB10 to disable.
TB1FFCR	\leftarrow	1	1	0	0	໌ 0<	0	1	1	Set trigger to disable.
TB1MOD	\leftarrow	0	0	1	Ò.	0	/1	0	0	Set input clock to TB1IN0 pin input.
TB1RG1H/L	\leftarrow	*	*	*	*	*	*	*	*	Cat number of count (16 hite)
		*	(*(*	*)	*	*	*	*	Set number of count. (16 bits)
_TB1RUN	4	0	0	X	X	-	1	Х	1	Start TMRB1.
X: Don't care	, –: N	lo cl	nang	je-			$\langle \rangle$			YZ))
	\sim							\sim	\sim	

Note: When used as an event counter, set the prescaler to "RUN" (TB1RUN<TB1PRUN> = "1").



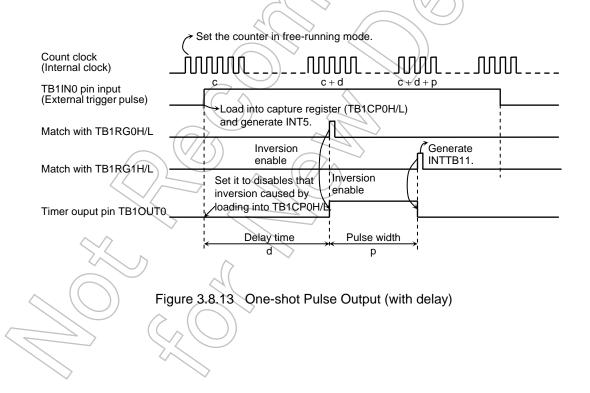
(3) 16-bit programmable pulse generation (PPG) output mode

Square wave pulses can be generated at any frequency and duty ratio. The output pulse may be either low active or high active.

The PPG mode is obtained by inversion of the timer flip-flop TB1FF0 that is to be enabled by the match of the up counter UC12 with timer register TB1RG0H/L or TB1RG1H/L and to be output to TB1OUT0. In this mode the following conditions must be satisfied.

The following block diagram illustrates this mode.

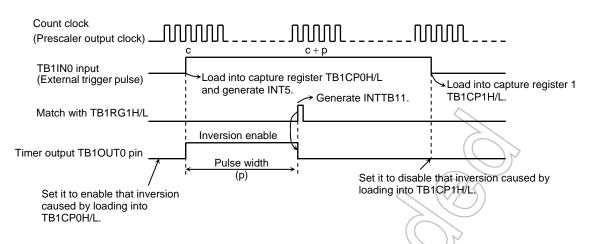
(4) Capture function examples


Used capture function, they can be applicable in many ways, for example:

- 1. One-shot pulse output from external trigger pulse
- 2. Frequency measurement
- 3. Pulse width measurement
- 4. Measurement of difference time
 - 1. One-shot pulse output from external trigger pulse

Set the up counter UC12 in free-running mode with the internal input clock, input the external trigger pulse from TB1IN0 pin, and load the value of up counter into capture register TB1CP0H/L at the rise edge of external trigger pulse.

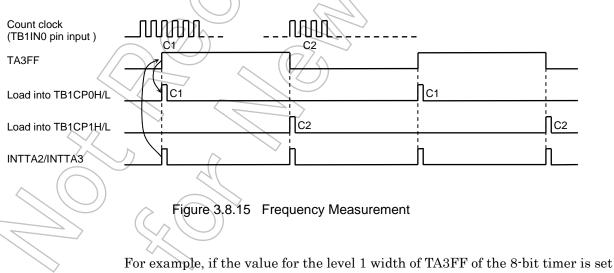
When the interrupt INT5 is generated at the rise edge of external trigger pulse, set the TB1CP0H/L value (c) plus a delay time (d) to TB1RG0H/L (= c + d), and set the above set value (c + d) plus a one-shot width (p) to TB1RG1H/L (= c + d + p). And, set "11" to timer flip-flop control register TB1FFCR<TB1E1T1, TB1E0T1>. Set to trigger enable for be inverted timer flip-flop TB1FF0 by UC0 matching with TB1RG0H/L and with TB1RG1H/L. When interrupt INTTB11 occurs, this inversion will be disabled after one-shot pulse is output.


The (c), (d), and (p) correspond to c, d, and p in Figure 3.8.13.

* Clock state System clock: High frequency (fc) High speed clock gear: 1/1 (fc) Setting in Main Set free running. Count using ϕ T1. TB1MOD 0 0 1 X X 1 Load into TB1CP0 by rising edge of TB1IN0 pin input. TB1FFCR Х 0 0 0 0 0 Clear TB1FF0 to 0. Disable inversion of TB1FF0. PDCR X X X -1 Х – PDFC ← X X X − 1 − − − Set PD3 to function as the TB1OUT0 pin. PDFC2 ← X X X – 0 – – X INTE45 X 1 0 0 X Enable INT5. Disable INTTB10 and INTTB11. X 0 0 0 X 0 0 0 INTETB1 Start TMRB1. 0 X X - 1 X 1 TB1RUN Setting in INT5 TB1RG0H/L \leftarrow TB1CP0H/L + 3 ms/\overline{T1 TB1RG1H/L ← TB1RG0H/L + 2 ms/\otheraptrix TB1FFCR $\leftarrow X X$ Enable inversion of TB1FF0 when match with TB1RG0H/L or TB1RG1H/L. Set INTTB11 to enable. INTETB1 X 1 0 0 Setting in INTTB11 TB1FFCR Х Disable inversion of TB1FF0 when match with TB1RG0H/L or TB1RG1H/L. Disable INTTB11. INTETB1 XO 0 X : Don't care, No change

Example: To output a 2 [ms] one-shot pulse with a 3 [ms] delay to the external trigger pulse via the TB1IN0 pin.

When delay time is unnecessary, invert timer flip-flop TB1FF0 when up counter value is loaded into capture register (TB1CP0H/L), and set the TB1CP0H/L value (c) plus the one-shot pulse width (p) to TB0RG1H/L when the interrupt INT5 occurs. The TB1FF0 inversion should be enable when the up counter (UC12) value matches TB1RG1H/L, and disabled when generating the interrupt INTTB11.


2. Frequency measurement

The frequency of the external clock can be measured in this mode. Frequency is measured by the 8-bit timers TMRA23 and the 16-bit timer/event counter.

TMRA23 is used to setting of measurement time by inversion TA3FF.

Counter clock in TMRB1 select TB1IN0 pin input, and count by external clock input. Set to TB1MOD<TB1CPMI:0> = "11". The value of the up counter (UC12) is loaded into the capture register TB1CP0H/L at the rise edge of the timer flip-flop TA3FF of 8-bit timers (TMRA23), and into TB0CP1H/L at its fall edge.

The frequency is calculated by difference between the loaded values in TB1CP0H/L and TB1CP1H/L when the interrupt (INTTA2 or INTTA3) is generates by either 8-bit timer.

For example, if the value for the level 1 width of TA3FF of the 8-bit timer is set to 0.5 s and the difference between the values in TB1CP0H/L and TB1CP1H/L is 100, the frequency is $100 \div 0.5 \text{ s} = 200 \text{ Hz}.$

3. Pulse width measurement

This mode allows measuring the high level width of an external pulse. While keeping the 16-bit timer/event counter counting (Free running) with the prescaler output clock input, external pulse is input through the TB1IN0 pin. Then the capture function is used to load the UC12 values into TB1CP0H/L and TB1CP1H/L at the rising edge and falling edge of the external trigger pulse respectively. The interrupt INT5 occurs at the falling edge of TB1IN0.

The pulse width is obtained from the difference between the values of TB1CP0H/L and TB1CP1H/L and the internal clock cycle.

For example, if the prescaler output clock is 0.8 μ s and the difference between TB1CP0H/L and TB1CP1H/L is 100, the pulse width will be $100 \times 0.8 \ \mu$ s = 80 μ s.

Additionally, the pulse width that is over the UC12 maximum count time specified by the clock source can be measured by changing software.

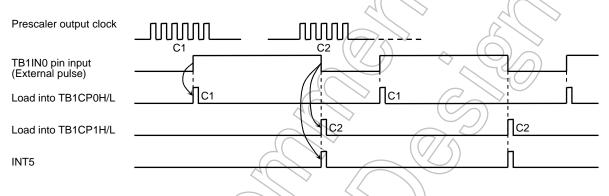
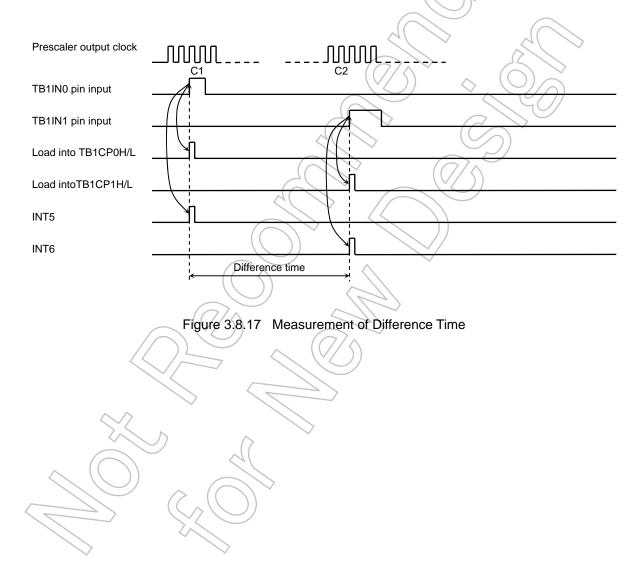


Figure 3.8.16 Pulse Width Measurement

Note: Pulse Width measure by setting "10" to TB1MOD<TB1CPM1:0>. The external interrupt INT5 is generated in timing of falling edge of TB1IN0 input. In other modes, it is generated in timing of rising edge of TB1IN0 input.

The width of low level can be measured from the difference between the first C2 and the second C1 at the second INT5 interrupt.


4. Measurement of difference time

This mode is used to measure the difference in time between the rising edges of external pulses input through TB1IN0 and TB1IN1.

Keep the 16-bit timer/event counter (TMRB1) counting (Free running) with the prescaler output clock, and load the UC12 value into TB1CP0H/L at the rising edge of the input pulse to TB1IN0. Then the interrupt INT5 is generated.

Similarly, the UC12 value is loaded into TB1CP1H/L at the rising edge of the input pulse to TB1IN1, generating the interrupt INT6.

The time difference between these pulses can be obtained by multiplying the value subtracted TB1CP0H/L from TB1CP1H/L and the internal clock cycle together at which loading the UC12 value into TB1CP0H/L and TB1CP1H/L has been done.

3.9 Serial Channels

TMP92FD23A includes 3 serial I/O channels. Each channel is called SIO0, SIO1 and SIO2. For each channels either UART mode (asynchronous transmission) or I/O interface mode (synchronous transmission) can be selected.

I/O interface mode ———	Mode 0:	For transmitting and receiving I/O data using the
		synchronizing signal SCLK for extending I/O.
UART mode	Mode 1:	7-bit data
		8-bit data
	Mode 3:	9-bit data (VV)

In mode 1 and mode 2 a parity bit can be added. Mode 3 has a wakeup function for making the master controller start slave controllers via a serial link (a multi controller system).

Figure 3.9.2, Figure 3.9.3 and Figure 3.9.4 are block diagrams for each channel.

Each channel can be used independently.

Each channel operates in the same function except for the following points; hence only the operation of channel 0 is explained below.

	Channel 0	Channel 1	Channel 2
Pin name	TXD0 (PF0)	TXD1 (PF3)	TXD2 (PD2)
	RXD0 (PF1)	RXD1 (PF4)	RXD2 (PD3)
	CTS0 /SCLK0 (PF2)	CTS1/SCLK1 (PF5)	CTS2 /SCLK2 (PD4
IrDA mode	Yes	Yes	Yes
			~

Table 3.9.1	Differences	between	Channels	0 to	1~	/
10010 0.0.1	Differences	permoteri	onumers	0.0		

Mode 0 (I/O interface mode)
$\frac{1}{\sqrt{2}} \frac{3}{4} \frac{4}{5} \frac{6}{6} \frac{7}{7}$
Mode 1 (7-bit UART mode)
No parity
Parity Start Bit0 1 2 3 4 5 6 Parity Stop
Mode 2 (8-bit UART mode)
No parity $- \frac{1}{2 \sqrt{3} \sqrt{4} \sqrt{5} \sqrt{6}} - \frac{1}{2 \sqrt{3} \sqrt{4} \sqrt{5} \sqrt{6}} - \frac{1}{2 \sqrt{5} \sqrt{5} \sqrt{5}} - \frac{1}{2 \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5}} - \frac{1}{2 \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5}$
ParityStart Bit0 1 2 3 4 5 6 7 Parity Stop
Mode 3 (9-bit UART mode)
Wakeup Start Bit0 1 2 3 4 5 6 7 Bit8 Stop
When bit8 = 1, Address (Select code) is denoted.
When bit8 = 0, Data is denoted.
Figure 3.9.1 Data Formats

3.9.1 Block Diagrams

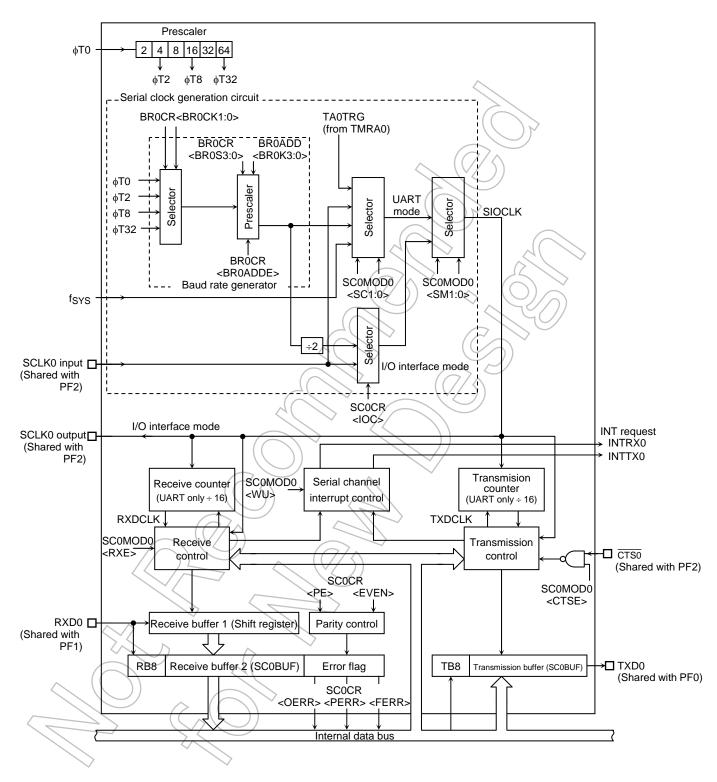


Figure 3.9.2 Block Diagram of the Serial Channel 0

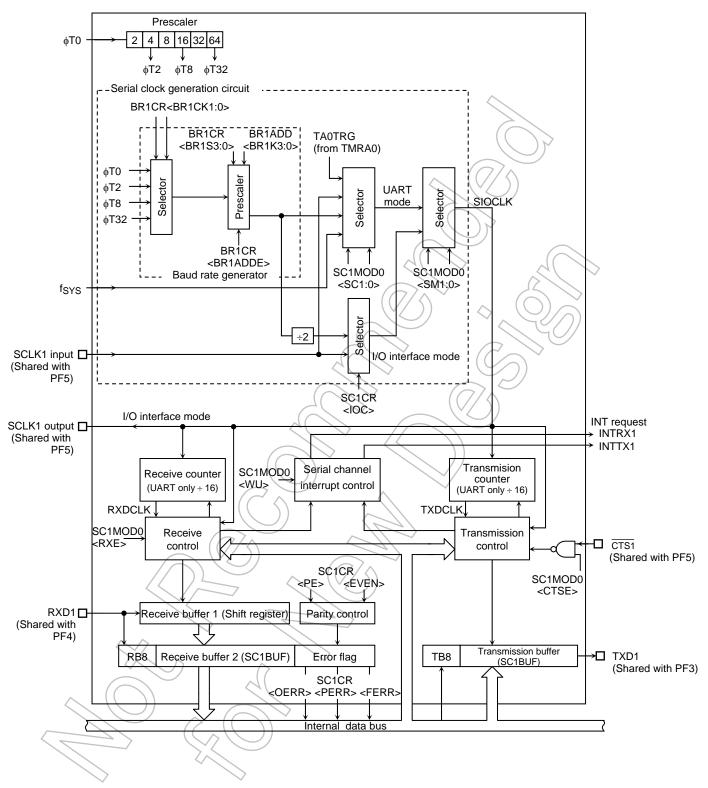
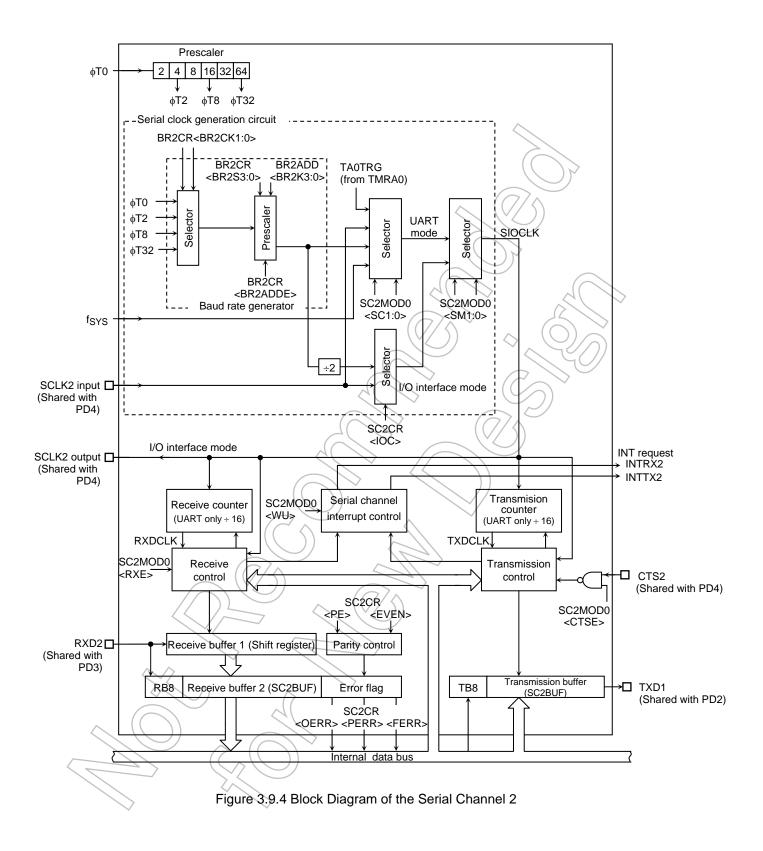



Figure 3.9.3 Block Diagram of the Serial Channel 1

3.9.2 **Operation for Each Circuit**

(1) Prescaler

There is a 6-bit prescaler for generating a clock to SIO0. The prescaler can be run only case of selecting the baud rate generator as the serial transfer clock.

Table 3.9.2 shows prescaler clock resolution into the baud rate generator.

lab	le 3.9.2 Pre	escaler C	Clock Resol	ution to Bau	d Rate Gene	erator	
System clock	Clock Gear SYSCR1	-			esolution BR0CK1:0>		
SYSCR1 <sysck></sysck>	<gear2:0></gear2:0>		φΤΟ	φT2(1/4)	φT8(1/16)	фT32(1/64)	
1(fs)	-		fs/4	fs/16	(fs/64)	fs/256	
	000(1/1)		fc/4	fc/16	fc/64	fc/256	
	001(1/2)	1/4	fc/8	fc/32	fc/128	fc/512	$\langle \rangle$
0 (fc)	010(1/4)	1/4	fc/16	fc/64	fc/256	fc/1024	
	011(1/8)		fc/32	fc/128	fc/512	fc/2048	>
	100(1/16)		fc/64	fc/256	fc/1024	fc/4096	2
						A 70//	1

The baud rate generator selects between 4 clock inputs: $\phi T0$, $\phi T2$, $\phi T8$, and $\phi T32$ among the prescaler outputs.

(2) Baud rate generator

The baud rate generator is a circuit, which generates transmission and receiving clocks that determine the transfer rate of the serial channels.

The input clock to the baud rate generator, $\phi T0$, $\phi T2$, $\phi T8$ or $\phi T32$, is generated by the 6-bit SIO prescaler which is shared by the timers. One of these input clocks is selected using the BR0CR<BR0CK1:0> field in the baud rate generator control register.

The baud rate generator includes a frequency divider, which divides the frequency by 1 or N + (16 - K)/16 or 16 values, determining the transfer rate.

The transfer rate is determined by the settings of BR0CR<BR0ADDE, BR0S3:0> and BR0ADD<BR0K3:0>.

- In UART mode
- (1) When BR0CR<BR0ADDE> = 0

The settings BR0ADD<BR0K3:0> are ignored. The baud rate generator divides the selected prescaler clock by N, which is set in BR0CK<BR0S3:0>. (N = 1, 2, 3 \dots 16)

(2) When BR0CR < BR0ADDE > = 1

The N + (16 - K)/16 division function is enabled. The baud rate generator divides the selected prescaler clock by N + (16 - K)/16 using the value of N set in BR0CR<BR0S3:0> (N = 2, 3...15) and the value of K set in BR0ADD<BR0K3:0> (K = 1, 2, 3...15)

Note: If N = 1 or N = 16, the N + (16 - K)/16 division function is disabled. Set BR0CR<BR0ADDE> to 0.

• In I/O interface mode

The N + (16 – K)/16 division function is not available in I/O interface mode. Clear BR0CR<BR0ADDE> to 0 before dividing by N.

The method for calculating the transfer rate when the baud rate generator is used is explained below.

• In UART mode

Baud rate =
$$\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 16$$

- In I/O interface mode
 - Baud rate = $\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 2$

• Integer divider (N divider)

For example, when the source clock frequency (fC) is 12.288 MHz, the input clock is ϕ T2 (fC/16), the frequency divider N (BR0CR<BR0S3:0>) = 5, and BR0CR<BR0ADDE> = 0, the baud rate in UART mode is as follows:

* Clock state [High speed Clock gear : 1/1 (fc)

Baud rate =
$$\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}}$$
 = $\frac{\text{fc}/16}{5}$ ÷ 16
= 12.288 × 10⁶ ÷ 16 ÷ 5 ÷ 16 = 9600 (bps)

Note: The N + (16 - K)/16 division function is disabled and setting BR0ADD<BR0K3:0> is invalid.

• N + (16 – K)/16 divider (UART mode only)

Accordingly, when the source clock frequency (f_C) = 4.8 MHz, the input clock is ϕ T0 (f_C /4), the frequency divider N (BR0CR<BR0S3:0>) = 3, K (BR0ADD<BR0K3:0>) = 7, and BR0CR<BR0ADDE> = 1, the baud rate in UART mode is as follows:

* Clock state High speed Clock gear : 1/1 (fc)

Baud rate = Input clock of baud rate generator $\div 16$

Frequency divider for baud rate generator

$$= \frac{f_{\rm C}/4}{7 + (16 - 3)} \div 16$$

$$\times 10^6 \div 4 \div (7 \div \frac{13}{16}) \div 16 = 9600 \text{ (bps)}$$

Table 3.9.3 show examples of UART mode transfer rates.

Additionally, the external clock input is available in the serial clock. (Serial channels 0, 1 and 2). The method for calculating the baud rate is explained below:

• In UART mode

= 4.8

Baud rate = external clock input frequency ÷ 16

It is necessary to satisfy (External clock input cycle) $\ge 4/f_{C}$

• In I/O interface mode

Baud rate = external clock input frequency

It is necessary to satisfy (External clock input cycle) $\ge 16/f_{C}$

	~		1	1	
f _c [MHz]	Input Clock	φ Τ0	φT2	φT8	φT32
	Frequency Divider	(f _C /4)	(f _C /16)	(f _c /64)	(f _C /256)
9.8304	2	76.800	19.200	4.800	1.200
\uparrow	4	38.400	9.600	2.400	0.600
\uparrow	8	19.200	4.800	1.200	0.300
\uparrow	10	9.600	2.400	0,600	0.150
12.2880	5	38.400	9.600	2.400	0.600
\uparrow	А	19.200	4.800	1.200	0.300
14.7456	2	115.200	28.800	7.200	1.800
\uparrow	3	76.800	19.200	4.800	1.200
\uparrow	6	38.400 🗸	9.600	2.400	0.600
\uparrow	С	19.200	4.800	1.200	0.300
19.6608	1	307.200	76.800	19.200	4.800
\uparrow	2	153.600	38.400	9.600	2.400
\uparrow	4	76.800	19.200	4.800	1.200
\uparrow	8	38.400	9.600	2.400	0.600
\uparrow	10	19.200	4.800	1.200	0.300
22.1184	3	115.200	28.800	7.200	1.800
24.5760	1 (384.000	96.000	24.000	6.000
\uparrow	2	192.000	48.000	12.000	3.000
\uparrow	4	96.000	24.000	6.000	1.500
\uparrow	5	76.800	19.200	4.800	1.200
\uparrow	8 (())	48.000	12.000	3.000	0.750
\uparrow	A	38.400	9.600	2.400	0.600
\uparrow	10	24.000	6.000	1.500	0.375

Table 3.9.3	Selection of Transfer Rate

(when baud rate generator is used and BR0CR < BR0ADDE > = 0)

Unit (Kbps)

Note: Transfer rates in I/O interface mode are eight times faster than the values given above.

In UART mode, TMRA match detect signal (TA0TRG) can be used for serial transfer clock.

Method for calculating the timer output frequency which is needed when outputting trigger of timer

TA0TRG frequency = $Baud rate \times 16$

Note: The TMRA0 match detect signal cannot be used as the transfer clock in I/O Interface mode.

- (3) Serial clock generation circuit
 - This circuit generates the basic clock for transmitting and receiving data.
 - In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = 0, the basic clock is generated by dividing the output of the baud rate generator by 2, as described previously.

In SCLK input mode with the setting SC0CR<IOC> = 1, the rising edge or falling edge will be detected according to the setting of the SC0CR<SCLKS> register to generate the basic clock.

• In UART mode

The SC0MOD0<SC1:0> setting determines whether the baud rate generator clock, the internal clock fsys, the match detect signal from TMRA0 or the external clock (SCLK0) is used to generate the basic clock SIOCLK.

(4) Receiving counter

The receiving counter is a 4-bit binary counter used in UART mode, which counts up the pulses of the SIOCLK clock. It takes 16 SIOCLK pulses to receive 1 bit of data; each data bit is sampled three times on the 7th, 8th and 9th clock cycles.

The value of the data bit is determined from these three samples using the majority rule.

For example, if the data bit is sampled respectively as 1, 0 and 1 on 7th, 8th and 9th clock cycles, the received data bit is taken to be 1. A data bit sampled as 0, 0 and 1 is taken to be 0.

(5) Receiving control

• In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = 0, the RXD0 signal is sampled on the rising edge or falling of the shift clock which is output on the SCLK0 pin, according to the SCOCR <SCLKS> setting.

In SCLK input mode with the setting SCOCR<IOC> = 1, the RXD0 signal is sampled on the rising or falling edge of the SCLK0 input, according to the SCOCR<SCLKS> setting.

• In UART mode

The receiving control block has a circuit, which detects a start bit using the majority rule. Received bits are sampled three times; when two or more out of three samples are 0, the bit is recognized as the start bit and the receiving operation commences.

The values of the data bits that are received are also determined using the majority rule.

(6) The receiving buffers

To prevent overrun errors, the receiving buffers are arranged in a double buffer structure.

Received data is stored one bit at a time in receiving buffer 1 (which is a shift register). When 7 or 8 bits of data have been stored in receiving buffer 1, the stored data is transferred to receiving buffer 2 (SC0BUF); this cause an INTRX0 interrupt to be generated. The CPU only reads receiving buffer 2 (SC0BUF). Even before the CPU reads receiving buffer 2 (SC0BUF), the received data can be stored in receiving buffer 1. However, unless receiving buffer 2 (SC0BUF) is read before all bits of the next data are received by receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of receiving buffer 1 will be lost, although the contents of receiving buffer 2 and SC0CR<RB8> will be preserved.

SCOCR<RB8> is used to store either the parity bit – added in 8-bit UART mode – or the most significant bit (MSB) – in 9-bit UART mode.

In 9-bit UART mode the wakeup function for the slave controller is enabled by setting SC0MOD0<WU> to 1; in this mode INTRX0 interrupts occur only when the value of SC0CR<RB8> is 1.

SIO interrupt mode is selectable by the register SIMC.

(7) Transmission counter

The transmission counter is a 4-bit binary counter which is used in UART mode and which, like the receiving counter, counts the SIOCLK clock pulses; a TXDCLK pulse is generated every 16 SIOCLK clock pulses.

Figure 3.9.5 Generation of the Transmission Clock

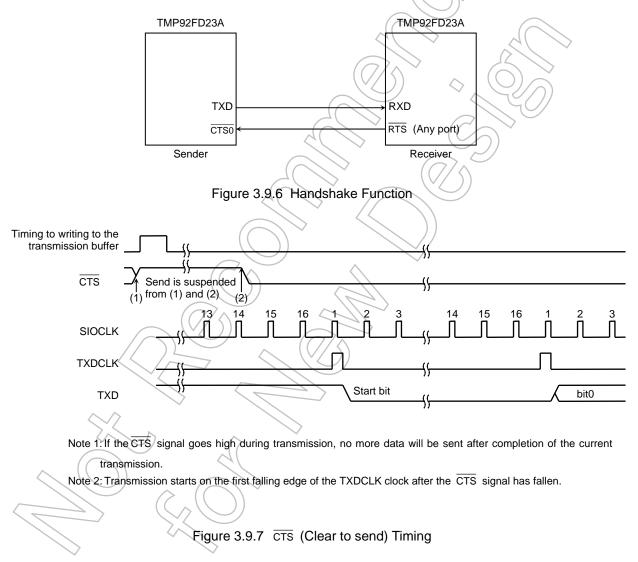
(8) Transmission controller

In I/O interface mode

In SCLK output mode with the setting SC0CR<IOC> = 0, the data in the transmission buffer is output one bit at a time to the TXD0 pin on the rising or falling edge of the shift clock which is output on the SCLK0 pin, according to the SC0CR<SCLKS> setting.

In SCLK input mode with the setting SCOCR < IOC > = 1, the data in the transmission buffer is output one bit at a time on the TXD0 pin on the rising or falling edge of the SCLK0 input, according to the SCOCR <SCLKS> setting.

• In UART mode


When transmission data sent from the CPU is written to the transmission buffer, transmission starts on the rising edge of the next TXDCLK, generating a transmission shift clock TXDSFT.

Handshake function

Use of $\overline{\text{CTS}}$ pin allows data can be sent in units of one frame; thus, overrun errors can be avoided. The handshake functions is enabled or disabled by the SCOMOD<CTSE> setting.

When the $\overline{\text{CTS0}}$ pin goes high on completion of the current data send, data transmission is halted until the $\overline{\text{CTS0}}$ pin goes low again. However, the INTTX0 interrupt is generated, it requests the next data send to the CPU. The next data is written in the transmission buffer and data sending is halted.

Though there is no $\overline{\text{RTS}}$ pin, a handshake function can be easily configured by setting any port assigned to be the $\overline{\text{RTS}}$ function. The $\overline{\text{RTS}}$ should be output "high" to request send data halt after data receive is completed by software in the RXD interrupt routine.

(9) Transmission buffer

The transmission buffer (SC0BUF) shifts out and sends the transmission data written from the CPU form the least significant bit (LSB) in order. When all the bits are shifted out, the transmission buffer becomes empty and generates an INTTX0 interrupt.

(10) Parity control circuit

When SCOCR<PE> in the serial channel control register is set to "1", it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART mode or 8-bit UART mode. The SCOCR<EVEN> field in the serial channel control register allows either even or odd parity to be selected.

In the case of transmission, parity is automatically generated when data is written to the transmission buffer SCOBUF. The data is transmitted after the parity bit has been stored in SCOBUF<TB7> in 7-bit UART mode or in SCOMOD0<TB8> in 8-bit UART mode. SCOCR<PE> and SCOCR<EVEN> must be set before the transmission data is written to the transmission buffer.

In the case of receiving, data is shifted into receiving buffer 1, and the parity is added after the data has been transferred to receiving buffer 2 (SCOBUF), and then compared with SCOBUF<RB7> in 7-bit UART mode or with SCOCR<RB8> in 8-bit UART mode. If they are not equal, a parity error is generated and the SCOCR<PERR> flag is set.

(11) Error flags

Three error flags are provided to increase the reliability of data reception.

1. Overrun error <OERR>

If all the bits of the next data item have been received in receiving buffer 1 while valid data still remains stored in receiving buffer 2 (SC0BUF), an overrun error is generated.

The below is a recommended flow when the overrun-error is generated.

- (INTRX interrupt routine)
- 1) Read receiving buffer
- 2) Read error flag
- 3) If $\langle OERR \rangle = 1$

then

- a) Set to disable receiving (Write "0" to SC0MOD0<RXE>)
- b) Wait to terminate current frame
- c) Read receiving buffer
- d) Read error flag
- e) Set to enable receiving (Write "1" to SC0MOD0<RXE>)
- f) Request to transmit again
- 4) Other

2. Parity error <PERR>

The parity generated for the data shifted into receiving buffer 2 (SC0BUF) is compared with the parity bit received via the RXD pin. If they are not equal, a parity error is generated.

3. Framing error <FERR>

The stop bit for the received data is sampled three times around the center. If the majority of the samples are 0, a framing error is generated.

- (12) Timing generation
 - 1. In UART mode

Receiving

Mode	9 Bits (Note)	8 Bits + Parity (Note)	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt Timing	Center of last bit (bit8)	Center of last bit (parity bit)	Center of stop bit
Framing Error Timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity Error Timing	- (6	Center of last bit (parity bit)	Center of stop bit
Overrun Error Timing	Center of last bit (bit8)	Center of last bit (parity bit)	Center of stop bit

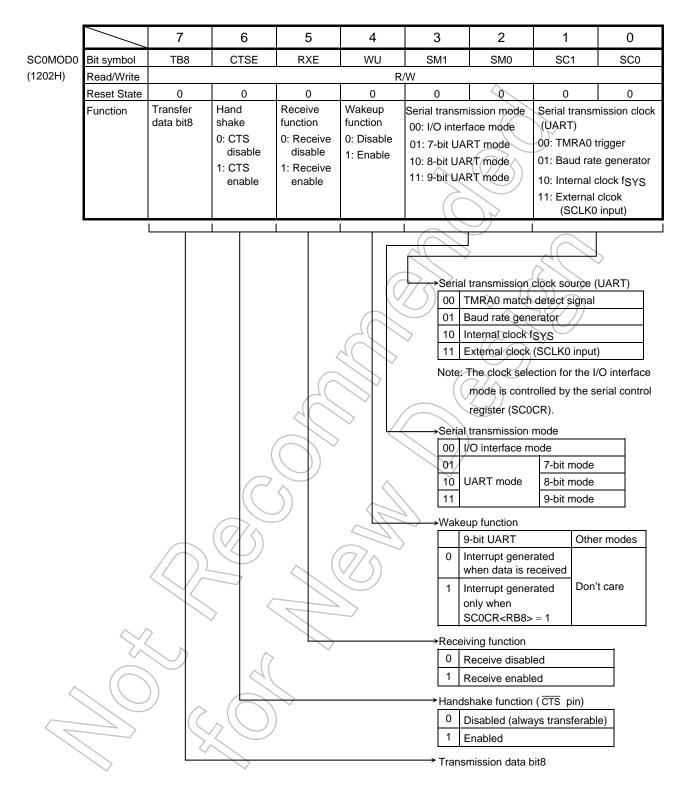
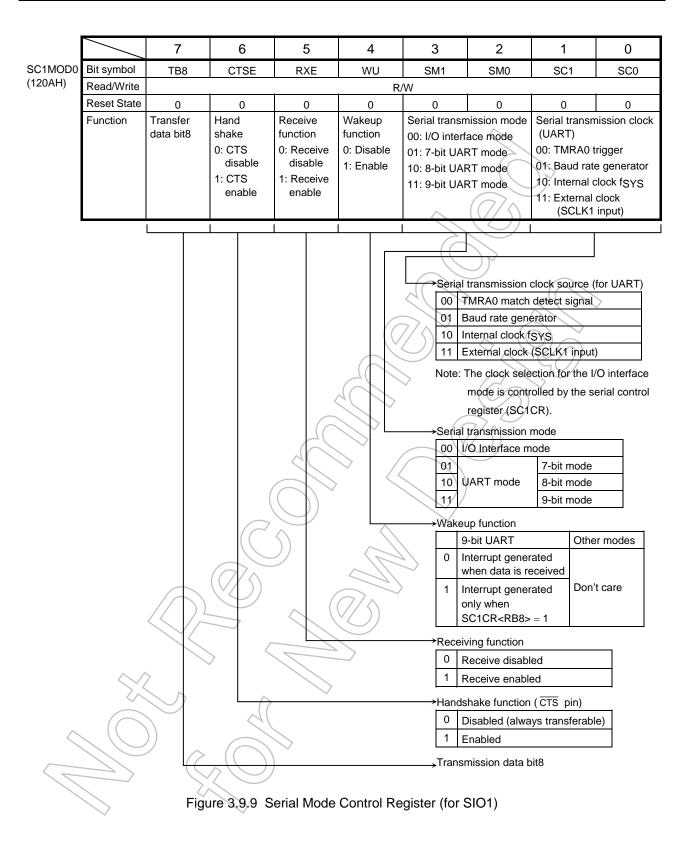
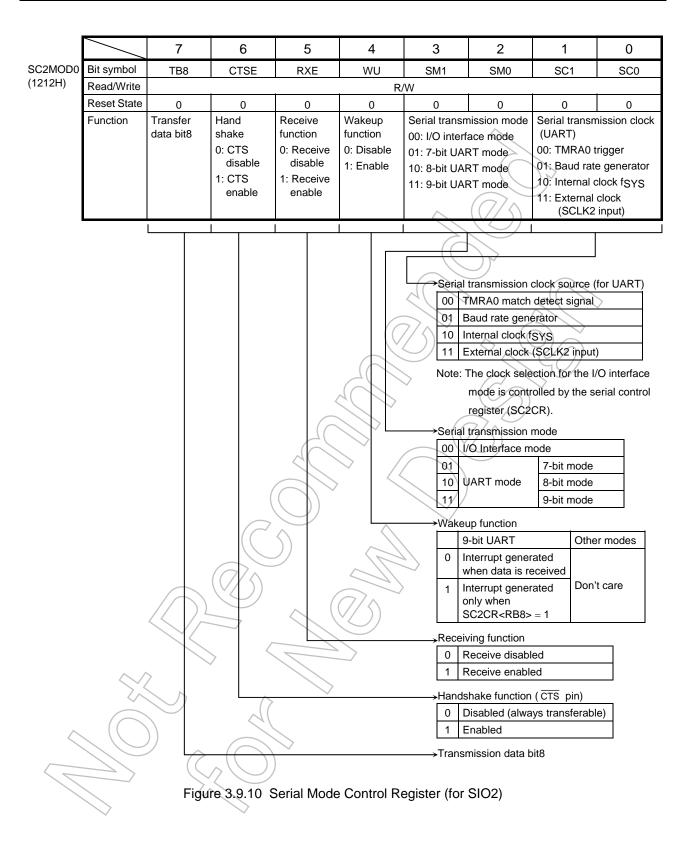
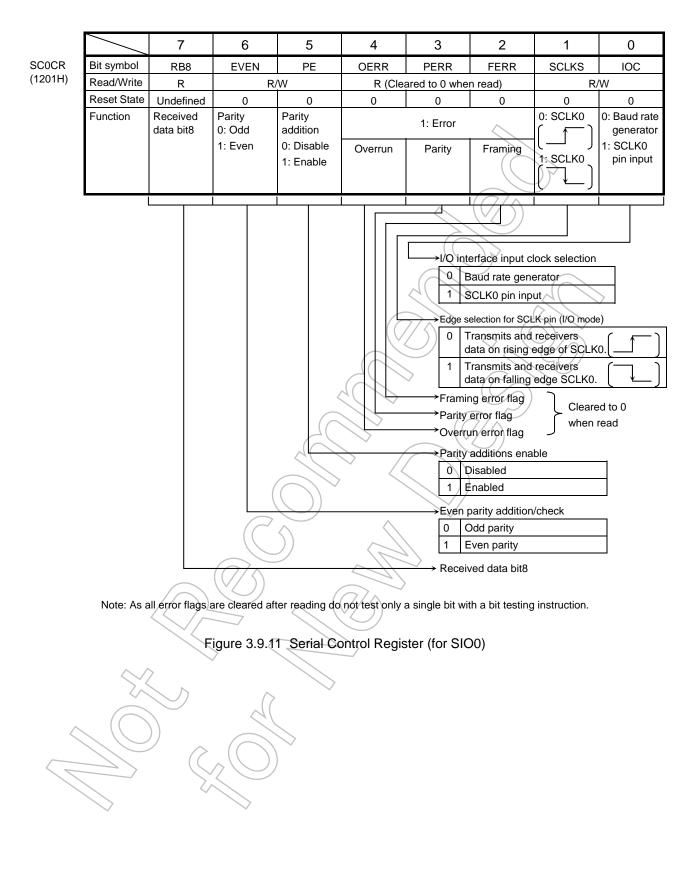
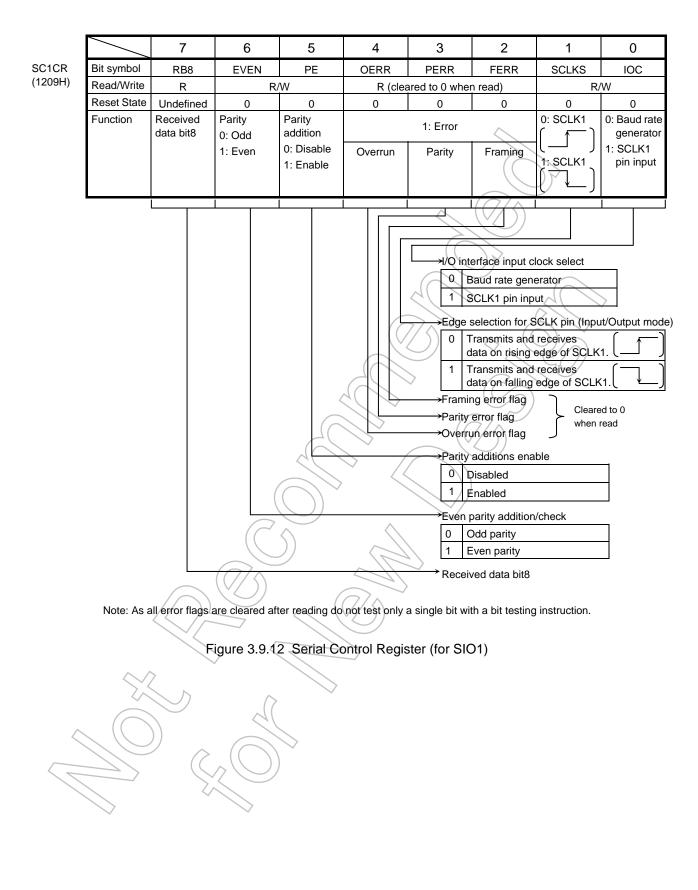
Note1: In 9-bit and 8-bit parity modes, interrupts coincide with the ninth bit pulse.

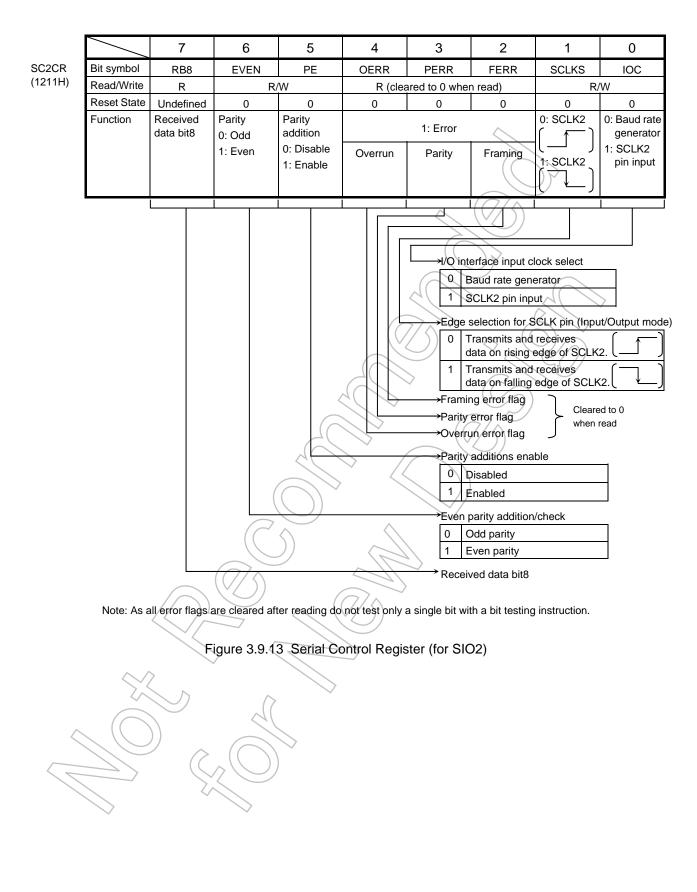
Thus, when servicing the interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.

Note2: The higher the transfer rate, the later than the middle receive interrupts and errors occur.

	Transmitting	g		
		Mode 9 Bi	ts 8 Bits + Parity	8 Bits, 7 Bits + Parity, 7 Bits
	Interrupt Timing	Just before s transmitted	stop bit is Just before stop bit is transmitted	Just before stop bit is transmitted
2	. I/O interfa	ace		
	Transmission Interrupt	SCLK output mode	Immediately after last bit data. (See Figure 3.9.25.)	
	Timing	SCLK input mode	Immediately after rise of last SCLK immediately after fall in falling mod	o
	Receiving Interrupt Timing		Timing used to transfer : buffer 2 (SCOBUF) (e.g. SCLK). (See Figure 3.9.27.)	
		SCLK input mode	Timing used to transfer received da (e.g. immediately after last SCLK).	· · · · · · · · · · · · · · · · · · ·
		\bigtriangledown		

3.9.3 SFR


Figure 3.9.8 Serial Mode Control Register (for SIO0)

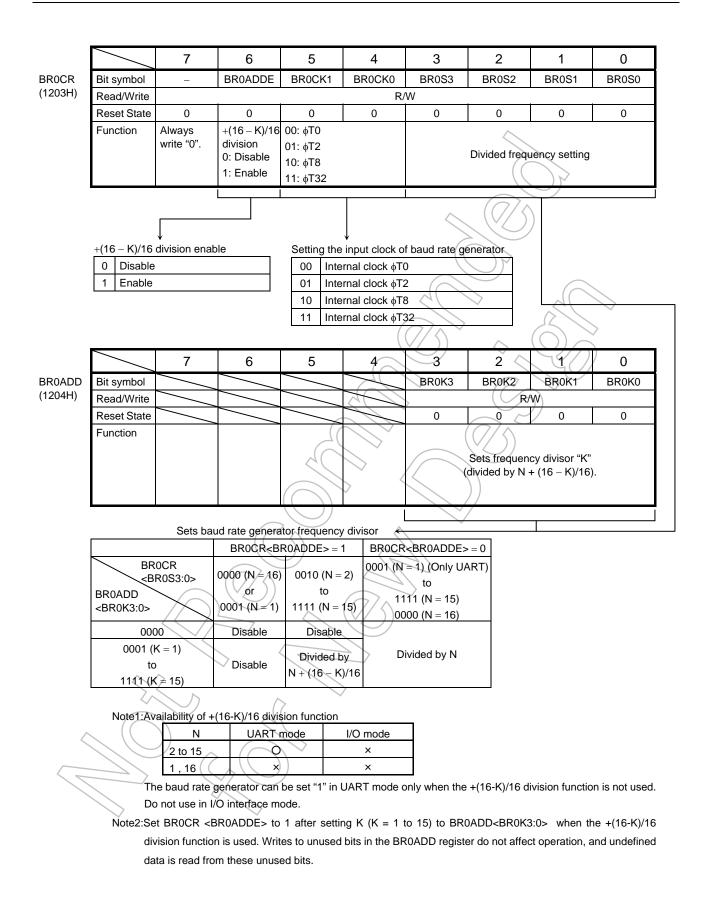


Figure 3.9.14 Baud Rate Generator Control (for SIO0)

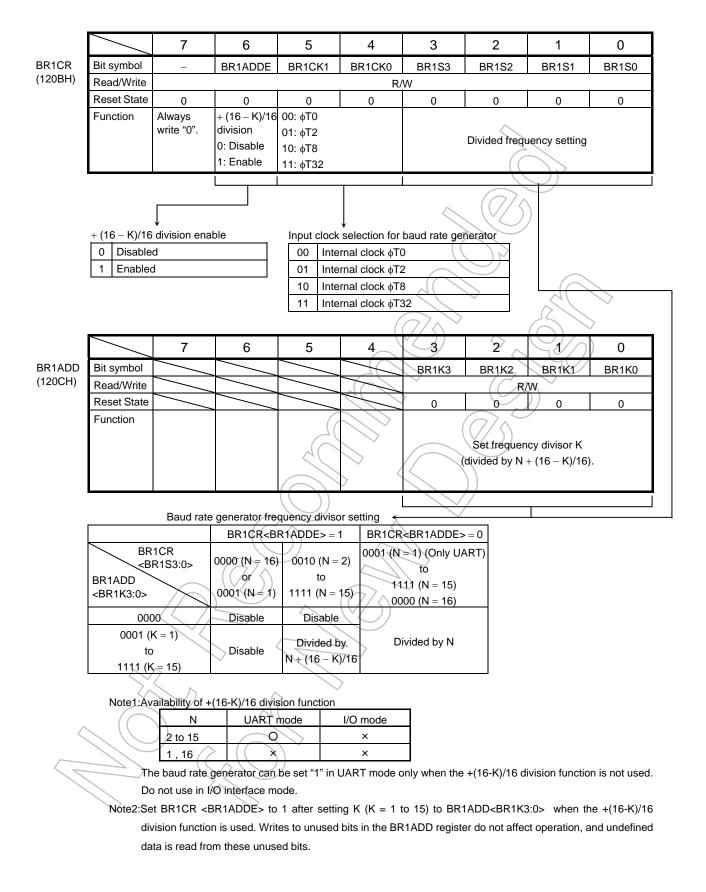


Figure 3.9.15 Baud Rate Generator Control (for SIO1)

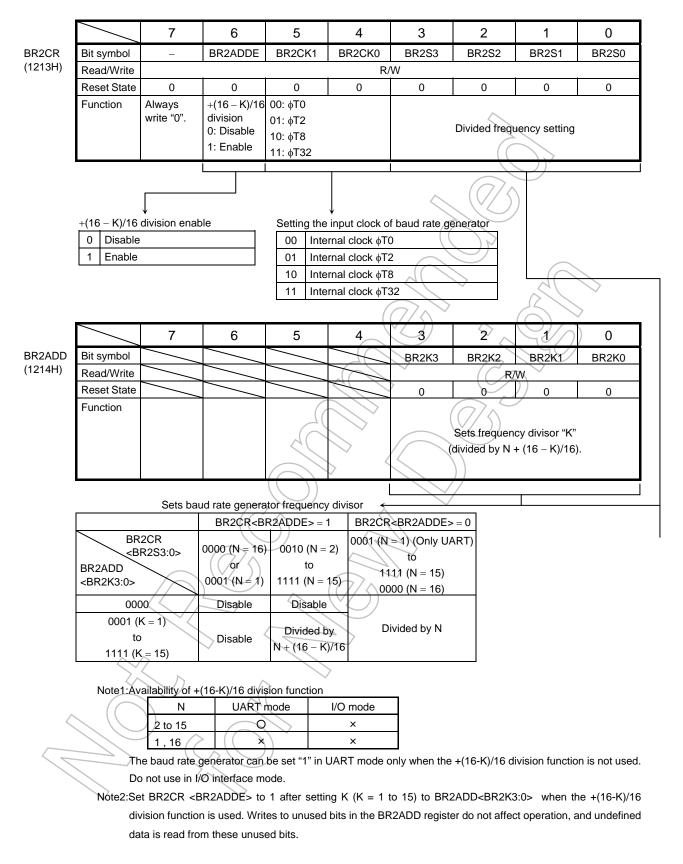
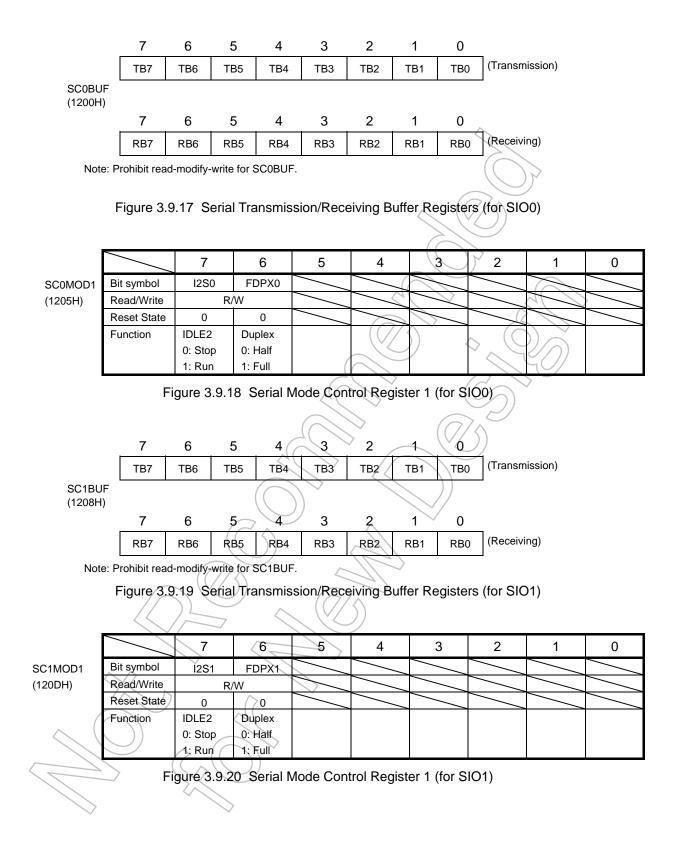
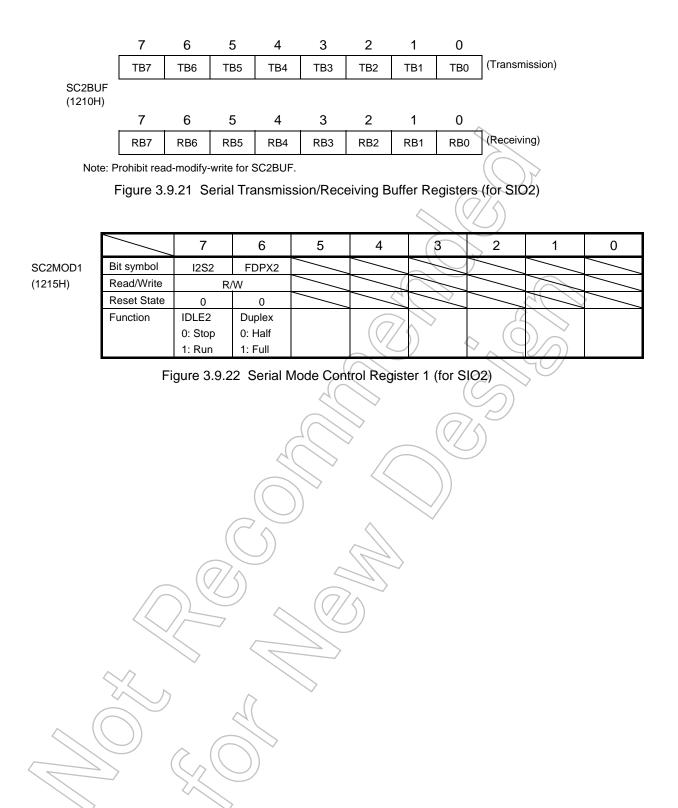
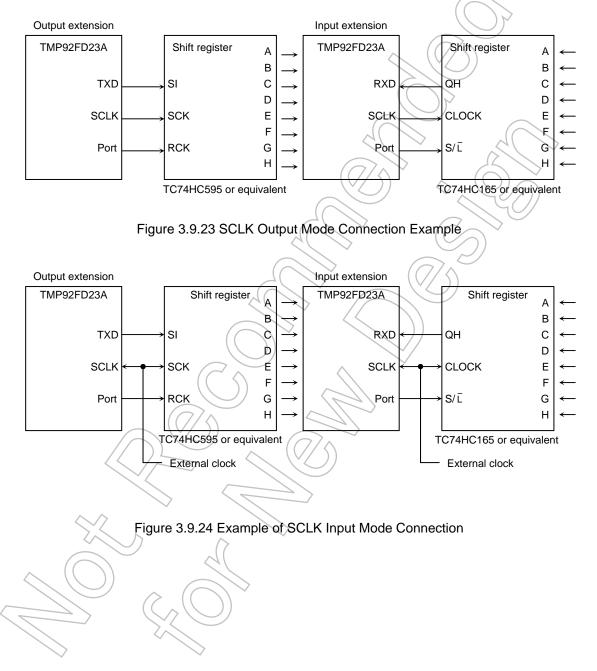




Figure 3.9.16 Baud Rate Generator Control (for SIO2)



3.9.4 Operation in Each Mode

(1) Mode 0 (I/O interface mode)

This mode allows an increase in the number of I/O pins available for transmitting data to or receiving data from an external shift register.

This mode includes the SCLK output mode to output synchronous clock SCLK and SCLK input mode to input external synchronous clock SCLK.

1. Transmission

In SCLK output mode 8-bit data and a synchronous clock are output on the TXD0 and SCLK0 pins respectively each time the CPU writes the data to the transmission buffer. When all data is output, INTESO<ITX0C> will be set to generate the INTTX0 interrupt.

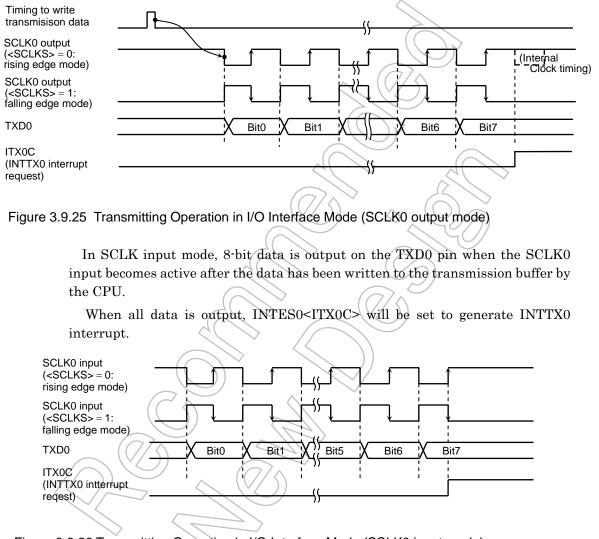
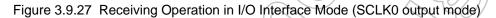
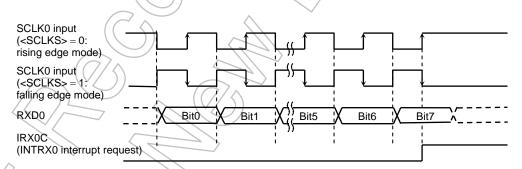



Figure 3.9.26 Transmitting Operation in I/O Interface Mode (SCLK0 input mode)


2. Receiving

In SCLK output mode the synchronous clock is output on the SCLK0 pin and the data is shifted to receiving buffer 1. This is initiated when the receive interrupt flag INTESO<IRX0C> is cleared as the received data is read. When 8-bit data is received, the data is transferred to receiving buffer 2 (SC0BUF) following the timing shown below and INTESO<IRX0C> is set to 1 again, causing an INTRX0 interrupt to be generated.

Setting SCOMODO<RXE> to 1 initiates SCLK0 output.

In SCLK input mode the data is shifted to receiving buffer 1 when the SCLK input goes active. The SCLK input goes active when the receive interrupt flag INTESO<IRX0C> is cleared as the received data is read. When 8-bit data is received, the data is shifted to receiving buffer 2 (SC0BUF) following the timing shown below and INTESO<IRX0C> is set to 1 again, causing an INTRX0 interrupt to be generated.

Figure 3.9.28 Receiving Operation in I/O Interface Mode (SCLK0 input mode)

Note: The system must be put in the receive enable state (SC0MOD0<RXE> = 1) before data can be received.

3. Transmission and receiving (Full duplex mode)

When full duplex mode is used, set the receive interrupt level to 0 and set enable the level of transmit interrupt. Ensure that the program which transmits the interrupt reads the receiving buffer before setting the next transmit data.

The following is an example of this:

Example:	Е	au	d ra	el 0, ate 745	= 9	600) bp	utput os	
Main routine	1			. 10	0 1				$\sim (7)$
	7	6	5	4	3	2	1	0	
INTES0	Х	0	0	1	Х	0	0	0	Set the INTTX0 level to 1.
									Set the INTRX0 level to 0.
PFCR	-	-	-	-	-	1	0	1	Set PF0, PF1 and PF2 to function as the TXD0,
PFFC	-	-	-	-	-	1	1	1	RXD0 and SCLK0 pins respectively.
SC0MOD0	0	0	0	0	0	0	0	0 <	Select I/O interface mode.
SC0MOD1	1	1	0	0	0	0	0	0	Select full duplex mode.
SCOCR	0	0	0	0	0	0	0	0	Set the SCLK output, transmit on negative edge, and receive on positive edge.
BR0CR	0	0	1	1	0	0	1		Set to 9600 bps.
SC0MOD0	0	0	1	0	0	0	76	0	Set receive to enable.
SCOBUF	*	*	*	*	*	*	*	*	Set the transmit data and start.
INTTX0 interrupt	routi	ne			<	~		\searrow	
ACC +	– SC	COBI	UF	(\frown		\geq	>	Read the receiving buffer.
SC0BUF	*	*	*	*	*	*	*	*	Set the next transmit data.
X: Don't care, -:	No c	han	ge	$\langle ($		5			
				$\langle \rangle$		\sim			

(2) Mode 1 (7-bit UART mode)

7-bit UART mode is selected by setting the serial channel mode register SC0MOD0<SM1:0> field to 01.

In this mode a parity bit can be added. Use of a parity bit is enabled or disabled by the setting of the serial channel control register SCOCR<PE> bit; whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to 1 (enabled).

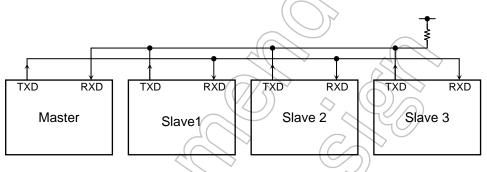
When transmitting data of the following format, the control Setting example: registers should be set as described below. Start / Bit0 1 3 4 5 6 X Even Stop 2 Transmission direction (Transmission rate: 2400 bps at f_{SYS} = 19.6608 MHz) 6 5 4 3 0 2 1 PFCR Set PF0 to function as the TXD0 pin. PFFC SC0MOD0 0 1 Select 7-bit UART mode. 0 1 SC0CR Х Х 0 0 Add even parity. 1 Set to 2400 bps. BR0CR 0 0 0 0 1 0 1 Set INTTX0 interrupt to enable and set to level 4. INTES0 0 0 Х 1 **SCOBUF** Set the transmit data. X: Don't care, -: No change

(3) Mode 2 (8-bit UART mode)

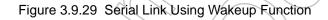
8-bit UART mode is selected by setting SC0MOD0<SM1:0> to 10. In this mode a parity bit can be added (use of a parity bit is enabled or disabled by the setting of SC0CR<PE>); whether even parity or odd parity will be used is determined by the SC0CR<EVEN> setting when SC0CR<PE> is set to 1 (enabled).

Setting example: When receiving data of the following format, the control registers should be set as described below.

							(α)
\	Start) 1	X	2	3		4 5 6 7 Codd Stop
	←	— Trar	nsmis	sion	dire	ectio	n (Transmission rate: 9600 bps at $f_{SYS} = 19.6608 \text{ MHz}$)
							(())
Main setting	S						
	76	54	3	2	1	0	
PFCR	\leftarrow		-	-	0	-	Set PF1 to function as the RXD0 pin.
PFFC	←		_	_	1	-	(7)
SC0MOD0			1		0	1	Enable receiving in 8-bit UART mode.
SC0CR	$\leftarrow X 0$		X				Add odd parity.
BR0CR INTES0	← 0 0	0 1		0 1	0	0 0	Set to 9600 bps.
Interrupt pro			X	T	0	0	Set INTTX0 interrupt to enable and set to level 4.
ACC	← SC0C		0001	110	0		
if ACC ≠			0001		Č ($(\cap$	Check for errors
ACC	← SC0B				G	\mathcal{I}	Read the received data
X: Don't care				<	1		
		-		_		\geq	
			()			Ň	
			_/	\sum	ור	/	
		((~ <				$\langle \rangle$
))			
			\sim				
		$\langle // \rangle$					
	$\langle \rangle \rangle$	S				(\overline{O}
				\leq			\mathcal{V}
	\sim		_			\backslash	
			\langle	\leq			
$\land \land$	\sim						
	•					\geq	
	\mathcal{D}		$\left(\right)$				
()		<	1				
		\subseteq	$\langle \cdot \rangle$	\leq			
	\frown	(\mathcal{N}	~			
$ \rightarrow $	$\langle \rangle$	\mathcal{I}	Ŋ				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\overline{)}$					
$\supset$		$\searrow$					

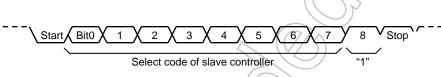

(4) Mode 3 (9-bit UART mode)

9-bit UART mode is selected by setting SC0MOD0<SM1:0> to 11. In this mode parity bit cannot be added.

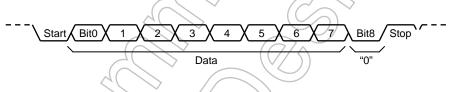

In the case of transmission the MSB (9th bit) is written to SCOMODO<TB8>. In the case of receiving it is stored in SCOCR<RB8>. When the buffer is written and read, the <TB8>, <RB8> is read or written first, before the rest of the SCOBUF data.

### Wakeup function

In 9-bit UART mode, the wakeup function for slave controllers is enabled by setting COMOD0 < WU > to 1. The interrupt INTRX0 can only be generated when < RB8 > = 1.

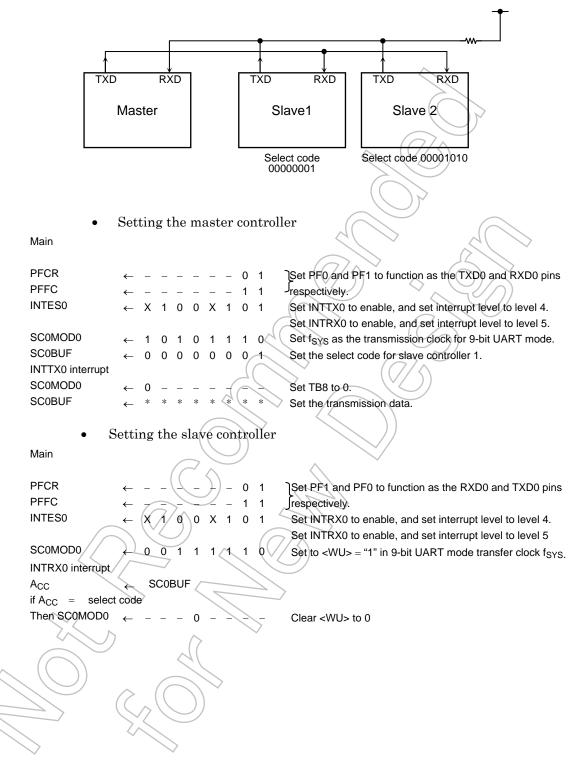



Note: The TXD pin of each slave controller must be in open-drain output mode.




## Protocol

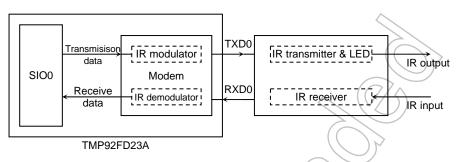
- 1. Select 9-bit UART mode on the master and slave controllers.
- 2. Set the SC0MOD0<WU> bit on each slave controller to 1 to enable data receiving.
- 3. The master controller transmits data one frame at a time. Each frame includes an 8-bit select code which identifies a slave controller. The MSB (bit8) of the data (<TB8>) is set to 1.




- 4. Each slave controller receives the above frame. Each controller checks the above select code against its own select code. The controller whose code matches clears its <WU> bit to 0.
- 5. The master controller transmits data to the specified slave controller (the controller whose SC0MOD0<WU> bit has been cleared to 0). The MSB (bit8) of the data (<TB8>) is cleared to 0.



6. The other slave controllers (whose <WU> bits remain at 1) ignore the received data because their MSBs (bit8 or <RB8>) are set to 0, disabling INTRX0 interrupts. The slave controller whose <WU> bit = 0 can also transmit to the master controller. In this way it can signal the master controller that the data transmission from the master controller has been completed.


Setting example: To link two slave controllers serially with the master controller using the internal clock fSYS as the transfer clock.



## 3.9.5 Support for IrDA

SIO0, SIO1 and SIO2 include support for the IrDA 1.0 infrared data communication specification.

Figure 3.9.30 shows the block diagram.





(1) Modulation of the transmission data

When the transmit data is 0, the modem outputs 1 to TXD0 pin with either 3/16 or 1/16 times for width of baud rate. The pulse width is selected by the SIROCR<PLSEL>.

When the transmit data is 1, the modem outputs 0.

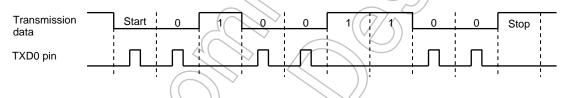
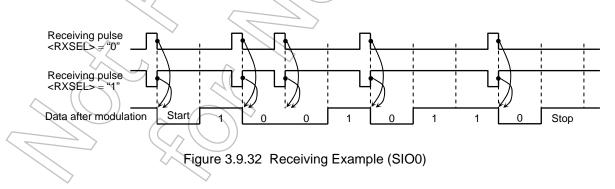




Figure 3.9.31 Transmission Example (SIO0)

(2) Modulation of the receive data

When the receive data is the effective width of pulse "1", the modem outputs "0" to SIO0. Otherwise the modem outputs "1" to SIO0. The effective pulse width is selected by SIR0CR<SIR0WD3:0>.



(3) Data format

The data format is fixed as follows:

- Data length: 8 bits
- Parity bits: none
- Stop bits: 1 bit
- (4) SFR

Figure 3.9.33, Figure 3.9.34 and Figure 3.9.35 shows the control register SIR0CR, SIR1CR and SIR2CR. Set the data SIRxCR during SIOx is stopping. The following example describes how to set this register:

;

;

1) SIO setting

- ; Set the SIO to UART mode
- ↓
- 2) LD (SIR0CR), 07H
- 3) LD (SIR0CR), 37H ↓
- 4) Start transmission and receiving for SIO0
- ; Set the receive data pulse width to  $16 \times +100$ ns.
- TXEN, RXEN Enable the transmission and receiving.
- The modem operates as follows: • SIO0 starts transmitting. • IR receiver starts receiving,

- (5) Notes
  - 1. Baud rate for IrDA

When IrDA is operated, set 01 to SC0MOD0<SC1:0> to generate baud rate. The setting except above (TA0TRG, f_{IO} and SCLK0 input) can not be used.

2. The pulse width for transmission

The IrDA 1.0 specification is defined in Table 3.9.4.

Baud Rate	Modulation	Rate Tolerance (% of rate)	Pulse Width (min)	Pulse Width (typ.)	Pulse Width (max)
2.4 Kbps	RZI	±0.87	1.41 μs	78.13 μs	88.55 μs
9.6 Kbps	RZI	±0.87	1.41 μs	19.53 μs	22.13 μs
19.2 Kbps	RZI	±0.87	1.41 μs	9.77 μs	11.07 µs
38.4 Kbps	RZI	±0.87	1.41 μs 🗸	<b>4.88</b> μs	5.96 μs
57.6 Kbps	RZI	±0.87	1.41 µs	<b>3.26</b> μs	4.34 μs
115.2 Kbps	RZI	±0.87	1.41 µs	1.63 μs	2.23 µs

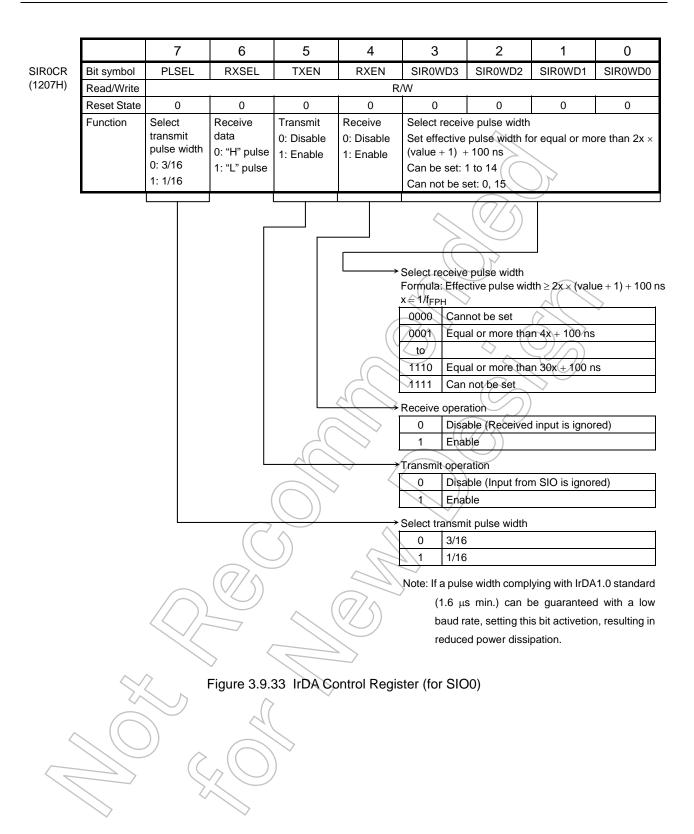
		<b>o</b>	$\sim$
Table 3.9.4 Baud Rate and Pulse	Width	Specifications	

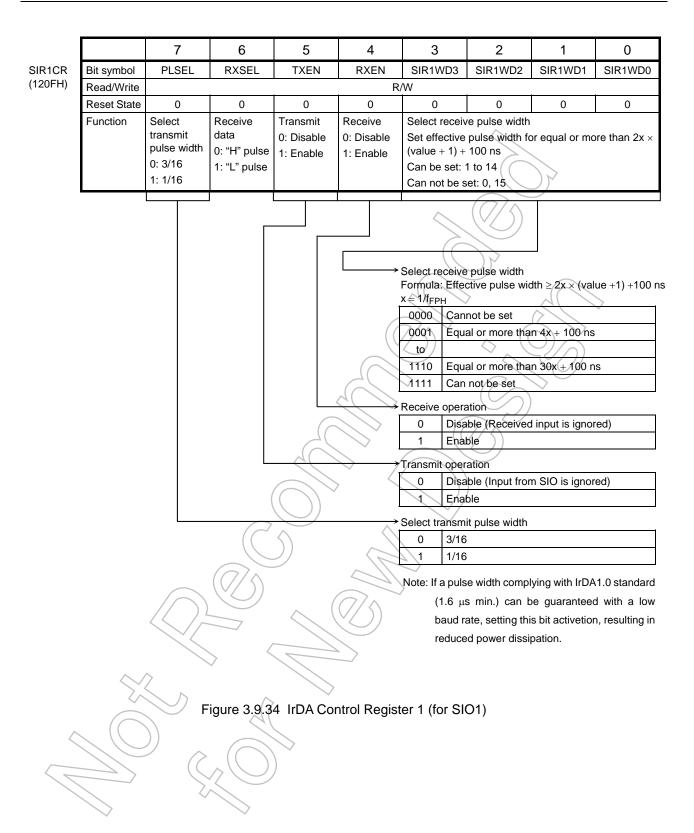
The pulse width is defined either baud rate T  $\times$  3/16 or 1.6 µs (1.6 µs is equal to 3/16 pulse width when baud rate is 115.2 Kbps).

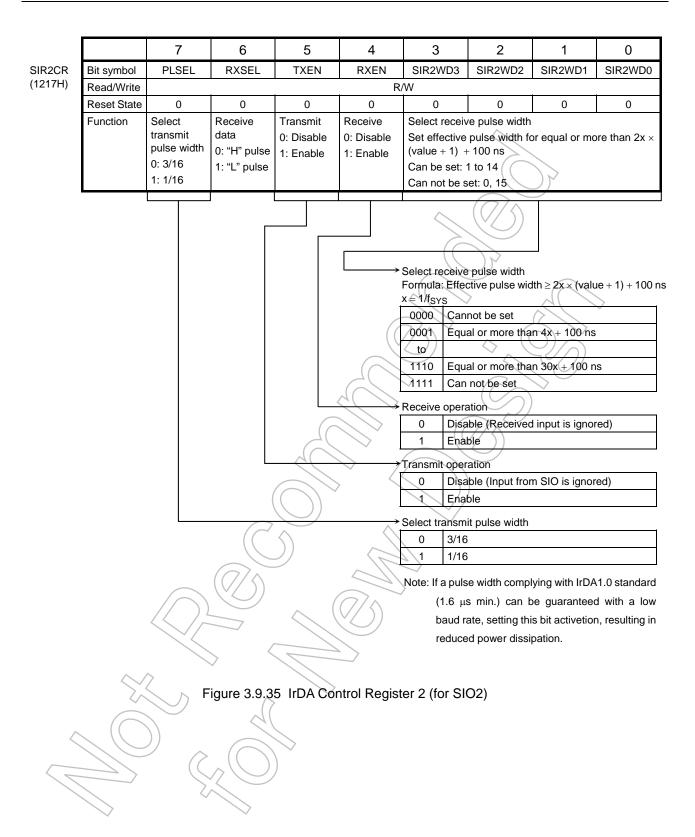
The TMP92FD23A has the function selects the pulse width of transmission either 3/16 or 1/16. But 1/16 pulse width can be selected when the baud rate is equal or less than 38.4 Kbps.

As the same reason, + (16 - K)/16 division function in the baud rate generator of SIO0 can not be used to generate 115.2 Kbps baud rate.

Also when the 38.4 Kbps and 1/16 pulse width, +(16 - K)/16 divisions function cannot be used.


### Table 3.9.5 Baud Rate and Pulse Width for (16 - K)/16 Division Function


Pulse Width			Baud	Rate		
r uise widin	115.2 Kbps	57.6 Kbps	38.4 Kbps	19.2 Kbps	9.6 Kbps	2.4 Kbps
T × 3/16	×	6		0	0	0
T × 1/16	-	- /	×	0	0	0


Can be used (16 – K)/16 division function.

 $\times$ : Cannot be used (16 – K)/16 division function.

-: Cannot be set to 1/16 pulse width.







# 3.10 Serial Bus Interface (SBI)

The TMP92FD23A has 2-channel serial bus interface which employs a clocked-synchronous 8-bit SIO mode and an  $I^{2}C$  bus mode. They are called SBI0 and SBI1.


The serial bus interface is connected to an external device through PN1 (SDA0) and PN2 (SCL0), PN4 (SDA1) and PN5 (SCL1) in the I²C bus mode; and through PN0 (SCK0), PN1 (SO0), PN2 (SI0), PN3 (SCK1), PN4 (SO1) and PN5 (SI1) in the clocked-synchronous 8-bit SIO mode.

Each of the channels can be operated independently. Since both SBI0 and SBI1 channels operate in the same manner, a channel explains only the case of SBI0.

 $\left( \bigcap \right)$ 

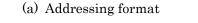
Each pin is specif	ieu as ioliows: (SDIO)	
	PNCR <pn2c, pn0c<="" pn1c,="" th=""><th>&gt; PNFC<pn2f, pn0f="" pn1e,=""></pn2f,></th></pn2c,>	> PNFC <pn2f, pn0f="" pn1e,=""></pn2f,>
C Bus Mode	11X	(11X)
locked Synchronous	011	X11
Bit SIO Mode	010	
Each pin is specif	ied as follows: (SBI1)	
	PNCR <pn5c, pn3c<="" pn4c,="" th=""><th>&gt; PNFC<pn5f, pn3f="" pn4f,=""></pn5f,></th></pn5c,>	> PNFC <pn5f, pn3f="" pn4f,=""></pn5f,>
C Bus Mode	11X	11X
locked Synchronous Bit SIO Mode	011	X11
X: Don't care	010	

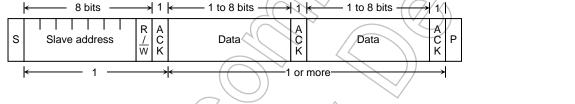
# 3.10.1 Configuration



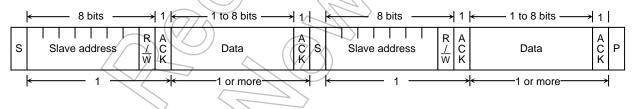


## 3.10.2 Serial Bus Interface (SBI) Control

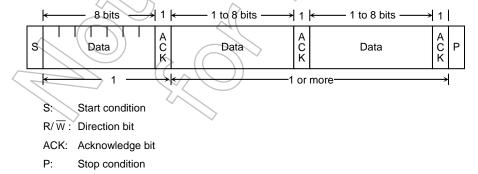

The following registers are used to control the serial bus interface and monitor the operation status.

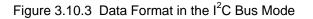

- Serial bus interface 0 control register 1 (SBI0CR1), (SBI1CR1)
- Serial bus interface 0 control register 2 (SBI0CR2), (SBI1CR2)
- Serial bus interface 0 data buffer register (SBI0DBR), (SBI1DBR)
- I²C bus 0 address register (I2C0AR), (I2C1AR)
- Serial bus interface 0 status register (SBI0SR), (SBI1SR)
- Serial bus interface 0 baud rate register 0 (SBI0BR0), (SBI1BR0)
- Serial bus interface 0 baud rate register 1 (SBI0BR1), (SBI1BR1)

The above registers differ depending on a mode to be used. Refer to section 3.10.4 "I²C Bus Mode Control Register" and 3.10.7 "Clocked-synchronous 8-Bit SIO Mode Control".


## 3.10.3 The Data Formats in the I²C Bus Mode

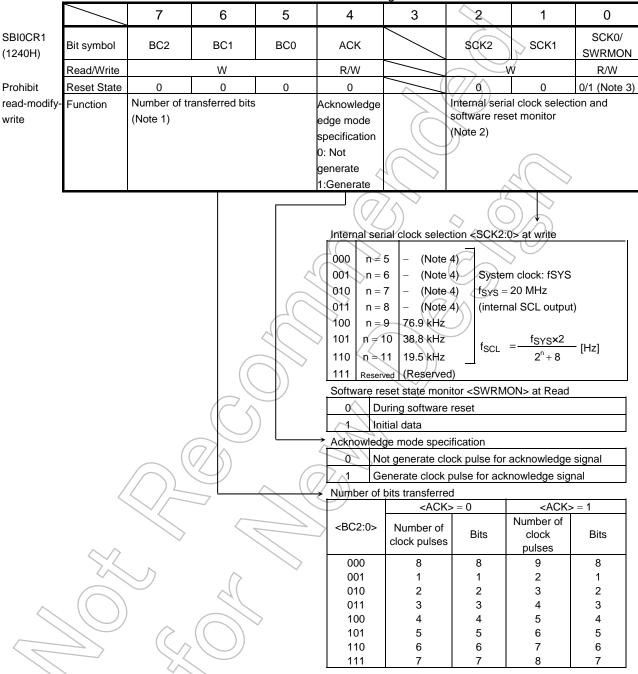
The data formats in the I²C bus mode are shown below.




## (b) Addressing format (with restart)




## (c) Free data format (data transferred from master device to slave device)

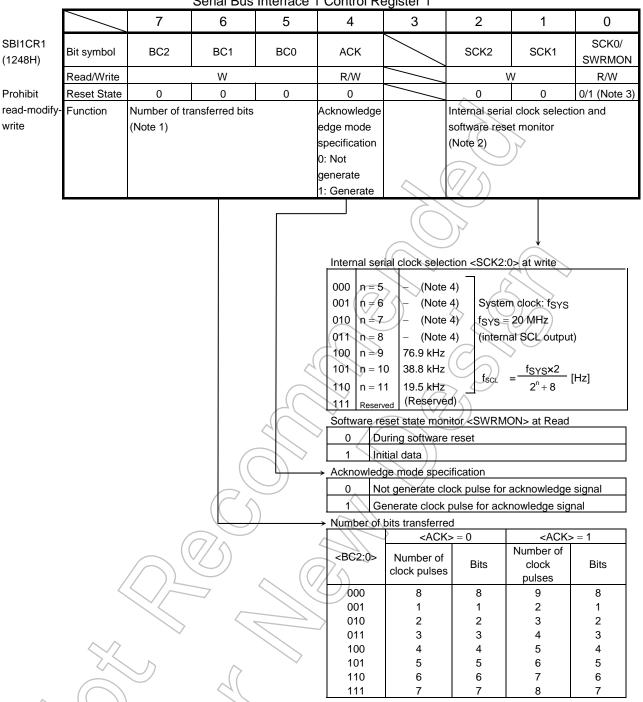




# 3.10.4 I²C Bus Mode Control Register

The following registers are used to control and monitor the operation status when using the serial bus interface (SBI0, SBI1) in the I²C bus mode.




Serial Bus Interface 0 Control Register 1

Note 1: Set the <BC2:0> to "000" before switching to a clocked-synchronous 8-bit SIO mode. Note 2: For the frequency of the SCL pin clock, see 3.10.5 (3) "Serial clock".

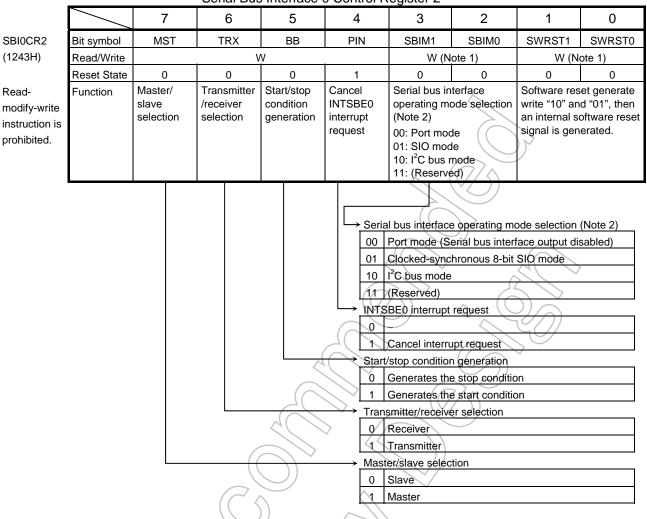
Note 3: Initial data of SCK0 is "0", SWRMON is "1".

Note 4: This I²C bus circuit does not support Fast mode, it supports standard mode only. Although the I²C bus circuit itself allows the setting of a baud rate over 100 kbps, the compliance with the I²C specification is not guaranteed in that case.

Figure 3.10.4 Registers for the I²C Bus Mode (SBI0)



Serial Bus Interface 1 Control Register 1


Note 1: Set the <BC2:0> to "000" before switching to a clocked-synchronous 8-bit SIO mode.

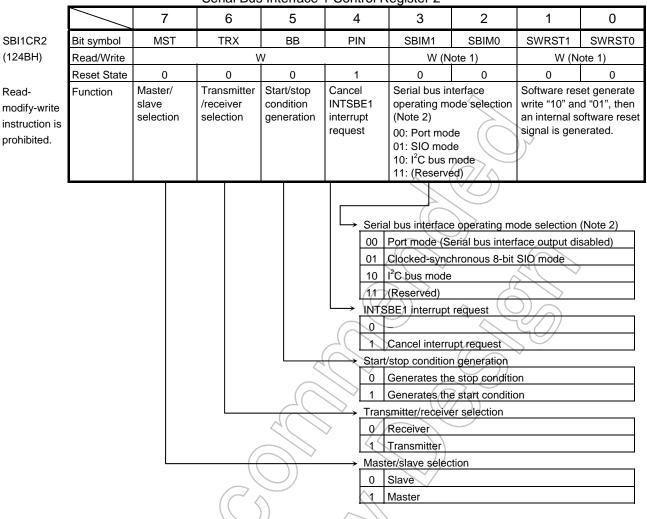
Note 2: For the frequency of the SCL pin clock, see 3.10.5 (3) "Serial clock".

Note 3: Initial data of SCK0 is "0", SWRMON is "1".

Note 4: This I²C bus circuit does not support Fast mode, it supports standard mode only. Although the I²C bus circuit itself allows the setting of a baud rate over 100 kbps, the compliance with the I²C specification is not guaranteed in that case.

Figure 3.10.5 Registers for the I²C Bus Mode (SBI1)




Serial Bus Interface 0 Control Register 2

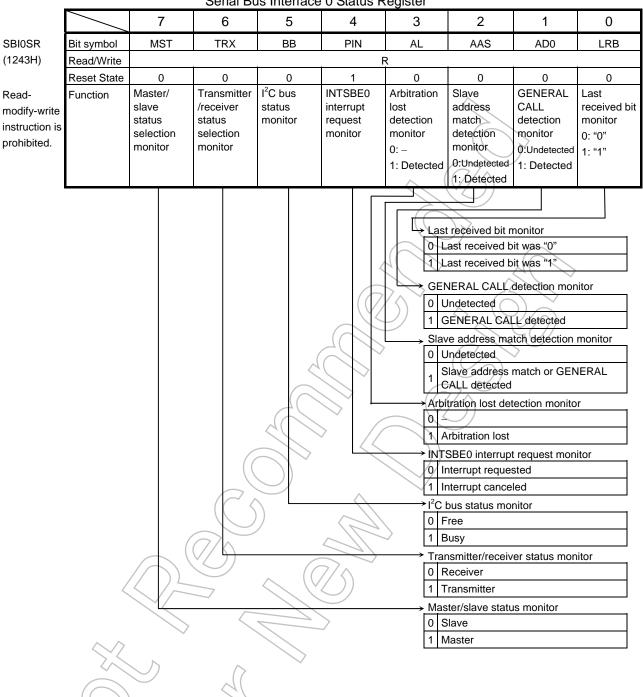
Note 1: Reading this register function as SBI0SR register.

Note 2: Switch a mode to port mode after confirming that the bus is free.

Switch a mode between I²C bus mode and clocked-synchronous 8-bit SIO mode after confirming that input signals via port are high level.

Figure 3.10.6 Registers for the I²C Bus Mode (SBI0)

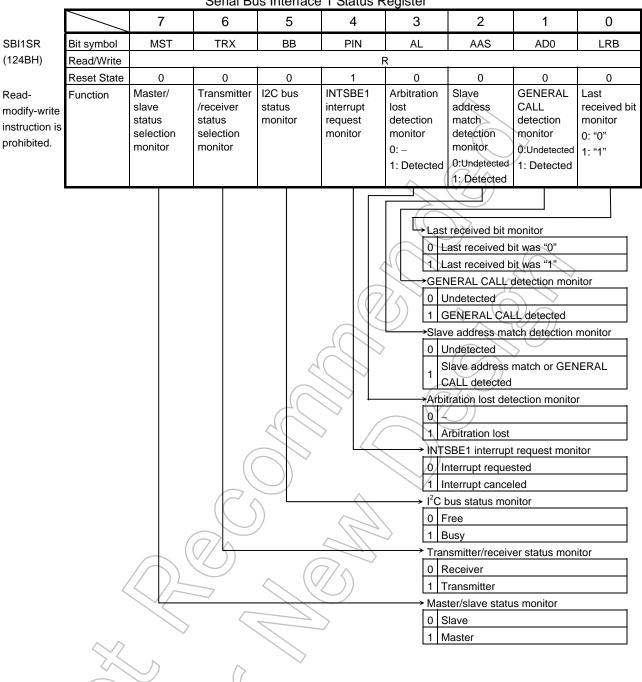



Serial Bus Interface 1 Control Register 2

Note 1: Reading this register function as SBI1SR register.

Note 2: Switch a mode to port mode after confirming that the bus is free.

Switch a mode between I²C bus mode and clocked-synchronous 8-bit SIO mode after confirming that input signals via port are high level.


Figure 3.10.7 Registers for the I²C Bus Mode (SBI1)



Serial Bus Interface 0 Status Register

Note: Writing in this register functions as SBI0CR2.

Figure 3.10.8 Registers for the I²C Bus Mode (SBI0)



Serial Bus Interface 1 Status Register

Note: Writing in this register functions as SBI1CR2.

Figure 3.10.9 Registers for the I²C Bus Mode (SBI1)

			Serial Bus	Interface 0	Baud Rate	e Registe	r 0		
		7	6	5	4	3	2	1	0
SBI0BR0	Bit symbol	-	I2SBI0						
(1244H)	Read/Write	W	R/W						
Read-	Reset State	0	0						
modify-write		Always write "0".	IDLE2				$\sim$		
instruction is prohibited.		white U.	0: Stop 1: Run						
pronibited.									
						→ Oper	ation during IDL	.E2 mode	
							Stop		
						N	Operation		
			Serial Bus	Interface 0	Baud Rate	e Registe	r1		
		7	6	5	4	3	<u> </u>	1	0
SBI0BR1	Bit symbol	P4EN	-	/	/				
(1245H)	Read/Write		N			$\langle \cdot \rangle$		$\mathcal{A}$	
Read-	Reset State	0	0		$\sim$			$\sim$	
modify-write		Internal	Always			( ) )	$\diamond$ ((		
instruction is	5	clock 0: Stop	write "0".					$\mathcal{C}$	
prohibited.		1: Run			$ \leq ( \ ) $	>	$\mathcal{C}$		
				<					
						<u> → Baud</u>	rate clock cont	rol	
					$\searrow$	0	Stop		
				$\langle \rangle$	> /		Operate		
	<b></b>	1	Serial Bus	Interface 0	Data Buff	er Regist	èr	-	
		7	6	5	4	3	2	1	0
SBI0DBR	Bit symbol	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
(1241H)	Read/Write		( <i>C</i>	R	(Receiving)/		ssion)		
	Reset State			))		lefined			
Read- modify-write						-	ng data is place		. ,
instruction is		orohibited.	t be read the	written data. T	nerelore rea	a-moairy-wi	ite instruction (e	e.g., BIT Ins	truction) is
prohibited.	Note 3: V	Written data in	SBI0DBR is	cleared by INT	SBE0 signal	l.			
	4				$\bigcirc$				
			Į ²	C Bus Addr	eşs Regist	ter			
		7	6	5	4	3	2	1	0
I2C0AR	Bit symbol	SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS
(1242H)	Read/Write	$\bigcirc$	(7			W			
~	Reset State	0	0	0	0	0	0	0	0
Read-	Function		Slave addres	s selection for	when device	is operatin	g as slave devid	e	Address
modify-write			(( ))						recognition
instruction is			$2 \bigcirc 2$						mode
prohibited.			$\rightarrow$						specification
	$\searrow$		$\searrow$			۸dde	ess recognition	mode coocifi	↓ cation
							Slave address r		GallOTT
							Non slave address i		on

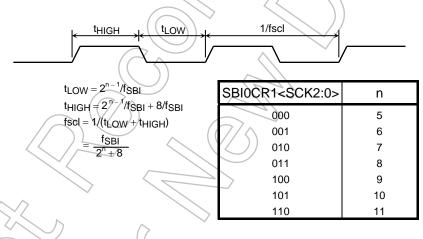
Figure3.10.10 Registers for the I²C Bus Mode (SBI0)

			Serial Bus I	nterface 1	Baud Rate	e Register	0				
		7	6	5	4	3	2	1	0		
SBI1BR0	Bit symbol	_	I2SBI0	/							
(124CH)	Read/Write	W	R/W	/							
Read-	Reset State	0	0					$\sum$	/		
modify-write		Always	IDLE2				$\sim$				
instruction is		write "0".	0: Stop								
prohibited.			1: Run				-6				
								<u>)</u>			
							ation during IDL Stop	E2 mode			
							Operation				
			Serial Bus I	Interface 1	Roud Pote						
		7	6	5	4	3	2	1	0		
			0	0	4	- s					
SBI1BR1	Bit symbol	P4EN	-		$\sim$						
(124DH) Road	Read/Write		N		$\sim$						
Read- modify-write	Reset State Function	0 Internal	0 Always		-70	$\sqrt{\sqrt{2}}$					
instruction is		clock	write "0".			$\bigcirc$	$\bigcirc$				
prohibited.		0: Stop						90/			
		1: Run				2	$\mathcal{C}$	$\diamond$			
		$\langle \langle \rangle \rangle$									
				$\square$	$\rightarrow$		rate clock contr	ol			
					$\searrow$		Stop				
				$\mathcal{A}(\mathcal{N})$	2 _ (		Operate				
			Serial Bus		Data Buff	er Regist			1		
		7	6	5	4	3	2	1	0		
SBI1DBR	Bit symbol	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
(1249H)	Read/Write			R	(Receiving)/\	N (Transmi	ssion)				
	Reset State			))		efined					
Read-		- /					ng data is place				
modify-write		SBI1DBR can prohibited.	t be read the v	written data. T	herefore read	d-modify-wr	ite instruction (e	e.g., "BIT" instr	ruction) is		
instruction is prohibited.			SBI1DBR is o	cleared by INT	SBE1 signal	l.					
promoneu.	4				$\mathcal{O}^{\circ}$						
			4 ² (	C Bus Addr	ess Reaist	ter					
		7	6	5	4	3	2	1	0		
100100	Diterreter										
I2C1AR (124AH)	Bit symbol Read/Write	SA6	SA5	SA4	SA3	SA2 N	SA1	SA0	ALS		
( )	Reset State	0	0	0	0	0	0	0	0		
Read-	Function						g as slave devic		Address		
modify-write			Clave address				g us slave devie		recognition		
instruction is			$\gamma \bigcirc \mathcal{I}$						mode		
prohibited.									specification		
	$\searrow$		$\searrow$						$\downarrow$		
						T	ess recognition i		ation		
							Slave address r	-			
						1	Non slave addre	ess recognition	า		

Figure 3.10.11 Registers for the I²C Bus Mode (SBI1)

- 3.10.5 Control in I²C Bus Mode
  - (1) Acknowledge mode specification

Set the SBI0CR1<ACK> to "1" for operation in the acknowledge mode. The TMP92FD23A generates an additional clock pulse for an acknowledge signal when operating in master mode. In the transmitter mode during the clock pulse cycle, the SDA pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode during the clock pulse cycle, the SDA pin is set to the low in order to generate the acknowledge signal.


Clear the <ACK> to "0" for operation in the non-acknowledge mode. The TMP92FD23A does not generate a clock pulse for the acknowledge signal when operating in the master mode.

(2) Number of transfer bits

Since the SBI0CR1<BC2:0> is cleared to "000" on start up, a slave address and direction bit transmissions are executed in 8 bits. Other than these, the <BC2:0> retains a specified value.

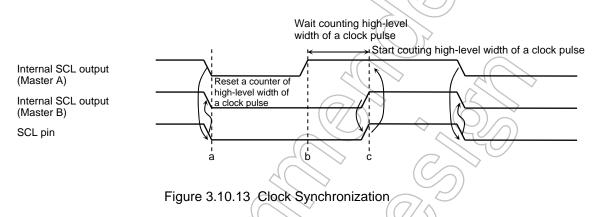
- (3) Serial clock
  - 1. Clock source

The SBI0CR1<SCK2:0> is used to specify the maximum transfer frequency for output on the SCL pin in the master mode. Set the baud rates, which have been calculated according to the formula below, to meet the specifications of the I²C bus, such as the smallest pulse width of  $t_{LOW}$ .



Note1: fSBI shows fSYS.

Note2: In a setup of prescaler of SYSCR0, the fc/16 mode cannot be used at the time of SBI circuit use.


Figure 3.10.12 Clock Source

2. Clock synchronization

In the I²C bus mode, in order to wired-AND a bus, a master device which pulls down a clock line to low level, in the first place, invalidate a clock pulse of another master device which generates a high-level clock pulse. The master device with a high-level clock pulse needs to detect the situation and implement the following procedure.

The TMP92FD23A has a clock synchronization function for normal data transfer even when more than one master exists on the bus.

The example explains the clock synchronization procedures when two masters simultaneously exist on a bus.



As master A pulls down the internal SCL output to the low level at point "a", the SCL line of the bus becomes the low level. After detecting this situation, master B resets a counter of high-level width of an own clock pulse and sets the internal SCL output to the low level.

Master A finishes counting low-level width of an own clock pulse at point "b" and sets the internal SCL output to the high level. Since master B holds the SCL line of the bus at the low level, master A waits for counting high-level width of an own clock pulse. After master B finishes counting low-level width of an own clock pulse at point "c" and master A detects the SCL line of the bus at the high level, and starts counting high level of an own clock pulse. The clock pulse on the bus is determined by the master device with the shortest high-level width and the master device with the longest low-level width from among those master devices connected to the bus.

(4) Slave address and address recognition mode specification

When this device is to be used as a slave device, set the slave address <SA6:0> and <ALS> in I2C0AR.

Clear the <ALS> to "0" for the address recognition mode.

(5) Master/slave selection

Set the SBI0CR2<MST> to "1" for operating the TMP92FD23A as a master device. Clear the SBI0CR2<MST> to "0" for operation as a slave device. The <MST> is cleared to "0" by the hardware after a stop condition on the bus is detected or arbitration is lost. (6) Transmitter/receiver selection

Set the SBI0CR2<TRX> to "1" for operating the TMP92FD23A as a transmitter. Clear the <TRX> to "0" for operation as a receiver. In slave mode, when transfer data in addressing format, when received slave address is same value with setting value to I2C0AR, or GENERAL CALL is received (All 8-bit data are "0" after a start condition), the <TRX> is set to "1" by the hardware if the direction bit ( $\mathbb{R}/\overline{W}$ ) sent from the master device is "1", and <TRX> is cleared to "0" by the hardware if the bit is "0".

In the master mode, after an acknowledge signal is returned from the slave device, the <TRX> is cleared to "0" by the hardware if a transmitted direction bit is "1", and is set to "1" by the hardware if it is "0". When an acknowledge signal is not returned, the current condition is maintained.

The <TRX> is cleared to "0" by the hardware after a stop condition on the bus is detected or arbitration is lost.

(7) Start/stop condition generation

When the SBI0SR<BB> = "0", slave address and direction bit which are set to SBI0DBR is output on the bus after generating a start condition by writing "1111" to the SBI0CR2<MST, TRX, BB, PIN>. It is necessary to set transmitted data to the data buffer register (SBI0DBR) and set "1" to the <ACK> beforehand.

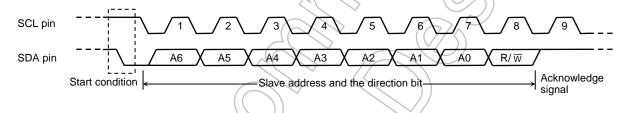



Figure 3.10.14 Start Condition Generation and Slave Address Generation

When the SBI0SR<BB> = "1", the sequence for generating a stop condition can be initiated by writing "111" to the SBI0CR2<MST, TRX, PIN> and writing "0" to the SBI0CR2<BB>. Do not modify the contents of the SBI0CR2<MST, TRX, BB, PIN> until a stop condition has been generated on the bus.

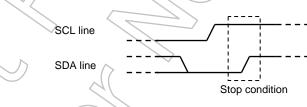



Figure 3.10.15 Stop Condition Generation

The state of the bus can be ascertained by reading the contents of SBI0SR<BB>. SBI0SR<BB> will be set to 1 (Bus busy status) if a start condition has been detected on the bus, and will be cleared to 0 if a stop condition has been detected (Bus free status).

In addition, since there is a restrictions matter about stop condition generating in master mode, please refer to 3.10.6. (4) "Stop condition generation".

(8) Interrupt service requests and interrupt cancellation

When a serial bus interface interrupt request 0 (INTSBE0) occurs, the SBI0SR2 <PIN> is cleared to "0". During the time that the SBI0SR2<PIN> is "0", the SCL line is pulled down to the low level.

The <PIN> is cleared to "0" when end of transmission or receiving 1 word of data. And when writing data to SBI0DBR or reading data from SBI0DBR, <PIN> is set to "1".

The time from the <PIN> being set to "1" until the SCL line is released takes tLOW.

In the address recognition mode (<ALS> = "0"), <PIN> is cleared to "0" when the received slave address is the same as the value set at the I2COAR or when a GENERAL CALL is received (All 8-bit data are "0" after a start condition). Although SBI0CR2<PIN> can be set to "1" by the program, the <PIN> is not clear it to "0" when it is programmed "0".

(9) Serial bus interface operation mode selection

The SBI0CR2<SBIM1:0> is used to specify the serial bus interface operation mode. Set the SBI0CR2<SBIM1:0> to "10" when the device is to be used in I²C bus mode after confirming pin condition of serial bus interface to "H".

Switch a mode to port after confirming a bus is free.

(10) Arbitration lost detection monitor

Since more than one master device can exist simultaneously on the bus in I²C bus mode, a bus arbitration procedure has been implemented in order to guarantee the integrity of transferred data.

Data on the SDA pin is used for I²C bus arbitration.

The following example illustrates the bus arbitration procedure when there are two master devices on the bus. Master A and master B output the same data until point "a". After master A outputs "L" and master B, "H", the SDA pin of the bus is wire-AND and the SDA pin is pulled down to the low level by master A. When the SCL pin of the bus is pulled up at point "b", the slave device reads the data on the SDA pin, that is, data in master A. Data transmitted from master B becomes invalid. The master B state is known as "ARBITRATION LOST". Master B device which loses arbitration releases the internal SDA output in order not to affect data transmitted from other masters with arbitration. When more than one master sends the same data at the first word, arbitration occurs continuously after the second word.

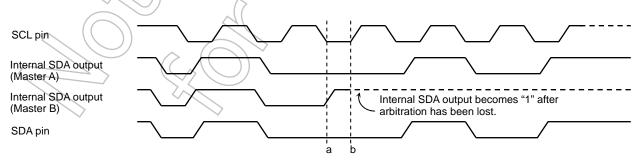



Figure 3.10.16 Arbitration Lost

The TMP92FD23A compares the levels on the bus's SDA line with those of the internal SDA output on the rising edge of the SCL line. If the levels do not match, arbitration is lost and SBI0SR<AL> is set to "1".

When SBI0SR<AL> is set to "1", SBI0SR<MST, TRX> are cleared to "00" and the mode is switched to slave receiver mode. Thus, clock output is stopped in data transfer after setting  $\langle AL \rangle =$  "1".

SBI0SR <AL> is cleared to "0" when data is written to or read from SBI0DBR or when data is written to SBI0CR2.

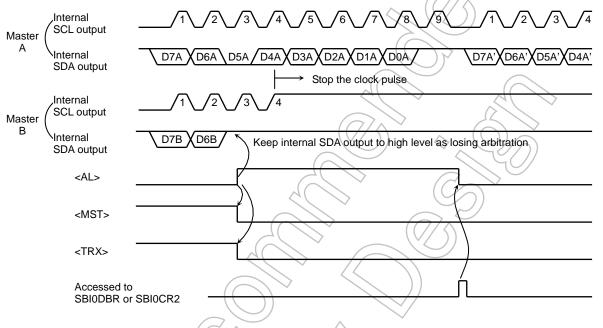



Figure 3.10.17 Example of a Master Device B (D7A = D7B, D6A = D6B)

(11) Slave address match detection monitor

SBI0SR<AAS> operates following in during slave mode; In address recognition mode (e.g., when I2C0AR<ALS> = "0"), when received GENERAL CALL or same slave address with value set to I2C0AR, SBI0SR<AAS> is set to "1". When <ALS> = "1", SBI0SR<AAS> is set to "1" after the first word of data has been received. SBI0SR<AAS> is cleared to "0" when data is written to SBI0DBR or read from SBI0DBR.

(12) GENERAL CALL detection monitor

SBI0SR<AD0> operates following in during slave mode; when received GENERAL CALL (all 8-bit data is "0", after a start condition), SBI0SR<AD0> is set to "1". And SBI0SR<AD0> is cleared to "0" when a start condition or stop condition on the bus is detected.

(13) Last received bit monitor

The value on the SDA line detected on the rising edge of the SCL line is stored in the SBI0SR<LRB>. In the acknowledge mode, immediately after an INTSBE0 interrupt request has been generated, an acknowledge signal is read by reading the contents of the SBI0SR<LRB>.

(14) Software reset function

The software reset function is used to initialize the SBI circuit, when SBI is rocked by external noises, etc.

When write first "10" next "01" to SBI0CR2<SWRST1:0>, reset signal is inputted to serial bus interface circuit, and circuit is initialized. All command registers except SBI0CR2<SBIM1:0> and status flag except SBI0CR2<SBIM1:0> are initialized to value of just after reset. SBI0CR1<SWRMON> is set to "1" automatically when completed initialization of serial bus interface.

(15) Serial bus interface data buffer register (SBI0DBR)

The received data can be read and transmission data can be written by reading or writing SBI0DBR.

In the master mode, after the slave address and the direction bit are set in this register, the start condition is generated.

(16) I²C bus address register (I2C0AR)

I2C0AR<SA6:0> is used to set the slave address when the TMP92FD23A functions as a slave device.

The slave address outputted from the master device is recognized by setting the I2COAR<ALS> to "0". And, the data format becomes the addressing format. When set <ALS> to "1", the slave address is not recognized, the data format becomes the free data format.

(17) Baud rate register (SBI0BR1)

Write "1" to baud rate circuit control register SBI0BR1<P4EN> before using I²C bus.

(18) Setting register for IDLE2 mode operation (SBI0BR0)

SBI0BR0<I2SBI0> is the register setting operation/stop during IDLE2 mode. Therefore, setting <I2SBI0> is necessary before the HALT instruction is executed.

### 3.10.6 Data Transfer in I²C Bus Mode

(1) Device initialization

In first, set the SBI0BR1<P4EN>, SBI0CR1<ACK, SCK2:0>. Set SBI0BR1<P4EN> to "1" and clear bits 7 to 5 and 3 in the SBI0CR1 to "0".

Next, set a slave address  $\langle SA6:0 \rangle$  and the  $\langle ALS \rangle$  ( $\langle ALS \rangle = "0"$  when an addressing format) to the I2C0AR.

And, write "000" to SBI0CR2<MST, TRX, BB>, "1" to <PIN>, "10" to <SBIM1:0> and "00" to <SWRST1:0>. Set initialization status to slave receiver mode by this setting.

- (2) Start condition generation and slave address generation
  - 1. Master mode

In the master mode, the start condition and the slave address are generated as follows.

In first, check a bus free status (when SBI0SR<BB> = "0"). Set the SBI0CR1<ACK> to "1" (Acknowledge mode) and specify a slave address and a direction bit to be transmitted to the SBI0DBR.

When SBI0SR<BB> = "0", the start condition are generated by writing "1111" to SBI0CR2<MST, TRX, BB, PIN>. Subsequently to the start condition, nine clocks are output from the SCL pin. While eight clocks are output, the slave address and the direction bit which are set to the SBI0DBR. At the 9th clock, the SDA line is released and the acknowledge signal is received from the slave device.

An INTSBE0 interrupt request generate at the falling edge of the 9th clock. The <PIN> is cleared to "0". In the master mode, the SCL pin is pulled down to the low level while <PIN> is "0". When an interrupt request is generated, the <TRX> is changed according to the direction bit only when an acknowledge signal is returned from the slave device.

2. Slave mode

In the slave mode, the start condition and the slave address are received.

After the start condition is received from the master device, while eight clocks are output from the SCL pin, the slave address and the direction bit that are output from the master device are received.

When a GENERAL CALL or the same address as the slave address set in I2COAR is received, the SDA line is pulled down to the low level at the 9th clock, and the acknowledge signal is output.

An INTSBE0 interrupt request is generated on the falling edge of the 9th clock. The  $\langle PIN \rangle$  is cleared to "0". In slave mode the SCL line is pulled down to the low level while the  $\langle PIN \rangle =$  "0".

SCL pin SDA pin	A6 A5 A4 A3 A2 A1 A0 R/W ACK Acknowledge Start condition Slave address + Direction bit slave device
<pin></pin>	
INTSBE0 interrupt reques	
	Output of master Output of slave
	Figure3.10.18 Start Condition Generation and Slave Address Transfer
(3	<ul> <li>1-word data transfer</li> <li>Check the <mst> by the INTSBE0 interrupt process after the 1-word data transfer is completed, and determine whether the mode is a master or slave.</mst></li> <li>1. If <mst> = "1" (Master mode)</mst></li> </ul>

Check the <TRX> and determine whether the mode is a transmitter or receiver.

When the <TRX> = "1" (Transmitter mode)

Check the <LRB>. When <LRB> is "1", a receiver does not request data. Implement the process to generate a stop condition (Refer to (4)) and terminate data transfer.

When the <LRB> is "0", the receiver is requests new data. When the next transmitted data is 8 bits, write the transmitted data to SBI0DBR. When the next transmitted data is other than 8 bits, set the <BC2:0> <ACK> and write the transmitted data to SBI0DBR. After written the data, <PIN> becomes "1", a serial clock pulse is generated for transferring a new 1-word of data from the SCL0 pin, and then the 1-word data is transmitted. After the data is transmitted, an INTSBE0 interrupt request generates. The <PIN> becomes "0" and the SCL0 line is pulled down to the low level. If the data to be transferred is more than one word in length, repeat the procedure from the <LRB> checking above.

SCL pin		9
	Write to SBI0DBR	
SDA pin	D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0 X AC	к /
$\langle \rangle$		Acknowledge – signal from a
		receiver
<pin></pin>		
INTSBE0		(
interrupt requ	ues <u>t</u>	
	Output from master	

- - - Output from slave

Figure3.10.19 Example in which <BC2:0> = "000" and <ACK> = "1" in Transmitter Mode

### When the <TRX> is "0" (Receiver mode)

When the next transmitted data is other than 8 bits, set <BC2:0> <ACK> and read the received data from SBI0DBR to release the SCL0 line (Data which is read immediately after a slave address is sent is undefined). After the data is read, <PIN> becomes "1". Serial clock pulse for transferring new 1 word of data is defined SCL and outputs "L" level from SDA0 pin with acknowledge timing.

An INTSBE0 interrupt request then generates and the <PIN> becomes "0", Then the TMP92FD23A pulls down the SCL pin to the low level. The TMP92FD23A outputs a clock pulse for 1 word of data transfer and the acknowledge signal each time that received data is read from the SBI0DBR.

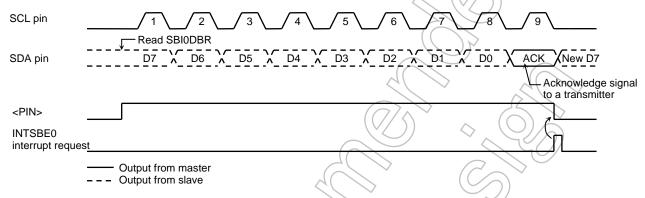



Figure3.10.20 Example of when <BC2:0> = "000", <ACK> = "1" in Receiver Mode

In order to terminate the transmission of data to a transmitter, clear <ACK> to "0" before reading data which is 1 word before the last data to be received. The last data word does not generate a clock pulse as the acknowledge signal. After the data has been transmitted and an interrupt request has been generated, set <BC2:0> to "001" and read the data. The TMP92FD23A generates a clock pulse for a 1-bit data transfer. Since the master device is a receiver, the SDA0 line on the bus remains high. The transmitter receives the high signal as an ACK signal. The receiver indicates to the transmitter that the data transfer is completed.

After the one data bit has been received and an interrupt request has been generated, the TMP92FD23A generates a stop condition (See section (4)) and terminates data transfer.

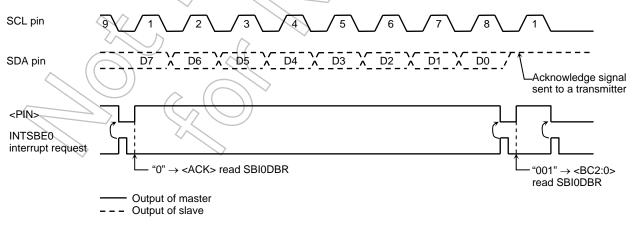



Figure3.10.21 Termination of Data Transfer in Master Receiver Mode

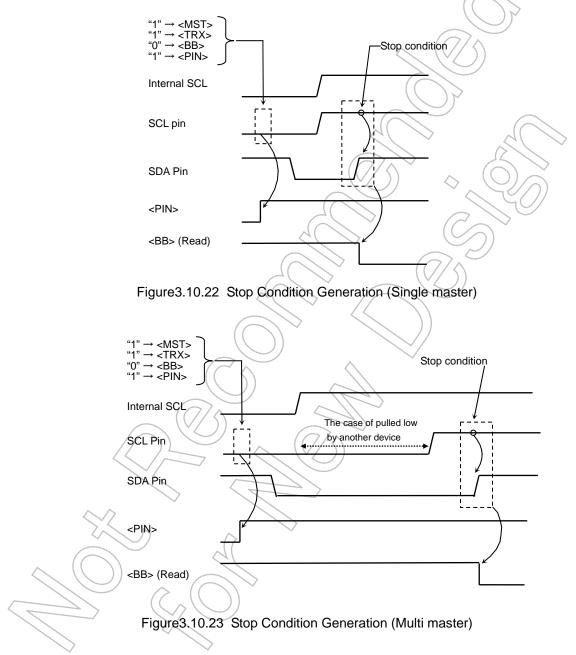
2. When the <MST> is "0" (Slave mode)

In the slave mode the TMP92FD23A operates either in normal slave mode or in slave mode after losing arbitration.

In the slave mode, an INTSBE0 interrupt request generate when the TMP92FD23A receives a slave address or a GENERAL CALL from the master device, or when a GENERAL CALL is received and data transfer is completed, or after matching received address. In the master mode, the TMP92FD23A operates in a slave mode if it losing arbitration. An INTSBE0 interrupt request is generated when a word data transfer terminates after losing arbitration. When an INTSBE0 interrupt request is generated the <PIN> is cleared to "0" and the SCL pin is pulled down to the low level. Either reading/writing from/to the SBI0DBR or setting the <PIN> to "1" will release the SCL pin after taking tLOW time.

Check the SBI0SR<AL>, <TRX>, <AAS>, and <AD0> and implements processes according to conditions listed in the next table.

<trx></trx>	<al></al>	<aas></aas>	<ad0></ad0>	Conditions	Process
1	1	1	0	The TMP92FD23A detects arbitration lost when transmitting a slave address, and receives a slave address for which the value of the direction bit sent from another master is "1".	Set the number of bits of single word to <bc2:0>, and write the transmit data to SBI0DBR.</bc2:0>
	0	1	0	In slave receiver mode, the TMP92FD23A receives a slave address for which the value of the direction bit sent from the master is "1".	
		0	0	In salve transmitter mode, transmission of data of single word is terminated.	Check the <lrb>, If <lrb> is set to "1", set <pin> to "1", reset "0" to <trx> and release the bus for the receiver no request next data. If <lrb> was cleared to "0", set bit number of single word to <bc2:0> and write the transmit data to SBI0DBR for the receiver requests next data.</bc2:0></lrb></trx></pin></lrb></lrb>
0	1	1	1/0	The TMP92FD23A detects arbitration lost when transmitting a slave address, and receives a slave address or GENERAL CALL for which the value of the direction bit sent from another master is "0".	Read the SBI0DBR for setting the <pin> to "1" (Reading dummy data) or set the <pin> to "1".</pin></pin>
		0	0	The TMP92FD23A detects arbitration lost when transmitting a slave address or data, and transfer of word terminates.	$\langle \mathcal{O} \rangle^{\vee}$
	0	1	1/0	In slave receiver mode the TMP92FD23A receives a slave address or GENERAL CALL for which the value of the direction bit sent from the master is "0"	
		0	1/0	In slave receiver mode the TMP92FD23A terminates receiving word data.	Set bit number of single word to <bc2:0>, and read the receiving data from SBI0DBR.</bc2:0>

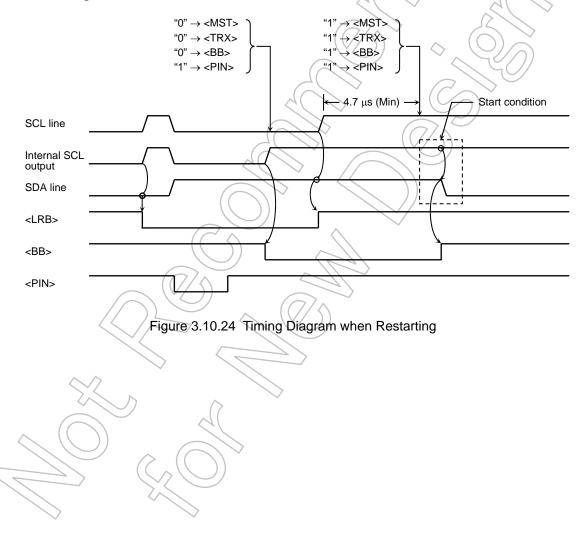

Table 3.10.1 Operation in the Slave Mode



(4) Stop condition generation

When SBI0SR < BB > = "1", the sequence for generating a stop condition is started by writing "111" to SBI0CR2 < MST, TRX, PIN > and "0" to SBI0CR2 < BB >. Do not modify the contents of SBI0CR2 < MST, TRX, PIN, BB > until a stop condition has been generated on the bus. When the bus's SCL line has been pulled low by another device, the TMP92FD23A generates a stop condition when the other device has released the

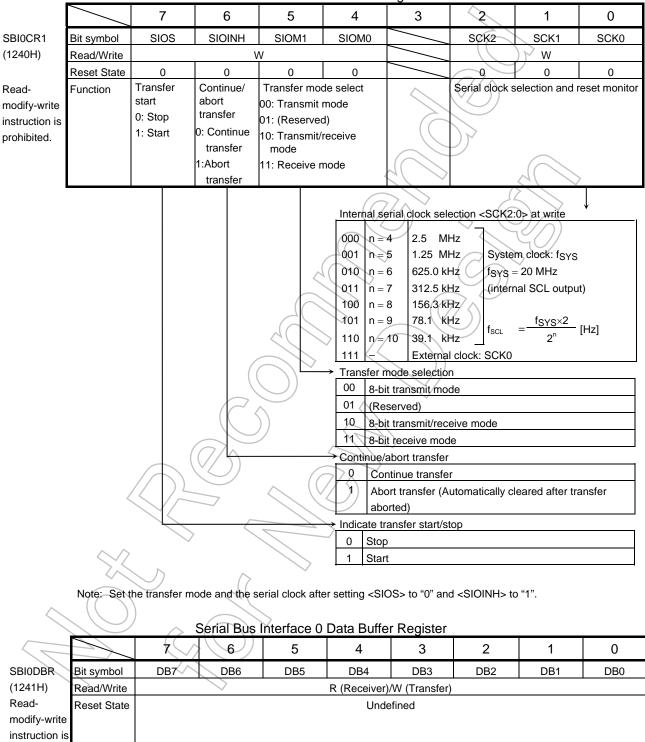
SCL line and SDA0 pin rising.




#### (5) Restart

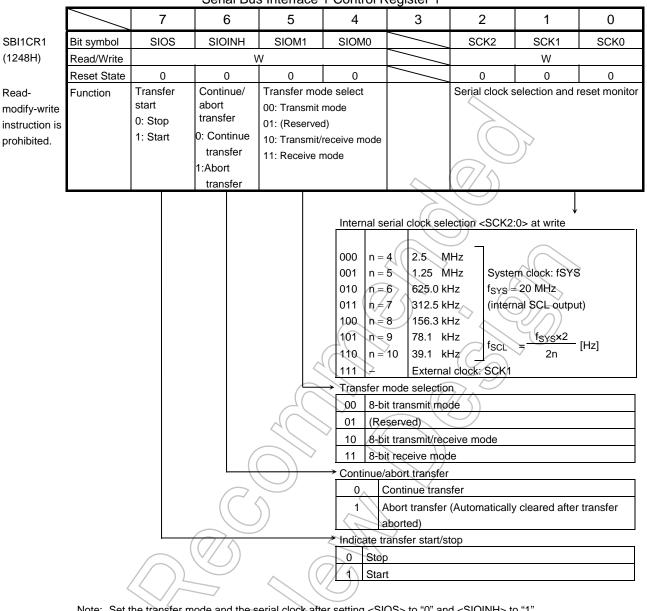
Restart is used during data transfer between a master device and a slave device to change the data transfer direction. The following description explains how to restart when this device is in the master mode.

Clear the SBI0CR2<MST, TRX, BB> to "000" and set the SBI0CR2<PIN> to "1" to release the bus. The SDA0 line remains the high level and the SCL0 pin is released. Since a stop condition is not generated on the bus, other devices assume the bus to be in a busy state. Check the SBI0SR<BB> until it becomes "0" to check that the SCL0 pin of this device is released. Check the <LRB> until it becomes 1 to check that the SCL line on a bus is not pulled down to the low level by other devices. After confirming that the bus stays in a free state, generate a start condition with procedure described in (2).


In order to meet setup time when restarting, take at least  $4.7 \ \mu s$  of waiting time by software from the time of restarting to confirm that the bus is free until the time to generate the start condition.



prohibited.


## 3.10.7 Clocked-synchronous 8-Bit SIO Mode Control

The following registers are used to control and monitor the operation status when the serial bus interface (SBI) is being operated in clocked-synchronous 8-bit SIO mode.



Serial Bus Interface 0 Control Register 1

Figure 3.10.25 Register for the SIO Mode (SBI0)



Serial Bus Interface 1 Control Register 1

Note: Set the transfer mode and the serial clock after setting <SIOS> to "0" and <SIOINH> to "1".

Serial Bus Interface 0 Data Buffer Register								
A	J7	6	5	4	3	2	1	0
Bit symbol	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Read/Write	R (Receiver)/W (Transfer)							
Reset State	Undefined							
	Read/Write	7 Bit symbol DB7 Read/Write Reset State	7     6       Bit symbol     DB7     DB6       Read/Write	7     6     5       Bit symbol     DB7     DB6     DB5       Read/Write	7     6     5     4       Bit symbol     DB7     DB6     DB5     DB4       Read/Write     R (Receiver)       Reset State     Under	7     6     5     4     3       Bit symbol     DB7     DB6     DB5     DB4     DB3       Read/Write     R (Receiver)/W (Transfer)       Reset State     Undefined	7     6     5     4     3     2       Bit symbol     DB7     DB6     DB5     DB4     DB3     DB2       Read/Write     R (Receiver)/W (Transfer)       Reset State     Undefined	7     6     5     4     3     2     1       Bit symbol     DB7     DB6     DB5     DB4     DB3     DB2     DB1       Read/Write     R (Receiver)/W (Transfer)       Reset State     Undefined

Figure 3.10.26 Register for the SIO Mode (SBI1)

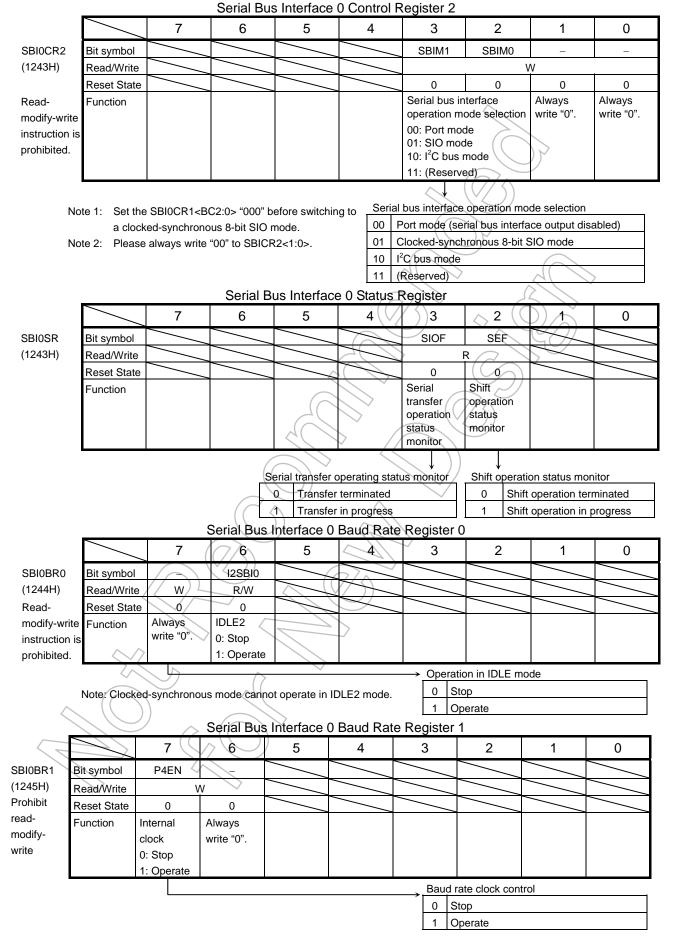



Figure 3.10.27 Registers for the SIO Mode (SBI1)

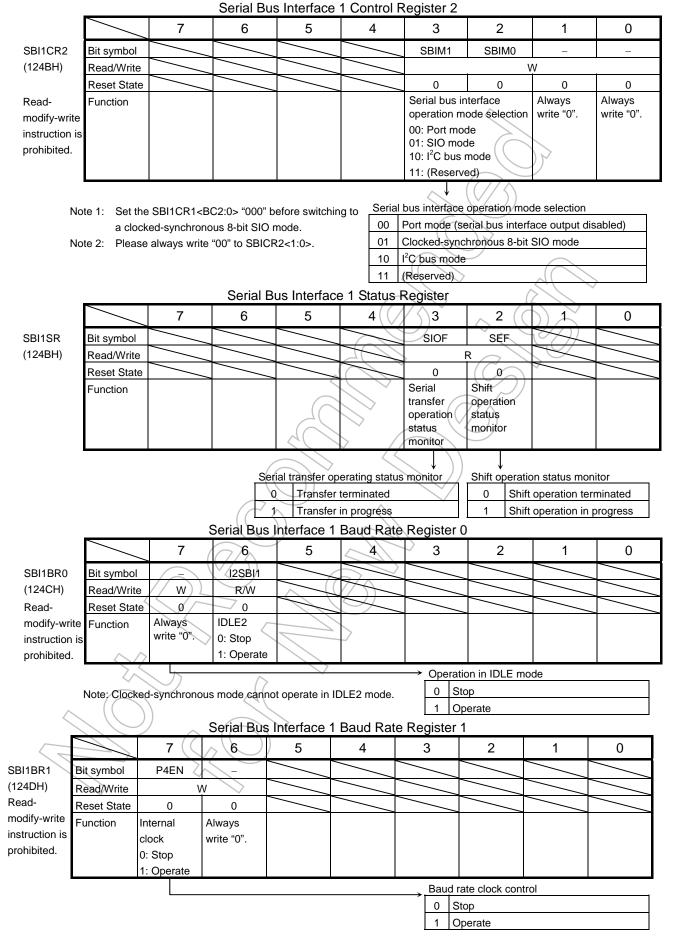
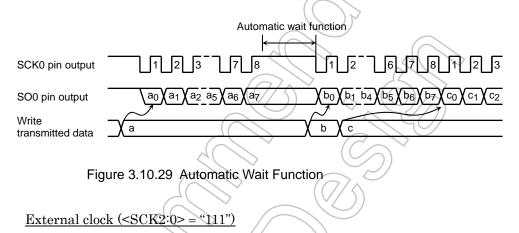



Figure 3.10.28 Registers for the SIO Mode (SBI1)


- (1) Serial clock
  - 1. Clock source

 ${\rm SBI0CR1}{<}{\rm SCK2:}{\rm 0}{>}$  is used to select the following functions:

#### Internal clock

In an internal clock mode, any of seven frequencies can be selected. The serial clock is output to the outside on the SCK pin.

When the device is writing (in the transmit mode) or reading (in the receive mode) data cannot follow the serial clock rate, an automatic wait function is executed to stop the serial clock automatically and holds the next shift operation until reading or writing is complete.



An external clock input via the SCK pin is used as the serial clock. In order to ensure the integrity of shift operations, both the high and low-level serial clock pulse widths shown below must be maintained. The maximum data transfer frequency is 2.5 MHz (when  $f_{SYS} = 20 \text{ MHz}$ ).

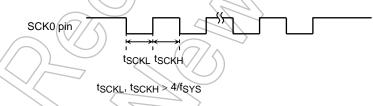



Figure 3.10.30 Maximum Data Transfer Frequency when External Clock Input

### 2. Shift edge

Data is transmitted on the leading edge of the clock and received on the trailing edge.

#### (a) Leading edge shift

Data is shifted on the leading edge of the serial clock (on the falling edge of the SCK pin input/output).

(b) Trailing edge shift

Data is shifted on the trailing edge of the serial clock (on the rising edge of the SCK pin input/output).

SCK pin output	
SO pin output	Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Shift register	76543210
	(a) Leading edge
SCK pin	-indraga-
SI pin	Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Shift register	**************************************
	(b) Trailing edge *: Don't care Figure 3.10.31 Shift Edge

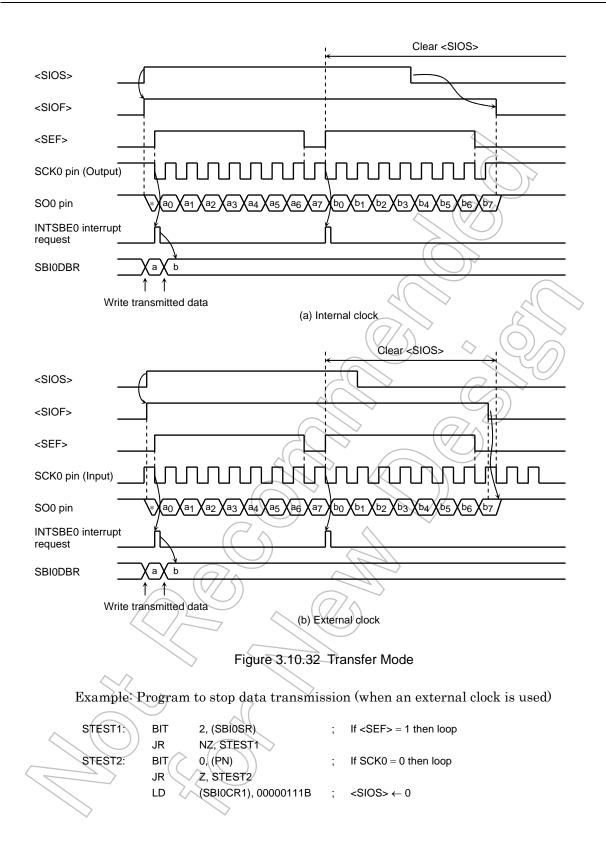
#### (2) Transfer modes

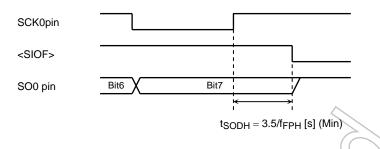
The SBI0CR1<SIOM1:0> is used to select a transmit, receive or transmit/receive mode.

1. 8-bit transmit mode

Set a control register to a transmit mode and write transmission data to the SBI0DBR.

After the transmit data has been written, set the SBI0CR1<SIOS> to "1" to start data transfer. The transmitted data is transferred from the SBI0DBR to the shift register and output, starting with the least significant bit (LSB), via the SO pin and synchronized with the serial clock. When the transmission data has been transferred to the shift register, the SBI0DBR becomes empty. The INTSBE0 (Buffer empty) interrupt request is generated to request new data.


When the internal clock is used, the serial clock will stop and the automatic wait function will be initiated if new data is not loaded to the data buffer register after the specified 8-bit data is transmitted. When new transmission data is written, the automatic wait function is canceled.


When the external clock is used, data should be written to the SBI0DBR before new data is shifted. The transfer speed is determined by the maximum delay time between the time when an interrupt request is generated and the time when data is written to the SBI0DBR by the interrupt service program.

When the transmit is started, after the SBI0SR<SIOF> goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Data transmission ends when the *<*SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the *<*SIOINH> is set to "1". When the *<*SIOS> is cleared to "0", the transmitted mode ends when all data is output. In order to confirm whether data is being transmitted properly by the program, the *<*SIOF> (Bit3 of the SBIOSR) to be sensed. The SBIOSR*<*SIOF> is cleared to "0" when transmission has been completed. When the *<*SIOINH> is set to "1", transmitting data stops. The *<*SIOF> turns "0".

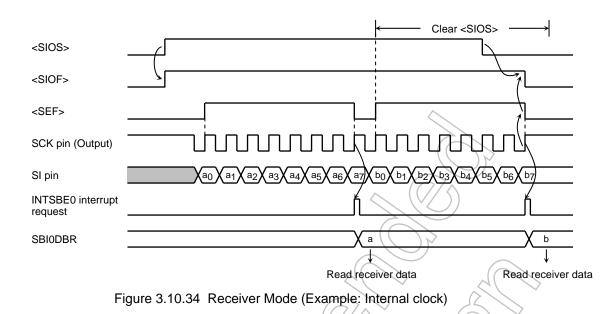
When the external clock is used, it is also necessary to clear the <SIOS> to "0" before new data is shifted; otherwise, dummy data is transmitted and operation ends.







2. 8-bit receive mode


Set the control register to receive mode and set the SBI0CR1<SIOS> to "1" for switching to receive mode. Data is received into the shift register via the SI pin and synchronized with the serial clock, starting from the least significant bit (LSB). When the 8-bit data is received, the data is transferred from the shift register to the SBI0DBR. The INTSBE0 (Buffer full) interrupt request is generated to request that the received data be read. The data is then read from the SBI0DBR by the interrupt service program.

When the internal clock is used, the serial clock will stop and the automatic wait function will be in effect until the received data is read from the SBI0DBR.

When the external clock is used, since shift operation is synchronized with an external clock pulse, the received data should be read from the SBI0DBR before the next serial clock pulse is input. If the received data is not read, further data to be received is canceled. The maximum transfer speed when an external clock is used is determined by the delay time between the time when an interrupt request is generated and the time when the received data is read.

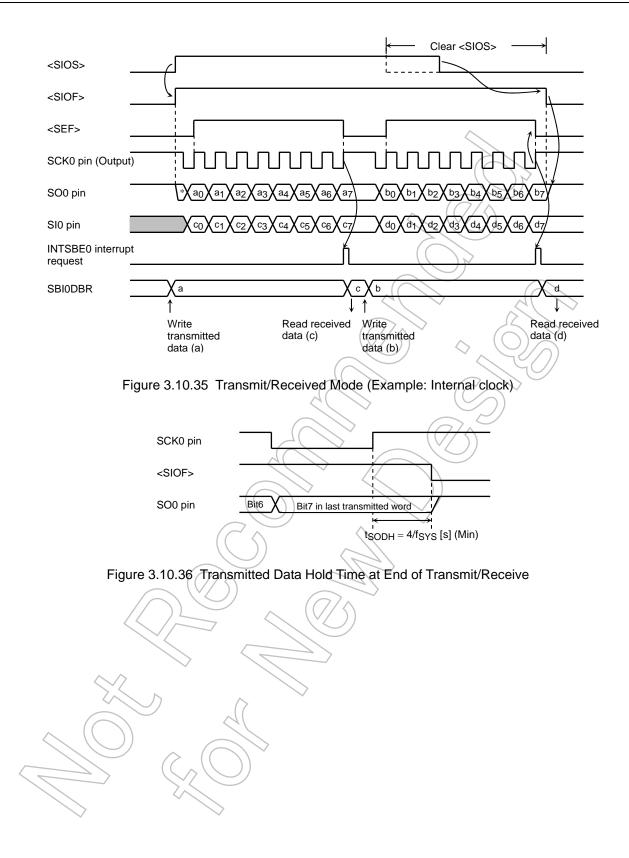
Receiving of data ends when the <SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the <SIOINH> is set to "1". If <SIOS> is cleared to "0", received data is transferred to the SBI0DBR in complete blocks. The received mode ends when the transfer is complete. In order to confirm whether data is being received properly by the program, the SBI0SR<SIOF> to be sensed. The <SIOF> is cleared to "0" when receiving is complete. When it is confirmed that receiving has been completed, the last data is read. When the <SIOINH> is set to "1", data receiving stops. The <SIOF> is cleared to "0". (The received data becomes invalid, therefore no need to read it.)

Note: When the transfer mode is changed, the contents of the SBI0DBR will be lost. If the mode must be changed, conclude data receiving by clearing the <SIOS> to "0", read the last data, then change the mode.



3. 8-bit transmit/receive mode

Set a control register to a transmit/receive mode and write data to the SBI0DBR. After the data is written, set the SBI0CR<SIOS> to "1" to start transmitting/receiving. When data is transmitted, the data is output from the SO0 pin, starting from the least significant bit (LSB) and synchronized with the leading edge of the serial clock signal. When data is received, the data is input via the SI pin on the trailing edge of the serial clock signal. 8-bit data is transferred from the shift register to the SBI0DBR and the INTSBE0 interrupt request is generated. The interrupt service program reads the received data from the data buffer register and writes the data which is to be transmitted. The SBI0DBR is used for both transmitting and receiving. Transmitted data should always be written after received data is read.


When the internal clock is used, the automatic wait function will be in effect until the received data is read and the next data is written.

When the external clock is used, since the shift operation is synchronized with the external clock, the received data is read and transmitted data is written before a new shift operation is executed. The maximum transfer speed when the external clock is used is determined by the delay time between the time when an interrupt request is generated and the time at which received data is read and transmitted data is written.

When the transmit is started, after the SBI0SR<SIOF> goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Transmitting/receiving data ends when the <SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the SBI0CR1<SIOINH> is set to "1". When the <SIOS> is cleared to "0", received data is transferred to the SBI0DBR in complete blocks. The transmit/receive mode ends when the transfer is complete. In order to confirm whether data is being transmitted/received properly by the program, set the SBI0SR to be sensed. The <SIOF> is set to "0" when transmitting/receiving is completed. When the <SIOINH> is set to "1", data transmitting/receiving stops. The <SIOF> is then cleared to "0".

Note: When the transfer mode is changed, the contents of the SBI0DBR will be lost. If the mode must be changed, conclude data transmitting/receiving by clearing the <SIOS> to "0", read the last data, then change the transfer mode.



# 3.11 High Speed SIO (HSC)

Multifunction High Speed SIO (HSC) for 1 channel is contained. HSC supports only the master mode in I/O interface mode (synchronous transmission).

Its features are summarized as follows:

- 1) Double buffer (Transmit/Receive)
- 2) Generates the CRC-7 and CRC-16 values for transmission and reception
- 3) Baud Rate : 10Mbps (max)
- 4) Selects the MSB/LSB-first
- 5) Selects the 8/16-bit data length
- 6) Selects the Clock Rising/Falling edge
- 7) One types of interrupt: INTHSC

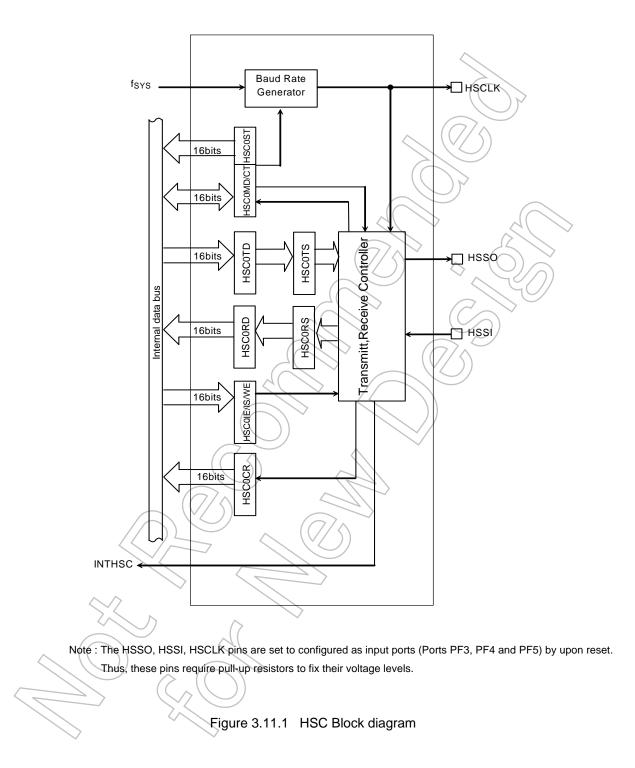
Select Read/Mask/Clear interrupt/ Clear enable for 4 interrupts:

RFR0 (Receive buffer of HSC0RD: Full),

RFW0 (Transmission buffer of HSC0TD: Empty)

RENDO (Receive buffer of HSCORS: Full),

TEND0 (Transmission buffer of HSC0TS: Empty).


RFR0,RFW0 can be processed data at high-speeed by using micro DMA.

	7	HSC
	Pin name	HSSO (PF3)
	(())	HSSI (PF4)
		HSCLK (PF5)
	SFR	HSC0MD (C00H/C01H)
	(address)	HSC0CT (C02H/C03H)
	$\sim$	HSC0ST (C04H/C05H)
		HSCOCR (C06H/C07H)
		HSCOIS (C08H/C09H)
		HSCOWE (COAH/COBH)
		HSCOIE (COCH/CODH)
7	$\wedge$	HSCOIR (COEH/COFH)
	$\sim$	HSC0TD (C10H/C11H)
$\sim$		HSC0RD (C12H/C13H)
	$\sim$	HSC0TS (C14H/C15H)
	( ) )	HSCORS (C16H/C17H)
	$\bigcirc$	
	$\diamond$	

### Table 3.11.1 Registers and Pins for HSC

# 3.11.1 Block diagram

Figure 3.11.1 shows a block diagram of the HSC.



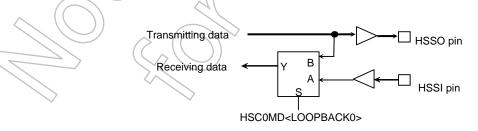
## 3.11.2 SFR

This section describes the SFRs of the HSC are as follows. These area connected to the CPU with 16 bit data buses.

(1) Mode setting register

The HSCOMD register specifies the operating mode, clock operation, etc.

					IND Regio				
		7	6	5	4	3	2 (		0
HSC0MD	bit Symbol		XEN0				CLKSEL02	CLKSEL01	CLKSEL00
(0C00H)	Read/Write		R/W			1	(7/	R/W	
	Reset State		0					// o	0
	Function		SYSCK 0: Disable 1: Enable				Select baud 000: Reserv 001: f _{SYS} /2 010: f _{SYS} /4 011: f _{SYS} /8	red 100: f _{SV} 101: f _S 111: f _S	_{YS} /32
		15	14	13	12		> 10	9	8
(0C01H)	bit Symbol	LOOPBACK0	MSB1ST0	DOSTAT0	/	TCPOL0	RCPOL0	TDINVO	RDINV0
. ,	Read/Write		R/W		4		R/	W C	))
	Reset State	0	1	1	X	0	0	0	0
	Function	LOOPBACK test Mode 0:Disbale 1:Enable	Start Bit for Transmission /Reception 0:LSB 1:MSB	HSSO0 Pin When Not Transmitting 0: Fixed to "0" 1: Fixed to "1"	$\mathcal{U}_{\mathcal{U}_{\mathcal{D},n}}$	Synchroniza- tion Clock Edge Select For Transmission 0: Falling edge 1: Rising edge	for Reception	Data Inversion for Transmission 0: Disable 1: Enable	Data Inversion for Reception 0: Disable 1: Enable


Figure 3.11.2 HSC0MD Register

### (a) <LOOPBACK0>

The internal HSSO output to be internally connected to the HSSI input. This setup can be used for testing.

Also, a clock signal is generated from the HSCLK pin, regardless of whether data transmission or reception is in progress when setting the XEN0 and LOOPBACK0 bits to 1 enables.

Data transmission or reception must not be performed while changing the state of this bit.

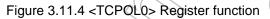




### (b) $\langle MSB1ST0 \rangle$

This bit specifies whether to transmit/receive byte with the MSB first or with the LSB first. Data transmission or reception must not be performed while changing the state of this bit.

### (c) <DOSTAT0>


This bit specifies the status of the HSSO pin of when data transmission is not performed (i.e., after completing data transmission or during data reception). Data transmission or reception must not be performed while changing the state of this bit.

#### (d) <TCPOL0>

This bit specifies the polarity of the active edge of the synchronization clock for data transmission.

The XEN0 bit should be cleared to 0 for changing the state of this bit. At the same time, RCPOL0 should also be cleared to 0.

HSCLK pin ( <tcpol0>="<u>0")</u></tcpol0>		
HSCLK pin ( <tcpol0>="1")</tcpol0>		
HSSO pin	XLSB         X         X           Bit0         Bit1         Bit2         Bit3         Bit4	XMSBX Bit7



#### (e) <RCPOL0>

This bit specifies the polarity of the active edge of the synchronization clock during for data reception.

The <XEN0> bit should be cleared to 0 for changing the state of this bit. TCPOL0 should also be cleared to 0.

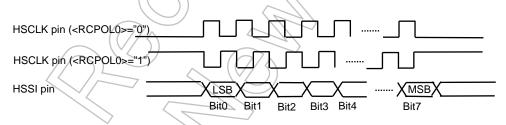



Figure 3.11.5 <RCPOL0> Register function

### (f) <TDINV0>

This bit specifies whether to logically invert the data transmitted from the HSSO pin or not. Data transmission or reception must not be performed while changing the state of this bit.

Data which is inputted to CRC calculation circuit is transmission data which is written to HSCOTD. This input data is not corresponded to <TDINV0>.

 $<\!$  TDINV0> is not corresponded to  $<\!$  DOSTAT0>: it set condition of HSSO pin when it is not transferred.

#### (g) <RDINV0>

This bit specifies whether to logically invert the data received from the HSSI pin or not. Data transmission or reception must not be performed while changing the state of this bit.

Data which is inputted to CRC calculation circuit is selected by <RDINV0>.

## (h) <XEN0>

This bit enables or disables the internal clock signal.

### (i) <CLKSEL02:00>

This bit selects the baud rate. The baud rate is generated using the system clock fsys and is programmable as shown below according to the system clock settings.

Data transmission or reception must not be performed while changing the state of these bits

Baud rate [Mbps]									
f _{SYS} =12MHz	f _{SYS} =16MHz	f _{SYS} =20MHz							
6	$\langle 8 \rangle$	10							
3	4	5							
1.5		2.5							
0.75		1.25							
0.375	0.5	0.625							
0.1875	0.25	0.3125							
	f _{SYS} =12MHz 6 3 1.5 0.75 0.375	Baud rate [Mbps] $f_{SYS} = 12MHz$ $f_{SYS} = 16MHz$ 6         8           3         4           1.5         2           0.75         1           0.375         0.5							

Table 3.11.2 Example of baud rate

 tsys/16
 0.75
 1

 fsys/32
 0.375
 0.5

 tsys/64
 0.1875
 0.25

(2) Control Register

The HSCOCT register specifies data length, CRC, etc.

	Heeder Register								
		7	6	5	4	3	2	1	0
HSC0CT	bit Symbol	-	-	UNIT160			ALGNEN0	RXWEN0	RXUEN0
(0C02H)	Read/Write		R/W					R/W	
	Reset State	0	1	0			0 (	$\langle 0 \rangle$	0
	Function	Always write "0".	Always write "1".	Data Length 0: 8 bits 1: 16 bits		~	Alignment	Reception0:	Receive UNIT 0: Disable 1: Enable
		15	14	13	12	11		9	8
(0C03H)	bit Symbol	CRC16_7_B0	CRCRX_TX_B0	CRCRESET_B0		$\langle \langle \rangle$	$\searrow$	DMAERFW0	DMAERFR0
	Read/Write	R/W				Ł.	$\langle \rangle$	R/W	R/W
	Reset State	0	0	0			/	0	0
	Function	CRC Select	CRC Data	CRC	(	$(7/\Lambda)$	7	Micro DMA	Micro DMA
		0: CRC7	0: Transmit	Calculation		$\langle O \rangle$	$\diamond$	0: Disable	0: Disable
		1: CRC16	1: Receive	Register	$\square$	$\sim$	4	1: Enable	1: Enable
				0:Reset	20	$\searrow$	$(\mathcal{A})$		
				1: Reset	$\langle \rangle$		(()		
				Release		$\checkmark$		$\square$	

HSC0CT Register

## Figure 3.11.6 HSCOCT Register

(a) <CRC16_7_B0>

This bit selects the CRC calculation algorithm from the CRC7 and CRC16.

(b) <CRCRX_TX_B0>

This bit selects the data to be sent to the CRC generator.

(c) <CRCRESET_B0>

a.

This bit is used to initialize the CRC calculation register.

This section describes how to calculate the CRC16 of the transmit data and to append the calculated CRC value at the end of the transmit data. Figure 3.11.7 below illustrates the flow chart of the CRC calculation procedures.

Program the HSCOCT<CRC16_7_B> bit to select the CRC algorithm from CRC7 and CRC16. Then, also program the CRCRX_TX_B bit to specify the data on which the CRC calculation is performed.

- b. To reset the HSCOCR register, write a 0 to the CRCRESET_B bit and then write a 1 to the same bit.
- c. Load the HSCOTD register with the transmit data, and wait until transmission of all data is completed.
- d. Read the HSCOCR register and obtain the result of the CRC calculation.
- e. Transmit the CRC obtained in step (d) in the same way as step (c).

The CRC calculation on the receive data can be performed in the same procedures.

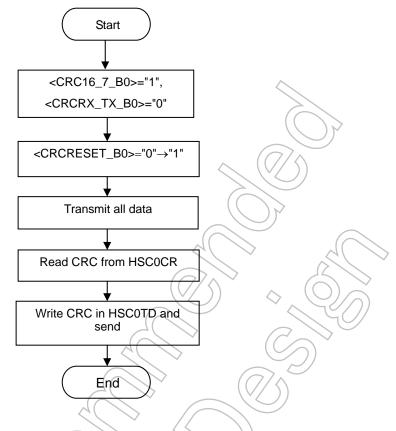



Figure 3.11.7 Flow Chart of the CRC Calculation Procedures

# (d) <DMAERFW0>

This bit sets the interrupt clearing using to unnecessary because be supported RFW0 interrupt to Micro DMA. If this bit is set to "1", it is set to one-shot interrupt, clearing interrupt by HSCOWE register become to unnecessary. HSCOST<RFW0> flag generate 1-shot interrupt when change from "0" to "1"(Rising).

# (e) <DMAERFR0>

This bit sets the interrupt clearing using CPU to unnecessary because be supported RFR0 interrupt to Micro DMA. If this bit is set to "1", it is set to one-shot interrupt, clearing interrupt by HSCOWE register become to unnecessary. HSCOST<RFR0> flag generate 1-shot interrupt when change from "0" to "1"(Rising).

# (f) <UNIT160>

This bit selects the data length for transmission and reception. The data length is hereafter referred to as the UNIT. Data transmission or reception must not be performed while changing the state of this bit

# (g) <ALGNEN0>

This bit should be set to 1 when performing the full-duplex communication. This bit specifies whether to align the transmit and receive data on the UNIT-size boundaries.

Data transmission or reception must not be performed while changing the state of this bit.

# (h) <RXWEN0>

This bit enables or disables the Sequential mode reception.

(i) <RXUEN0>

This bit enables or disables the Unit mode reception.

For <RXWEN0> = "1", this bit is disabled. Data transmission or reception must not be performed while changing the state of this bit.

[Data Transmission/Reception Modes]

This HSC Controller supports six operating modes as listed below. These are specified by the <ALGNEN0>, <RXWEN0>, <RXUEN0> bits.

Operation mode		Bit Settings	$\langle \rangle \rangle = \langle \rangle$	Description
Operation mode	<algnen0></algnen0>	<rxwen0></rxwen0>	<rxuen0></rxuen0>	Description
(1) UNIT transmission	0	0	> 0	Transmit written data per UNIT
(2) Sequential transmission	0	$\langle 0 \rangle$	0	Transmit written data sequentially
(3) UNIT reception	0	0	1	Receive only one UNIT-size data
(4) Sequential reception	0		0	Automatically receive data if buffer has any empty space
(5) UNIT transmission and reception		0		Transmit/receive one UNIT-size data with the addresses of transmit/receive data aligned on UNIT-size boundaries
(6)Sequential transmission and reception		1	0	Transmit/receive data sequentially with the addresses of transmit/receive data aligned on UNIT-size boundaries

Table 3.11.3 transmit/receive operation mode

Difference between the UNIT-mode and Sequential-mode transmission

UNIT mode transmission transmits one-UNIT by writing data after confirming HSC0ST<TEND0>=1.

In the Sequential-mode transmission, transmit data written into the HSC0TD is loaded sequentially.

In hard ware, this mode of transmission keeps transmitting data as long as the transmit data exists. This mode of transmission keeps transmitting data as long as the transmit data exists. Therefore, the Sequential-mode transmission continues as long as the next data is written to it when HSC0ST<REND0>=1.

Unit-mode transmission and Sequential-mode transmission depend on the way of using. Hardware doesn't depend on.

Figure 3.11.8 show Flow chart of UNIT-mode transmission and Sequential-mode transmission.

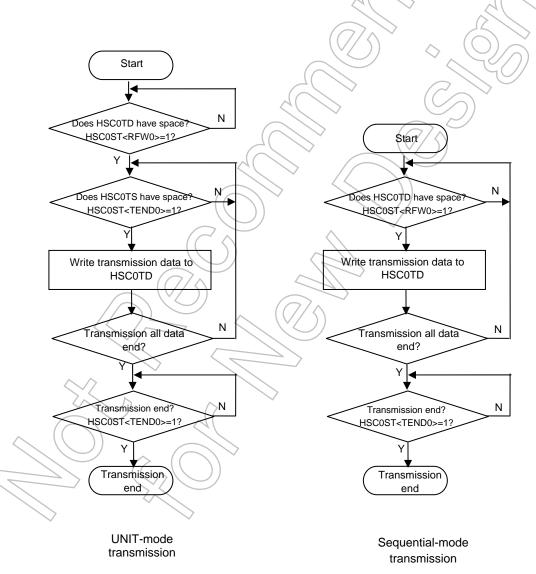



Figure 3.11.8 Flow chart of UNIT-mode transmission and Sequential-mode transmission

### Differences Between the UNIT-mode and Sequential-mode Receptions

The UNIT-mode reception receives only one UNIT-size data.

Writing a 1 to the HSCOCT<RXUENO> bit initiates a receive operation of one UNIT data. Then, it is stored the received data into the receive data register (HSCORD).

Reading the HSCORD register after writing a 0 to the HSCOCT<RXUEN0> bit.

If the HSCORD register is read again when the HSCOCT<RXUENO> bit is set to1, one-UNIT data is additionally received.

In hardware, this mode receives sequentially by Single buffer. HSC0ST<REND0> is changed during UNIT receiving.

The Sequential-mode reception automatically receives the data as long as the receive Buffer has any empty space.

This mode of reception keeps receiving the next data automatically unless the data receive Buffer becomes full. Therefore, the reception continues sequentially without stopping at every UNIT-sized reception by reading it after data is loaded in HSCORD.

In hardware, this mode receives sequentially by Double buffer.

Figure 3.11.9 show Flow chart of UNIT-reception and Sequential-mode reception.

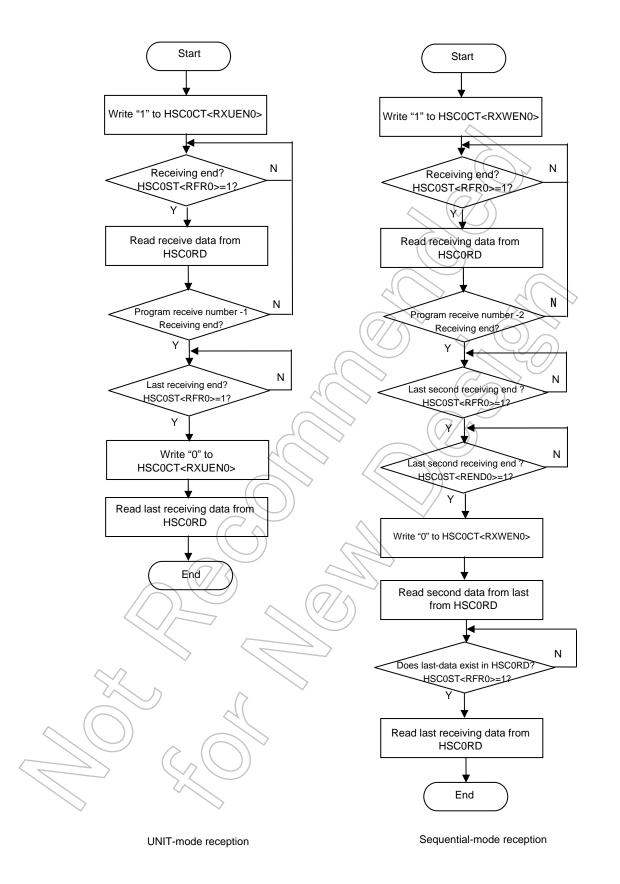



Figure 3.11.9 Flow chart of UNIT-mode reception and Sequential-mode reception

(3) Interrupt, Status register

Read of condition, Mask of condition, Clear interrupt and Clear enable can control each 4 interrupts; RFR0 (HSC0RD receiving buffer is full), RFW0 (HSC0TD transmission buffer is empty), REND0 (HSC0RS receiving buffer is full), TEND0 (HSC0TS transmission buffer is empty).

RFR0, RFW0 can high-speed transaction by micro DMA.

Following is description of Interrupt · status (example RFW0).

Status register HSC0ST<RFW0> show RFW0 (internal signal that show whether transmission data register exist or not). This register is "0" when transmission data exist. This register is "1" when transmission data doesn't exist. It can read internal signal directly. Therefore, it can confirm transmission data at any time.

Interrupt status register HSC0IS<RFWIS0> is set by rising edge of RFW0. This register keeps that condition until write "1" to this register and reset when HSC0WE<RFWWE0> is "1".

RFW0 interrupt generate when interrupt enable register HSCOIE<RFWIE0> is "1". When it is "0", interrupt is not generated.

Interrupt request register HSC0IR<RFWIR0> show whether interrupt is generating or not.

Interrupt status write enable register HSCOWE<RFWWE0> set that enables reset for reset interrupts status register by mistake.

Circuit config of transmission data shift register (HSC0TS), receiving register (HSC0RD), receiving data shift register (HSC0RS) are same with above register.

Control register HSCOCT<DMAERFW0>, HSCOCT<DMAERFR0> is register for using micro DMA. When micro DMA transfer is executed by using RFW0 interrupt, set "1" to <DMAERFW0>, and when it is executed by using RFR0 interrupt, set "1" to <DMAERFR0>, and prohibit other interrupt.

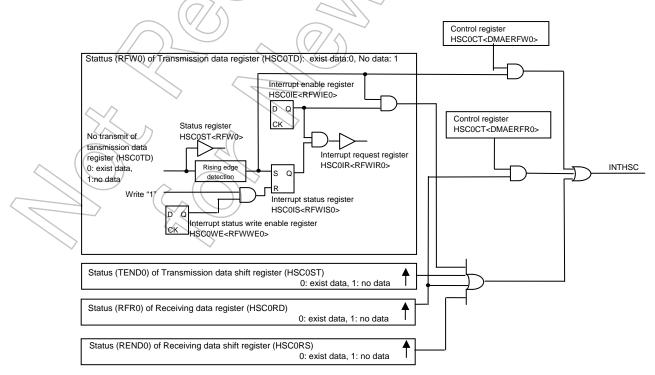



Figure 3.11.10 Figurer for interrupt, status

(3-1) Status register

This register contains four bits that indicates the status of data communication.

USCOST Pagiator

				HSCO	ST Regist	er			
		7	6	5	4	3	2 🔿	1	0
HSC0ST	bit Symbol			/		TEND0	REND0	RFW0	RFR0
(0C04H)	Read/Write						. (F	2	
	Reset State					1	0		0
	Function					Receiving 0:operation 1: no operation	Receive Shift register 0: no data 1: exist data	-itted	Receive buffer 0:no valid data 1: valid data exist
(000511)	hit Cumhal	15	14	13	12	(11))	10	(9)	8
(0C05H)	bit Symbol Read/Write	$\backslash$	$\frown$	$\backslash$	$\neg$			$\rightarrow$	
	Reset State	$\backslash$	$\square$	$\backslash$	$\overline{\langle}$	$\sim$	$\neg \mathcal{C}$		$\sim$
	Function							9	

Figure 3.11.11 HSC0ST Register

(a) <TEND0>

This bit is cleared to 0 when the transmit register (HSC0TS) contains valid data; otherwise, it is set to 1.

(b) <REND0>

This bit is set to 1 when completing the data reception and valid data is stored into the receive data register (if there is any valid data). This bit is cleared to 0 when the receive register (HSCORS) contains no valid data, or when the reception is in progress.

It is cleared to "0", when CPU read the data and shift to receive read register.

(c) <RFW0>

After wrote the received data to receive data write register, shift the data to receive data shift register. This bit keeps "0" until all valid data has moved. And this bit is set to "1" when it can accept the next data and contains no valid data.

(d) <RFR0>

This bit is set to "1" when received data is shifted from received data shift register to received data read register and there is any valid data. It is set to "0" when the data is read and contains no valid data.

(3-2) Interrupt status register

This register is used for reading four interrupts status and clearing interrupts.

This register is cleared to "0" by writing "1" to applicable bit. Status of this register show interrupt source state. This register can confirm changing of interrupt condition, even if interrupt enable register is masked.

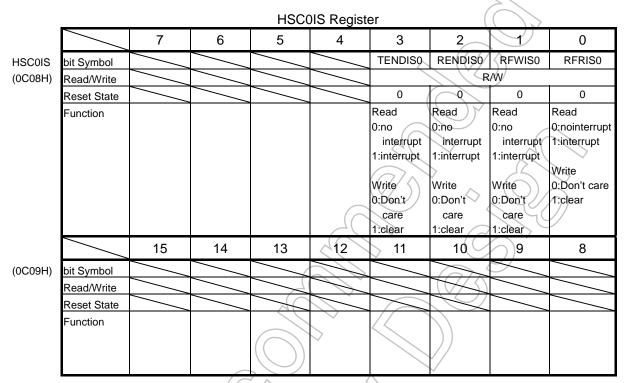



Figure 3.11.12 HSCOIS Register

(a) <TENDIS0>

This bit is used for reading the status of TEND interrupt and clearing interrupt. If writing this bit, set "1" to HSCOWE<TENDWE0>.

(b) <REMDIS0>

This bit is used for reading the status of REND interrupt and clearing interrupt. If writing this bit, set "1" to HSCOWE<RENDWE0>.

(c) <RFWDIS0>

This bit is used for reading the status of RFW interrupt and clearing interrupt. If writing this bit, set "1" to HSCOWE<RFWWE0>.

(d) <RFRIS0>

This bit is used for reading the status of RFR interrupt and clearing interrupt. If writing this bit, set "1" to HSCOWE<RFRWE0>. (3-3) Interrupt status write enable register

This register enables or disables the clearing status bit of four types of interrupts.

				HSCU	WE Regist	ter			
		7	6	5	4	3	2 🔿	1	0
HSC0WE	bit Symbol					TENDWE0	RENDWE0	RFWWE0	RFRWE0
(0C0AH)	Read/Write						R/	W	
	Reset State					0	0		0
	Function					Clear	Clear	Clear	Clear
						HSCOIS <	HSCOIS	HSCOIS	HSC0IS
						<tendis0></tendis0>	<rendis0></rendis0>	<tfwis0></tfwis0>	<rfris0></rfris0>
						0: Disable	0: Disable	0: Disable	0: Disable
						1: Enable	1: Enable	1: Enable	1: Enable
		15	14	13	12	11	10	9	8
(0C0BH)	bit Symbol	/			/	Ţ			K
	Read/Write								
	Reset State					$\forall \rightarrow$		$\mathcal{A}$	
	Function								$\mathcal{D}$
					20	$\searrow$	$\square$		
					$\langle \langle \rangle$	$\supset$	C	$\mathcal{D}$	
	L					1		<u> </u>	1

HSCOWE Register

Figure 3.11.13 HSCOWE Register

(a) <TENDWE0>

This bit enables or disables clearing the HSC0IS<TENDIS0>.

(b) <RENDWE0>

This bit enables or disables clearing the HSC0IS<RENDIS0>.

(c) <RFWWE0>

This bit enables or disables clearing the HSC0IS<RFWIS0>.

(d) <RFRWE0>

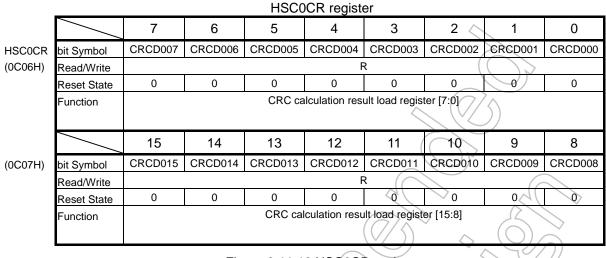
This bit enables or disables clearing the HSC0IS<RFRIS0>.

(3-4) Interrupt enable register

This register enables or disables the generation of four types of interrupts.

				HSC	DIE Regist	er			
		7	6	5	4	3	2 🔿	1	0
HSC0IE	bit Symbol					TENDIE0	RENDIE0	RFWIE0	RFRIE0
(0C0CH)	Read/Write		/	/			R	Ŵ	
	Reset State			/	/	0	0		0
	Function					TEND0	RENDO	RFW0	RFR0
						interrupt <	interrupt	interrupt	interrupt
						0: Disable	0: Disable	0: Disable	0: Disable
						1: Enable	1: Enable	1: Enable	1: Enable
		15	14	13	12	11	10	9	8
(0C0DH)	bit Symbol						$\sum$		$\sum$
	Read/Write								
	Reset State					(7)			
	Function					$\langle \bigcirc \rangle$	$\diamond$		$\hat{\mathbf{D}}$
					6		4	44	
						$\rightarrow$	$\mathcal{C}$		
					$\mathcal{A}()$	$\triangleright$		()	
	(b) <f (c) <f< td=""><td>This bit en RENDIE0&gt; This bit en RFWIE0&gt; This bit en RFRIE0&gt;</td><td>nables or</td><td>disables t</td><td>he REND</td><td>0 interrup</td><td>ot.</td><td></td><td></td></f<></f 	This bit en RENDIE0> This bit en RFWIE0> This bit en RFRIE0>	nables or	disables t	he REND	0 interrup	ot.		
		This bit er	>,,						
						interrupt.			

(3-5) Interrupt request register


This register is used for showing generation condition for 4 interrupts.

This register is set to the reading "0" (interrupt doesn't generate) always when Interrupt enable register is masked.

				HSCO	IR Regist	er	$\langle$		
		7	6	5	4	3	2 (		0
HSC0IR	bit Symbol					TENDIR0	RENDIR0	<b>REWIRO</b>	RFRIR0
(0C0EH)	Read/Write					~	( ( / F	٤	
	Reset State					0	) ) ́	0	0
	Function					TEND0	REND0	RFW0	RFR0
						interrupt	interrupt	interrupt	interrupt
						0: None 1:Generate	0: None	0: None 1:Generate	0: None
		15	14	13	12	11	10	9	1.Generale
(0C0FH)	bit Symbol								$\checkmark$
	Read/Write				$\sim$	$\mathcal{H}$		+	
	Reset State	$\sim$	$\sim$	$\sim$		$\approx$		N.S.	$\not \rightarrow$
	Function				a	$\bigcirc$			
					$\zeta($	$\triangleright$	C	()	
				(					
							(// 5)		
			Fig	jure 3.11.1	5 HSCOIR	Register			
					>	giore			
	(a) <	TENDIR0>	>	(())			//		
		This bit is	used for	showing t	he condit	ion of TEN	ND0 interi	rupt gener	ration.
				()	~				
	(b) <	TENDIR0>		$\bigcirc$	/	$\langle \rangle$			
		This bit is	used for	showing t	he condit	ion of REN	ND0 interi	rupt genei	ration.
			$\overline{\mathbb{C}}$		(77)				
	(c) <	RFWIR0>			$\lor$				
		This hit is	used for	showing t	he conditi	ion of RFV	V0 interri	int genera	tion
				Sind Willig U				ipt genera	
	(d) <	RFRIR0>			>				
	$\langle \rangle$	This hit is	used for	showing t	he conditi	ion of RFF	R0 interru	nt generat	tion
		11110-010 18	used for	Showing t			to interru	pt genera	
<	/ /	))	$\square$	$\searrow$					
		$\sim$		))					
/ <			$\sim$	/					

(4) HSC0CR (HSC0 CRC register)

This register contains the CRC calculation result for transmit/receive data.





(a) <CRCD015:000>

The CRC result which is calculated according to the settings of the CRC16_7_b0, CRCRX_TX_B0 and CRCRESET_B0 bits in the HSC0CT register are loaded into this register. When using the CRC16 algorithm, all the bits participate in the CRC generation. When using the CRC7 algorithm, only the lower seven bits participates in the CRC generation. The following describes the steps required to calculate the CRC16 for the transmit data.

First, initialize the CRC calculation register by writing a 1 to the CRCRESET_B0 bit after programming three bits as follows: CRC16_7_b0 =1, CRCRX_TX_B0 = 0, and CRCRESET_B0 = 0.

Then, by writing the transmit data into the HSCOTD register, complete the transmission of all bits, for which the CRC should be calculated.

The HSCOST<TEND0> bit should be checked to confirm whether the reception is completed.

By reading the HSCOCR register after the transmission is completed, the CRC16 for the transmit data can be obtained.

(5) Transmit Data Register

This register is used for writing the transmit data.

				HSC0	TD Regist	er			
		7	6	5	4	3	2 🚫	1	0
HSC0TD	bit Symbol	TXD007	TXD006	TXD005	TXD004	TXD003	TXD002	TXD001	TXD000
(0C10H)	Read/Write				R/	W	(	$\langle \rangle \rangle$	
	Reset State	0	0	0	0	0	0		0
	Function				Transmit da	ta bits [7:0]		<i>S</i> )	
		15	14	13	12	11	10	9	8
(0C11H)	bit Symbol	TXD015	TXD014	TXD013	TXD012	TXD011	TXD010	TXD009	TXD008
	Read/Write				R/	W (		G	
	Reset State	0	0	0	0	0	$>_0$	021	0
	Function				Transmit dat	ta bits [15:8]		6	

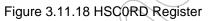


(a) <TXD015:000>

This register is used for writing the transmit data. When this register is read, the last-written data is read out.

This register is overwritten if the next data is written with this register being full.

Please check the state of the RFW0 bit before starting a write operation.


HSC0CT<UNIT160>= "1", all bits are valid.

HSC0CT<UNIT160>= "0", lower 7 bits are valid.

(6) Receive Data Register

This register is used for reading the received data.

				HSC0	RD Regist	er			
		7	6	5	4	3	2 🔿	1	0
HSC0RD	bit Symbol	RXD007	RXD006	RXD005	RXD004	RXD003	RXD002	RXD001	RXD000
(0C12H)	Read/Write				F	र	(	$\langle \rangle \rangle$	
	Reset State	0	0	0	0	0	0	P	0
	Function			F	Receive data	register [7:0]		<i>S</i> )	
		15	14	13	12	11 (	10	9	8
(0C13H)	bit Symbol	RXD015	RXD014	RXD013	RXD012	RXD011	RXD010	RXD009	RXD008
	Read/Write				F	x (		G	
	Reset State	0	0	0	0	Q	$\searrow_0$	021	0
	Function			R	eceive data	register [15:8	₩ •	6	$\langle \rangle$



(a) <RXD015:000>

The HSCORD register is used for reading the received data. Please check the state of the RFR0 bit before starting a read operation.

- HSC0CT<UNIT160> = "1", all bits are valid.
- HSC0CT < UNIT160 > = "0", lower 7 bits are valid.

(7) Transmit data shift register

This register is used for changing the transmission data to serial. This register is used for confirming the changing condition when LSI test.

				HSC0	TS Regist	er	$\sim$		
		7	6	5	4	3	2	$\sum_{\lambda}$	0
HSC0TS	bit Symbol	TSD007	TSD006	TSD005	TSD004	TSD003	TSD002	TSD001	TSD000
(0C14H)	Read/Write				F	र			
	Reset State	0	0	0	0	0	07/	0	0
	Function			Tra	nsmit data sl	nift register [7	(:0]	))	
						(	$\geq$		
		15	14	13	12	11	10	9	8
(0C15H)	bit Symbol	TSD015	TSD014	TSD013	TSD012	TSD011	TSD010	TSD009	TSD008
	Read/Write				F	2	$\sim$	21	$\searrow$
	Reset State	0	0	0	0	6	> 0	0	0
	Function			Trar	nsmit data sh	ift register [1	5:8]	$\mathcal{Q}$	$\tilde{\mathcal{D}}$



# (a) <TSD015:000>

This register is used for reading the status of transmission data shift register.

HSC0CT<UNIT160>= "1", all bits are valid.

HSC0CT<UNIT160>= "0", lower 7 bits are valid.

(8) Receive data shift register

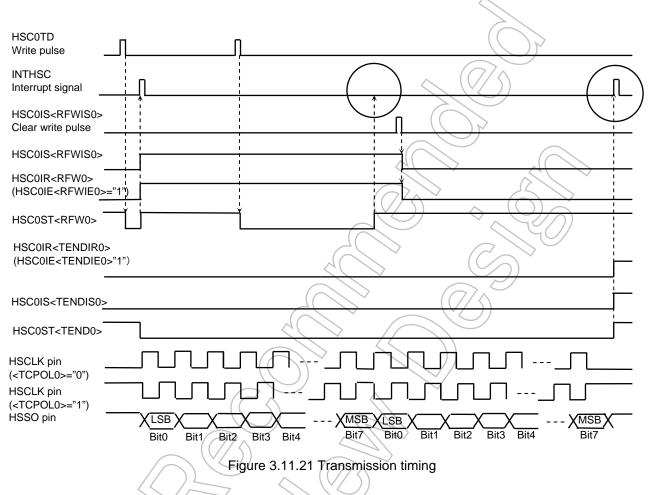
This register is used for reading the receive data shift register.

				HSC0	RS Regist	er			
		7	6	5	4	3	2 🚫	1	0
HSC0RS	bit Symbol	RSD007	RSD006	RSD005	RSD004	RSD003	RSD002	RSD001	RSD000
(0C16H)	Read/Write				F	R	(	$\langle \rangle \rangle$	
	Reset State	0	0	0	0	0	0		0
	Function			Re	ceive data sh	hift register [7	:0]	$\mathbf{\hat{5}}$	
		15	14	13	12	11	10	9	8
(0C17H)	bit Symbol	RSD015	RSD014	RSD013	RSD012	RSD011	RSD010	RSD009	RSD008
	Read/Write				F	x (		G	
	Reset State	0	0	0	0	0	$>_0$	021	0
	function			Rec	eive data shi	ift register [1!	5;8]	6	



(a) <RSD015:000>

This register is used for reading the status of receive data shift register.

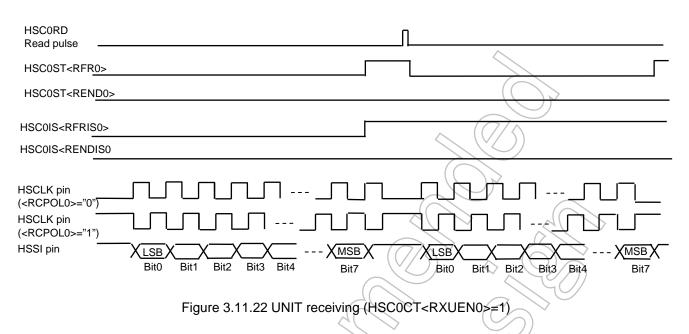

HSC0CT<UNIT160>= "1", all bits are valid.

HSC0CT<UNIT160>="0", lower 7 bits are valid.

# 3.11.3 Operation timing

Following examples show operation timing.

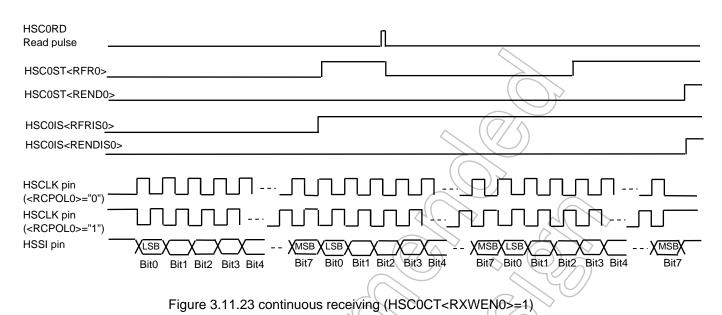
• Setting condition 1: Transmission in UNIT=8bit, LSB first




In above condition, HSC0ST<RFW0> flag is set to "0" just after wrote transmission data. When data of HSC0TD register finish shifting to transmission register (HSC0TS), HSC0ST<RFW0> is set to "1", it is informed that can write next transmission data, start transmission clock and data from HSCLK pin and HSSO pin at same time with inform.

In this case, HSCOIS, HSCOIR change and INTHSC interrupt generate by synchronization to rising of HSCOST<RFW0> flag. When HSCOIR register is setting to "1", interrupt is not generated even if HSCOST<RFW0> was set to "1".

When finish transmission and lose data that must to transmit to HSCOTD register and HSCOTS register, transmission data and clock are stopped by setting "1" to HSCOST<TENDO>, and INTHSC interrupt is generated at same time. In this case, if HSCOST<TENDO> is set to "1" at different interrupt source, INTHSC is not generated. Therefore must to clear HSCOIS<RFWO> to "0".


• Setting condition 2: UNIT transmission in UNIT=8bit, LSB first



If set HSC0CT<RXUEN0> to "1" without valid receiving data to HSC0RD register (HSC0ST<RFR0>=0), UNIT receiving is started. When receiving is finished and stored receiving data to HSC0RD register, HSC0ST<RFR0> flag is set to "1", and inform that can read receiving data. Just after read HSC0RD register, HSC0ST<RFR0> flag is cleared to "0" and it start receiving next data automatically.

If be finished UNIT receiving, set HSC0CT<RXUEN0> to "0" after confirmed that HSC0ST<RFR0> was set to "1".

• Setting condition 3: Sequential receiving in UNIT=8 bit, LSB first



If set HSC0CT<RXWEN0> to "1" without valid receiving data in HSC0RD register (HSC0ST<RFR0>=0), sequential receiving is started. When first receiving is finished and stored receiving data to HSC0RD register, HSC0ST<RFR0> flag is set to "1", and inform that can read receiving data. Sequential receiving is received until receiving data is stored to HSC0RD and HSC0RS registers If finished sequential receiving, set HSC0CT<RXWEN0> to "0" after confirmed that HSC0ST<REND0> was set to "1".

•	Setting condition 4:
	Transmission by using micro DMA in UNIT=8bit, LSB first
INTHSC Interrupt pulse – HSC0TD Write pulse –	
HSC0ST <rfw0></rfw0>	
HSC0ST <tend0></tend0>	
HSC0IS <rfwis0></rfwis0>	
HSC0IR <rfwir0></rfwir0>	
HSC0IS <tendis0></tendis0>	
HSCLK pin ( <tcpol0>="0") HSCLK pin (<tcpol0>="1") HSSO pin</tcpol0></tcpol0>	
	Figure 3.11.24 Micro DMA transmission (transmission)

If all bits of HSCOIE register are "0" and HSCOCT<DMAERFW0> is "1", transmission is started by writing transmission data to HSCOTD register.

If data of HSC0TD register is shifted to HSC0TS register and HSC0ST<RFW0> is set to "1" and can write next transmission data, INTHSC interrupt (RFW0 interrupt) is generated. By starting Micro DMA at this interrupt, can transmit sequential data automatically.

However, If transmit it at Micro DMA, set Micro DMA beforehand.

• Setting condition 5: Receiving by using micro DMA in UNIT=8bit, LSB first

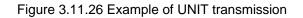
INTHSC Interrupt put	se	Ω
HSC0RD Read pulse		
HSC0ST <rfr0></rfr0>		
HSC0ST <rend0></rend0>		
HSC0IS <rfr0></rfr0>		
HSC0IS <rend0></rend0>		
HSCLK pin ( <rcpol0>= "0")</rcpol0>		
HSCLK pin ( <rcpol0>= "1")</rcpol0>		
HSSI pin	XLSBX     X     XMSBX       Bit0     Bit1     Bit2     Bit3     Bit4     Bit7	XLSBX         X          XMSBX          MSBX          MSBX         MSBX          MSBX         MSBX         MSBX

Figure 3.11.25 Micro DMA transmission (UNIT receiving (HSC0CT<REUEN0>=1))

If all bits of HSCOIE register is "0" and HSCOCT<DMAERFR0> is "1", UNIT receiving is started by setting HSCOCT<RXUENO> to "1". If receiving data is stored to HSCORD register and can read receiving data, INTHSC interrupt (RFR0 interrupt) is generated. By starting Micro DMA at this interrupt, it can be received sequential data automatically. However, If receive it at Micro DMA, set Micro DMA beforehand.

### 3.11.4 Example

Following is discription of HSC setting method.


(1) UNIT transmission

This example shows the case of transmission is executed by following setting, and it is generated INTHSC interrupt by finish transmission.

UNIT: 8bit LSB first Baud rate : f_{SYS}/8 Synchronous clock edge: Rising

#### Setting expample

ld	(pffc), 0x38	; Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK
ld	(pfcr), 0x28	; port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK
ld	(hscsel), 0x01	; port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK
ldw	(hsc0ct), 0x0040	; Set data length to 8bit
ldw	(hsc0md), 0x2c43	; System clock enable, baud rate selection: fSYS/8
		; LSB first, synchronous clock edge setting: set to Rising
ld	(hsc0ie), 0x08	; Set to TEND0 interrupt enable
ld	(intes1hsc), 0x10	; Set INTHSC interrupt level to 1
ei		; Interrupt enable (iff=0)
loop	(C)	$\div$ Confirm that transmission data register doesn't have no transmission data
bit	1, (hsc0st) $($	; <rfw0>=1 ?</rfw0>
jr	z, loop	
ld	(hse0td), 0x3a	; Write Transmission data and Start transmission
• <		$\langle \langle \vee \rangle \rangle$
•		
•		
$\sim \land$		
HSC0TD		$\searrow$
Write pulse		
HSCLK out	put	
HSSO outp		
INTHSC Interrupt si		ໍ່ໃ
interrupt of		



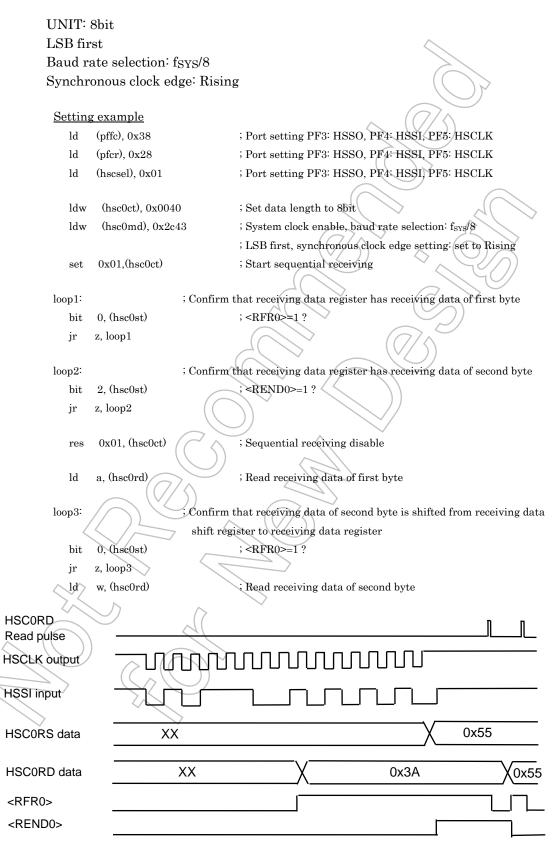
### (2) UNIT receiving

This example shows case of receiving is executed by following setting, and it is generated INTHSC interrupt by finish receiving.

LSB first Baud rate selection : f5Y5/8 Synchronous clock edge: Rising <u>Setting example</u> Id (pfr), 0x38 : Port setting PF3: HSSO, PP4-HSSI, PF5: HSCLK Id (pfcr), 0x28 : port setting PF3: HSSO, PP4: HSSI, PF5: HSCLK Id (hscsel), 0x01 : port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK Id (hscoct), 0x0040 : Set data length to 8bit Idw (hsc0ct), 0x0040 : Set data length to 8bit Idw (hsc0ct), 0x0040 : Set data length to 8bit Idw (hsc0ct), 0x01 : Set to RFR0 interrupt enable Id (hsc0ie), 0x01 : Set to RFR0 interrupt enable Id (intes1hsc), 0x10 : Set INTHSC interrupt level to 1 ei : Interrupt enable (iff=0) set 0x0, (hsc0ct) : Start UNIT receiving HSCOCT Write pulse HSCLK output INTHSC Interrupt signal	UNIT: 8	bit	
Synchronous clock edge: Rising         Setting example         Id       (pffc), 0x38       : Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK         Id       (pfcr), 0x28       : port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK         Id       (hscolet), 0x01       : port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK         Idw       (hscolet), 0x010       : Set data length to 8bit         Idw       (hscoled), 0x2c43       : System clock enable, baud rate selection: fsys%         Id       (hscole), 0x01       : Set to RFR0 interrupt enable         Id       (intes1hsc), 0x10       : Set to RFR0 interrupt enable         Id       (intes1hsc), 0x10       : Set INTHSC interrupt level to 1         ei       : Interrupt enable (iff=0)         set       0x0, (hscolet)       : Start UNIT receiving         .       .       .         HSCLK       output         HSSL input       .         INTHSC       .         Interrupt signal       .	LSB firs	t	$\sim$
Setting example         Id       (pffc), 0x38       : Port setting PF3: HSS0, PF4: HSS1, PF5: HSCLK         Id       (pfcr), 0x28       : port setting PF3: HSS0, PF4: HSS1, PF5: HSCLK         Id       (hscsel), 0x01       : port setting PF3: HSS0, PF4: HSS1, PF5: HSCLK         Idw       (hscolet), 0x0040       : Set data length to 8bit         Idw       (hsc0omd), 0x2c43       : System clock enable, baud rate selection: fsys%         Id       (hsc0ie), 0x01       : Set to RFR0 interrupt enable         Id       (intes1hsc), 0x10       : Set to RFR0 interrupt level to 1         ei       : Inferrupt enable         id       (intes1hsc), 0x10       : Set to RFR0 interrupt level to 1         ei       : Inferrupt enable       : Start UNIT receiving          : Start UNIT receiving           : Start UNIT receiving           : Start UNIT receiving           : Start UNIT receiving           : Start UNIT receiving           : Start UNIT receiving           : Start UNIT receiving           : Start UNIT receiving           : Start UNIT receiv	Baud ra	te selection : f _{SYS} /8	
Id       (pffc), 0x38       : Port setting PF3: HSS0, PF4: HSS1, PF5: HSCLK         Id       (pfcr), 0x28       : port setting PF3: HSS0, PF4: HSS1, PF5: HSCLK         Id       (hscoel), 0x01       : port setting PF3: HSS0, PF4: HSS1, PF5: HSCLK         Idw       (hscoet), 0x0040       : Set data length to 8bit         Idw       (hscoed), 0x040       : Set data length to 8bit         Idw       (hscoed), 0x2c43       : System clock enable, baud rate selection: fsys/8         :       : LSB first, synchronous clock edge setting: set to 8fising         Id       (hscoie), 0x01       : Set to 8FR0 interrupt enable         Id       (intes1hsc), 0x10       : Set INTHSC interrupt level to 1         ei       : Interrupt enable (iff=0)         set       0x0, (hsc0ct)       : Start UNIT receiving         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         . </td <td>Synchro</td> <td>nous clock edge: Risin</td> <td>ng</td>	Synchro	nous clock edge: Risin	ng
Id       (pfcr), 0x28       ; port setting PF3: HSS0, PF4: HSS1, PF5: HSCLK         Id       (hscoel), 0x01       ; port setting PF3: HSS0, PF4: HSS1, PF5: HSCLK         Idw       (hscoul), 0x0040       ; Set data length to 8bit         Idw       (hscoul), 0x2c43       ; System clock enable, baud rate selection: fsys/8         Id       (hscole), 0x01       ; Set to RFR0 interrupt enable         Id       (intes1hsc), 0x10       ; Set to RFR0 interrupt level to 1         ei       ; Interrupt enable       ; Start UNIT receiving         .       .       .         HSCOCT       Write pulse       .         HSCLK output       .       .         INTHSC       .       .	Setting	<u>example</u>	$\langle \overline{\langle} \rangle$
Id       (hscsel), 0x01       ; port setting PF3: HSS0, PF4: HSS1, PF5: HSCLK         Idw       (hsc0ct), 0x0040       ; Set data length to 8bit         Idw       (hsc0md), 0x2c43       ; System clock enable, baud rate selection: fSys8         : LSB first, synchronous clock edge setting: set to Rising         Id       (hsc0ie), 0x01       ; Set to RFR0 interrupt enable         Id       (intes1hsc), 0x10       ; Set to RFR0 interrupt level to 1         ei       ; Interrupt enable (iff=0)         set       0x0, (hsc0ct)       ; Start UNIT receiving         .       .         HSCOCT       .         Write pulse       .         HSCLK output       .         Interrupt signal       .	ld	(pffc), 0x38	; Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK
Id       (hscsel), 0x01       ; port setting PF3: HSS0, PF4: HSS1, PF5: HSCLK         Idw       (hsc0ct), 0x0040       ; Set data length to 8bit         Idw       (hsc0md), 0x2c43       ; System clock enable, baud rate selection: fSys8         : LSB first, synchronous clock edge setting: set to Rising         Id       (hsc0ie), 0x01       ; Set to RFR0 interrupt enable         Id       (intes1hsc), 0x10       ; Set to RFR0 interrupt level to 1         ei       ; Interrupt enable (iff=0)         set       0x0, (hsc0ct)       ; Start UNIT receiving         .       .         HSCOCT       .         Write pulse       .         HSCLK output       .         Interrupt signal       .	ld	(pfcr), 0x28	; port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK
Idw       (hsc0md), 0x2c43       : System clock enable, baud rate selection: fsys/8         . LSB first, synchronous clock edge setting: set to Bising         Id       (hsc0ie), 0x01       : Set to RFR0 interrupt enable         Id       (intes1hsc), 0x10       : Set to RFR0 interrupt level to 1         ei       : Interrupt enable (iff=0)         set       0x0, (hsc0ct)       : Start UNIT receiving         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .	ld	(hscsel), 0x01	
Idw       (hsc0md), 0x2c43       : System clock enable, baud rate selection: fsys/8         . LSB first, synchronous clock edge setting: set to Bising         Id       (hsc0ie), 0x01       : Set to RFR0 interrupt enable         Id       (intes1hsc), 0x10       : Set to RFR0 interrupt level to 1         ei       : Interrupt enable (iff=0)         set       0x0, (hsc0ct)       : Start UNIT receiving         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .			
: LSB first, synchronous clock edge setting: set to Rising ld (hsc0ie), 0x01 : Set to RFR0 interrupt enable ld (intes1hsc), 0x10 : Set INTHSC interrupt level to 1 ei : Interrupt enable (iff=0) set 0x0, (hsc0ct) : Start UNIT receiving HSCOCT Write pulse HSCLK output INTHSC Interrupt signal	ldw	(hsc0ct), 0x0040	; Set data length to 8bit
Id       (hsc0ie), 0x01       : Set to RFR0 interrupt enable         Id       (intes1hsc), 0x10       : Set INTHSC interrupt level to 1         ei       : Interrupt enable (iff=0)         set       0x0, (hsc0ct)       : Start UNIT receiving         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .       .         .	ldw	(hsc0md), 0x2c43	; System clock enable, baud rate selection: fsys/8
ld (intes1hsc), 0x10 ; Set INTHSC interrupt level to 1 ei ; Interrupt enable (iff=0) set 0x0, (hsc0ct) ; Start UNIT receiving			; LSB first, synchronous clock edge setting: set to Rising
ld (intes1hsc), 0x10 ; Set INTHSC interrupt level to 1 ei ; Interrupt enable (iff=0) set 0x0, (hsc0ct) ; Start UNIT receiving			
ei ; Interrupt enable (iff=0) set 0x0, (hsc0ct) ; Start UNIT receiving HSCOCT Write pulse HSCLK output HSSL input INTHSC Interrupt signal	ld	(hsc0ie), 0x01	; Set to RFR0 interrupt enable
set 0x0, (hsc0ct) HSC0CT Write pulse HSCLK output HSSI input INTHSC Interrupt signal	ld	(intes1hsc), 0x10	; Set INTHSC interrupt level to 1
HSCOCT Write pulse HSCLK output HSSI/input INTHSC Interrupt signal	ei		; Interrupt enable (iff=0)
HSCOCT Write pulse HSCLK output HSSI input INTHSC Interrupt signal			
Write pulse HSCLK output HSSI input INTHSC Interrupt signal	set	0x0, (hsc0ct)	Start UNIT receiving
Write pulse HSCLK output HSSI input INTHSC Interrupt signal	•		
Write pulse HSCLK output HSSI input INTHSC Interrupt signal	•		
Write pulse HSCLK output HSSI input INTHSC Interrupt signal	•		
HSSLinput INTHSC Interrupt signal			
INTHSC	HSCLK	output	
Interrupt signal	HSSI	put	
	INTHS	c 🗸 🦷	
	Interru	pt signal ———	
		~ · · · · · · · · · · · · · · · · · · ·	
HSCORD data XX X 0x3A	HSCOF	RD data	XX X 0x3A
			>
Figure 3.11.27 Example of UNIT receiving	$\langle \rangle$	Figure 3.11.2	27 Example of UNIT receiving

(3) Sequential transmission

This example shows case of transmission is executed by following setting, and it is executed 2byte sequential transmission.


UNIT:	8bit	
LSB fir	rst	$\sim$
Baud r	ate selectio	n: f _{SYS} /8
		x edge: Rising
Setting	<u>g example</u>	
ld	(pffc), 0x38	; Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK
ld	(pfcr), 0x28	; port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK
ld	(hscsel), 0x0	1 ; port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK
ldw	(hsc0ct), 0x	0040 ··· Sat data langth to Shit
ldw	(hsc0md), (	; LSB first, synchronous clock edge setting: set to Rising
		, LOD HISE, Synchronous clock edge setting. Set to rushig
loop1:		; Confirm that transmission data register doesn't have no transmission data
bit	1, (hsc0st)	; <rfw0>=1 ?</rfw0>
jr	z, loop1	
ld	(hsc0td), 0x3	Ba Write transmission data of first byte and start transmission
loop2		; Confirm that transmission data register doesn't have no-transmission data
bit	1, (hsc0st)	; <rfw0>=1?</rfw0>
jr	z, loop2	
ld	(hsc0td), 0x	5 ; Write transmission data of second byte
loop3:		; Confirm that transmission data register doesn't have no-transmission data
bit	3, (hsc0st)	; $\langle \text{TEND0} \rangle = 1$ ?
jr	z, loop3	
$\sim \gamma$	~	; Finish transmission
		$\sim$
$\bigcirc$		$\mathcal{A}($
HSC0TD Write puls		
$\sim$	$\frown$	
HSCLK ou	utput	
HSSO out	tput	
INTHSC Interrupt		

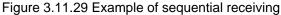

Note: Timing of this figure is an example. There is also that transmission interbal between first byte and sescond byte generate. (High baud rate etc.)

Figure 3.11.28 Example of sequential transmission

### (4) Sequential receiving

This example shows case of receiving is executed by following setting, and it is executed 2byte sequential receiving.





(5) Sequeintial Transmission by using micro DMA

This example shows case of sequential transmission of 4byte is executed at using micro DMA by following setting.

UNIT: 8bit LSB first Baud rate : fsys/8 Synchronous clock edge: Rising Setting example Main routine ;-- micro DMA setting -ld (dma0v), 0x1D ; Set micro DMA0 to INTHSC ld wa, 0x0003 ; Set number of micro DMA transmission to that number -1 (third time) ldc dmac0, wa ld a. 0x08 ; micro DMA mode setting: source INC mode, 1 byte transfer ldc dmam0, a ld xwa, 0x806000 ; Set source address ldc dmas0, xwa ; Set source address to HSCOTD register xwa, 0xC10 ld ldc dmad0, xwa ;-- HSC setting --; Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK (pffc), 0x38 ld ; Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK (pfcr), 0x28 ld ld (hscsel), 0x01 ; Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK ldw (hsc0ct), 0x0040 ; Set data length to 8bit ldw (hsc0md), 0x2c43) ; System clock enable, baud rate selection: fsys/8 ; LSB first, synchronous clock edge setting: set to Rising (hsc0ie), 0x00 ld ; Set to interrupt disable 1, (hsc0et+1); Set micro DMA operation by RFW0 to enable set 1d) (intetc01), 0x01 Set INTTC0 interrupt level to 1 ; Interrupt enable (iff=0) ei loop1: Confirm that transmission data register doesn't have no transmission data ; <RFW0>=1 ? bit 1, (hsc0st)z, loop1 ir ld (hsc0td), 0x3a ; Write Transmission data and Start transmission Interrupt routine (INTTC0) loop2: bit 1, (hsc0st) ; <RFW0> = 1 ? z, loop2 jr bit 3, (hsc0st) ; <TEND0> = 1 ? z, loop2 jr nop

(6) UNIT receiving by using micro DMA

This example shows case of UNIT receiving sequentially 4byte is executed at using micro DMA by following setting.

UNIT: 8bit LSB first Baud rate : f_{SYS}/8 Synchronous clock edge: Rising

### Setting example

### Main routine

;-- micro DMA setting --

- ld (dma0v), 0x1D
- ld wa, 0x0003
- ldc dmac0, wa
- ld a, 0x00
- ldc dmam0, a
- ld xwa, 0xC12
- ldc dmas0, xwa
- ld xwa, 0x807000
- ldc dmad0, xwa

;-- HSC setting --

- ld (pffc), 0x38
- ld (pfcr), 0x28
- ld (hscsel), 0x01

ldw (hsc0ct), 0x0040 ldw (hsc0md), 0x2c43

# ld (hsc0ie), 0x00

- set 0, (hsc0ct+1)
- ld (intetc01), 0x01
- ei

set 0x0, (hsc0ct)

# Interrupt routine (INTTCO)

### loop2:

- bit 0, (hsc0st)
- jr z, loop2
- res 0, (hsc0ct)
- ld a, (hsc0rd)
- Nop

; micro DMA mode setting: source INC mode, 1 byte transfer

; Set number of micro DMA transmission to that number -1 (third time)

; Set source address to HSCORD register

; Set source address

; Set micro DMA0 to INTHSC

; Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK ; Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK ; Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK

### ; Set data length to 8bit

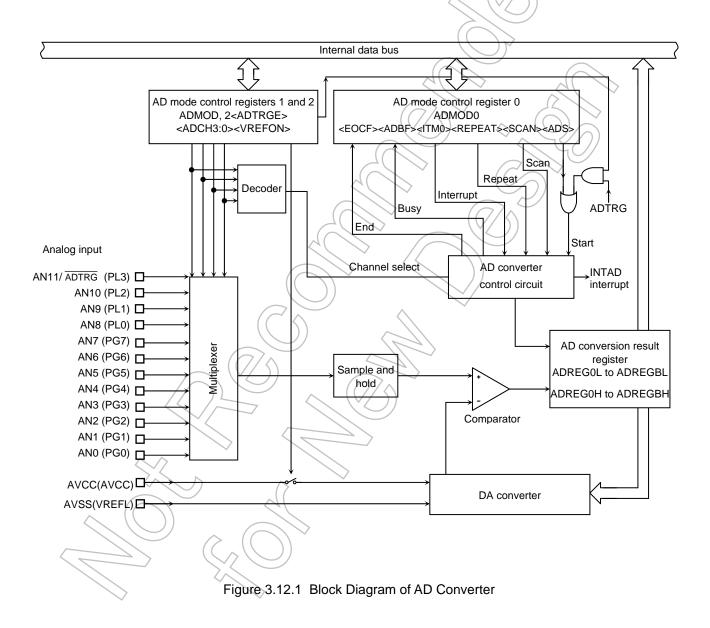
; System clock enable, baud rate selection: fsys/8 ; LSB first, synchronous clock edge setting: set to Rising

Set to interrupt disable
Set micro DMA operation by RFR0 to enable
Set INTTC0 interrupt level to 1
Interrupt enable (iff=0)

; Start UNIT receiving

; Wait receiving finish case of UNIT receiving ; <RFR0> = 1 ?

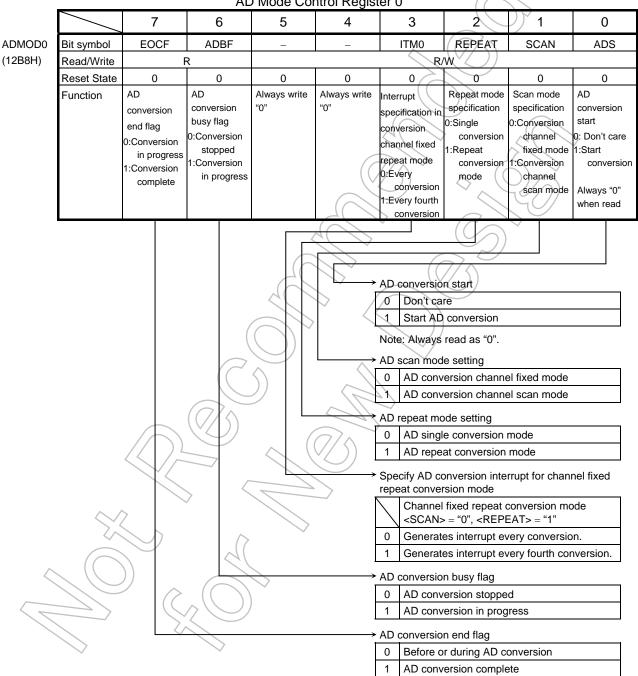
; UNIT receiving disable


; Read last receiving data

# 3.12 Analog/Digital Converter

The TMP92FD23A incorporates a 10-bit successive approximation type analog/digital converter (AD converter) with 12-channel analog input.

Figure 3.12.1 is a block diagram of the AD converter. The 12-channel analog input pins (AN0 to AN11) are shared with the input only port (Port G and Port L) so they can be used as an input port.


Note: When IDLE2, IDLE1 or STOP mode is selected, as to reduce the power, with some timings the system may enter a stand-by mode even though the internal comparator is still enabled. Therefore be sure to check that AD converter operations are halted before a HALT instruction is executed.



# 3.12.1 Analog/Digital Converter Registers

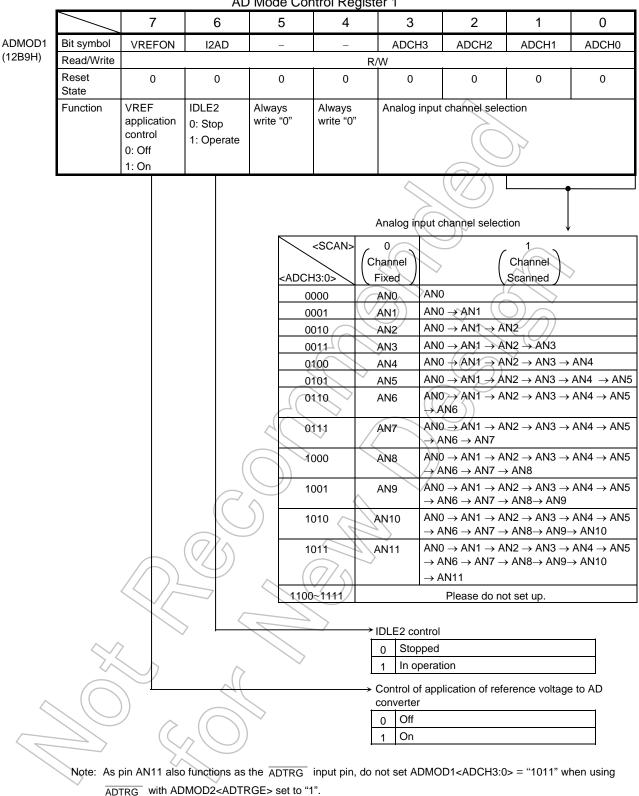

The AD converter is controlled by the three AD mode control registers: ADMOD0, ADMOD1 and ADMOD2. The 24 AD conversion data result registers (ADREG0H/L to ADREGBH/L) store the results of AD conversion.

Figure 3.12.2 to Figure 3.12.10 show the registers related to the AD converter.



AD Mode Control Register 0

Figure 3.12.2 Register for AD Converter



AD Mode Control Register 1

Figure 3.12.3 Register for AD Converter

					li ol Registe				
		7	6	5	4	3	2	1	0
ADMOD2	Bit symbol	-	_	-	_	-	_	-	ADTRGE
(12BAH)	Read/Write		ı — — — — — — — — — — — — — — — — — — —	I	R/		I	ı — — — — — — — — — — — — — — — — — — —	
	Reset State	0	0	0	0	0	0	0	0
	Function	Always write "0"	Always write "0"	Always write "0"	Always write "0"	Always write "0"	Always write "0"	Always write "0"	AD external
		inite e	inite e		into o				trigger start control
								$\sim$	0: Disable
								$\mathcal{O}^{*}$	1: Enable
						~	(0/s)		
					A	D conversion	start control I	by external tri	gger
						ADTRG input)			
						0 Disabled	)r		
						1 Enabled			
					4	46 >>		$\mathcal{A}(\mathcal{N})$	>
			<b>-</b> ; <b>•</b> •				5	$\leq$	
			Figure 3.1	2.4 Regis	ter for AD C	onverter	$\diamond$ (C		
								401	
					$ \leq ( ) $	>	R	$\mathbf{S}$	
				<			$(\bigcirc)$		
						G			
				$\square$	$\searrow$		$\langle \rangle$		
				$\langle \rangle$		$\sim$	$\bigcirc$		
					×				
			((	$\sim \sim$		> ))			
				$\bigcirc$					
			(C)	$\sim$	$\langle \rangle$	*			
				))					
		/				$\geq$			
			(//5)						
		$  \rangle \rangle$		$\sim$ ((	7/\$				
	<				$\bigcirc$				
			_	$ \longrightarrow $					
		$\sim$		$ \leq $					
	$\sim$								
		$\searrow$	$\wedge$	$\sim$					
		$\sim$	21						
$\sim$	(())	)		>					
	$\langle \langle \bigcirc \rangle$		( )	$\sim$					
$\langle \in$			$\langle \bigvee \rangle$						
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\overline{)}$						
	\searrow		\searrow						

		7	6	5	4	3	2	1	0			
ADREG0L	Bit symbol	ADR01	ADR00	/	/		/		ADR0RF			
(12A0H)	Read/Write	F	R		/				R			
	Reset State	Unde	fined						0			
	Function	Stores low							AD conversion			
		AD convers	sion result.						data storage flag			
								7(1:Conversion			
							$\overline{\Omega}$		result			
						\sim	$\left(\bigvee \right)$		stored			
			AD Con	version Re	sult Registe	er 0 High						
		7	6	5	4	3)	1	0			
ADREG0H	Bit symbol	ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02			
(12A1H)	Read/Write				F	K V		20	\geq			
	Reset State				Unde	fined		2				
	Function Stores upper 8 bits of AD conversion result.											
			AD Cor	version Re	sult Regist	er 1 Low						
		7	6	5	4	3	(2)	1	0			
ADREG1L	Bit symbol	ADR11	ADR10		\checkmark		\mathbb{Z}		ADR1RF			
(12A2H)	Read/Write	F			\swarrow	t	7/4	\sim	R			
	Reset State	Unde				$\sqrt{2}$	$\langle \downarrow \rangle$		0			
	Function	Stores low	er 2 bits of		\sim /				AD conversion			
		AD convers	sion result.		\sim	\geq))			data storage			
			(())					flag 1:Conversion			
					~				result			
									stored			
			AD Con) Version Re	sult Registe	er 1 High						
			6)	5	4	3	2	1	0			
					$\overline{7/A}$							
(12A3H)	Bit symbol	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12			
(,)	Read/Write Reset State			\rightarrow	F							
	Function	te Undefined Stores upper 8 bits of AD conversion result.										
		>		510100 0			in result.					
		$ \land \land$	\wedge	\sim								
		\sim	9 8	765	4 3 2	2 1 0						
\sim	Cha conv	nnel x resion result										
			ADREGxH			\downarrow		ADREG	GxL			
		- Zr	7 6 5	4 3 2	2 1 0	76	5 4 3	2 1 0				
		~]			
					Pito F t	o 1 are alway	s road as "1"	Y				
						-		lorogo flog				
							ersion data st					
							rsion result is		-			
					"1". Wh	en either of th	e registers (A	DREGxH, AD	DREGXL) is			

AD Conversion Result Register 0 Low

Figure 3.12.5 Register for AD Converter

read, the flag is cleared to "0".

				IVEISION RE	suit Regist							
		7	6	5	4	3	2	1	0			
ADREG2L	Bit symbol	ADR21	ADR20			/			ADR2RF			
(12A4H)	Read/Write	F	R						R			
	Reset State	Unde	fined		/				0			
	Function	Stores low							AD conversion			
		AD convers	sion result.						data storage			
) 2	flag 1:Conversion			
								\mathcal{D}	result			
							$\left(\frac{1}{2} \right)$		stored			
	<		AD Cor	version Re	sult Regist	er 2 High		1				
		7	6	5	4	3))^2	1	0			
ADREG2H	Bit symbol	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22			
(12A5H)	Read/Write				F	$\langle \langle \rangle \rangle$		71	\geq			
	Reset State				Unde	fined		2				
	Function	Stores upper 8 bits of AD conversion result.										
	AD Conversion Result Register 3 Low											
		7	6	5	4	3	(2)	1	0			
ADREG3L	Bit symbol					~ _	\mathcal{S}	-	ADR3RF			
(12A6H)	Read/Write	ADR31 ADR30 R			\sim		TA TA		R			
	Reset State	Undefined				\searrow	\rightarrow		0			
	Function	Stores lower 2 bits of		$\langle \langle \rangle$	>		\geq \sim		AD conversion			
		AD conversion result.							data storage			
			(\bigcirc		$\langle \rangle$			flag			
			(\bigcirc					1: Conversion result			
			R	\sim	\land	Ţ			stored			
))								
			AD Cor	version Re	sult Regist	er 3 High						
		7	((/6))	5	4	3	2	1	0			
ADREG3H	Bit symbol	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32			
(12A7H)	Read/Write			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	////		7.21101	7.21.00	7.01.02			
	Reset State	R Undefined										
	Function	Stores upper 8 bits of AD conversion result.										
			\sim	\sim								
			9 8	7 6 5	4 3 2	2 1 0						
~	Chan conve	ersion result										
	$) \bigcirc$)										
		ADREGXH ADREGXL										
\sim			7 6 5	4 3 2	4 3 2 1 0 7 6 5 4 3 2 1 0							
	$\langle \rangle$	\sim					\times					
	\sim		\sim			μų			<u> </u>			
								r				
						o 1 are always						
						the AD conve						
					When t	the AD conver	sion result is	stored, the fl	ag is set to			

AD Conversion Result Register 2 Low

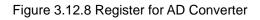
Figure 3.12.6 Register for AD Converter

"1". When either of the registers (ADREGxH, ADREGxL) is

read, the flag is cleared to "0".

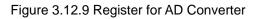
1	-				ount regiot							
		7	6	5	4	3	2	1	0			
ADREG4L	Bit symbol	ADR41	ADR40				/		ADR0RF			
(12A8H)	Read/Write	R				\geq			R			
	Reset State	Unde							0			
	Function		er 2 bits of				\sim		AD conversion data storage			
		AD conver	sion result.						flag			
									1:Conversion result			
								2	stored			
			AD Con	version Re	sult Registe	er 4 High						
		7	6	5	4	3	2	1	0			
ADREG4H	Bit symbol	ADR49	ADR48	ADR47	ADR46	ADR45	ADR44	ADR43	ADR42			
(12A9H)	Read/Write			I	F							
	Reset State		Undefined									
	Function		Stores upper 8 bits of AD conversion result.									
						())	\diamond (() S)				
				version Re				74//				
		7	6	5	4	> 3	2) Y	0			
ADREG5L	Bit symbol	ADR51	ADR50				t		ADR5RF			
(12AAH)	Read/Write	R			\square	\rightarrow			R			
	Reset State	Unde					$\langle \rangle$		0			
	Function	AD conver	er 2 bits of sion result.	20	> /	\frown	\sum		AD conversion storage flag			
					ĩ (1:Conversion			
			(\bigcirc		$\langle \rangle \rangle \rangle$			result stored			
			\bigcirc	\bigcirc								
			AD Con	version Re	sult Registe	er 5 High						
		7	6	5	4	3	2	1	0			
ADREG5H	Bit symbol	ADR59	ADR58	ADR57	ADR56	ADR55	ADR54	ADR53	ADR52			
(12ABH)	Read/Write											
	Reset State	Undefined										
	Function	Stores upper 8 bits of AD conversion result.										
			>	$\langle - \rangle$	\geq							
	\sim	>	98	7 6 5	4 3 2	2 1 0						
	Cha	nnel x version result	\land									
\sim	$\langle (() \rangle$))	ADREGxH	\searrow		\downarrow		ADREG	ыхL			
			7 6 5	4 3 2	1 0	76	5 4 3	2 1 0				
$\langle \langle \langle \rangle \rangle$	$ \rightarrow $	$(\ (\)$	$\gamma \vee \downarrow$				X X X					
		7	\mathcal{H}			L L L			J			
	\searrow		\searrow		 Bits 5 to 	o 1 are alway	s read as "1".					
						•		torage flag </td <td>ADRxRF>.</td>	ADRxRF>.			
								stored, the fla				
								DREGxH, AD	-			
						ne flag is clea						
					-	-						

AD Conversion Result Register 4 Low



					built Regist						
		7	6	5	4	3	2	1	0		
ADREG6L	Bit symbol	ADR61	ADR60					/	ADR6RF		
(12ACH)	Read/Write	F	2			/		/	R		
	Reset State	Unde	fined	/	/			/	0		
	Function	Stores low	er 2 bits of						AD conversion		
		AD conver	sion result.						data storage		
) 2	flag 1: Conversion		
								<u>ک</u>	result		
							$\left(\frac{1}{2} \right)$		stored		
						or C L lieto					
		7	AD Cor	version Re 5	4	er 6 High)/2	1	0		
								_			
ADREG6H (12ADH)		ADR69	ADR68	ADR67	ADR66	ADR65	ADR64	ADR63	ADR62		
(12,1211)	Read/Write Reset State					~ _ ~			\checkmark		
		Ondonned									
	Function Stores upper 8 bits of AD conversion result.										
			AD Cor	version Re	sult Regist	er 7 Low		3			
		7	6	5	4	3	(2)	1	0		
ADREG7L	Bit symbol	ADR71	ADR70				S		ADR7RF		
(12AEH)	Read/Write	R			\swarrow	~ 10	774		R		
	Reset State	Undefined				>	Θ	//	0		
	Function	Stores lower 2 bits of			> 7	\frown			AD conversion		
		AD conversion result.				$\langle \rangle$			data storage		
			(()					flag 1: Conversion		
				\bigcirc					result		
			(\square				stored		
))							
			AD Cor	version Re	sult Regist	er 7 High			-1		
		7	((6))	5	4	3	2	1	0		
	Bit symbol	ADR79	ADR78	ADR77	ADR76	ADR75	ADR74	ADR73	ADR72		
(12AFH)	Read/Write				F	२					
	Reset State	Undefined									
	Function		<u>} `</u>	Stores u	pper 8 bits of	AD conversion	n result.				
		7									
	$\langle \wedge \rangle$	\searrow		7 0 5	4 0 4						
		inel x	9 8	7 6 5	4 3 2	2 1 0					
\langle	conv	ersion result									
			ADREGXH					ADREG			
$\langle \langle \langle \rangle \rangle$	$ \rightarrow $	$(\)$	$\gamma \setminus \bigcirc$	¥		۷					
		7	7 6 5	4 3 2	2 1 0		$\frac{5}{4}$ $\frac{4}{3}$				
	\searrow						$\times \times \times$	XX			
									フ		
					Bits 5 t	o 1 are always	read as "1".				
						the AD conve		orage flag <	ADRxRF>.		
						the AD conver					
								.,	5		

AD Conversion Result Register 6 Low


read, the flag is cleared to "0".

"1". When either of the registers (ADREGxH, ADREGxL) is


			18 66		our regio	0.02011					
		7	6	5	4	3	2	1	0		
ADREG8L	Bit symbol	ADR81	ADR80						ADR8RF		
(12B0H)	Read/Write	F	२						R		
	Reset State	Unde	fined						0		
	Function	Stores low	er 2 bits of				\sim		AD conversion		
		AD conver	sion result.						data storage flag		
							$(\cap$		1: Conversion		
								$\mathcal{D}\mathcal{M}$	result stored		
							$\widehat{(\alpha / \wedge)}$		310160		
			AD Cor	version Re	sult Reaist	er 8 Hiah	(\vee)				
		7	6	5	4	3	2	1	0		
ADREG8H	Bit symbol	ADR89	ADR88	ADR87	ADR86	ADR85	ADR84	ADR83	ADR82		
(12B1H)	Read/Write	//BI(00	ABItoo	//DITO/	F		, DIG		//DI(02		
	Reset State				Unde	AI C	>	7)5	\geq		
	Function			Stores u	pper 8 bits of	AD conversio	n result.	\mathbb{Z}			
					((/	(/ 5)		$\sum (C$			
			AD Cor	nversion Re	sult Regist	er 9 Low		$\overline{\langle U \rangle}$			
		7	6	5	4	> 3	2	S Y	0		
ADREG9L	Bit symbol	ADR91	ADR90		\mathcal{H}		+	\sim	ADR9RF		
(12B2H)	Read/Write	F	-	\searrow	X	/	\sim		R		
	Reset State	Unde	fined	4	$\frac{1}{2}$	4	7		0		
	Function	Stores lower 2 bits of					\bigcirc		AD conversion		
		AD conver	sion result.		~ //				storage flag 1: Conversion		
			(\bigcirc					result		
				$\left(\bigcirc \right)$					stored		
				nversion Re		or Q High					
		7	6	5	4	3	2	1	0		
ADREG9H	Bit symbol										
(12B3H)	Read/Write	ADR33	ADR99 ADR98 ADR97 ADR96 ADR95 ADR94 ADR93 ADR92								
	Reset State Undefined										
	Function			Stores u	pper 8 bits of		n result.				
					\geq						
	~ ^										
	Cha	nnel x	98	7 6 5	4 3 2	2 1 0					
	conv	version result	$\left(\right)$								
~)	ADREGXH					ADREG	.vl		
\leq	$> \bigcirc$))		× *		*					
		$\left(\right)$	7 6 5	4 3 2	2 1 0	7 6	5 4 3	2 1 0	1		
$\langle \langle \rangle$		\sim	<u>(P</u>	, 				$\Delta \Delta$	ļ		
	$\langle \rangle$	\checkmark				,					
	\sim		~			o 1 are alway					
						the AD conve					
						the AD conve			-		
						en either of th		DREGxH, AD	REGxL) is		
					read, th	ne flag is clea	red to "0".				

		7	6	5	4	3	2	1	0
ADREGAL	Bit symbol	ADRA1	ADRA0	/	/	/	/		ADRARF
(12B4H)	Read/Write	F	2	/	/	/			R
	Reset State	Unde	fined						0
	Function	Stores low	er 2 bits of						AD conversion
		AD conver	sion result.						data storage flag
)7	1: Conversion
									result
						\sim	$\left(\left(\right) \right)$		stored
			AD Con	version Re	sult Reaist	er A High			
		7	6	5	4	3)/2	1	0
ADREGAH	Bit symbol	ADRA9	ADRA8	ADRA7	ADRA6	ADRA5	ADRA4	ADRA3	ADRA2
(12B5H)	Read/Write	ADIAS	ADIAO	ADIXA	F				
	Reset State				Unde			2	~
	Function			Stores u	pper 8 bits of	7/ ^ ~	n result.		
						\bigcirc		~UN)	
			AD Con	version Re	sult Regist	er B Low			
		7	6	5	4	3	(2)	1	0
ADREGBL	Bit symbol	ADRB1	ADRB0		Ń	\backslash	\sim		ADRBRF
(12B6H)	Read/Write	F		4	X	\mathcal{A}	7/4		R
	Reset State	Unde	fined	Y		$\int_{-\infty}^{\infty}$	$\frac{1}{2}$		0
	Function	Stores low	er 2 bits of		\rightarrow /				AD conversion
		AD conver	sion result.	\bigcirc		$\langle \rangle \rangle$			data storage flag
			(()					1: Conversion
					~				result
			- (C						stored
			AD Con	version Re		er B High			
		7	6	5	4	a⊳b riigii 3	2	1	0
ADREGBH	Pit oumbol							-	
аркедын (12B7H)	Bit symbol Read/Write	ADRB9	ADRB8	ADRB7	ADRB6	ADRB5	ADRB4	ADRB3	ADRB2
· · ·	Reset State				F Unde				
	Function		,	Stores II	pper 8 bits of		n result		
	~	\rangle	7				in result.		
			\sim	\searrow					
			9 8	7 6 5	4 3 2	2 1 0			
\sim		nnel x ersion result							
	$\langle \langle C \rangle$								
			ADREGxH	↓ ↓		\checkmark		ADREG	xL
		\sim	7 6 5	4 3 2	2 1 0	76	5 4 3	2 1 0	-
	\searrow						XIXIX		
				· · ·					フ
					• Bits 5 t	o 1 are always	s read as "1".		
 Bit0 is the AD conversion data storage flag <adrxrf< li=""> </adrxrf<>									
					When t	he AD conver	rsion result is	stored, the fla	ng is set to
					"1". Wh	en either of th	e registers (A	DREGxH, AD	REGxL) is

AD Conversion Result Register A Low

read, the flag is cleared to "0".

- 3.12.2 Description of Operation
 - (1) Analog reference voltage

A high level analog reference voltage is applied to the AVCC pin; a low level analog reference voltage is applied to the AVSS pin. To perform AD conversion, the reference voltage, the difference between AVCC and AVSS, is divided by 1024 using string resistance. The result of the division is then compared with the analog input voltage.

To turn off the switch between AVCC and AVSS, write a 0 to ADMOD1 <VREFON> in AD mode control register 1. To start AD conversion in the OFF state, first write a "1" to ADMOD1<VREFON>, wait 3 μ s until the internal reference voltage stabilizes (this is not related to fc), then set ADMOD0<ADS> to "1".

(2) Analog input channel selection

The analog input channel selection varies depends on the operation mode of the AD converter.

- In analog input channel fixed mode (ADMOD0<SCAN> = "0")
 Setting ADMOD1<ADCH1:0> selects one of the input pins AN0 to AN3 as the input channel.
- In analog input channel scan mode (ADMOD0<SCAN> = "1") Setting ADMOD1<ADCH1:0> selects one of the four scan modes.

Table 3.12.1 illustrates analog input channel selection in each operation mode.

On a reset, ADMOD0<SCAN> is set to 0 and ADMOD1<ADCH3:0> is initialized to "00". Thus pin AN0 is selected as the fixed input channel. Pins not used as analog input channels can be used as standard input port pins.

	Analog input o	
<adch3:0></adch3:0>	Channel Fixed <scan> = "0"</scan>	Channel Scan <scan> = "1"</scan>
0000	AN0	ANO
0001	AN1	$ANO \rightarrow AN1$
0010	AN2	$AN0 \rightarrow AN1 \rightarrow AN2$
0011	AN3	$AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$
0100	AN4	$AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3 \rightarrow AN4$
0101	AN5	$AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$ $\rightarrow AN4 \rightarrow AN5$
0110	AN6	$\begin{array}{l} AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3 \\ \rightarrow AN4 \rightarrow AN5 \rightarrow AN6 \end{array}$
0111	AN7	$\begin{array}{l} AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3 \\ \rightarrow AN4 \rightarrow AN5 \rightarrow AN6 \rightarrow AN7 \end{array}$
	AN8	$\begin{array}{l} AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3 \\ \rightarrow AN4 \rightarrow AN5 \rightarrow AN6 \rightarrow AN7 \\ \rightarrow AN8 \end{array}$
1001	AN9	$\begin{array}{l} AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3 \\ \rightarrow AN4 \rightarrow AN5 \rightarrow AN6 \rightarrow AN7 \\ \rightarrow AN8 \rightarrow AN9 \end{array}$
1010	AN10	$\begin{array}{l} AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3 \\ \rightarrow AN4 \rightarrow AN5 \rightarrow AN6 \rightarrow AN7 \\ \rightarrow AN8 \rightarrow AN9 \rightarrow AN10 \end{array}$
1011	AN11	$\begin{array}{l} AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3 \\ \rightarrow AN4 \rightarrow AN5 \rightarrow AN6 \rightarrow AN7 \\ \rightarrow AN8 \rightarrow AN9 \rightarrow AN10 \rightarrow AN11 \end{array}$

Table 3.12	1	Anglog	Innut	Channel	Selection
Table 5.12	· V.	Allaloy	input	Channel	Selection

(3) Starting AD conversion

To start AD conversion, write a "1" to ADMOD0<ADS> in AD mode control register "0" or ADMOD2<ADTRGE> in AD mode control register 2, and input falling edge on $\overline{\text{ADTRG}}$ pin. When AD conversion starts, the AD conversion busy flag ADMOD0<ADBF> will be set to "1", indicating that AD conversion is in progress.

During AD conversion, a falling edge input on the ADTRG pin will be ignored.

(4) AD conversion modes and the AD conversion end interrupt

The four AD conversion modes are:

- Channel fixed single conversion mode
- Channel scan single conversion mode
- Channel fixed repeat conversion mode
- Channel scan repeat conversion mode

The ADMOD0<REPEAT> and ADMOD0<SCAN> settings in AD mode control register 0 determine the AD mode setting.

Completion of AD conversion triggers an INTAD AD conversion end interrupt request. Also, ADMOD0<EOCF> will be set to "1" to indicate that AD conversion has been completed.

1. Channel fixed single conversion mode


Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "00" selects conversion channel fixed single conversion mode.

In this mode data on one specified channel is converted once only. When the conversion has been completed, the ADMOD0<EOCF> flag is set to "1", ADMOD0<ADBF> is cleared to "0", and an INTAD interrupt request is generated.

2. Channel scan single conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "01" selects conversion channel scan single conversion mode.

In this mode data on the specified scan channels is converted once only. When scan conversion has been completed, ADMOD0<EOCF> is set to "1", ADMOD0<ADBF> is cleared to "0", and an INTAD interrupt request is generated.

3. Channel fixed repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "10" selects conversion channel fixed repeat conversion mode.

In this mode data on one specified channel is converted repeatedly. When conversion has been completed, ADMOD0<EOCF> is set to "1" and ADMOD0<ADBF> is not cleared to "0" but held at "1". INTAD interrupt request generation timing is determined by the setting of ADMOD0<ITM0>.

Clearing <ITM0> to "0" generates an interrupt request every time an AD conversion is completed.

Setting <ITM0> to "1" generates an interrupt request on completion of every fourth conversion.

4. Channel scan repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "11" selects conversion channel scan repeat conversion mode.

In this mode data on the specified scan channels is converted repeatedly. When each scan conversion has been completed, ADMOD0<EOCF> is set to "1" and an INTAD interrupt request is generated. ADMOD0<ADBF> is not cleared to "0" but held at "1".

To stop conversion in a repeat conversion mode (e.g., in cases 3. and 4.), write "0" to ADMODO<REPEAT>. After the current conversion has been completed, the repeat conversion mode terminates and ADMODO<ADBF> is cleared to "0".

Switching to a halt state (IDLE2 mode with ADMOD1<I2AD> cleared to "0", IDLE1 mode or STOP mode) immediately stops operation of the AD converter even when AD conversion is still in progress. In repeat conversion modes (e.g., in cases 3. and 4.), when the halt is released, conversion restarts from the beginning. In single conversion modes (e.g., in cases 1. and 2.), conversion does not restart when the halt is released (the converter remains stopped).

Table 3.12.2 shows the relationship between the AD conversion modes and interrupt requests.

	Mode	Interrupt Request	ADMOD0					
	Midde	Generation	<itm0></itm0>	<repeat></repeat>	<scan></scan>			
	Channel fixed single conversion mode	After completion of conversion	х	0	0			
///	Channel scan single conversion mode	After completion of scan conversion	х	0	1			
_	Channel fixed repeat	Every conversion	0	4	0			
	conversion mode	Every forth conversion	1	I	0			
/	Channel scan repeat conversion mode	After completion of every scan conversion	Х	1	1			

Table 3.12.2 Relationship between AD Conversion Modes and Interrupt Requests

X: Don't care

(5) AD conversion time

 $84 \text{ states} (4.2 \mu \text{s at } \text{fSYS} = 20 \text{ MHz})$ are required for the AD conversion of one channel.

(6) Storing and reading the results of AD conversion

The AD conversion data upper and lower registers (ADREG0H/L to ADREGBH/L) store the results of AD conversion. (ADREG0H/L to ADREGBH/L are read-only registers.)

In channel fixed repeat conversion mode, the conversion results are stored successively in registers from ADREG0H/L to ADREGBH/L. In other modes from AN0 to AN11 conversion results are stored in from ADREG0H/L to ADREGBH/L respectively.

Table 3.12.3 shows the correspondence between the analog input channels and the registers which are used to hold the results of AD conversion.

Table 3.12.3 Correspondence between Analog Input Channels and AD Conversion Result Registers

Analog Input	AD Conversion	n Result Register
(Port G/Port L)	Conversion Modes Other than at Right	Channel Fixed Repeat Conversion Mode ADMOD0 <itm0> = "1"</itm0>
AN0	ADREG0H/L	
AN1	ADREG1H/L	
AN2	ADREG2H/L	
AN3	ADREG3H/L	ADREGOH/L 🥿
AN4	ADREG4H/L	
AN5	ADREG5H/L	ADREG1H/L
AN6	ADREG6H/L	\checkmark
AN7	ADREG7H/L	ADREG2H/L
AN8	ADREG8H/L	\downarrow
AN9	ADREG9H/L	ADREG3H/L
AN10 (ADREGAH/L	
AN11		\sim

<ADRxRF>, bit0 of the AD conversion data lower register, is used as the AD conversion data storage flag. The storage flag indicates whether the AD conversion result register has been read or not. When a conversion result is stored in the AD conversion result register, the flag is set to 1. When either of the AD conversion result registers (ADREGxH or ADREGxL) is read, the flag is cleared to "0".

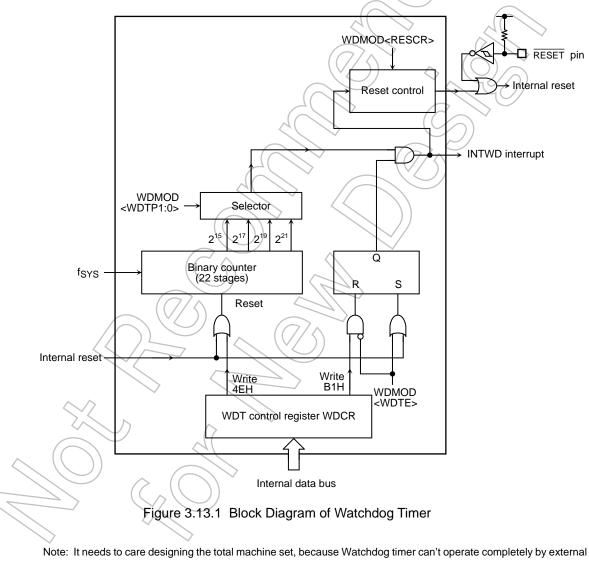
Reading the AD conversion result also clears the AD conversion end flag ADMOD0<EOCF> to "0".

Setting example:

1. Convert the analog input voltage on the AN3 pin and write the result, to memory address 2800H using the AD interrupt (INTAD) processing routine.

```
Main routine:
                                             0
                   7
                      6
                          5
                              4
                                  3
                                      2
                                         1
                                                    Enable INTAD and set it to interrupt level 4.
INTEPAD
                   х
                                  Х
                                      1
                                         0
                                             0
ADMOD1
                   1
                       1
                          0
                              0
                                  0
                                      0
                                         1
                                             1
                                                    Set pin AN3 to be the analog input channel.
ADMOD0
                      Х
                          0
                              0
                                  0
                                     0
                                         0
                                                    Start conversion in channel fixed single conversion mode.
                  Х
                                             1
Interrupt routine processing example:
                                                    Read value of ADREG3L and ADREG3H into 16-bits
WA
              ← ADREG3H/L
                                                    general-purpose register WA.
                                                    Shift contents read into WA six times to right and zero fill
WA
                  >>6
                                                    upper bits.
(2800H)
                                                    Write contents of WA to memory address 2800H.
                 WA
               ←
2. This example repeatedly converts the analog input voltages on the three pins AN0, AN1 and AN2, using channel
   scan repeat conversion mode.
                                                    Disable INTAD.
INTEPAD
                                         0
                                             0
                                  Х
                                      0
                                                    Set pins AN0 to AN2 to be the analog input channels.
ADMOD1
                          0
                              0
                                  0
                                      0
                                         1
                                             0
                   1
                      1
              ←
ADMOD0
                              0
                                                    Start conversion in channel scan repeat conversion mode.
                  Х
                      Х
                          0
                                  0
              ←
                                      1
                                         1
                                             1
X: Don't care, -: No change
```

3.13 Watchdog Timer (Runaway detection timer)


The TMP92FD23A contains a watchdog timer of runaway detecting.

The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU of the malfunction.

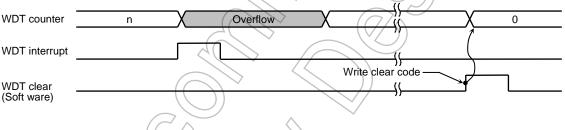
Connecting the watchdog timer output to the reset pin internally forces a reset. (The level of external RESET pin is not changed.)

3.13.1 Configuration

Figure 3.13.1 is a block diagram of the watchdog timer (WDT).

noise.

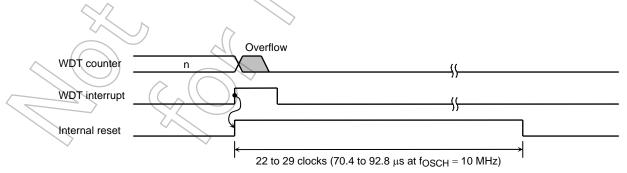
3.13.2 Operation

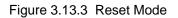

The watchdog timer generates an INTWD interrupt when the detection time set in the WDMOD<WDTP1:0> has elapsed. The watchdog timer must be cleared "0" in software before an INTWD interrupt will be generated. If the CPU malfunctions (e.g., if runaway occurs) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter will overflow and an INTWD interrupt will be generated. The CPU will detect malfunction (runaway) due to the INTWD interrupt and in this case it is possible to return to the CPU to normal operation by means of an anti-malfunction program.

The watchdog timer begins operating immediately on release of the watchdog timer reset.

The watchdog timer is halted in IDLE1 or STOP mode.

When the device is in IDLE2 mode, the operation of WDT depends on the WDMOD<I2WDT> setting. Ensure that WDMOD<I2WDT> is set before the device enters IDLE2 mode.


The watchdog timer consists of a 22-stage binary counter which uses the clock fsys as the input clock. The binary counter can output 2^{15} /fsys, 2^{17} /fsys, 2^{19} /fsys and 2^{21} /fsys.



The runaway detection result can also be connected to the reset pin internally.

In this case, the reset time will be between 22 and 29 system clocks (70.4 to 92.8 μ s at fOSCH = 10 MHz) as shown in Figure 3.13.3. After a reset, the fSYS clock is fFPH/2, where fFPH is generated by dividing the high-speed oscillator clock (fOSCH) by sixteen through the clock gear function

3.13.3 Control Registers

The watchdog timer (WDT) is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog timer mode register (WDMOD)
 - 1. Setting the detection time for the watchdog timer in <WDTP1:0>

This 2-bit register is used for setting the watchdog timer interrupt time used when detecting runaway.

On a reset this register is initialized to WDMOD<WDTP1:0>= "00".

The detection time for WDT is $2^{15}/f_{SYS}$ [s].

2. Watchdog timer enable/disable control register <WDTE>

At reset, the WDMOD<WDTE> is initialized to 1, enabling the watchdog timer.

To disable the watchdog timer, it is necessary to set this bit to "0" and to write the disable code (B1H) to the watchdog timer control register (WDCR). This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return the watchdog timer from the disabled state to the enabled state merely by setting <WDTE> to "1".

3. Watchdog timer out reset connection <RESCR>

0 0

х

0 0

This register is used to connect the output of the watchdog timer with the RESET terminal internally. Since WDMOD<RESCR> is initialized to "0" at reset, a reset by the watchdog timer will not be performed.

(2) Watchdog timer control register (WDCR)

This register is used to disable and clear the binary counter for the watchdog timer.

• Disable control

WDCR

The watchdog timer can be disabled by clearing WDMOD<WDTE> to "0" and then writing the disable code (B1H) to the WDCR register.

WDCR ← 0 1 WDMOD ← 0 -WDCR ← 1 0
 1
 0
 Write the clear code (4EH).

 0
 Clear WDMOD <WDTE> to "0".

 0
 1
 Write the disable code (B1H).

Enable control
 Set WDMOD<WDTE> to "1".

Watchdog timer clear control

To clear the binary counter and cause counting to resume, write the clear code (4EH) to the WDCR register.

0 0 1 1 1 0 Write the clear code (4EH).

Note1: If it is used disable control, set the disable code (B1H) to WDCR after write the clear code (4EH) once. (Please refer to setting example.)

Note2: If it is changed Watchdog timer setting, change setting after set to disable condition once.

3.14 Special timer for CLOCK

The TMP92FD23A includes a timer which is used for a clock operation.

An interrupt (INTRTC) can be generated each 0.0625[s] or 0.125[s] or 0.25[s] or 0.50[s] by using a low-frequency clock of 32.768 kHz. A clock function can be easily used.

Special timer for Clock can operate in all modes in which a low-frequency oscillation is operated. In addition, INTRTC can return from each standby mode except STOP mode.

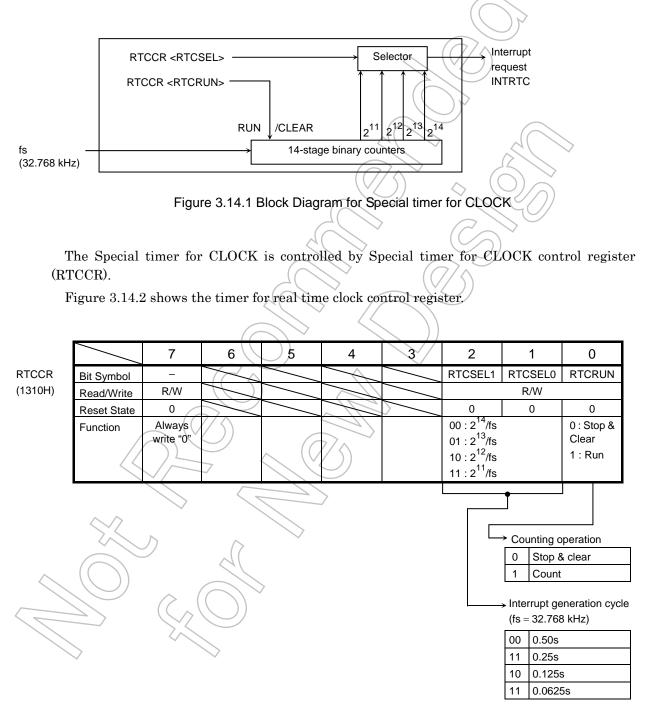
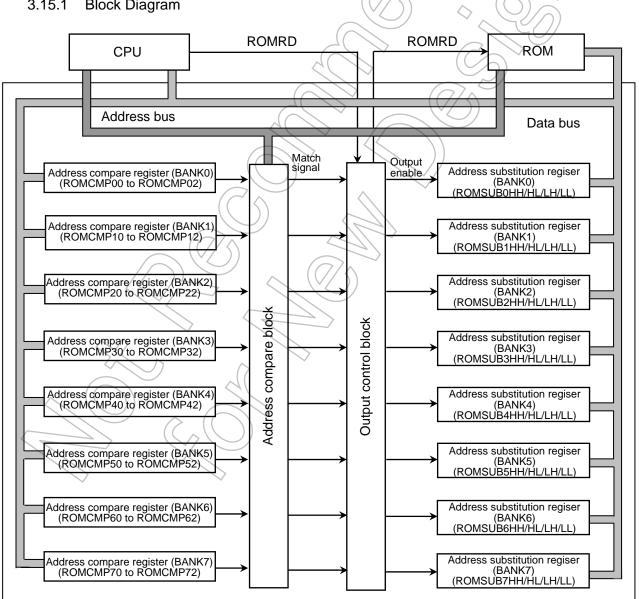
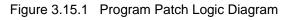


Figure 3.14.2 Register for Special timer for CLOCK


3.15 Program patch logic

The TMP92FD23A has a program patch logic, which enables the user to fix the program code in the Internal ROM. Patch program must be read into Internal RAM from external memory during the startup routine.


Up to eight 4-byte sequences or banks (32-bytes in total) can be replaced with patch code. More significant code correction can be performed by replacing program code with 1-byte instruction code which generates a software interrupt (SWI) to make a branch to a specified location in the Internal RAM area.

The program patch logic only compares addresses in the Internal ROM area; it cannot fix the program code in the Internal peripheral, Internal RAM and external ROM areas.

Each of eight banks is independently programmable, and functionally equivalent. In the following sections, any references to bank0 also apply to other banks.

3.15.1 **Block Diagram**

Note: Don't set the same value to an address compare register (Bank0 to 7).

3.15.2 SFR Descriptions

The program patch logic consists of eight banks (0 to 7). Each bank is provided with 3-bytes of address compare registers (ROMCMP00 to ROMCMP72) and 4-bytes of address substitution registers (ROMSUBLL, ROMSUBLH, ROMSUBHL and ROMSUBHH).

			SANKU Ado	aress Com	pare Regis	ster u			
	/	7	6	5	4	3	2	1	0
ROMCMP00	Bit symbol	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02		
(1400H)	Read/Write			V	V				
	Reset State	0	0	0	0	~ 0 ((7/0		
	Function		Targe	et ROM addre	ess (Lower 6	bits)			
		E	BANK0 Add	dress Com	pare Regi	ster 1)		
		7	6	5	4	3	2		0
ROMCMP01	Bit symbol	ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
(1401H)	Read/Write					N) <	\diamond (O		
	Reset State	0	0	0	$\bigcirc \bigcirc \bigcirc \bigcirc$	0	0		0
	Function			Targe	et ROM addre	ess (Middle 8	bits)		
		E	BANK0 Add	dress Com	pare Regis	ster 2			
		7	6 <	5	4	3	2	1	0
ROMCMP02	Bit symbol	ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16
(1402H)	Read/Write			γ	<u> </u>	x //			
	Reset State	0	0)) o	0	0	0	0	0
	Function		$(C \mathfrak{I})$	Targe	et ROM addre	ess (Upper 8	bits)		
N	lote 1: The ROM	CMP00, RG	MCMP01, ar		02 registers o	lo not suppor	t read-modifv	-write operati	on.
	lote 2: Bit0 and		$/ \langle \rangle$,		
		$\sum_{i=1}^{n}$	3.15.2 Add	< (Ø/	$\langle \gamma \rangle$	ters (Bank	0)		

BANK0 Address Compare Register 0

symbol ad/Write eet State ction symbol ad/Write eet State ction ad/Write eet State ction ad/Write eet State ction	7 ROMC15 0 E 7 ROMC23 0	BANK1 Add 6 ROMC14	0 et ROM addre dress Com 5 ROMC13 0 Targe dress Com 5 ROMC21 0	0 et ROM addre pare Regis 4 ROMC20	ster 1 3 ROMC11 V 0 sss (Middle 8 ster 2 3 ROMC19 V 0	2 ROMC02 0 2 ROMC10 bits) 2 ROMC18 0	1 1 ROMC09 0 0 ROMC17 0	0 0 ROMC08 0 0 ROMC16 0
ad/Write aet State ction symbol ad/Write aet State ction symbol ad/Write aet State ction	0 E 7 ROMC15 0 E 7 ROMC23 0	0 Targe BANK1 Add 6 ROMC14 0 BANK1 Add 6 ROMC22	0 et ROM addre dress Com 5 ROMC13 0 Targe dress Com 5 ROMC21 0	M 0 ess (Lower 6 pare Regis 4 ROMC12 0 et ROM addre	0 bits) ster 1 3 ROMC11 V 0 sss (Middle 8 ster 2 3 ROMC19 V 0	0 2 ROMC10 0 bits) 2 ROMC18	ROMC09 0 ROMC17	0 0 0 ROMC16
et State ction symbol ad/Write et State ction ad/Write et State ction ad/Write et State ction	E 7 ROMC15 0 E 7 ROMC23 0	Targe BANK1 Add 6 ROMC14 0 BANK1 Add 6 ROMC22	0 et ROM addre dress Com 5 ROMC13 0 Targe dress Com 5 ROMC21 0	0 ess (Lower 6 pare Regis 4 ROMC12 0 et ROM addre	bits) ster 1 3 ROMC11 V 0 ss (Middle 8 ster 2 3 ROMC19 V 0	2 ROMC10 bits) 2 ROMC18	ROMC09 0 ROMC17	0 0 0 ROMC16
ction symbol ad/Write et State ction symbol ad/Write et State ction : The ROM	E 7 ROMC15 0 E 7 ROMC23 0	Targe BANK1 Add 6 ROMC14 0 BANK1 Add 6 ROMC22	et ROM addre dress Com 5 ROMC13 0 Targe dress Com 5 ROMC21 0	ess (Lower 6 pare Regis 4 ROMC12 0 et ROM addre pare Regis 4 ROMC20	bits) ster 1 3 ROMC11 V 0 ss (Middle 8 ster 2 3 ROMC19 V 0	2 ROMC10 bits) 2 ROMC18	ROMC09 0 ROMC17	0 0 0 ROMC16
symbol Id/Write Att State Ction Symbol Id/Write Att State Ction	7 ROMC15 0 E 7 ROMC23 0	BANK1 Add 6 ROMC14 0 BANK1 Add 6 ROMC22	dress Com 5 ROMC13 0 Targe dress Com 5 ROMC21 0	pare Regis	ster 1 3 ROMC11 V 0 sss (Middle 8 ster 2 3 ROMC19 V 0	ROMC10 0 bits) 2 ROMC18	ROMC09 0 ROMC17	0 0 0 ROMC16
ad/Write aet State ction symbol ad/Write aet State ction : The ROM	7 ROMC15 0 E 7 ROMC23 0	6 ROMC14 0 BANK1 Add 6 ROMC22	5 ROMC13 0 Targe dress Com 5 ROMC21 0	4 ROMC12 0 et ROM addre pare Regis 4 ROMC20 0	3 ROMC11 V 0 ster 2 3 ROMC19 V 0	ROMC10 0 bits) 2 ROMC18	ROMC09 0 ROMC17	0 0 0 ROMC16
ad/Write aet State ction symbol ad/Write aet State ction : The ROM	ROMC15 0 E 7 ROMC23 0	ROMC14 0 BANK1 Add 6 ROMC22	ROMC13 0 Targe dress Com 5 ROMC21 0	ROMC12 0 et ROM addre pare Regis 4 ROMC20	ROMC11 W 0 ess (Middle 8 ster 2 3 ROMC19 W 0	ROMC10 0 bits) 2 ROMC18	ROMC09 0 ROMC17	0 0 0 ROMC16
ad/Write aet State ction symbol ad/Write aet State ction : The ROM	0 E 7 ROMC23 0	0 BANK1 Ad 6 ROMC22	0 Targe dress Com 5 ROMC21 0	0 et ROM addre pare Regis 4 ROMC20	V 0 ess (Middle 8 ster 2 3 ROMC19 V 0	0 bits) 2 ROMC18	0 A ROMC17	0 0 ROMC16
et State ction symbol ad/Write et State ction	E 7 ROMC23 0	3ANK1 Ad 6 ROMC22	Targe dress Com 5 ROMC21 0	0 et ROM addre pare Regis 4 ROMC20 0	V 0 ess (Middle 8 ster 2 3 ROMC19 V 0	0 bits) 2 ROMC18	ROMC17	0 0 ROMC16
ction symbol ad/Write et State ction : The ROM	E 7 ROMC23 0	3ANK1 Ad 6 ROMC22	Targe dress Com 5 ROMC21 0	et ROM addre	ster 2 3 ROMC19 V 0	bits) 2 ROMC18	ROMC17	0 ROMC16
symbol ad/Write tet State ction	7 ROMC23 0	6 ROMC22	dress Com 5 ROMC21	pare Regis	ster 2 3 ROMC19 W	2 ROMC18		ROMC16
d/Write et State ction : The ROM	7 ROMC23 0	6 ROMC22	5 ROMC21 0	4 ROMC20 0	3 ROMC19 V 0	ROMC18		ROMC16
d/Write et State ction : The ROM	7 ROMC23 0	6 ROMC22	5 ROMC21 0	4 ROMC20 0	3 ROMC19 V 0	ROMC18		ROMC16
d/Write et State ction : The ROM	ROMC23 0	ROMC22	ROMC21		ROMC19 V 0	ROMC18		ROMC16
d/Write et State ction : The ROM	0	I	0		V (\bigcirc		
ction : The ROM		0		0	0		0	0
: The ROM	1CMP10, RO	/		et ROM addre				
	1CMP10, RO		Targe	et ROM addre		bits)		
	Figure 3	.15.3 Ada	dress Com	pare Regis	eters (Bank	1)		
		Figure 3	Figure 3.15.3 Add	Figure 3.15.3 Address Com	Figure 3.15.3 Address Compare Regis	Figure 3.15.3 Address Compare Registers (Bank	Figure 3.15.3 Address Compare Registers (Bank1)	Figure 3.15.3 Address Compare Registers (Bank1)

r	<			dress Com				1	1
		7	6	5	4	3	2	1	0
OMCMP20	Bit symbol	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02		
410H)	Read/Write				N	i	i		
	Reset State Function	0	0	0	0	0	0		
	Function		Targe	et ROM addre	ess (Lower 6	bits)			
		E	BANK2 Add	dress Com	pare Regis	ster 1		\geq	
		7	6	5	4	3	7/2	1	0
OMCMP21	Bit symbol	ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
(411H)	Read/Write				N	N (
	Reset State	0	0	0	0	0	P 0	0	0
	Function			Targe	et ROM addre	ss (Middle 8	bits)		
L		F	3ANK2 Ad	dress Com	pare Regis	ster 2	2		
1		7	6	5		3	2	$\sqrt{2}$	0
	Bit symbol	ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16
1412H)	Read/Write	INDIVIO23	NOI022			v (Relifere
<i>,</i>	Reset State	0	0	0	0	0	~0)	0	0
·		-	-					-	-
	Function lote 1: The RON lote 2: Bit0 and	Bit1 of the R0	OMCMP20 is	id ROMCMP2		lo not suppor		r-write operati	on.
	lote 1: The ROM	Bit1 of the R0	OMCMP20 is	id ROMCMP2	22 registers o efined.	lo not suppor	t read-modify	r-write operati	on.

		D	AINKS AUC		ipare itey					
		7	6	5	4	3	2	1	0	
ROMCMP30	Bit symbol	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02			
(1418H)	Read/Write		_	V	V					
	Reset State	0	0	0	0	0	0	/		
	Function		Target	t ROM addre	ess (Lower 6	bits)				
BA	NK3 Address	Compare	Register	1)r		
		7	6	5	4	3	(/2))	1	0	
ROMCMP31	Bit symbol	ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08	
(1419H)	Read/Write				V	v ((12			
	Reset State	0	0	0	0	0	2 o	0	0	
	Function	Target ROM address (Middle 8 bits)								
BA	NK3 Address	Compare	Register	2		\sim	\diamond	5		
		7	6	5	4	3	2	51	0	
ROMCMP32	Bit symbol	ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16	
(141AH)	Read/Write		_	40	, 💛 v	V	(\bigcirc)			
	Reset State	0	0	0	0	0	0	0	0	
	Function		6	Target	t ROM addre	ess (Upper 8	bits)			
					//					

BANK3 Address Compare Register 0

Note 1: The ROMCMP30, ROMCMP31, and ROMCMP32 registers do not support read-modify-write operation. Note 2: Bit0 and Bit1 of the ROMCMP30 is read as undefined.

Figure 3,15.5 Address Compare Registers (Bank3)

BA	NK4 Address	Compare	Register	0							
		7	6	5	4	3	2	1	0		
ROMCMP40	Bit symbol	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02		/		
(1420H)	Read/Write			V	V			/			
	Reset State	0	0	0	0	0	0				
	Function	Target ROM address (Lower 6 bits)									
BA	NK4 Address	Compare	Register	1)} ²			
	/	7	6	5	4	3	(/2)	1	0		
ROMCMP41	Bit symbol	ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08		
(1421H)	Read/Write				V	v ($\langle \rangle$				
	Reset State	0	0	0	0	0	\mathcal{Y}_{0}	0	0		
	Function	Target ROM address (Middle 8 bits)									
		В	ANK4 Add	lress Com	pare Reg	ister 2	\diamond	5			
		7	6	5	4	3	2	51	0		
ROMCMP42	Bit symbol	ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16		
(1422H)	Read/Write			40	v 🗸 v	V	(\mathbf{V})				
	Reset State	0	0	0	0	0	5.0	0	0		
	Function		5	Target	ROM addre	ess (Upper 8	bits)				
N	lote 1: The ROM	CMP40, RON	/ICMP41, an	d ROMCMP	42 registers	do not supp	ort read-mod	dify-write ope	eration.		

Note 1: The ROMCMP40, ROMCMP41, and ROMCMP42 registers do not support read-modify-write operation Note 2: Bit0 and Bit1 of the ROMCMP40 is read as undefined.

Figure 3.15.6 Address Compare Registers (Bank4)

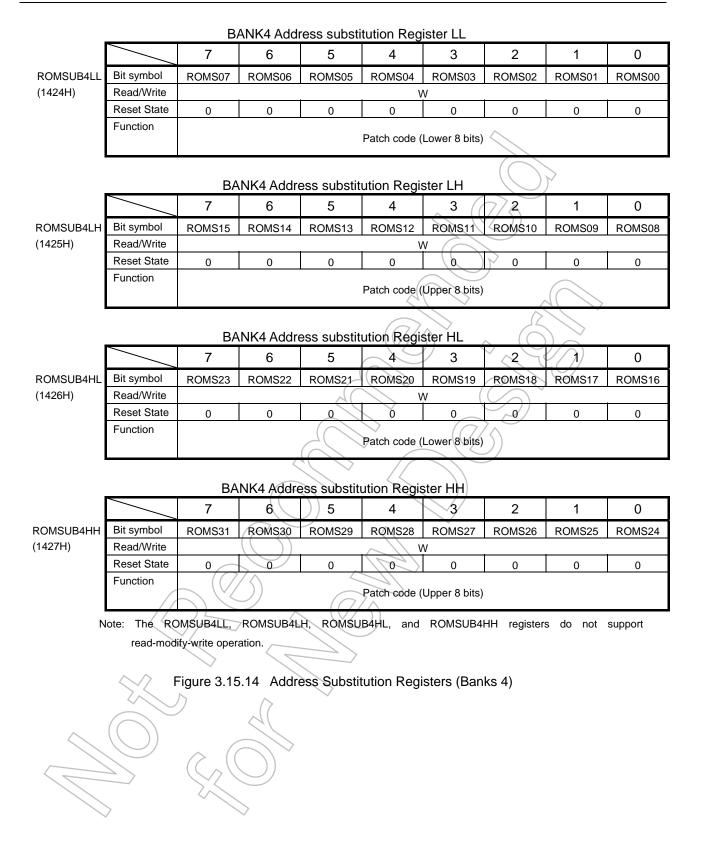
2111.110	riaaress com	ipure neg	10001 0										
		7	6	5	4	3	2	1	0				
ROMCMP50	Bit symbol	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02	/					
(1428H)	Read/Write			V	V			/					
	Reset State	0	0	0	0	0	0						
	Function		Target	t ROM addre	ess (Lower 6	bits)							
BA	NK5 Address	Compare	Register	1			$(\ $	75					
		7	6	5	4	3	2	1	0				
ROMCMP51	Bit symbol	ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08				
(1429H)	Read/Write				V	v >	$\overline{\mathbf{\nabla}}$						
	Reset State	0	0	0	0	0	0	0	0				
	Function		Target ROM address (Middle 8 bits)										
BA	NK5 Address	Compare	Register	2	6				\checkmark				
		7	6	5	4)) 3	<2 (0				
ROMCMP52	Bit symbol	ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16				
(142AH)	Read/Write			G	$\langle \rangle \rangle$	V	R	\searrow					
	Reset State	0	0	02(6	0	(\bigcirc)	0	0				
	Function			Target	ROM addre	ess (Upper 8	bits)						
N	ote 1: The ROM	CMP50, ROM	/ICMP51, an	dROMCMP	52 registers	do not supp	ort read-mod	dify-write ope	eration.				
	ote 2: Bit0 and B				- / /			, ,					
			$(\frown$	$\mathcal{I}_{\mathcal{I}}$									
		Figure 3.	15.7 Add	ress Com	pare Regi	sters (Bar	1k5)						
			\mathcal{C}		A	>							
	$\int -$	$\sum (\langle x \rangle) = \langle x \rangle$))	6									

BANK6	Address Cor	npare Reg	gister 0						
		7	6	5	4	3	2	1	0
ROMCMP60	Bit symbol	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02	/	/
(1430H)	Read/Write			V	V			/	
	Reset State	0	0	0	0	0	0	/	
	Function								
BA	NK6 Address	Compare	Register	1			Ć)P	
		7	6	5	4	3	2	1	0
ROMCMP61	Bit symbol	ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
(1431H)	Read/Write				V	v >>			
	Reset State	0	0	0	0	0	0	0	0
	Function			Target	ROM addre	ess (Middle 8	bits)		
BA	NK6 Address	Compare	e Register	2					\checkmark
		7	6	5	4)) 3	<2 (0
ROMCMP62	Bit symbol	ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16
(1432H)	Read/Write			G	()	V	R	\mathbf{r}	
	Reset State	0	0	02(6	0	(\bigcirc)	0	0
	Function			Target	ROM addre	ess (Upper 8	bits)		
Ν	lote 1: The ROM	CMP60, RON	//CMP61, an	dROMCMP	62 registers	do not supp	ort read-mod	dify-write ope	eration.
Ν	lote 2: Bit0 and B	it1 of the RC	MCMP60 is	read as und	efined.				
			$(\subset$	$\mathcal{I}_{\mathcal{A}}$		>))			
		Figure 3.	15.8 Add	lress Com	pare Regi	isters (Bar	nk6)		
			(\bigcirc)						

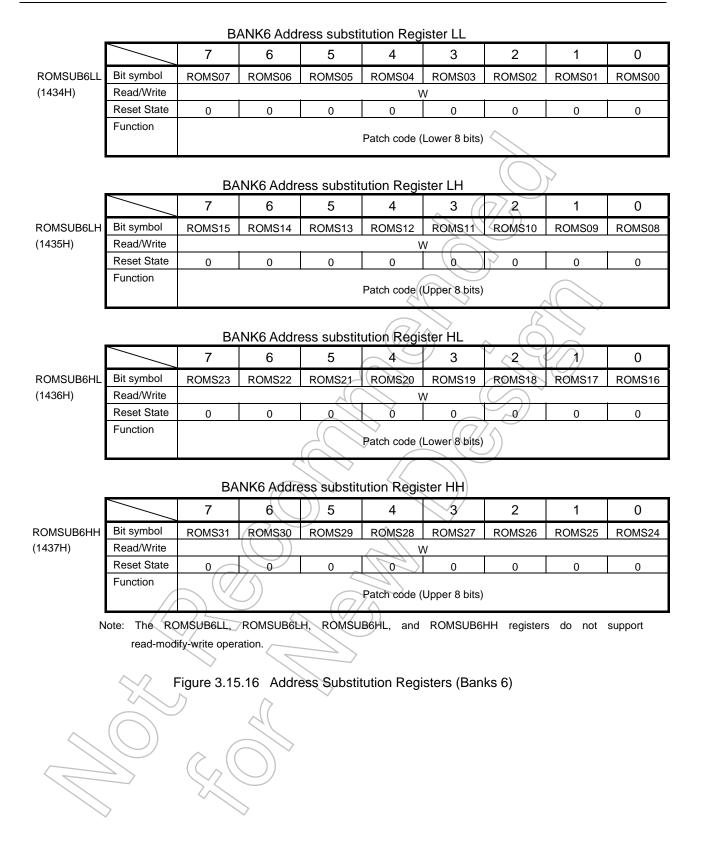
	<u> </u>	8					1			
		7	6	5	4	3	2	1	0	
ROMCMP70	Bit symbol	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02			
(1438H)	Read/Write			V	V			/		
	Reset State	0	0	0	0	0	0			
	Function		Target	t ROM addre	ess (Lower 6	bits)				
BA	NK7 Address	Compare	Register	1			C			
		7	6	5	4	3	2	1	0	
ROMCMP71	Bit symbol	ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08	
(1439H)	Read/Write				V	v >>				
	Reset State	0	0	0	0	0	0	0	0	
Function Target ROM address (Middle 8 bits)										
BANK7 Address Compare Register 2										
		7	6	5	4)) 3	<2 (0	
ROMCMP72	Bit symbol	ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16	
(143AH)	Read/Write			G	$\sqrt{2}$	V	RA	\diamond		
	Reset State	0	0	000	0	0	(\mathcal{G})	0	0	
	Function			Target	ROM addre	ess (Upper 8	bits)			
N	ote 1: The ROMO	CMP70, RON	/ICMP71, añ	dROMCMP	72 registers	do not supp	ort read-mod	dify-write ope	eration.	
	ote 2: Bit0 and Bi				- / /					
			$(\subset$	$\mathcal{I}_{\mathcal{A}}$		>))				
		Figure 3.	15.9 Add	lress Com	pare Regi	sters (Bar	nk7)			

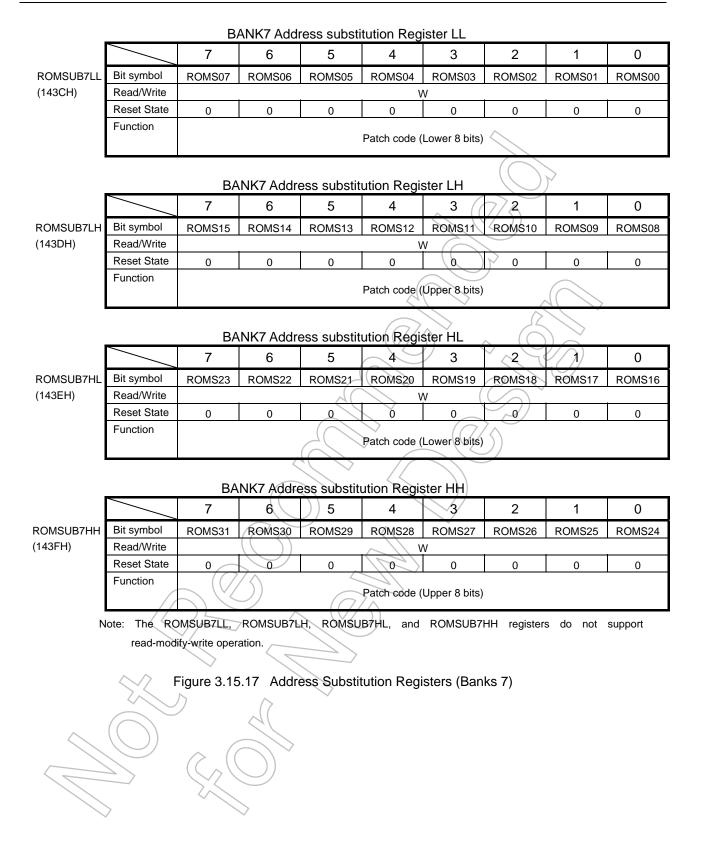
BANK7 Address Compare Register 0

		BA	NK0 Addr	ess substit	ution Regi	ster LL					
		7	6	5	4	3	2	1	0		
ROMSUB0LL	Bit symbol	ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00		
(1404H)	Read/Write				V	V					
	Reset State	0	0	0	0	0	<u>∧</u> 0	0	0		
	Function			I	Patch code (L	ower 8 bits)				
					ution Doni)~			
				ess substit	Ŭ		2	4	0		
		7	6	5	4	3		1	0		
ROMSUBOLH	Bit symbol	ROMS15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08		
(1405H)	Read/Write		1	1		V		1			
	Reset State	0	0	0	0	0	0	0	0		
	Function				Patch code (Upper 8 bits)	SZ SZ	1			
		BA	NK0 Addr	ess substit	ution Real	ster HL	$\langle 0, 0 \rangle$				
		7	6	5	4	3	2		0		
ROMSUB0HL	Bit symbol	ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16		
	Read/Write	1000023	ROMOZZ			V		Romon	Romoro		
	Reset State	0	0	0	0	6(7)	(\ 0	0	0		
	Function	Patch code (Lower 8 bits)									
		BA	NK0 Addre	ess substit	ution Regis	ster HH					
		7	6	5	<4	3	2	1	0		
ROMSUB0HH	Bit symbol	ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24		
(1407H)	Read/Write		\sim	~	11/2/	V		•			
	Reset State	0	0	0	0	0	0	0	0		
	Function				Patch code (Upper 8 bits)					
N	ote: The RC	MSUBOLL,	ROMSUBOL	H ROMSU	B0HL and	ROMSUBO	HH register	s do not	support		
		ify-write oper			Borne, and	Remedee	ini regiotori		Support		
		Figure 3.1	5.10 Addı	ess Subst	itution Reg	isters (Bar	nk 0)				
		$\langle \rangle$	\sum								
	>	2//	>								


ubstitution Dogio - 1 1

		BA	NK1 Addr	ess substit	ution Regi	ster LL							
		7	6	5	4	3	2	1	0				
ROMSUB1LL	Bit symbol	ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00				
(140CH)	Read/Write				V	V							
	Reset State	0	0	0	0	0	<u> </u>	0	0				
	Function				Patch code (Lower 8 bits)							
		BA	NK1 Addro	ess substit	ution Regi	ster LH	776)~					
		7	6	5	4	3	2	1	0				
ROMSUB1LH	Bit symbol	ROMS15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08				
(140DH)	Read/Write		•	•	V	v (V)	7	•					
	Reset State	0	0 0 0 0 0 0 0 0										
	Function		Patch code (Upper 8 bits)										
		BA	NK1 Addro	ess substit	ution Regi	ster HL	$\mathcal{O}_{\mathcal{A}}$						
		7	6	5	4	3	2		0				
ROMSUB1HL 140EH)	Bit symbol	ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16				
	Read/Write	110111020	W W										
	Reset State	0	0	0	0	6(7/	(0	0				
	Function	Patch code (Lower 8 bits)											
		BA	NK1 Addre	ess substitu	ution Regis	ster HH							
		7	6	5	∕4	3	2	1	0				
ROMSUB1HH	Bit symbol	ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24				
(140FH)	Read/Write		\sum	~	16-01	V	•	•					
	Reset State	0	0	0	0	0	0	0	0				
	Function				Patch code (Upper 8 bits)							
N	ote: The RC		ROMSUB1L	H ROMSU	B1HL and		HH register	s do not	support				
IN IN		ify-write oper			DITIE, and	ROMOODT	ini register	5 00 1101	Support				
~		Figure 3.1	5.11 Addr	ess Substi	tution Reg	isters (Bar	nk 1)						
			$\overline{)}$										
\square													


ubatitution Dagia . . .


BANK2 Address substitution Register LL												
		7	6	5	4	3	2	1	0			
ROMSUB2LL	Bit symbol	ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00			
(1414H)	Read/Write			•	V	V		•				
	Reset State	0	0	0	0	0	0	0	0			
	Function											
					Patch code (Lower 8 bits)						
							()	Y				
	-	BA	NK2 Addro	ess substit	ution Regi	ster LH		/				
		7	6	5	4	3	2	1	0			
ROMSUB2LH	Bit symbol	ROMS15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08			
(1415H)	Read/Write				V	v (()	R I					
	Reset State											
	Function				Datab anda	Upper 8 bits)						
					Patch code (opper o bits)	\sim	\sim				
-					(7/)	\land	. 6	\rangle				
		BA	NK2 Addro	ess substit	ution Regi	ster HL						
		7	6	5	4	3	_ 2	101	0			
ROMSUB2HL	Bit symbol			ROMS21	POMS20		ROMS18	POMS17	ROMS16			
	Read/Write	KOW525	ROMS23 ROMS22 ROMS21 ROMS20 ROMS19 ROMS18 ROMS17 ROMS1									
	Reset State	0	0	0		0		0	0			
	Function											
		Patch code (Lower 8 bits)										
		BA	NK2 Addre	ess substitu	ution Regis	ster HH						
		7	6	5	_4	3	2	1	0			
ROMSUB2HH	Bit symbol	ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24			
(1417H)	Read/Write	(V	÷	-				
	Reset State	0(7)	() O	0 <	0	0	0	0	0			
	Function	$\sum (x) \cap C$	\mathcal{I}	$\overline{\Omega}$								
					Patch code (Upper 8 bits)						
N	ote: The RC	MSUB2LL,	ROMSUB2I	H. ROMSU	B2HL and	ROMSUB2	HH register	s do not	support			
		ify-write operation			,							
		N										
		Figure 3.15		occ Substit	ution Dogi	ictore (Ban	kc 2)					
		lyule 5.15			ution Regi	Sters (Dari	K5 Z)					
\sim	(())											
		(
	\geq	$\langle \langle \rangle \rangle$	\bigcirc									
	>		\geq									

BANK3 Address substitution Register LL													
		7	6	5	4	3	2	1	0				
ROMSUB3LL	Bit symbol	ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00				
(141CH)	Read/Write				V	V							
	Reset State	0	0	0	0	0	0	0	0				
	Function				Patch code (Lower 8 bits)							
		BA	NK3 Addro	ess substit	ution Regis	ster LH		\mathcal{F}					
		7	6	5	4	3	2	1	0				
ROMSUB3LH	Bit symbol	ROMS15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08				
(141DH)	Read/Write				V	v (()	7	•					
	Reset State	0											
	Function				Patch code (Upper 8 bits)	4	$\frac{1}{2}$					
		BA	NK3 Addro	ess substit	ution Regi	ster HL	\sim						
		7	6	5	4	3	2	191	0				
ROMSUB3HL	Bit symbol	ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16				
(141EH)	Read/Write												
	Reset State	0	0	0	○ 0	0	0	0	0				
	Function	Patch code (Lower 8 bits)											
		BA	NK3 Addre	ess substit	ution Regis	ster HH							
		7	6	5	_4	3	2	1	0				
ROMSUB3HH	Bit symbol	ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24				
(141FH)	Read/Write					V							
	Reset State	0	/\ 0	0 <	0	0	0	0	0				
	Function		\mathcal{Y}_{γ}		Patch code (Upper 8 bits)	•						
N	ote: The R	OMSUB3LL,	ROMSUB3	LH. ROMS	UB3HL. and	ROMSUB	3HH reaiste	rs do not	support				
		ify-write oper			,								
	icad mou	ily white open											
		igure 3.15	5.13 Addro	ess Substit	lution Regi	sters (Ban	KS 3)						
	\bigcirc		21										
\sim	(())	/	\sim										
		\sim (($\sim \sim$										
	\geq	$\langle \langle \rangle \rangle$	\bigcirc										
			\smile										
	>		\geq										
	7												

		B/	ANK5 Addi	ress substi	tution Reg	ister LL					
		7	6	5	4	3	2	1	0		
ROMSUB5LL	Bit symbol	ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00		
(142CH)	Read/Write			•	V			•			
	Reset State	0	0	0	0	0	0	0	0		
	Function						~				
					Patch code (Lower 8 bits)					
		BA	NK5 Addr	ess substit	ution Regi	ster LH		\geq			
		7	6	5	4	3	7/2	1	0		
ROMSUB5LH	Bit symbol	ROMS15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08		
(142DH)	Read/Write				V	v (
	Reset State	0	0	0	0	(0)	P O	0	0		
	Function				Patch code (Upper 8 bits)	/				
		BA	NK5 Addro	ess substit	ution Regis	ster HL					
		7	6	5	4	3	~2 ~	//)	0		
ROMSUB5HL	Bit symbol	ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16		
(142EH)	Read/Write										
	Reset State	0	0	0	0	0	~0)	0	0		
	Function				Patch code ((α)		L			
		BA	NK5 Addre	ess substit	ution Regis	ster HH					
		7	6)) 5	4	3	2	1	0		
ROMSUB5HH	Bit symbol	ROMS31	ROMS30	ROMS29	RØMS28	ROMS27	ROMS26	ROMS25	ROMS24		
(142FH)	Read/Write		(())		V	V					
	Reset State	0		0	0	0	0	0	0		
	Function	$\mathbb{Z}^{\mathbb{Z}}$	5)	6	Patch code (Upper 8 bits)					
N	ote: The RC	MSUB5LL	ROMSUB5	H. ROMSU	B5HL, and	ROMSUB5	HH reaister	s do not	support		
		ify-write oper			<i>2</i> , aa		in region		oupport		
	read mou	ity white open		$ \rightarrow $							
	\sim \sim	\sim									
		7iaure 3.15	5.15 Addro	ess Substi	tution Regi	sters (Ban	ks 5)				
\sim	()										
	\bigcirc	$\sim ($	\sim								
		$(\land \land$									
\backslash	/										
	>	\sim	\geq								

3.15.3 Operation

(1) Replacing data

Correction procedure:

Load the address compare registers ROMCMPx0 to ROMCMPx2 (banks No. x = 0 to 7) with the target address where ROM data need be replaced. Store 4-byte patch code in the ROMSUBxLL, ROMSUBxLH, ROMSUBxHL and ROMSUBxHH (banks No. x = 0 to 7) registers.

After each register store , when the CPU address matches the value stored in the ROMCMPx0 to ROMCMPx2 (banks No. x = 0 to 7) registers, the program patch logic disables RD output to the internal ROM and drives out the code stored in the ROMSUBxLL to ROMSUBxHH (banks No. x = 0 to 7) to the internal bus. The CPU thus fetches the patch code.

The following shows some examples:

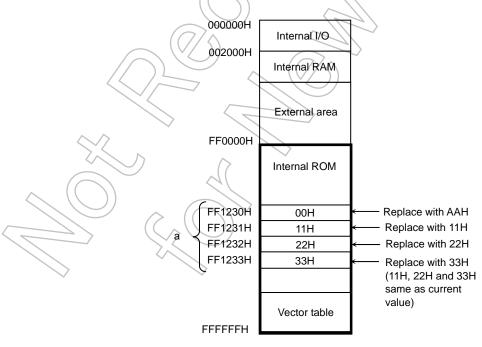
Examples:

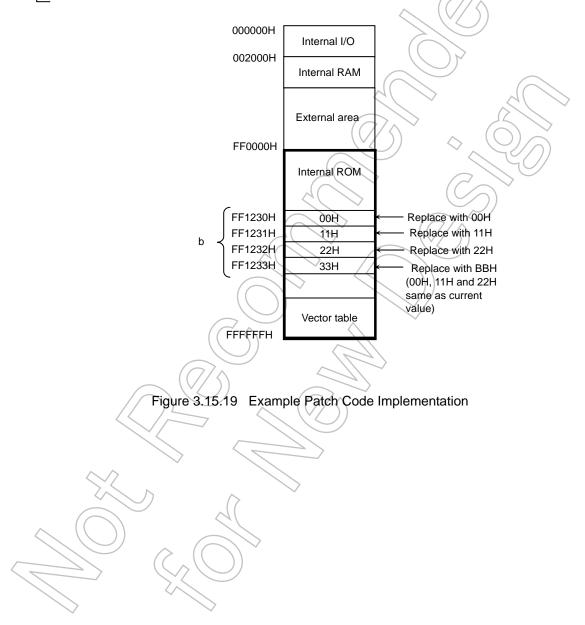
									\sim	. 1
		7	6	5	4	3	2	1	0	
ROMCMP00	\leftarrow	0	0	1	1	0	0	0	0	
ROMCMP01	\leftarrow	0	0	0	1	0	0	1	0	
ROMCMP02	\leftarrow	1	1	1	1	1 (1	X	1	P
						2			\geq	
ROMSUB0LL	←	1	0	1	0	-1	0	4	0	
ROMSUB0LH	←	0	0	0	(1(0	0	0	1	
ROMSUB0HL	←	0	0	1	0	0)0	1	0	
ROMSUB0HH	←	0	0	1	71,	0	0	1	1	
				(

a. Replacing 00H at address FF1230H with AAH

Stores 30H in address compare register 0 for bank0. Stores 12H in address compare register 1 for bank0. Stores FFH in address compare register 2 for bank0.

Store AAH in address substitution register LL for bank0. Store 11H in address substitution register LH for bank0. Store 22H in address substitution register HL for bank0. Store 33H in address substitution register HH for bank0.



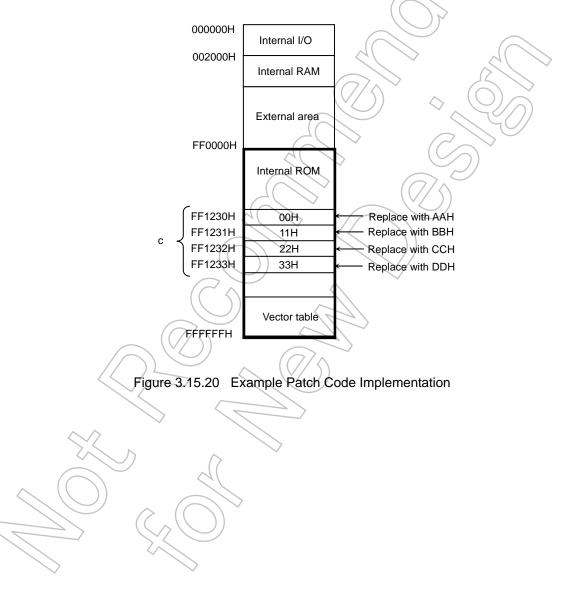

Figure 3.15.18 Example Patch Code Implementation

b.	Replacing 33H at address F	F1233H with BBH
----	----------------------------	-----------------

_		7	6	5	4	3	2	1	0
ROMCMP00	\leftarrow	0	0	1	1	0	0	0	0
ROMCMP01	\leftarrow	0	0	0	1	0	0	1	0
ROMCMP02	\leftarrow	1	1	1	1	1	1	1	1
ROMSUB0LL	\leftarrow	0	0	0	0	0	0	0	0
ROMSUB0LH	\leftarrow	0	0	0	1	0	0	0	1
ROMSUB0HL	←	0	0	1	0	0	0	1	0
ROMSUB0HH	←	1	0	1	1	1	0	1	1

Stores 30H in address compare register 0 for bank0. Stores 12H in address compare register 1 for bank0. Stores FFH in address compare register 2 for bank0.

Store 00H in address substitution register LL for bank0 Store 11H in address substitution register LH for bank0 Store 22H in address substitution register HL for bank0. Store BBH in address substitution register HH for bank0.



c. Replacing 00H at address FF1230H with AAH, 11H at address FF1231H with BBH, 22H at address FF1232H with CCH and 33H at address FF1233H with DDH

_		7	6	5	4	3	2	1	0
ROMCMP00	←	0	0	1	1	0	0	0	0
ROMCMP01	←	0	0	0	1	0	0	1	0
ROMCMP02	←	1	1	1	1	1	1	1	1
ROMSUB0LL	←	1	0	1	0	1	0	1	0
ROMSUB0LH	←	1	0	1	1	1	0	1	1
ROMSUB0HL	←	1	1	0	0	1	1	0	0
ROMSUB0HH	←	1	1	0	1	1	1	0	1

Stores 30H in address compare register 0 for bank0. Stores 12H in address compare register 1 for bank0. Stores FFH in address compare register 2 for bank0.

Store AAH in address substitution register LL for bank0 Store BBH in address substitution register LH for bank0. Store CCH in address substitution register HL for bank0. Store DDH in address substitution register HH for bank0.

d. Replacing 11H at address FF1231H with AAH, 22H at address FF1232H with BBH, 33H at address FF1233H with CCH and 44H at address FF1234H with DDH (Requiring two banks)

		7	6	5	4	3	2	1	0
ROMCMP00	←	0	0	1	1	0	0	0	0
ROMCMP01	←	0	0	0	1	0	0	1	0
ROMCMP02	←	1	1	1	1	1	1	1	1
ROMSUB0LL	\leftarrow	0	0	0	0	0	0	0	0
ROMSUB0LH	←	1	0	1	0	1	0	1	0
ROMSUB0HL	←	1	0	1	1	1	0	1	1
ROMSUB0HH	←	1	1	0	0	1	1	0	0
_									
ROMCMP10	\leftarrow	0	0	1	1	0	1	0	0
ROMCMP11	←	0	0	0	1	0	0	1	0
ROMCMP12	←	1	1	1	1	1	1	1	1
ROMSUB1LL	←	1	1	0	1	1	1	0	1
ROMSUB1LH	←	0	1	0	1	0	1	0	1
ROMSUB1HL	\leftarrow	0	1	1	0	0	1	1	0
ROMSUB1HH	\leftarrow	0	1	1	1	0	1	1	1
									(

Stores 30H in address compare register 0 for bank0. Stores 12H in address compare register 1 for bank0. Stores FFH in address compare register 2 for bank0.

Store 00H in address substitution register LL for bank0 Store AAH in address substitution register LH for bank0. Store BBH in address substitution register HL for bank0 Store CCH in address substitution register HH for bank0

Stores 34H in address compare register 0 for bank1. Stores 12H in address compare register 1 for bank1. Stores FFH in address compare register 2 for bank1.

Store DDH in address substitution register LL for bank1 Store 55H in address substitution register LH for bank1 Store 66H in address substitution register HL for bank1. Store 77H in address substitution register HH for bank1.

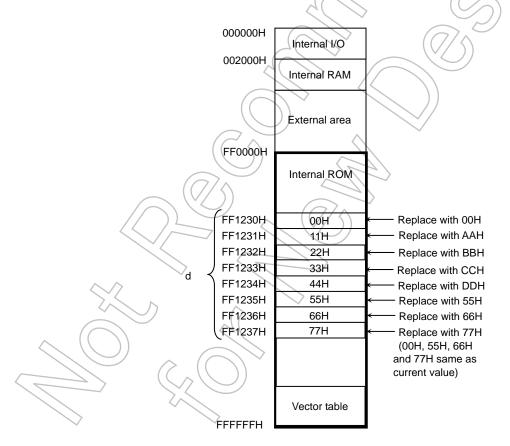


Figure 3.15.21 Example Patch Code Implementation

(2) Using an interrupt to cause a branch

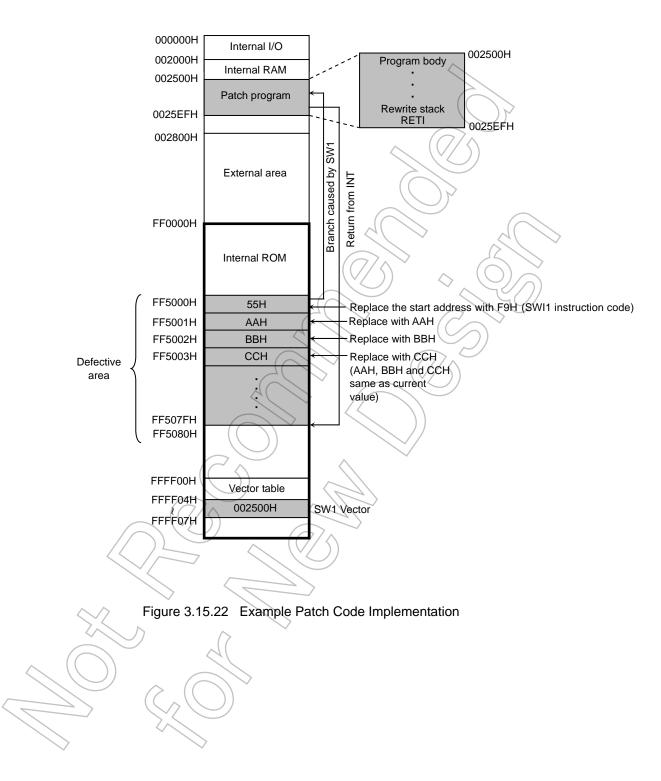
A wider range of program code can also be fixed using a software interrupt (SWI). With a patch code loaded into on-chip RAM, the program patch logic can be used to replace program code at a specified address with a single-byte SWI instruction, which causes a branch to the patch program.

Note that this method can only be used if the original ROM data has been developed with <u>on-chip RAM addresses specified as SWI vector addresses</u>.

Correction procedure:

Load the address compare registers ROMCMPx0 to ROMCMPx2 (x = bank No. 0 to 7) with the start address of the program code that is to be fixed. If it is an even address, store an SWI instruction code (e.g., SWI: F9H) in ROMSUBxLL or ROMSUBxHL. If the start address is an odd address, store an SWI instruction code in ROMSUBxLH or ROMSUBxHH. When the data for the purpose of substitution is required only for 1 to 3 bytes, please set the same data as original ROM data to the remaining data.

When the CPU address matches the value stored in the ROMCMPx0 to ROMCMPx2 registers, the program patch logic disables RD output to the internal ROM and drives out the SWI instruction code to the internal bus. Upon fetching the SWI code, the CPU makes a branch to the internal RAM area to execute the preloaded code.


At the end of the patch program executed from the internal RAM, the CPU directly rewrites the saved PC value so that it points to the address following the patch code, and then executes a RETI.

The following shows an example:

Example: Fixing a program within the range from FF5000H to FF507FH

Before developing the original ROM data, set the SWI1 vector reference address to 002500H (on chip RAM area).

Use the startup routine to load the patch code to on-chip RAM (002500H to 0025EFH). Store the start address (FF5000H) of the ROM area to be fixed in the ROMCMP00 to ROMCMP02. Store the SWI1 instruction code (F9H) in the ROMSUBOLL and the current data at FF5001H (AAH) in the ROMSUBOLH and the current data at FF5002H (BBH) in the ROMSUBOHL and the current data at FF5003 (CCH) in the ROMSUBOHH. When the CPU address matches the value stored in ROMCMP00 to ROMCMP02, the program patch logic replaces the ROM-based code at FF5000H with F9H. The CPU then executes the SWI1 instruction, which causes a branch to 002500H in the on-chip RAM area. After executing the patch program the CPU finally rewrites the saved PC value to FF5080H and executes a RETI.

3.16 Flash Memory

The TMP92FD23A incorporates flash memory that can be electrically erased and programmed using a single 3V power supply.

The flash memory is programmed and erased using JEDEC-standard commands. After a program or erase command is input, the corresponding operation is automatically performed internally. Erase operations can be performed by the entire chip (chip erase) or on a sector basis (sector erase).

The configuration and operations of the flash memory are described below.

- 3.16.1 Features
 - Power supply voltage for program/erase operations
 Sector size
 Vcc = 3.0 V to 3.6 V (-10 °C to 40 °C)
 4 Kbytes ×
 - Configuration 128 K × 32 bits (512 Kbytes)
 - Functions Single-long word programming Chip erase Sector erase Data polling/Toggle bit

- Sector size 4 Kbytes × 128
- Mode control JEDEC-standard commands
- SEDEC-standard command
- Programming method On-board programming Parallel programmer
- Security Write protection Read protection

3.16.2 Block Diagram

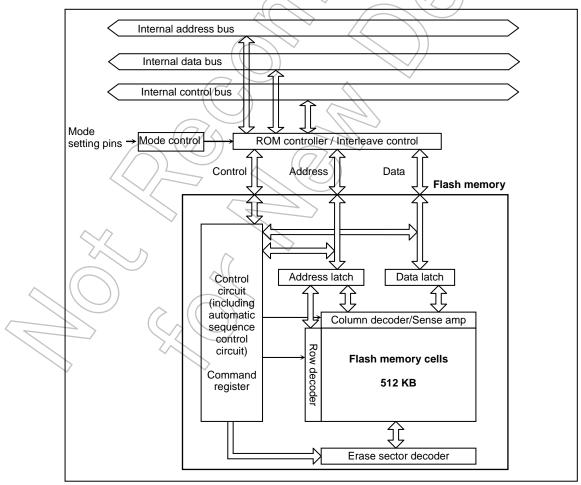


Figure 3.16.1 Block Diagram of Flash Memory Unit

3.16.3 Operation Modes

3.16.3.1 Overview

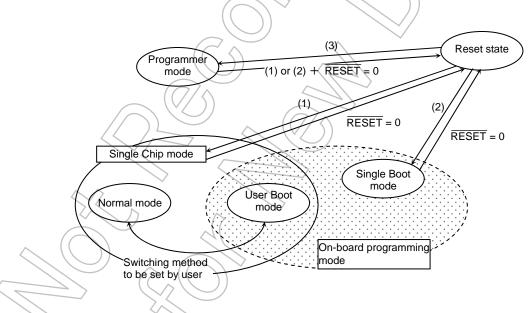
The following three types of operation modes are available to control program/erase operations on the flash memory.

	Table 3.16.1 Description of Operation Modes
Operation Mode Name	Description
Single Chip mode Normal mode User Boot mode	After reset release, the device starts up from the internal flash memory. Single Chip mode is further divided into two modes: "Normal mode" is a mode in which user application programs are executed, and "User Boot mode" is used to program the flash memory on-board. The means of switching between these two modes can be set by the user as desired. For example, it can be set so that Port 00 = "1" selects Normal mode and Port 00 = "0" selects User Boot mode. The user must include a routine to handle mode switching in a user application program. In this mode, the device starts up from a user application program. In this mode, the flash memory can be programmed by a user-specified method.
Single Boot mode	After reset release, the device starts up from the internal boot ROM (mask ROM). The boot ROM includes an algorithm which allows a program for programming/erasing the flash memory on-board via a serial port to be transferred to the device's internal RAM. The transferred program is then executed in the internal RAM so that the flash memory can be programmed/erased by receiving data from an external host and issuing program/erase commands.
Programmer mode	This mode enables the internal flash memory to be programmed/erased using a general-purpose programmer. For programmers that can be used, please contact your local Toshiba sales representative.

Of the modes listed in Table 3.16.1, the internal flash memory can be programmed in User Boot mode, Single Boot mode and Programmer mode.

The mode in which the flash memory can be programmed/erased while mounted on the user board is defined as the on-board programming mode. Of the modes listed above, Single Boot mode and User Boot mode are classified as on-board programming modes. Single Boot mode supports Toshiba's proprietary programming/erase method using serial I/O. User Boot mode (within Single Chip mode) allows the flash memory to be programmed/erased by a user-specified method.

Programmer mode is provided with a read protect function which prohibits reading of ROM data. By enabling the read protect function upon completion of programming, the user can protect ROM data from being read by third parties. The operation mode — Single Chip mode, Single Boot mode or Programmer mode — is determined during reset by externally setting the input levels on the AM0, AM1 and BOOT (P80) pins.


Except in Programmer mode which is entered with $\overrightarrow{\text{RESET}}$ held at "0", the CPU will start operating in the selected mode after the reset state is released. Once the operation mode has been set, make sure that the input levels on the mode setting pins are not changed during operation. Table 3.16.2 shows how to set each operation mode, and Figure 3.16.2 shows a mode transition diagram.

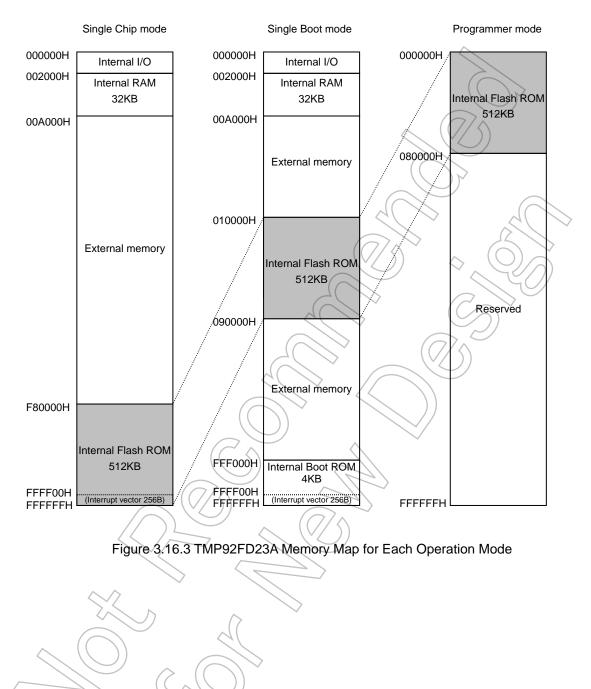
	Onevertien Mede	Input Pins				
	Operation Mode	RESET	BOOT (P80)	AM1 AM0		
(1)	Single Chip mode (Normal or User Boot mode)		1			
(2)	Single Boot mode	A	o 🗸	1		
(3)	Programmer mode		- 🔿	$(1))$ $\tilde{0}$		

Table 3.16.2 Operation Mode Pin Settings

Although P80 is an output port, it becomes an input port with pull-up resistor only during a reset. After a reset, P80 operates as follows depending on the operation mode.

- Single chip mode: Output port (Without pull-up resistor)
- Single boot mode: Pull-up (Input gate is invalid, and output gate is in high impedance.)

Numbers in () correspond to the operation mode pin settings shown in Table 3.16.2.


Figure 3.16.2 Mode Transition Diagram

3.16.3.2 Reset Operation

To reset the device, hold the RESET input at "0" for at least 20 system clocks while the power supply voltage is within the rated operating voltage range and the internal high-frequency oscillator is oscillating stably. For details, refer to 3.1.2 "Reset Operation."

3.16.3.3 Memory Map for Each Operation Mode

In this product, the memory map varies with operation mode. The memory map and sector address ranges for each operation mode are shown below.

	Single Chip Mode	Single Boot Mode
Sector-0	F80000H to F80FFFH	10000H to 10FFFH
Sector-1	F81000H to F81FFFH	11000H to 11FFFH
Sector-2	F82000H to F82FFFH	12000H to 12FFFH
Sector-3	F83000H to F83FFFH	13000H to 13FFFH
Sector-4	F84000H to F84FFFH	14000H to 14FFFH
Sector-5	F85000H to F85FFFH	15000H to 15FFFH
Sector-6	F86000H to F86FFFH	16000H to 16FFFH
Sector-7	F87000H to F87FFFH	17000H to 17FFFH)
Sector-8	F88000H to F88FFFH	18000H to 18FFFH
Sector-9	F89000H to F89FFFH	19000H to 19FFFH
Sector-10	F8A000H to F8AFFFH	1A000H to 1AFFFH
Sector-11	F8B000H to F8BFFFH	1B000H to 1BFFFH
Sector-12	F8C000H to F8CFFFH	1C000H to 1CFFFH
Sector-13	F8D000H to F8DFFFH	1D000H to 1DFFFH
Sector-14	F8E000H to F8EFFFH	1E000H to 1EFFFH
Sector-15	F8F000H to F8FFFFH	1F000H to 1FFFFH
Sector-16	F90000H to F90FFFH	20000H to 20FFFH
		· ~ .
	. 20	. ()
-	•	
-	• 70	(\bigcirc / \land)
Sector-111	FEF000H to FEFFFH	7F000H to 7FFFFH
Sector-112	FF0000H to FF0FFFH	80000H to 80FFFH
Sector-113	FF1000H to FF1FFFH	81000H to 81FFFH
Sector-114	FF2000H to FF2FFFH	82000H to 82FFFH
Sector-115	FF3000H to FF3FFFH	83000H to 83FFFH
Sector-116	FF4000H to FF4FFFH	84000H to 84FFFH
Sector-117	FF5000H to FF5FFFH	85000H to 85FFFH
Sector-118	FF6000H to FF6FFFH	86000H to 86FFFH
Sector-119	FF7000H to FF7FFFH	87000H to 87FFFH
Sector-120	FF8000H to FF8FFFH	88000H to 88FFFH
Sector-121	FF9000H to FF9FFFH	89000H to 89FFFH
Sector-122	FFA000H to FFAFFFH	8A000H to 8AFFFH
Sector-123	FFB000H to FFBFFFH	8B000H to 8BFFFH
Sector-124	FFC000H to FFCFFFH	8C000H to 8CFFFH
Sector-125	FFD000H to FFDFFFH	8D000H to 8DFFFH
Sector-126	FFE000H to FFEFFFH	8E000H to 8EFFFH
Sector-127	FFF000H to FFFFFFH	8F000H to 8FFFFH
	$\sim \bigcirc$	

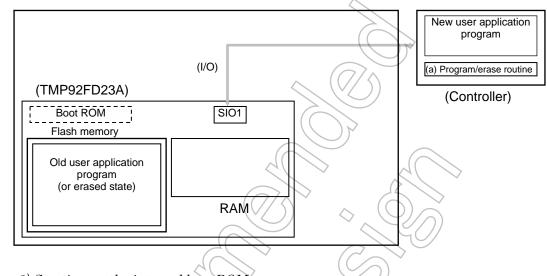
Table 3.16.3 Sector	Address Ranges for	r Each Opera	ation Mode

3.16.4 Single Boot Mode

In Single Boot mode, the internal boot ROM (mask ROM) is activated to transfer a program/erase routine (user-created boot program) from an external source into the internal RAM. This program/erase routine is then used to program/erase the flash memory. In this mode, the internal boot ROM is mapped into an area containing the interrupt vector table, in which the boot ROM program is executed. The flash memory is mapped into an address space different from the one into which the boot ROM is mapped (see Figure 3.16.3).

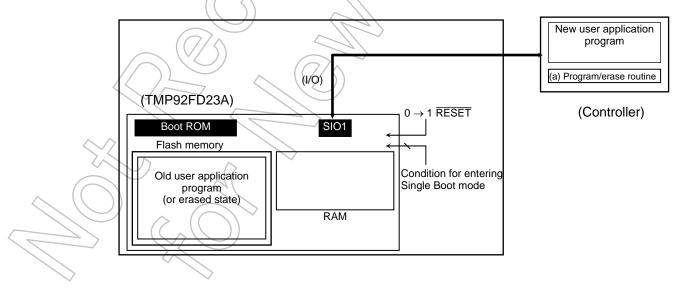
The device's SIO (SIO1) and the controller are connected to transfer the program/erase routine from the controller to the device's internal RAM. This program/erase routine is then executed to program/erase the flash memory.

The program/erase routine is executed by sending commands and write data from the controller. The communications protocol between the device and the controller is described later in this manual. Before the program/erase routine can be transferred to the RAM, user password verification is performed to ensure the security of user ROM data. If the password is not verified correctly, the RAM transfer operation cannot be performed. In Single Boot mode, disable interrupts and use the interrupt request flags to check for an interrupt request.

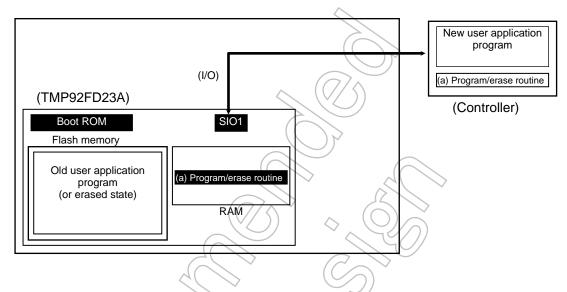

Note1: In Single Boot mode, the boot-ROM programs are executed in Normal mode. Do not change to another operation mode in the program/erase routine.

Note2: In the initial routine of the boot-ROM program, after changing the clock gear from fc/16 to fc, PLL is active. Therefore, fc is set to four times as fast as fosch.

3.16.4.1 Using the program/erase algorithm in the internal boot ROM

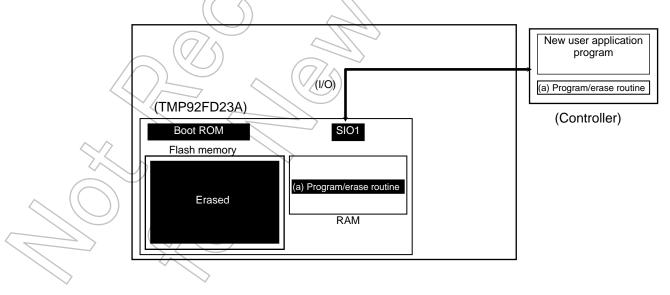

(Step-1) Environment setup

Since the program/erase routine and write data are transferred via SIO (SIO1), connect the device's SIO (SIO1) and the controller on the board. The user must prepare the program/erase routine (a) on the controller.


(Step-2) Starting up the internal boot ROM

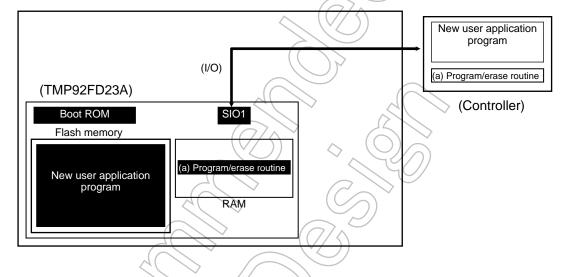
Release the reset with the relevant input pins set for entering Single Boot mode. When the internal boot ROM starts up, the program/erase routine (a) is transferred from the controller to the internal RAM via SIO according to the communications procedure for Single Boot mode. Before this can be carried out, the password entered by the user is verified against the password written in the user application program. (If the flash memory has been erased, 12 bytes of "0xFF" are used as the password.)

(Step-3) Copying the program/erase routine to the RAM

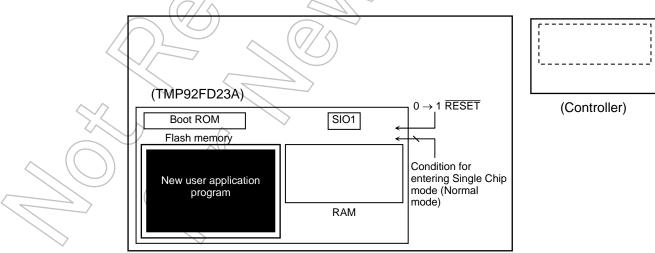

After password verification is completed, the boot ROM copies the program/erase routine (a) from the controller to the RAM using serial communications. The program/erase routine must be stored within the RAM address range of 002000H to 009DFFH.

(Step-4) Executing the program/erase routine in the RAM

Control jumps to the program/erase routine (a) in the RAM. If necessary, the old user application program is erased (sector erase or chip erase).


Note: The boot ROM is provided with an erase command, which enables the entire chip to be erased from the controller without using the program/erase routine. If it is necessary to erase data on a sector basis, incorporate the necessary code in the program/erase routine.

(Step-5) Copying the new user application program


The program/erase routine (a) loads the new user application program from the controller into the erased area of the flash memory.

In the example below, the new user application program is transferred under the same communications conditions as those used for transferring the program/erase routine. However, after the program/erase routine has been transferred, this routine can be used to change the transfer settings (data bus and transfer source). Configure the board hardware and program/erase routine as desired.

(Step-6) Executing the new user application program

After the programming operation has been completed, turn off the power to the board and remove the cable connecting the device and the controller. Then, turn on the power again and start up the device in Single Chip mode to execute the new user application program.

3.16.4.2 Connection Examples for Single Boot Mode

In Single Boot mode the flash memory is programmed by serial transfer. Therefore, on-board programming is performed by connecting the device's SIO (SIO1) and the controller (programming tool) and sending commands from the controller to the device. Figure 3.16.4 shows an example of connection between the target board and a programming controller. Figure 3.16.5 shows an example of connection between the target board and a RS232C board.

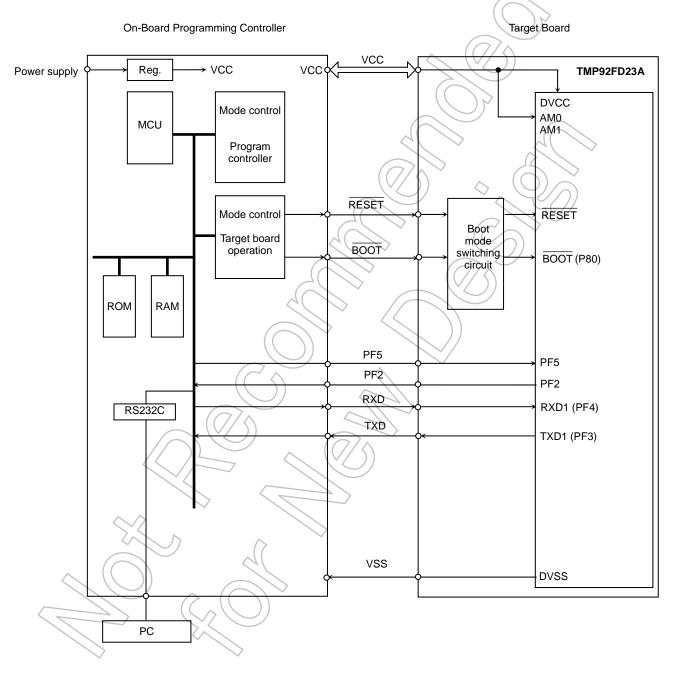
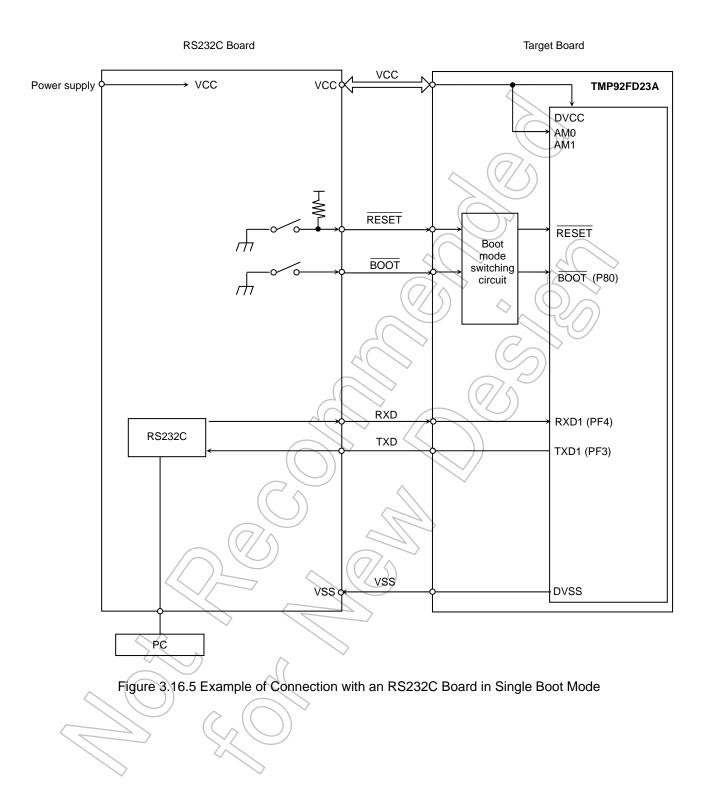



Figure 3.16.4 Example of Connection with an External Controller in Single Boot Mode

3.16.4.3 Mode Setting

To perform on-board programming, the device must be started up in Single Boot mode by setting the input pins as shown below.

- AM0,AM1 = 1
- $\cdot \overline{\text{BOOT}} = 0$
- $\mathbf{RESET} = 0 \rightarrow 1$

Set the AM0, AM1, and $\overline{\text{BOOT}}$ pins as shown above with the $\overline{\text{RESET}}$ pin held at "0". Then, setting the $\overline{\text{RESET}}$ pin to "1" will start up the device in Single Boot mode.

3.16.4.4 Memory Maps

Figure 3.16.6 shows a comparison of the memory map for Normal mode (in Single Chip mode) and the memory map for Single Boot mode. In Single Boot mode, the flash memory is mapped to addresses 10000H to 8FFFFH (physical addresses) and the boot ROM (mask ROM) is mapped to addresses FFF000H to FFFFFFH.

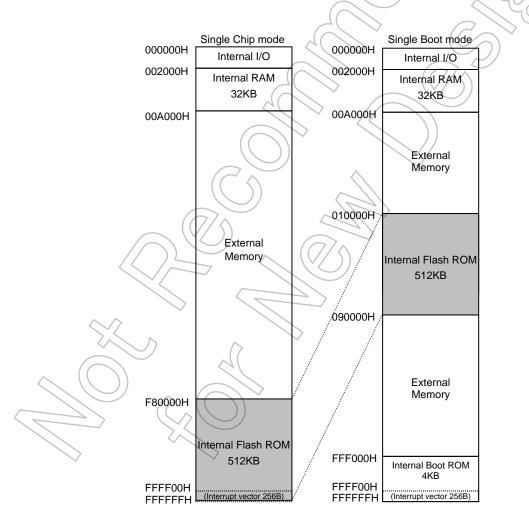


Figure 3.16.6 Comparison of Memory Maps

3.16.4.5 Interface Specifications

The SIO communications format in Single Boot mode is shown below. The device supports the UART (asynchronous communications) serial operation mode.

To perform on-board programming, the same communications format must also be set on the programming controller's side.

UART (asynchronous) communications

- Communications channel: SIO channel 1 (For the pins to be used, see Table 3.16.4.)
- Serial transfer mode : UART (asynchronous communications) mode
- Data length :8 bits
- : None • Parity bit
- Stop bit
- : 1 bit· Baud rate : See Table 3.16.5 and Table 3.16.6.

ns		UART	\Diamond
DVCC		0	
DVSS	\sim	0	(C)
AM1,AM0,	\searrow	0	C.
BOOT	\geq	0	77~
RESET		0	$\langle \rangle \rangle$
TXD1		0	
RXD1	$\langle \langle \rangle$	0	
	DVCC DVSS AM1,AM0, BOOT RESET TXD1	DVCC DVSS AM1,AM0, BOOT RESET TXD1	DVCC O DVSS O AM1,AM0, O BOOT O RESET O TXD1 O

Table 3.16.4 Pin Connections

Note: Unused pins are in the initial state after reset release.

		Tabl	e 3.16.5 Baud Rate Ta	able	
	SIO	(7/s)	Transfer Rate (bps)	
	UART	115200	57600 38400	19200	9600
\sim	\sim	\geq			
Ì	\square	\sim	\searrow		
			\geqslant		

	57600 115200	(%) (sdq) (%) (sdq)			57600 0 115200 0		56818 -1.36	à high-speed clock.	The range of clock frequencies that are detected as each reference frequency. It may not be possible to perform Single Boot operations at clock frequencies outside of the supported range.	microcontroller clock frequency), the transfer baud rate error of the flash memory programming controller and the	
	38400	(%)		+0.16	0	0	+1.73	ust be selected a	not be possible to	error of the flash	7 <
	36	(sdq)		38462	38400	38400	39063	Boot mode.	ency. It may l	fer baud rate	کر ۱)
	19200	(%)		+0.16	0	V ()	+1,73	sed in Single	erence freque	cy), the trans	/
	19,	(sdq)	Ι	19231	(19200	19200	19531	that can be u ode, one of th	l as each ref	dock frequend	
	00	Error (%)		+0,16),	0	+1.73	illation circuit	hat are detectec ted range.	crocontroller o	
4	0096	Baud Rate	(Note1)	9615	0096 <	0096	6766	igh-speed osc	quencies that the supported	requency (mic - +2% in total	
	l Rate (bps)	Supported Range (MHz)		7.83~8,14	9.04~9.40	9.64~10.0	9.94~10.0	The frequency of the high-speed oscillation circuit that can be used in Single Boot mode. To program the flash memory using Single Boot mode, one of the reference frequencies must be selected as a high-speed clock.	The range of clock frequencies the frequencies the support frequencies outside of the support	To automatically detect the reference frequency (minoscillation frequency arror must he within +2% in total	
~	Reference Baud Rate (bps)	Reference Frequency (MHz)	6~10	ω	9.2160	9.8304	10	Reference frequency:	Supported Range:	Note1: To automatically detect the reference frequency (

Please change to the baud rate of the desire by executing the program (user-created boot program) on RAM by using RAM Transfer command when the baud rate is Note 2: The single boot mode can be used in all the operation frequencies (X1=6 to 10MHz) when the baud rate on the flash memory programming controller side is 9600bps. changed after an initial communication is executed by 9600bps. For the TOSHIBA flash programmer, the baud rate change from 9600 to 115200bps is supported.

Table 3.16.6 Correspondence between Operating Frequency and Baud Rate in Single Boot Mode

3.16.4.6 Data Transfer Formats

Table 3.16.7 to Table 3.16.13 show the operation command data and the data transfer format for each operation mode.

	Operation Command Data
Operation Command Data	Operation Mode
10H	RAM Transfer
20H	Flash Memory SUM
30H	Product Information Read
40H	Flash Memory Chip Erase
60H	Flash Memory Protect Set

	Transfer Byte	Transfer Data	Baud	Transfer Data
	Number	from Controller to Device	Rate	from Device to Controller
Boot	1st byte	Baud rate setting	Desired	
ROM	-	UART 86H	baud	~
			rate	
			(Note 1)	
	2nd byte	_		ACK response to baud rate setting
				Normal (baud rate OK)
				·UART 86H
			<	(If the desired baud rate cannot be set,
				operation is terminated.)
	3rd byte	Operation command data (10H)	_	$\left(\left\{ \right\} \right) >$
	4th byte	—		ACK response to operation command (Note 2)
				Normal 10H
				Error x1H
				Protection applied (Note 4) x6H
			(//5)	Communications error x8H
	5th byte	Password data (12 bytes)	\searrow	
	to			
	16th byte	(08FEF4H to 08FEFFH)		$(C \sim)$
	17th byte	CHECKSUM value for 5th to 16th bytes	\geq	
	18th byte	-		ACK response to CHECKSUM value (Note 2)
				Normal 10H
				Èrrór 11H
				Communications error 18H
	19th byte	RAM storage start address 31 to 24 (Note 3)		
	20th byte	RAM storage start address 23 to 16 (Note 3)	- \	
	21st byte	RAM storage start address 15 to 8 (Note 3)		× –
	22nd byte	RAM storage start address 7 to 0 (Note 3)		—
	23rd byte	RAM storage byte count 15 to 8 (Note 3)	\geq	
	24th byte	RAM storage byte count 7 to 0 (Note 3)	\sim	
	25th byte	CHECKSUM value for 19th to 24th bytes (Note 3)		
	26th byte	$\langle \cap \rangle = \langle (/ \land)$		ACK response to CHECKSUM value (Note 2)
	<			Normal 10H
				Error 11H
			_	Communications error 18H
	27th byte	RAM storage data		—
	to			
	m'th byte		_	
	(m + 1)th byte	CHECKSUM value for 27th to m'th bytes	-	—
\langle	(m + 2)th byte			ACK response to CHECKSUM value (Note 2)
		\land		Normal 10H
$\langle $				Error 11H
			4	Communications error 18H
RAM	(m + 3)th byte	·		Jump to RAM storage start address

Table 3.16.8 Transfer Format of Single Boot Program [RAM Transfer]

Note 1: For the desired baud rate setting, see Table 3.16.6.
Note 2: After sending an error response, the device waits for operation command data (3rd byte).
Note 3: The data to be transferred in the 19th to 25th bytes should be programmed within the RAM address range of 002000H to 009DFFH (32.256 Kbytes).
Note 4: When read protection or write protection is applied, the device aborts the received operation command and waits for the next operation command data (3rd byte).

	Transfer Byte Number	Transfer Data from Controller to Device		Baud Rate	Transfer Data from Device to Controller
Boot ROM	1st byte	Baud rate setting UART	86H	Desired baud rate (Note1)	_
	2nd byte			2	ACK response to baud rate setting Normal (baud rate OK) ·UART 86H (If the desired baud rate cannot be set, operation is terminated.)
	3rd byte	Operation command data	(20H)		_
	4th byte	_			ACK response to operation command (Note 2) Normal 20H Error x1H Communications error x8H
	5th byte				SUM (upper)
	6th byte	_		(7/	SUM (lower)
	7th byte	_		(\bigcirc)	CHECKSUM value for 5th and 6th bytes
	8th byte	(Wait for the next operation comma	nd data)		

Tahlo 3 16 0 T	ransfer Format of Si	nale Root Program	[Flash Memory SUM]
		ngie Door rogram	

Note 1: For the desired baud rate setting, see Table 3.16.6.

Note 2: After sending an error response, the device waits for operation command data (3rd byte).

	Transfer Byte Number	Transfer Data from Controller to Device	Baud Rate	Transfer Data from Device to Controller
Boot ROM	1st byte	Baud rate setting UART 86H	Desired baud rate (Note 1)	_
	2nd byte	_	<	ACK response to baud rate setting Normal (baud rate OK) ·UART 86H (If the desired baud rate cannot be set operation is terminated.)
	3rd byte	Operation command data (30H)	1	— —
	4th byte			ACK response to operation command (Note 2 Normal 30H Error x1H Communications error x8H
	5th byte		(77)	Flash memory data (address 08FEF0H)
	6th byte	_		Flash memory data (address 08FEF1H)
	7th byte	_ (Flash memory data (address 08FEF2H)
	8th byte			Flash memory data (address 08FEF3H)
	9th byte to 20th byte	- <(Part number (ASCII code, 12 bytes) 'TMP92FD23' (from 9th byte)
	21st byte to 24th byte			Password comparison start address (4 bytes) F4H, FEH, 08H, 00H (from 21st byte)
	25th byte to 28th byte			RAM start address (4 bytes) 00H, 20H, 00H, 00H (from 25th byte)
	29th byte to 32nd byte			RAM (user area) end address (4 bytes) FFH, 9DH, 00H, 00H (from 29th byte)
	33rd byte to 36th byte			RAM end address (4 bytes) FFH, 9FH, 00H, 00H (from 33rd byte)
	37th byte to 40th byte		P	Dummy data (4 bytes) 00H,00H,00H,00H (from 37th byte)
	41st byte to 44th byte	-		Dummy data (4 bytes) 00H, 00H, 00H, 00H (from 41st byte)
\langle	45th byte to 46th byte			FUSE information (2 bytes from 45th byte) Read protection/Write protection 1) Applied/Applied : 00H, 00H
$\langle \langle \langle \rangle \rangle$				2) Not applied/Applied: 01H, 00H3) Applied/Not applied: 02H, 00H4) Not applied/Not applied: 03H, 00H
	47th byte to 50th byte	~		Flash memory start address (4 bytes) 00H, 00H, 01H, 00H (from 47th byte)
	51st byte to 54th byte	—		Flash memory end address (4 bytes) FFH, FFH, 08H, 00H (from 51st byte)
	55th byte to 56th byte	_		Number of sectors in flash memory (2 bytes) 80H, 00H (from 55th byte)
	57th byte to 60th byte	_		Start address of flash memory sectors of th same size (4 bytes) 00H, 00H, 01H, 00H (from 57th byte)

Table 3.16.10 Transfer Format of Single Boot Program [Product Information Read] (1/2)

	Transfer Byte	Transfer Data	Baud rate	Transfer Data
	Number	from Controller to Device		from Device to Controller
Boot ROM	61st byte	—		Size (in half words) of flash memory sectors
	to			of the same size (4 bytes)
	64th byte			00H, 08H, 00H, 00H (from 61st byte)
	65th byte	_		Number of flash memory sectors of the same
				size (1 byte) 80H
	66th byte	—		CHECKSUM value for 5th to 65th bytes
67th byte (Wait for the next operation command data)				
				$(\bigcirc 1)$

Table 3.16.11 Transfer Format of Single Boot Program [Product Information Read] (2/2)

Note 1: For the desired baud rate setting, see Table 3.16.6.

Note 2: After sending an error response, the device waits for operation command data (3rd byte).

	Transfer Byte	Transfer Data		Baud Rate	Transfer Data	
	Number	from Controller to Device		Dada Nato	from Device to Controller	
Boot ROM	1st byte	Baud rate setting		Desired		
		UART	86H	baud rate		
				(Note 1)		
	2nd byte	_			ACK response to baud rate setting	
	-				Normal (baud rate OK)	
					·UART	86H
					(If the desired baud rate cannot I	be set,
				<	operation is terminated.)	
	3rd byte	Operation command data	(40H)		_	
	4th byte	_			ACK response to operation command (I	Note2)
					Normal	40H
				((Error	x1H
					Communications error	x8H
	5th byte	Erase Enable command data	(54H)			
	6th byte		$(7/\diamond)$	ACK response to operation command (I	Note 2)	
				(\bigcirc)	Normal	54H
			(Error	x1H
			4		Communications error	x8H
	7th byte	—	AC		ACK response to Erase command	
					Normal	4FH
		(1	\rightarrow	\sim	Error	4CH
	8th byte	- 20			ACK response	5DH
		$\lambda($	$\langle \rangle$		Normal Error	5DH 60H
	9th byte	(Wait for the next operation comma	v ctch he			000
	ourbyte	Twattion the next operation confilma	iu uala			

Table 3.16.12 Transfer Format of Single Boot Program [Flash Memory Chip Erase]

Note 1: For the desired baud rate setting, see Table 3.16.6. Note 2: After sending an error response, the device waits for operation command data (3rd byte).

	Transfer Byte	Transfer Data	Baud Rate	Transfer Data	
	Number	from Controller to Device		from Device to Controller	
Boot ROM	1st byte	Baud rate setting	Desired	_	
		UART 86H	baud rate		
			(Note 1)	~	
	2nd byte	—		ACK response to baud rate setting	
				Normal (baud rate OK)	
					86H
				(If the desired baud rate cannot be	e set,
				operation is terminated.)	
	3rd byte	Operation command data (60H)	-		
	4th byte	—		ACK response to operation command (N	,
			G	Normal	60H
				Error	x1H
				Communications error	x8H
	5th byte	Password data (12 bytes)	$(\overline{\Omega})$		
	to			\diamond (O)	
	16th byte (08FEF4H to 08FEFFH) 17th byte CHECKSUM value for 5th to 16th bytes 18th byte —				
					
				ACK response to checksum value (Note	
			\sim	Normal	60H
			\triangleright	Error	61H
				Communications error	68H
	19th byte	- ~		ACK response to Protect Set command	
				Normal	6FH
				Error	6CH
	20th byte	-(())		ACK response	
			~	Normal	31H
				Error	34H
	21st byte	(Wait for the next operation command	$\langle \rangle$	—	
		data)			

Table 3.16.13 Transfer Format of Single Boot Program [Flash Memory Protect Set]

Note 1: For the desired baud rate setting, see Table 3.16.6.

Note 2: After sending an error response, the device waits for operation command data (3rd byte).

3.16.4.7 Boot Program

When the device starts up in Single Boot mode, the boot program is activated.

The following explains the commands that are used in the boot program to communicate with the controller when the device starts up in Single Boot mode. Use this information for creating a controller for using Single Boot mode or for building a user boot environment.

1. RAM Transfer command

In RAM transfer, data is transferred from the controller and stored in the device's internal RAM. When the transfer completes normally, the boot program will start running the transferred user program. Up to 32.256 Kbytes of data can be transferred as a user program. (This limit is implemented in the boot program to protect the stack pointer area.) The user program starts executing from the RAM storage start address.

This RAM transfer function enables a user-created program/erase routine to be executed, allowing the user to implement their own on-board programming method. To perform on-board programming with a user program, the flash memory command sequences (see section 3.16.6) must be used. After the RAM Transfer command has been completed, the entire internal RAM area can be used. If read protection or write protection is applied on the device or a password error occurs, this command will not be executed.

2. Flash Memory SUM command

This command calculates the SUM of 512 Kbytes of data in the flash memory and returns the result. There is no operation command available to the boot program for reading data from the entire area of the flash memory. Instead, this Flash Memory SUM command can be used. Reading the SUM value enables revision management of the application program.

3. Product Information Read command

This command returns the information about the device including its part number and memory details stored in the flash memory at addresses 08FEF0H to 08FEF3H. This command can also be used for revision management of the application program.

4. Flash Memory Chip Erase command

This command erases all the sectors in the flash memory. If read protection or write protection is applied on the device, all the sectors in the flash memory are erased and the read protection or write protection is cleared.

Since this command is also used to restore the operation of the boot program when the password is forgotten, it does not include password verification.

5. Flash Memory Protect Set command

This command sets both read protection and write protection on the device. However, if a password error occurs, this command will not be executed.

When read protection is set, the flash memory cannot be read in Programmer mode. When write protection is set, the flash memory cannot be written in Programmer mode.

- 3.16.4.8 RAM Transfer Command (See Table 3.16.8)
 - 1. From the controller to the device

The data in the 1st byte is used to determine the baud rate. The 1st byte is transferred with receive operation disabled (SC1MOD0<RXE> = 0). (The baud rate is determined using an internal timer.)

• To communicate in UART mode

Send the value 86H from the controller to the target board using UART settings at the desired baud rate. If the serial operation mode is determined as UART, the device checks to see whether or not the desired baud rate can be set. If the device determines that the desired baud rate cannot be set, operation is terminated and no communications can be established.

2. From the device to the controller

The data in the 2nd byte is the ACK response returned by the device for the serial operation mode setting data sent in the 1st byte. If the data in the 1st byte is found to signify UART and the desired baud rate can be set, the device returns 86H.

• Baud rate determination

The device determines whether or not the desired baud rate can be set. If it is found that the baud rate can be set, the boot program rewrites the BR1CR and BR1ADD values and returns 86H. If it is found that the desired baud rate cannot be set, operation is terminated and no data is returned. The controller sets a time-out time (5 seconds) after it has finished sending the 1st byte. If the controller does not receive the response (86H) normally within the time-out time, it should be considered that the device is unable to communicate. Receive operation is enabled (SC1MOD0<RXE> = 1) before 86H is written to the transmission buffer.

3. From the controller to the device

The data in the 3rd byte is operation command data. In this case, the RAM Transfer command data (10H) is sent from the controller to the device.

The data in the 4th byte is the ACK response to the operation command data in the 3rd byte. First, the device checks to see if the received data in the 3rd byte contains any error. If a receive error is found, the device returns the ACK response data for communications error (bit 3) x8H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined (They are the upper four bits of the immediately preceding operation command data).

Next, if the data received in the 3rd byte corresponds to one of the operation commands given in Table 3.16.7, the device echoes back the received data (ACK response for normal reception). In the case of the RAM Transfer command, if read or write protection is not applied, 10H is echoed back and then execution branches to the RAM transfer processing routine. If protection is applied, the device returns the corresponding ACK response data (bit 2/1) x6H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined. (They are the upper four bits of the immediately preceding operation command data.)

After branching to the RAM transfer processing routine, the device checks the data in the password area. For details, see 3.16.4.15 "Password".

If the data in the 3rd byte does not correspond to any operation command, the device returns the ACK response data for operation command error (bit0) x1H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined. (They are the upper four bits of the immediately preceding operation command data.)

5. From the controller to the device

The 5th to 16th bytes contain password data (12 bytes). The data in the 5th to 16th bytes is verified against the data at addresses 08FEF4H to 08FEFFH in the flash memory, respectively.

6. From the controller to the device

The 17th byte contains CHECKSUM data. The CHECKSUM data sent by the controller is the two's complement of the lower 8-bit value obtained by summing the data in the 5th to 16th bytes by unsigned 8-bit addition (ignoring any overflow). For details on CHECKSUM, see 3.16.4.17 "How to Calculate CHECKSUM."

The data in the 18th byte is the ACK response data to the 5th to 17th bytes (ACK response to the CHECKSUM value). The device first checks to see whether the data received in the 5th to 17th bytes contains any error. If a receive error is found, the device returns the ACK response data for communications error (bit 3) 18H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are the upper four bits of the immediately preceding operation command data, so the value of these bits is "1".

Next, the device checks the CHECKSUM data in the 17th byte. This check is made to see if the lower 8-bit value obtained by summing the data in the 5th to 17th bytes by unsigned 8-bit addition (ignoring any overflow) is 00H. If the value is not 00H, the device returns the ACK response data for CHECKSUM error (bit 0) 11H and waits for the next operation command data (3rd byte).

Finally, the device examines the result of password verification. If all the data in the 5th to 16th bytes is not verified correctly, the device returns the ACK response data for password error (bit 0) 11H and waits for the next operation command data (3rd byte).

If no error is found in all the above checks, the device returns the ACK response data for normal reception 10 H.

8. From the controller to the device

The data in the 19th to 22nd bytes indicates the RAM start address for storing block transfer data. The 19th byte corresponds to address bits 31 to 24, the 20th byte to address bits 23 to 16, the 21st byte to address bits 15 to 8, and the 22nd byte to address bits 7 to 0.

9. From the controller to the device

The data in the 23rd and 24th bytes indicates the number of bytes to be transferred. The 23rd byte corresponds to bits 15 to 8 of the transfer byte count and the 24th byte corresponds to bits 7 to 0.

10.From the controller to the device

the internal RAM.

The data in the 25th byte is CHECKSUM data. The CHECKSUM data sent by the controller is the two's complement of the lower 8-bit value obtained by summing the data in the 19th to 24th bytes by unsigned 8-bit addition (ignoring any overflow). For details on CHECKSUM, see 3.16.4.17 "How to Calculate CHECKSUM."

Note: The data in the 19th to 25th bytes should be placed within addresses 002000H to 009DFFH (32.256 Kbytes) in

The data in the 26th byte is the ACK response data to the data in the 19th to 25th bytes (ACK response to the CHECKSUM value).

The device first checks to see whether the data received in the 19th to 25th bytes contains any error. If a receive error is found, the device returns the ACK response data for communications error (bit 3) 18H and waits for the next operation command (3rd byte). The upper four bits of the ACK response data are the upper four bits of the immediately preceding operation command data, so the value of these bits is "1".

Next, the device checks the CHECKSUM data in the 25th byte. This check is made to see if the lower 8-bit value obtained by summing the data in the 19th to 25th bytes by unsigned 8-bit addition (ignoring any overflow) is 00H. If the value is not 00H, the device returns the ACK response data for CHECKSUM error (bit 0) 11H and waits for the next operation command data (3rd byte).

12. From the controller to the device

The data in the 27th to m'th bytes is the data to be stored in the RAM. This data is written to the RAM starting at the address specified in the 19th to 22nd bytes. The number of bytes to be written is specified in the 23rd and 24th bytes.

13.From the controller to the device

The data in the (m+1)th byte is CHECKSUM data. The CHECKSUM data sent by the controller is the two's complement of the lower 8-bit value obtained by summing the data in the 27th to m'th bytes by unsigned 8-bit addition (ignoring any overflow). For details on CHECKSUM, see 3.16.4.17 "How to Calculate CHECKSUM."

14. From the device to the controller

The data in the (m + 2)th byte is the ACK response data to the 27th to (m+1)th bytes (ACK response to the CHECKSUM value).

The device first checks to see whether the data in the 27th to (m+1)th byte contains any error. If a receive error is found, the device returns the ACK response data for communications error (bit 3) 18H and waits for the next operation command (3rd byte). The upper four bits of the ACK response are the upper four bits of the immediately preceding operation command data, so the value of these bits is "1".

Next, the device checks the CHECKSUM data in the (m+1)th byte. This check is made to see if the lower 8-bit value obtained by summing the data in the 27th to (m+1)th bytes by unsigned 8-bit addition (ignoring any overflow) is 00H. If the value is not 00H, the device returns the ACK response data for CHECKSUM error (bit 0) 11H and waits for the next operation command data (3rd byte).

If no error is found in all the above checks, the device returns the ACK response data for normal reception 10H.

15. From the device to the controller

If the ACK response data in the (m + 2)th byte is 10H (normal reception), the boot program then jumps to the RAM start address specified in the 19th to 22nd bytes.

3.16.4.9 Flash Memory SUM command (See Table 3.16.9)

- 1. The data in the 1st and 2nd bytes is the same as in the case of the RAM Transfer command.
- 2. From the controller to the device

The data in the 3rd byte is operation command data. The Flash Memory SUM command data (20H) is sent here.

3. From the device to the controller

The data in the 4th byte is the ACK response data to the operation command data in the 3rd byte.

The device first checks to see if the data in the 3rd byte contains any error. If a receive error is found, the device returns the ACK response data for communications error (bit 3) x8H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined, (They are the upper four bits of the immediately preceding operation command data.)

Then, if the data in the 3rd byte corresponds to one of the operation command values given in Table 3.16.7, the device echoes back the received data (ACK response for normal reception). In this case, 20H is echoed back and execution then branches to the flash memory SUM processing routine. If the data in the 3rd byte does not correspond to any operation command, the device returns the ACK response data for operation command error (bit 0) x1H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined. (They are the upper four bits of the immediately preceding operation command data.)

4. From the device to the controller

The data in the 5th and 6th bytes is the upper and lower data of the SUM value, respectively. For details on SUM, see 3.16.4.16 "How to Calculate SUM ."

5. From the device to the controller

The data in the 7th byte is CHECKSUM data. This is the two's complement of the lower 8-bit value obtained by summing the data in the 5th and 6th bytes by unsigned 8-bit addition (ignoring any overflow).

6. From the controller to the device

The data in the 8th byte is the next operation command data.

- 3.16.4.10 Product Information Read command (See Table 3.16.10 and Table 3.16.11)
 - 1. The data in the 1st and 2nd bytes is the same as in the case of the RAM Transfer command.
 - 2. From the controller to the device

The data in the 3rd byte is operation command data. The Product Information Read command data (30H) is sent here.

3. From the device to the controller

The data in the 4th byte is the ACK response data to the operation command data in the 3rd byte.

The device first checks to see if the data in the 3rd byte contains any error. If a receive error is found, the device returns the ACK response data for communications error (bit 3) x8H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined. (They are the upper four bits of the immediately preceding operation command data.)

Then, if the data in the 3rd byte corresponds to one of the operation command values given in Table 3.16.7, the device echoes back the received data (ACK response for normal reception). In this case, 30H is returned and execution then branches to the product information read processing routine. If the data in the 3rd byte does not correspond to any operation command, the device returns the ACK response data for operation command error (bit 0) x1H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined. (They are the upper four bits of the immediately preceding operation command data.)

4. From the device to the controller

The data in the 5th to 8th bytes is the data stored at addresses 08FEF0H to 08FEF3H in the flash memory. By writing the ID information of software at these addresses, the version of the software can be managed. (For example, 0002H can indicate that the software is now in version 2.)

5. From the device to the controller

The data in the 9th to 20th bytes denotes the part number of the device. 'TMP92FD23___' is sent in ASCII code starting from the 9th byte.

Note: An underscore ('_') indicates a space.

6. From the device to the controller

The data in the 21st to 24th bytes is the password comparison start address. F4H, FEH, 08H and 00H are sent starting from the 21st byte.

7. From the device to the controller

The data in the 25th to 28th bytes is the RAM start address. 00H, 20H, 00H and 00H are sent starting from the 25th byte.

8. From the device to the controller

The data in the 29th to 32nd bytes is the RAM (user area) end address. FFH, 9DH, 00H and 00H are sent starting from the 29th byte.

The data in the 33rd to 36th bytes is the RAM end address. FFH, 9FH, 00H and 00H are sent starting from the 33rd byte.

10. From the device to the controller

The data in the 37th to 44th bytes is dummy data.

11. From the device to the controller

The data in the 45th and 46th bytes contains the protection status and sector division information of the flash memory.

•Bit 0 indicates the read protection status.

•0: Read protection is applied.

- •1: Read protection is not applied.
- •Bit 1 indicates the write protection status.
 - •0: Write protection is applied.
 - •1: Write protection is not applied,
- •Bit 2 indicates whether or not the flash memory is divided into sectors.

•0: The flash memory is divided into sectors.

- •1: The flash memory is not divided into sectors.
- •Bits 3 to 15 are sent as "0".
- 12. From the device to the controller

The data in the 47th to 50th bytes is the flash memory start address. 00H, 00H, 01H and 00H are sent starting from the 47th byte.

13.From the device to the controller

The data in the 51st to 54th bytes is the flash memory end address. FFH, FFH, 08H and 00H are sent starting from the 51st byte.

14. From the device to the controller

The data in the 55th and 56th bytes indicates the number of sectors in the flash memory. 80H and 00H are sent starting from the 55th byte.

15. From the device to the controller

The data in the 57th to 65th bytes contains sector information of the flash memory. Sector information is comprised of the start address (starting from the flash memory start address), sector size and number of consecutive sectors of the same size. Note that the sector size is represented in word units.

The data in the 57th to 65th bytes indicates 4 Kbytes of sectors (sector 0 to sector 127).

For the data to be transferred, see Table 3.16.10 and Table 3.16.11.

16. From the device to the controller

The data in the 66th byte is CHECKSUM data. This is the two's complement of the lower 8-bit value obtained by summing the data in the 5th to 65th bytes by unsigned 8-bit addition (ignoring any overflow).

17. From the controller to the device

The data in the 67th byte is the next operation command data.

3.16.4.11 Flash Memory Chip Erase Command (See Table 3.16.12)

- 1. The data in the 1st and 2nd bytes is the same as in the case of the RAM Transfer command.
- 2. From the controller to the device

The data in the 3rd byte is operation command data. The Flash Memory Chip Erase command data (40H) is sent here.

3. From the device to the controller

The data in the 4th byte is the ACK response data to the operation command data in the 3rd byte.

The device first checks to see if the data in the 3rd byte contains any error. If a receive error is found, the device returns the ACK response data for communications error (bit 3) x8H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined. (They are the upper four bits of the immediately preceding operation command data.)

Then, if the data in the 3rd byte corresponds to one of the operation command values given in Table 3.16.7, the device echoes back the received data (ACK response for normal reception). In this case, 40H is echoed back. If the data in the 3rd byte does not correspond to any operation command, the device returns the ACK response data for operation command error (bit 0) x1H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined. (They are the upper four bits of the immediately preceding operation command data.)

4. From the controller to the device

The data in the 5th byte is Erase Enable command data (54H).

5. From the device to the controller

The data in the 6th byte is the ACK response data to the Erase Enable command data in the 5th byte.

The device first checks to see if the data in the 5th byte contains any error. If a receive error is found, the device returns the ACK response data for communications error (bit 3) x8H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined (They are the upper four bits of the immediately preceding operation command data.)

Then, if the data in the 5th byte corresponds to the Erase Enable command data, the device echoes back the received data (ACK response for normal reception). In this case, 54H is echoed back and execution jumps to the flash memory chip erase processing routine. If the data in the 5th byte does not correspond to the Erase Enable command data, the device returns the ACK response data for operation command error (bit 0) x1H and waits for the next operation command (3rd byte). The upper four bits of the ACK response data are undefined. (They are the upper four bits of the immediately preceding operation command data.)

6. From the device to the controller

The data in the 7th byte indicates whether or not the erase operation has completed successfully. If the erase operation has completed successfully, the device returns the end code (4FH). If an erase error has occurred, the device returns the error code (4CH).

The data in the 8th byte is ACK response data. If the erase operation has completed successfully, the device returns the ACK response for erase completion (5DH). If an erase error has occurred, the device returns the ACK response for erase error (60H).

8. From the controller to the device

The data in the 9th byte is the next operation command data.

3.16.4.12 Flash Memory Protect Set command (See Table 3.16.13)

- 1. The data in the 1st and 2nd bytes is the same as in the case of the RAM Transfer command.
- 2. From the controller to the device

The data in the 3rd byte is operation command data. The Flash Memory Protect Set command data (60H) is sent here.

3. From the device to the controller

The data in the 4th byte is the ACK response data to the operation command data in the 3rd byte.

The device first checks to see if the data in the 3rd byte contains any error. If a receive error is found, the device returns the ACK response data for communications error (bit 3) x8H and waits for the next operation command data. The upper four bits of the ACK response data are undefined. (They are the upper four bits of the immediately preceding operation command data.)

Then, if the data in the 3rd byte corresponds to one of the operation command data values given in Table 3.16.7, the device echoes back the received data (ACK response for normal reception). In this case, 60H is echoed back and execution branches to the flash memory protect set processing routine.

After branching to this routine, the data in the password area is checked. For details, see 3.16.4.15 "Password."

If the data in the 3rd byte does not correspond to any operation command, the device returns the ACK response data for operation command error (bit 0) x1H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are undefined. (They are the upper four bits of the immediately preceding operation command data.)

4. From the controller to the device

The data in the 5th to 16th bytes is password data (12 bytes). The data in the 5th byte is verified against the data at address 08FEF4H in the flash memory and the data in the 6th byte against the data at address 08FEF5H. In this manner, the received data is verified consecutively against the data at the specified address in the flash memory. The data in the 16th byte is verified against the data at address 08FEFFH in the flash memory.

5. From the controller to the device

The data in the 17th byte is CHECKSUM data. The CHECKSUM data sent by the controller is the two's complement of the lower 8-bit value obtained by summing the data in 5th to 16th bytes by unsigned 8-bit addition (ignoring any overflow). For details on CHECKSUM, see 3.16.4.17 "How to Calculate CHECKSUM."

The data in the 18th byte is the ACK response data to the data in the 5th to 17th bytes (ACK response to the CHECKSUM value).

The device first checks to see whether the data in the 5th to 17th bytes contains any error. If a receive error is found, the device returns the ACK response data for communications error (bit 3) 68H and waits for the next operation command data (3rd byte). The upper four bits of the ACK response data are the upper four bits of the immediately preceding operation command data, so the value of these bits is "6".

Then, the device checks the CHECKSUM data in the 17th byte. This check is made to see if the lower 8 bits of the value obtained by summing the data in the 5th to 17th bytes by unsigned 8-bit addition (ignoring any overflow) is 00H. If the value is not 00H, the device returns the ACK response data for CHECKSUM error (bit 0) 61H and waits for the next operation command data (3rd byte).

Finally, the device examines the result of password verification. If all the data in the 5th to 16th bytes is not verified correctly, the device returns the ACK response data for password error (bit 0) 61H and waits for the next operation command data (3rd byte).

If no error is found in the above checks, the device returns the ACK response data for normal reception 60H.

7. From the device to the controller

The data in the 19th byte indicates whether or not the protect set operation has completed successfully. If the operation has completed successfully, the device returns the end code (6FH). If an error has occurred, the device returns the error code (6CH).

8. From the device to the controller

The data in the 20th byte is ACK response data. If the protect set operation has completed successfully, the device returns the ACK response data for normal completion (31H). If an error has occurred, the device returns the ACK response data for error (34H).

9. From the device to the controller

The data in the 21st byte is the next operation command data.

3.16.4.13 ACK Response Data

The boot program notifies the controller of its processing status by sending various response data. Table 3.16.14 to Table 3.16.19 show the ACK response data returned for each type of received data. The upper four bits of ACK response data are a direct reflection of the upper four bits of the immediately preceding operation command data. Bit 3 indicates a receive error and bit 0 indicates an operation command error, CHECKSUM error or password error.

Transfer Data	Meaning
86H	The device can communicate in UART mode. (Note)

Note: If the desired baud rate cannot be set, the device returns no data and terminates operation.

Table 3.16.15 ACK Response Data to Operation Command Data

Meaning
A receive error occurred in the operation command data.
Terminated receive operation due to protection setting.
Undefined operation command data was received normally.
Received the RAM Transfer command.
Received the Flash Memory SUM command.
Received the Product Information Read command.
Received the Flash Memory Chip Erase command.
Received the Flash Memory Protect Set command.

Note: The upper four bits are a direct reflection of the upper four bits of the immediately preceding operation command data.

Table 3.16.16 ACK Response data to CHECKSUM Data for RAM Transfer Command

Transfer Data	Meaning
18H	A receive error occurred.
11H	A CHECKSUM error or password error occurred.
10 <u>H</u>	Received the correct CHECKSUM value.

Table 3.16.17 ACK Response Data to Flash Memory Chip Erase Operation

	Transfer Data	Meaning			
_	54H	Received the Erase Enable command.			
/	4FH	Completed erase operation.			
	4CH	An erase error occurred.			
	5DH (Note)	Reconfirmation of erase operation			
	60H (Note)	Reconfirmation of erase error			

Note: These codes are returned for reconfirmation of communications.

Table 3.16.18 ACK Response Data to CHECKSUM Data for Flash Memory Protect Set Command

Transfer Data	Meaning	
68H	A receive error occurred.	
61H	A CHECKSUM or password error occurred.	
60H	Received the correct CHECKSUM value.	

Table3.16.19 ACK Response Data to Flash Memory Protect Set Operation

Transfer Data	Meaning
6FH	Completed the protect (read/write) set operation.
6CH	A protect (read/write) set error occurred.
31H (Note)	Reconfirmation of protect (read/write) set operation
34H (Note)	Reconfirmation of protect (read/write) set error

Note: These codes are returned for reconfirmation of communications.

3.16.4.14 Determining Serial Operation Mode

To communicate in UART mode, the controller should transmit the data value 86H as the first byte at the desired baud rate. Figure 3.16.7 shows the waveform of this operation.

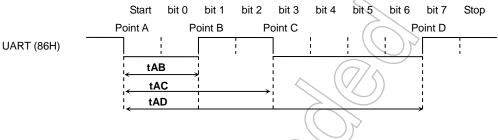


Figure 3.16.7 Data for Determining Serial Operation Mode

The boot program receives the first byte (86H) after reset release not as serial communications data. Instead, the boot program uses the first byte to determine the baud rate. The baud rate is determined by the output periods of tAB, tAC and tAD as shown in Figure 3.16.7 using the procedure shown in Figure 3.16.8.

The CPU monitors the level of the receive pin. Upon detecting a level change, the CPU captures the timer value to determine the baud rate.

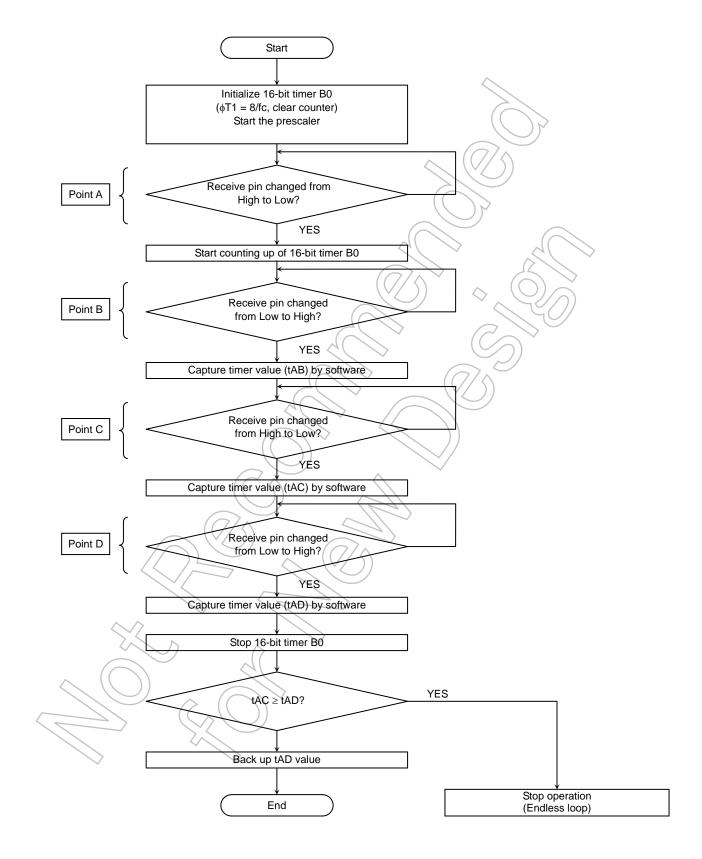


Figure 3.16.8 Flowchart for Serial Operation Mode Receive Operation

3.16.4.15 Password

When the RAM Transfer command (10H) or the Flash Memory Protect Set command (60H) is received as operation command data, password verification is performed. First, the device echoes back the operation command data (10H to 60H) and checks the data (12 bytes) in the password area (addresses 08FEF4H to 08FEFFH).

Then, the device verifies the password data received in the 5th to 16th bytes against the data in the password area as shown in Table 3.16.20.

Unless all the 12 bytes are verified correctly, a password error will occur.

A password error will also occur if all the 12 bytes of password data contain the same value. Only exception is when all the 12 bytes are "FFH" and verified correctly and the reset vector area (addresses 08FF00H to 08FF02H) is all "FFH". In this case, a blank device will be assumed and no password error will occur.

If a password error has occurred, the device returns the ACK response data for password error in the 18th byte.

Table 3.10.20	Password Verification Table
Receive data	Data to be verified against
5th byte	Data at address 08FEF4H
6th byte	Data at address 08FEF5H
7th byte	Data at address 08FEF6H
8th byte	Data at address 08FEF7H
9th byte	Data at address 08FEF8H
10th byte	Data at address 08FEF9H
11th byte	Data at address 08FEFAH
12th byte	Data at address 08FEFBH
13th byte	Data at address 08FEFCH
14th byte	Data at address 08FEFDH
15th byte	Data at address08FEFEH
16th byte	Data at address 08FEFFH

Table 3.16.20 Password Verificati	on Table	

Example of data that cannot be specified as a password

For blank products (Note)

Note: A blank product is a product in which all the bytes in the password area (addresses 08FEF4H to 08FEFFH) and the reset vector area (addresses 08FF00H to 08FF02H) are "FFH".

For programmed products

· The same 12 consecutive bytes cannot be specified as a password.

The table below shows password error examples.

Programmed	1	2	3	4	5	6	7	8	9	10	11	12	Note
product													
Error example 1	FFH	All "FF"											
Error example 2	00H	All "00"											
Error example 3	5AH	All "5A"											

3.16.4.16 How to Calculate SUM

SUM is calculated by summing the values of all data read from the flash memory by unsigned 8-bit addition and is returned as a word (16-bit) value. The resulting SUM value is sent to the controller in order of upper 8 bits and lower 8 bits. All the 512 Kbytes of data in the flash memory are included in the calculation of SUM. When the Flash Memory SUM command is executed, SUM is calculated in this way.

Example:

A1H
B2H
СЗН
D4H

When	SUM	\mathbf{is}	calculated	from	the	four	data	entries
shown	to the	lef	t, the result	is as	follo	ws:		

A1H + B2H + C3H + D4H = 02EAHSUM upper 8 bits: 02H SUM lower 8 bits: EAH

Thus, the SUM value is sent to the controller in order of 02H and EAH.

3.16.4.17 How to Calculate CHECKSUM

CHECKSUM is calculated by taking the two's complement of the lower 8-bit value obtained by summing the values of received data by unsigned 8-bit addition (ignoring any overflow). When the Flash Memory SUM command or the Product Information Read command is executed, CHECKSUM is calculated in this way. The controller should also use this CHECKSUM calculation method for sending CHECKSUM values.

Example: Calculating CHECKSUM for the Flash Memory SUM command

When the upper 8-bit data of SUM is E5H and the lower 8-bit data is F6H, CHECKSUM is calculated as shown below.

First, the upper 8 bits and lower 8 bits of the SUM value are added by unsigned operation.

E5H + F6H = 1DBH

Then, the two's complement of the lower 8 bits of this result is obtained as shown below. The resulting CHECKSUM value (25H) is sent to the controller.

0 - DBH = 25H

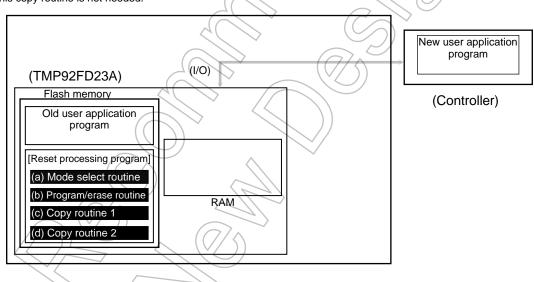
3.16.5 User Boot Mode (in Single Chip Mode)

User Boot mode, which is a sub mode of Single Chip mode, enables a user-created flash memory program/erase routine to be used. To do so, the operation mode of Single Chip mode must be changed from Normal mode for executing a user application program to User Boot mode for programming/erasing the flash memory.

For example, the reset processing routine of a user application program may include a routine for selecting Normal mode or User Boot mode upon entering Single Chip mode. Any mode-selecting condition may be set using the device's I/O to suit the user system.

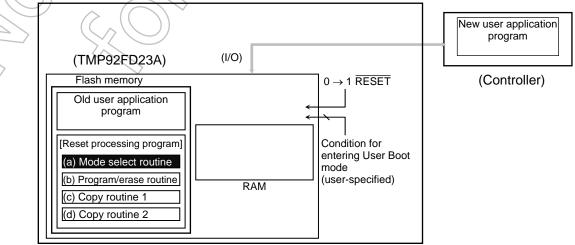
To program/erase the flash memory in User Boot mode, a program/erase routine must be incorporated in the user application program in advance. Since the processor cannot read data from the internal flash memory while it is being programmed or erased, the program/erase routine must be executed from the outside of the flash memory. While the flash memory is being programmed/erased in User Boot mode, interrupts must be disabled.

The pages that follow explain the procedure for programming the flash memory using two example cases. In one case the program/erase routine is stored in the internal flash memory (1-A); in the other the program/erase routine is transferred from an external source (1-B).

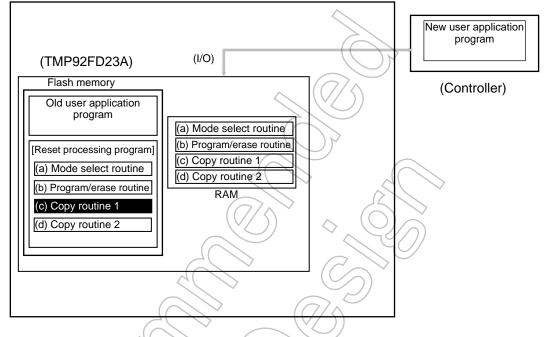

3.16.5.1 (1-A) Program/Erase Procedure Example 1

When the program/erase routine is stored in the internal flash memory

(Step-1) Environment setup

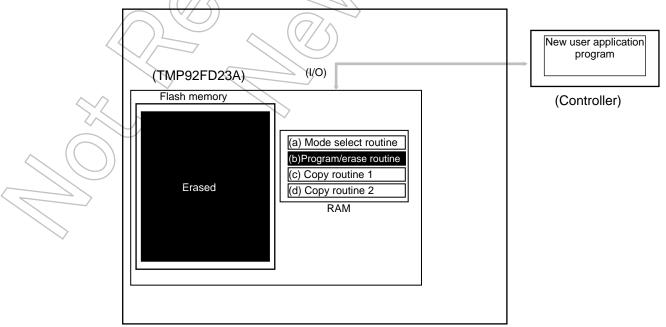

First, the condition (e.g. pin status) for entering User Boot mode must be set and the I/O bus for transferring data must be determined. Then, the device's peripheral circuitry must be designed and a corresponding program must be written. Before mounting the device on the board, it is necessary to write the following four routines into one of the sectors in the flash memory.

- (a) Mode select routine : Selects Normal mode or User Boot mode.
- (b) Program/erase routine: Loads program/erase data from an external source and programs/erases the flash memory.
- (c) Copy routine 1 : Copies routines (a) to (d) into the internal RAM or external memory.
- (d) Copy routine 2 :Copies routines (a) to (d) from the internal RAM or external memory into the flash memory.
- Note: The above (d) is a routine for reconstructing the program/erase routine on the flash memory. If the entire flash memory is always programmed and the program/erase routine is included in the new user application program, this copy routine is not needed.


(Step-2) Entering User Boot mode (using the reset processing)

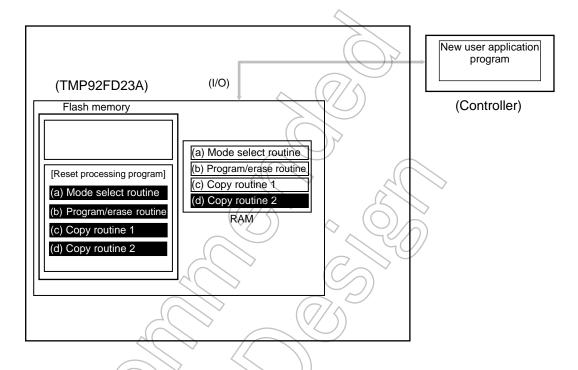
After reset release, the reset processing program determines whether or not the device should enter User Boot mode. If the condition for entering User Boot mode is true, User Boot mode is entered to program/erase the flash memory.

(Step-3) Copying the program/erase routine

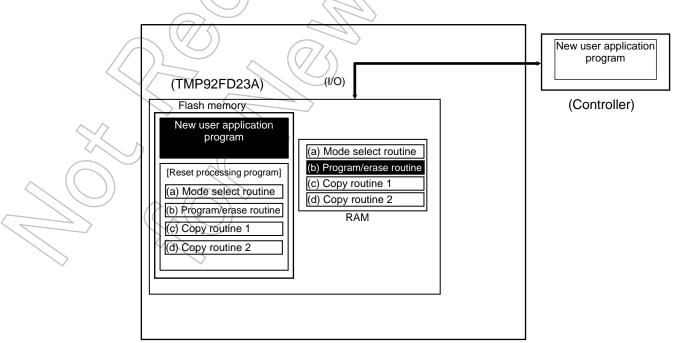

After the device has entered User Boot mode, the copy routine 1 (c) copies the routines (a) to (d) into the internal RAM or external memory (The routines are copied into the internal RAM here.)

(Step-4) Erasing the flash memory by the program/erase routine

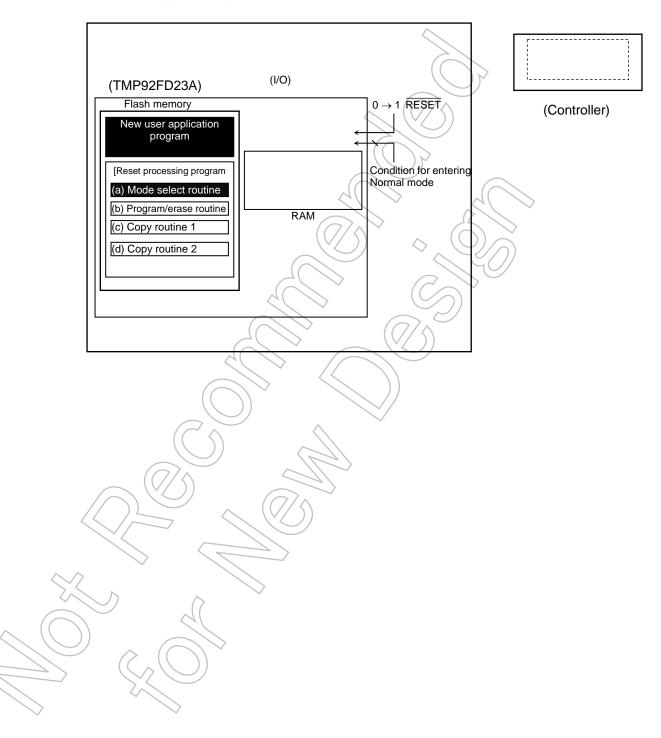
Control jumps to the program/erase routine in the RAM and the old user program area is erased (sector erase or chip erase). (In this case, the flash memory erase command is issued from the RAM.)


Note: If data is erased on a sector basis and the routines (a) to (d) are left in the flash memory, only the program/erase routine (b) need be copied into the RAM.

(Step-5) Restoring the user boot program in the flash memory


The copy routine 2 (d) in the RAM copies the routines (a) to (d) into the flash memory.

Note: If data is erased on a sector basis and the routines (a) to (d) are left in the flash memory, step 5 is not needed.


(Step-6) Writing the new user application program to the flash memory

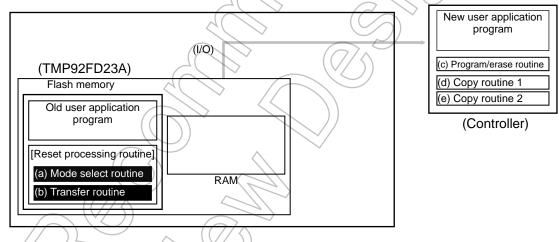
The program/erase routine in the RAM is executed to load the new user application program from the controller into the erased area of the flash memory.

(Step-7) Executing the new user application program

The $\overline{\text{RESET}}$ input pin is driven Low ("0") to reset the device. The mode setting condition is set for Normal mode. After reset release, the device will start executing the new user application program.

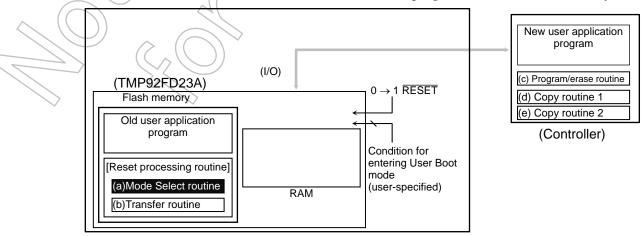
3.16.5.2 (1-B) Program/Erase Procedure Example 2

In this example, only the boot program (minimum requirement) is stored in the flash memory and other necessary routines are supplied from the controller.

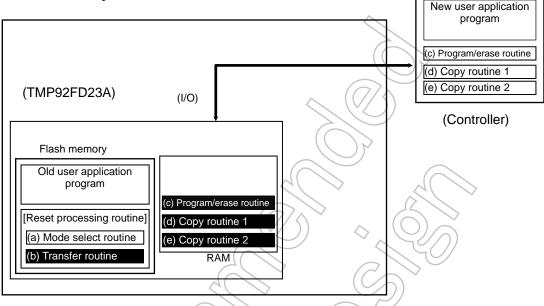

(Step-1) Environment setup

First, the condition (e.g. pin status) for entering User Boot mode must be set and the I/O bus for transferring data must be determined. Then, the device's peripheral circuitry must be designed and a corresponding program must be written. Before mounting the device on the board, it is necessary to write the following two routines into one on the sectors in the flash memory.

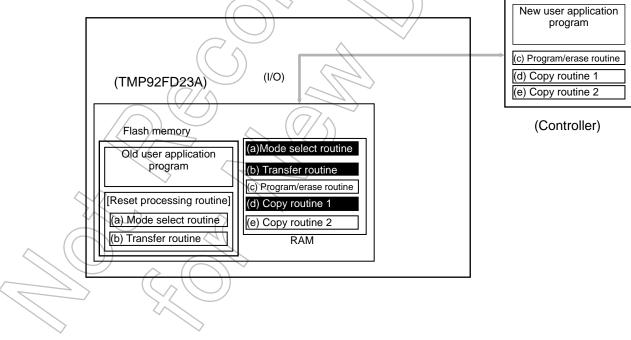
(a) Mode select routine	Selects Normal mode or User Boot mode.						
(b) Transfer routine	: Loads the	program/erase routine	from	an	external		
	source.						


The following routines are prepared on the controller.

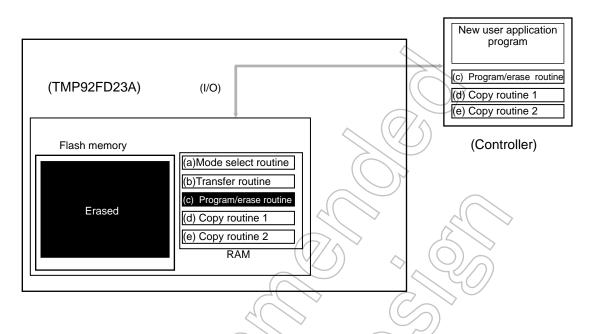
- (c) Program/erase routine: Programs/erases the flash memory.
- (d) Copy routine 1 : Copies routines (a) and (b) into the internal RAM or external memory.
- (e) Copy routine 2 : Copies routines (a) and (b) from the internal RAM or external memory into the flash memory.


(Step-2) Entering User Boot mode (using the reset processing)

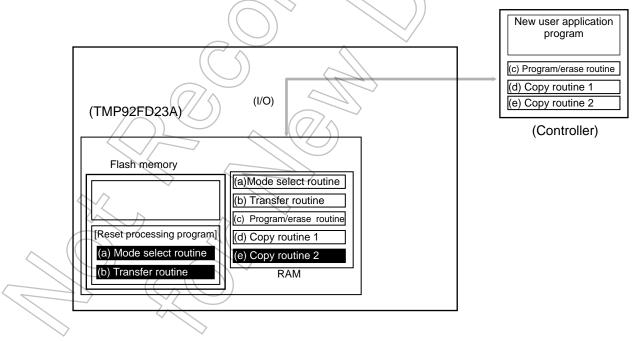
The following explanation assumes that these routines are incorporated in the reset processing program. After reset release, the reset processing program first determines whether or not the device should enter User Boot mode. If the condition for entering User Boot mode is true, User Boot mode is entered to program/erase the flash memory.


(Step-3) Copying the program/erase routine to the internal RAM

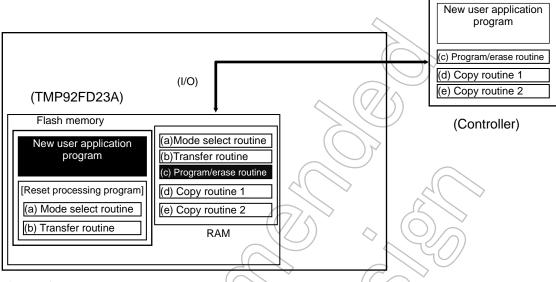
After the device has entered User Boot mode, the transfer routine (b) transfers the routines (c) to (e) from the controller to the internal RAM (or external memory). (The routines are copied into the internal RAM here.)


(Step-4) Executing the copy routine 1 in the internal RAM

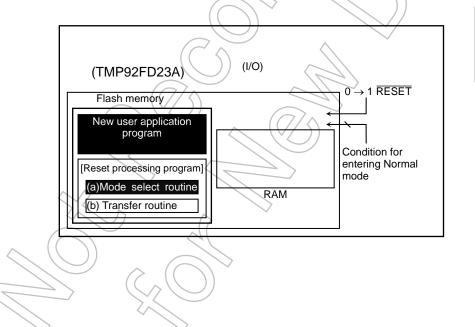
Control jumps to the internal RAM and the copy routine 1 (d) copies the routines (a) and (b) into the internal RAM.


(Step-5) Erasing the flash memory by the program/erase routine

The program/erase routine (c) erases the old user program area.


(Step-6) Restoring the user boot program in the flash memory

The copy routine (e) copies the routines (a) and (b) from the internal RAM into the flash memory.


(Step-7) Writing the new user application program to the flash memory

The program/erase routine (c) in the RAM is executed to load the new user application program from the controller into the erased area of the flash memory.

(Step-8) Executing the new user application program

The RESET input pin is driven Low ("0") to reset the device. The mode setting condition is set for Normal mode. After reset release, the device will start executing the new user application program.

(Controller)

3.16.6 Flash Memory Command Sequences

The operation of the flash memory is comprised of six commands, as shown in Table 3.16.21. Addresses specified in each command sequence must be in an area where the flash memory is mapped. For details, see Table 3.16.3.

	Table 3. 16.21 Command Sequences												
	Command Sequence	1st Bi Write C		2nd Write	Bus Cycle	3rd Write		4th E Write (5th B Write C		6th Bi Write C	
	·	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data
1	Single Long Word Program	AA8H	ААН	550H	55H	AA8H	A0H	PA (Note 1)	PD (Note 1)	\mathcal{D}			
2	Sector Erase (4-KB Erase)	AA8H	AAH	550H	55H	AA8H	80H	AA8H	ААН	550H	55H	SA (Note 2)	30H
3	Chip Erase (All Erase)	AA8H	AAH	550H	55H	AA8H	80H	АА8Н	AAH	550H	55H	AA8H	10H
4	Product ID Entry	AA8H	ААН	550H	55H	ААВН	90H	\sum	\overline{C}	P M	\mathcal{D}		
5	Product ID Exit	ххН	F0H		G					\mathcal{D}			
J	Product ID Exit	AA8H	AAH	550H	55H	AA8H	F0H		\bigcirc				
6	Read Protect Set	AA8H	AAH	550H	55H	АА8Н	A5H	778H	F0H (Note3)				
Ö	Write Protect Set	AA8H	AAH	550H	55H	AA8H	A5H	778H	0FH (Note3)				

Note 1: PA = Program Long Word address, PD = Program Long Word data

Set the address and data to be programmed. Program addresses must be specified in multiples of 4.

Note 2: SA = Sector Erase address, Each sector erase range is selected by address A23 to A12.

The A2 of address must be specified to "1".

Note 3: When apply read protect and write protect, be sure to program the data of 00H.

Table 3.16.22 Hardware Sequence Flags

		D7	D6	
\square		Single Long Word Program	D7	Toggle
	During auto operation	Sector Erase/Chip Erase	0	Toggle
>		Read Protect Set/Write Protect Set	Cannot be used	Toggle

Note: D31 to D8 and D5 to D0 are "don't care".

3.16.6.1 Single Long Word Program

The Single Long Word Program command sequence programs the flash memory on a long word basis. The address and data to be programmed are specified in the 4th bus write cycle. It takes a maximum of 60 μ s to program a single long word. Another command sequence cannot be executed until the write operation has completed. This can be checked by reading the same address in the flash memory repeatedly until the same data is read consecutively. While a write operation is in progress, bit 6 of data is toggled each time it is read.

Note: To rewrite data to Flash memory addresses at which data (including FFFF_FFFH) is already written, make sure to erase the existing data by "sector erase" or "chip erase" before rewriting data.

3.16.6.2 Sector Erase (4-Kbyte Erase)

The Sector Erase command sequence erases 4 Kbytes of data in the flash memory at a time. The flash memory address range to be erased is specified in the 6th bus write cycle. For the address range of each sector, see Table 3.16.3. The A2 of address must be specified to "1". This command sequence cannot be used in Programmer mode.

It takes a maximum of 75 ms to erase 4 Kbytes. Another command sequence cannot be executed until the erase operation has completed. This can be checked by reading the same address in the flash memory repeatedly until the same data is read consecutively. While a erase operation is in progress, bit 6 of data is toggled each time it is read.

3.16.6.3 Chip Erase (All Erase)

The Chip Erase command sequence erases the entire area of the flash memory.

It takes a maximum of 300 ms to erase the entire flash memory. Another command sequence cannot be executed until the erase operation has completed. This can be checked by reading the same address in the flash memory repeatedly until the same data is read consecutively. While a erase operation is in progress, bit 6 of data is toggled each time it is read.

Erase operations clear data to FFH.

3.16.6.4 Product ID Entry

When the Product ID Entry command is executed, Product ID mode is entered. In this mode, the vendor ID, flash macro ID, flash size ID, and read/write protect status can be read from the flash memory. In Product ID mode, the data in the flash memory cannot be read.

3.16.6.5 Product ID Exit

This command sequence is used to exit Product ID mode.

3.16.6.6 Read Protect Set

The Read Protect Set command sequence applies read protection on the flash memory. When read protection is applied, the flash memory cannot be read in Programmer mode and the RAM Transfer and Flash Memory Program commands cannot be executed in Single Boot mode.

To cancel read protection, it is necessary to execute the Chip Erase command sequence. To check whether or not read protection is applied, read xxx778H in Product ID mode. It takes a maximum of 60 μ s to set read protection on the flash memory. Another command sequence cannot be executed until the read protection setting has completed. This can be checked by reading the same address in the flash memory repeatedly until the same data can be read consecutively. While a read protect operation is in progress, bit 6 of data is toggled each time it is read.

3.16.6.7 Write Protect Set

The Write Protect Set command sequence applies write protection on the flash memory. When write protection is applied, the flash memory cannot be written to in Programmer mode and the RAM Transfer and Flash Memory Program commands cannot be executed in Single Boot mode.

To cancel write protection, it is necessary to execute the Chip Erase command sequence. To check whether or not write protection is applied, read xxx778H in Product ID mode. It takes a maximum of 60 μ s to set write protection. Another command sequence cannot be executed until the write protection setting has completed. This can be checked by reading the same address in the flash memory repeatedly until the same data can be read consecutively. While a write protect operation is in progress, bit 6 of data is toggled each time it is read.

3.16.6.8 Hardware Sequence Flags

The following hardware sequence flags are available to check the auto operation execution status of the flash memory.

1) Data polling (D7)

When data is written to the flash memory, D7 outputs the complement of its programmed data until the write operation has completed. After the write operation has completed, D7 outputs the proper cell data. By reading D7, therefore, the operation status can be checked. While the Sector Erase or Chip Erase command sequence is being executed, D7 outputs "0". After the command sequence is completed, D7 outputs "1" (cell data). Then, the data written to all the bits can be read after waiting for $1 \mu s$.

When read/write protection is applied, the data polling function cannot be used. Instead, use the toggle bit (D6) to check the operation status.

2) Toggle bit (D6)

When the Flash Memory Program, Sector Erase, Chip Erase, Write Protect Set, or Read Protect Set command sequence is executed, bit 6 (D6) of the data read by read operations outputs "0" and "1" alternately each time it is read until the processing of the executed command sequence has completed. The toggle bit (D6) thus provides a software means of checking whether or not the processing of each command sequence has completed. Normally, the same address in the flash memory is read repeatedly until the same data is read successively. The initial read of the toggle bit always returns "1".

Note: The flash memory incorporated in the TMP92FD23A does not have an exceed-time-limit bit (D5). It is therefore necessary to set the data polling time limit and toggle bit polling time limit so that polling can be stopped if the time limit is exceeded.

3.16.6.9 Data Read

Data is read from the flash memory in byte units or word units or long word units. It is not necessary to execute a command sequence to read data from the flash memory.

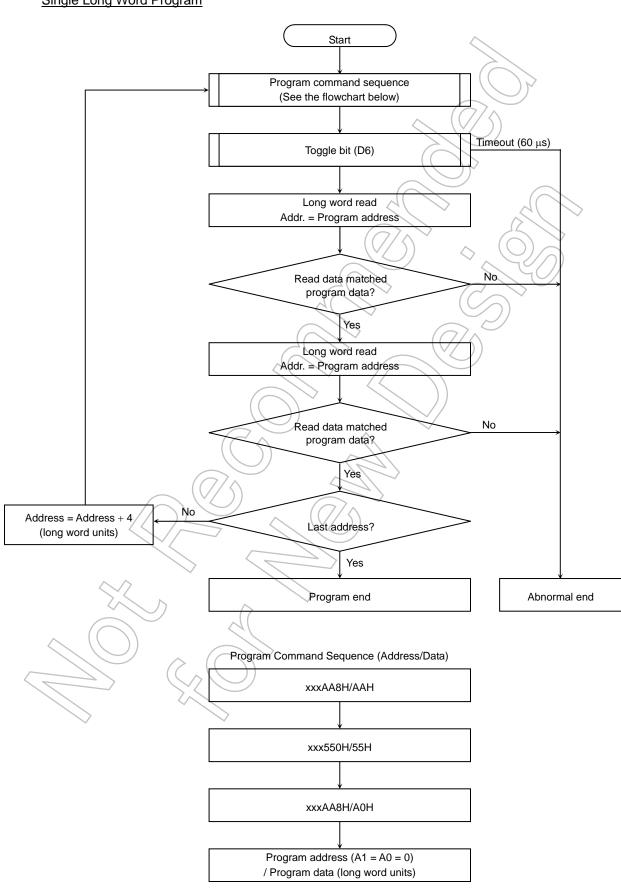
3.16.6.10 Programming the Flash Memory by the Internal CPU

The internal CPU programs the flash memory by using the command sequences and hardware sequence flags described above. However, since the flash memory cannot be read during auto operation mode, the program/erase routine must be executed outside of the flash memory.

The CPU can program the flash memory either by using Single Boot mode or by using a user-created protocol in Single Chip mode (User Boot).

1) Single Boot:

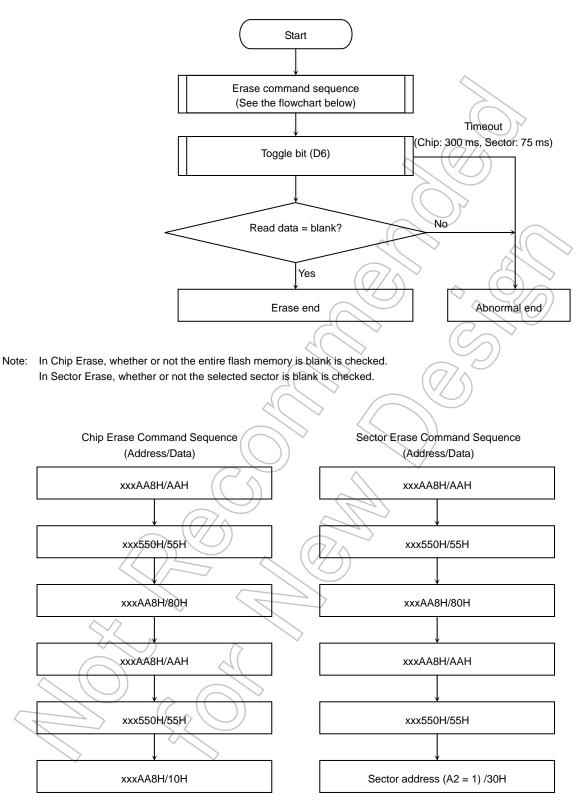
The microcontroller is started up in Single Boot mode to program the flash memory by the internal boot ROM program. In this mode, the internal boot ROM is mapped to an area including the interrupt vector table, in which the boot ROM program is executed. The flash memory is mapped to an address area different from the boot ROM area. The boot ROM program loads data into the flash memory by serial transfer. In Single Boot mode, interrupts must be disabled including non-maskable interrupts $(\overline{\text{NMI}}, \text{etc.})$.

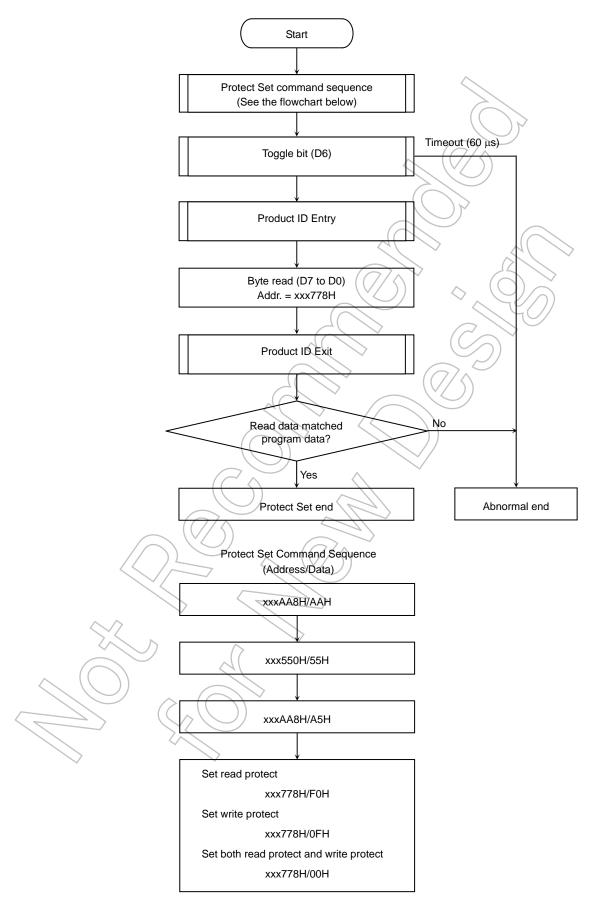

For details, see 3.16.4 "Single Boot Mode"

2) User Boot:

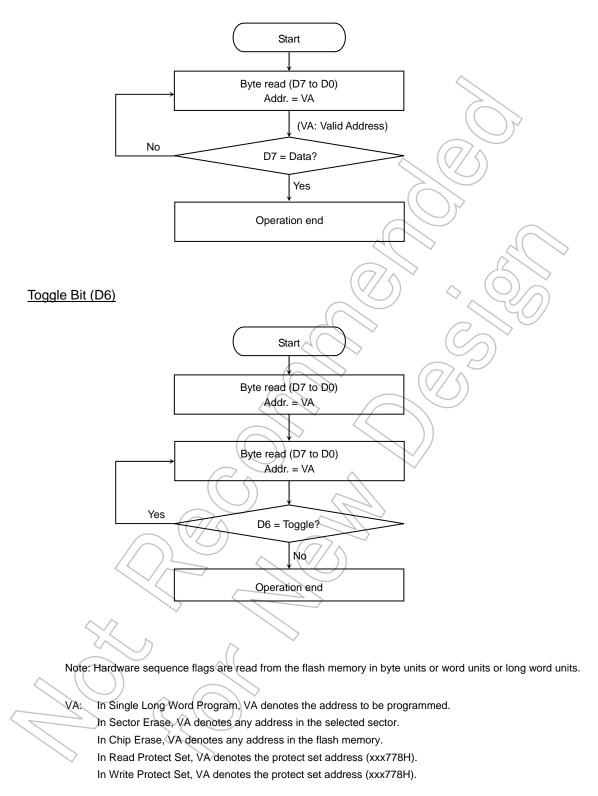
In this method, the flash memory is programmed by executing a user-created routine in Single Chip mode (normal operation mode). In this mode, the user-created program/erase routine must also be executed outside of the flash memory. It is also necessary to disable interrupts including non-maskable interrupts.

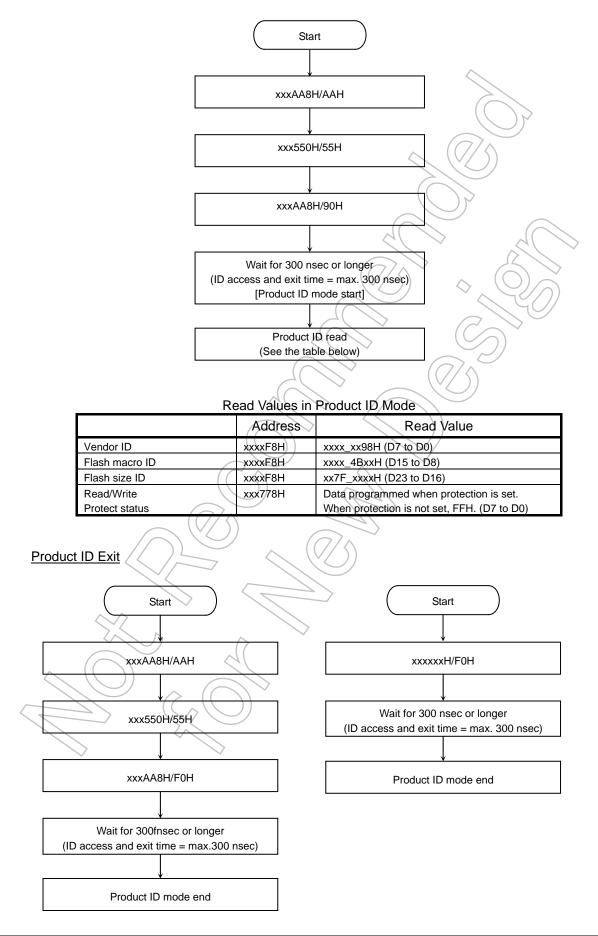
The user should prepare a flash memory program/erase routine (including routines for loading write data and writing the loaded data into the flash memory). In the main program, normal operation is switched to flash memory programming operation to execute the flash memory program/erase routine outside of the flash memory area. For example, the flash memory program/erase routine may be transferred from the flash memory to the internal RAM and executed there or it may be prepared and executed in external memory.


For details, see 3.16.5 "User Boot Mode (in Single Chip Mode)"


Flowcharts: Flash memory access by the internal CPU

Single Long Word Program


Chip Erase/Sector Erase


Read/Write Protect Set

Data Polling (D7)

Product ID Entry

(Example: Program to be loaded and executed in RAM)

Erase the flash memory (chip erase) and then write F047_0706H to address F80000H.

ld	mory chip erase processing #### XIX, 0xF80000	; set start address
CHIPERASE:		
ld	(0xF80AA8), 0xAA	; 1st bus write cycle
ld	(0xF80550), 0x55	; 2nd bus write cycle
ld	(0xF80AA8), 0x80	; 3rd bus write cycle
ld	(0xF80AA8), 0xAA	; 4th bus write cycle
ld	(0xF80550), 0x55	; 5th bus write cycle
ld	(0xF80AA8), 0x10	; 6th bus write cycle
cal	TOGGLECHK	; check toggle bit
CHIPERASE_L	00P:	
ld	XWA, (XIX+)	; read data from flash memory
ср	XWA, 0xFFFFFFF	; blank data?
j	ne, CHIPERASE_ERR	; if not blank data, jump to error processing
		; end address (0xFFFFFF)?
cp	XIX, 0xFFFFFF	
j	ULT, CHIPERASE_LOOP	; check entire memory area and then end loop processing
		(\vee)
;#### Flash mer	mory program processing #####	
ld	XIX, 0xF80000	; set program address
ld	XWA, 0xF0470706	; set program data
PROGRAM:		
ld	(0xF80AA8), 0xAA	; 1st bus write cycle
ld	(0xF80550), 0x55	; 2nd bus write cycle
ld	(0xF80AA8), 0xA0	3rd bus write cycle
ld		
Id	(XIX), XWA	; 4th bus write cycle
cal	TOGGLECHK	; check toggle bit
ld	XBC, (XIX)	; read data from flash memory
ср	XWA, XBC.	
j	ne, PROGRAM_ERR	; if programmed data cannot be read, error is determined
J ld		; read data from flash memory
	XBC, (XIX)	, read data from hash memory
cp :	XWA, XBC ne, PROGRAM_ERR	; if programmed data cannot be read, error is determined
j		, il programmed data cannot be read, error is determined
PROGRAM_EN	D:	
j	PROGRAM_END	; program operation end
,#### Toggle bit TOGGLECHK:	(D6) check processing ####	
ld	L, (XIX)	
and	L, 0y01000000	; check toggle bit (D6)
ld	(H.L.)	; save first toggle bit data
TOGGLECHK1		
ld	L, (XIX)	
and (L, 0y01000000	; check toggle bit (D6)
cp	E,H	; toggle bit = toggled?
	z, TOGGLECHK2	; if not toggled, end processing
ld	H, L	; save current toggle bit state
, j	TOGGLECHK1	; recheck toggle bit
TOGGLECHK2	:	
ret	\checkmark	
;#### Error pro		
CHIPERASE_E		
j	CHIPERASE_ERR	; chip erase error
PROGRAM_ER	R:	
j	PROGRAM_ERR	; program error
5		· r · o

(Example: Program to be loaded and executed in RAM) Erase data at addresses F90000H to F90FFFH (sector erase) and then write F047_0706H to address F90000H.

	emory sector erase processing #####	
ld	XIX, 0xF90004	; set sector erase address $(A2 = 1)$
SECTORERAS		. 1 . 1
ld	(0xF80AA8), 0xAA	; 1st bus write cycle
ld	(0xF80550), 0x55	; 2nd bus write cycle
ld	(0xF80AA8), 0x80	; 3rd bus write cycle
ld	(0xF80AA8), 0xAA	; 4th bus write cycle
ld	(0xF80550), 0x55	; 5th bus write cycle
ld	(XIX), 0x30	; 6th bus write cycle
cal	TOGGLECHK	; check toggle bit
ld	XIX, 0xF90000	; set start address
SECTORERAS	—	
ld	XWA, (XIX+)	; read data from flash memory
cp	XWA, 0xFFFFFFF	; blank data?
j	ne, SECTORERASE_ERR	; if not blank data, jump to error processing
ср	XIX, 0xF90FFF	; end address (0xF90FFF)?
j	ULT, SECTORERASE_LOOP	; check erased sector area and then end loop processing
		$(\sqrt{3})$ \sim (\bigcirc) \sim
·////// TN 1		
	emory program processing ####	
ld	XIX, 0xF90000	, set program address
ld	XWA, 0xF0470706	; set program data
PROGRAM:	4 —	
ld	(0xF80AA8), 0xAA	; 1st bus write cycle
ld	(0xF80550), 0x55	; 2nd bus write cycle
ld	(0xF80AA8), 0xA0	; 3rd bus write cycle
ld	(XIX), XWA	; 4th bus write cycle
cal	TOGGLECHK	; check toggle bit
	(C)	
ld	XBC, (XIX)	; read data from flash memory
ср	XWA, XBC	
j	ne, PROGRAM_ERR	; if programmed data cannot be read, error is determined
ld	XBC, (XIX)	; read data from flash memory
$^{\rm cp}$	XWA, XBC	
j	ne, PROGRAM_ERR	; if programmed data cannot be read, error is determined
DDOODAM EN		
PROGRAM_EN		
j	PROGRAM_END	; program operation end
		$\langle \langle \cup \rangle \rangle$
·###### Tramela 1-	t (D6) check processing #####	
,#### Toggle bi TOGGLECHK:		
ld		
and 4	L, 0y01000000	; check toggle bit (D6)
ld	Н, L	; save first toggle bit data
TOGGLECHK		, save first toggle bit data
ld		(1, 1, 1, 1, 1) (Da)
and	L, 0y01000000	; check toggle bit (D6)
cp	L,H TOCCI POHKe	; toggle bit = toggled?
j	z, TOGGLECHK2	; If not toggled, end processing
	H, L TOCCU ECUNI	; save current toggle bit state
	TOGGLECHK1	; Recheck toggle bit
TOGGLECHK	2: ~ ~	
ret	\checkmark	
;#### Error pro		
SECTORERAS	—	
j	SECTORERASE_ERR	; sector erase error
DDOODANG PT		
PROGRAM_EH		
J	PROGRAM_ERR	; program error

(Example: Program to be loaded and executed in RAM) Set read protection and write protection on the flash memory.

1	±	v
:#### Flash Me	emory Protect Set processing #####	
ld	XIX, 0xF80778	; set protect address
PROTECT:	AIA, 0XF 00770	, set protect address
ld	(0xF80AA8), 0xAA	· 1 at hus muits avals
		; 1st bus write cycle
ld	(0xF80550), 0x55	; 2nd bus write cycle
ld	(0xF80AA8), 0xA5	; 3rd bus write cycle
ld	(XIX), 0x00	; 4th bus write cycle
cal	TOGGLECHK	; check toggle bit
cal	PID_ENTRY	;
ld	A, (XIX)	; read protected address
cal	PID_EXIT	; $(\vee))$
ср	A, 0x00	;(0xF80778)=0x00?
j	ne, PROTECT_ERR	; protected?
	, <u> </u>	
PROTECT_EN	ID:	
j	PROTECT_END	; protect set operation completed
J	Inorhor_http	, protect set operation completed
PROTECT_ER	B.	
	PROTECT_ERR	· nucleat act annou
j	FROIECI_ERR	; protect set error
		$((// \leq)) \qquad \qquad$
	ID Entry processing #####	
PID_ENTRY:		
ld	(0xF80AA8), 0xAA	; 1st bus write cycle
ld	(0xF80550), 0x55	; 2nd bus write cycle
ld	(0xF80AA8), 0x90	; 3rd bus write cycle
; wait	for 300 nsec or longer (execute NO	P instruction [50nsec/@fFPH=40MHz] six times)
nop	for over insee of fonger (encouve from	
-		
nop	$(\subset$; wait for 300 nsec
ret		
;#### Product 1	ID Exit processing #####	
PID_EXIT:		
ld	(0xF80000), 0xF0	; 1st bus write cycle
· moit		P instruction [50nsec/@fFPH=40MHz] six times)
	for 500 liset of longer texecute NO.	I mstruction [Jonsec/@IFFH=40WI12] Six times/
nop	$(\vee /))$	
nop		$\left(\overline{\Omega} \right) $
nop		\sim ((// \leq)
nop		
nop		
nop		; wait for 300 nsec
ret		
	~ ~ ~ ` ` ` ` ` `	
;#### Toggle b	it (D6) check processing #####	
TOGGLECHK		\sim
ld	L, (XIX)	
and	L, 0y01000000	; check toggle bit (D6)
	H, L	; save first toggle bit data
TOGGLECHK		, save mist toggie bit data
ld	L, (XIX)	
and	L, 0y01000000	; check toggle bit (D6)
ер	L, H	; toggle bit = toggled?
Ĩ	z, TOGGLECHK2	; if not toggled, end processing
ld 💙	H, L	; save current toggle bit state
j	TOGGLECHK1	; recheck toggle bit
TOGGLECHK		
ret		
100		

(Example: Program to be loaded and executed in RAM) Read data from address F80000H.

;#### Flash memory read processing ##### READ: ld

XWA, (0xF80000)

; read data from flash memory

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V _{CC}	-0.5 to 4.0	V
Input Voltage	VIN	-0.5 to VCC + 0.5	V
Output Current (1 pin) Except PN1, PN2, PN4 and PN5	I _{OL}	2	mA
Output Current (1 pin) PN1, PN2, PN4 and PN5	I _{OL2}	3.5	mA
Output Current (1 pin)	I _{OH}	<u> </u>	mA
Output Current (Total)	Σ ΙΟΓ	80)	mA
Output Current (Total)	ΣΙΟΗ	-80	mA
Power Dissipation (Ta = 85° C)	P _D ((600	mW
Soldering Temperature (10 s)	TSOLDER	260	°C
Storage Temperature	T _{STG}	-65 to 150	ç
Operation Temperature	TOPR	─ _40 to 85	So /

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Solderability of lead free products

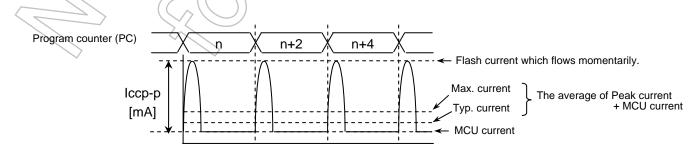
Test parameter	Test condition	Note
Solderability	 (1) Use of Sn-37Pb solder Bath Solder bath temperature =230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (2) Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature =245°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (use of lead free) 	Pass: solderability rate until forming ≥ 95%

4.2 DC Electrical Characteristics (1/2)

				١	/ _{CC} = 3.3 ±	± 0.3V/fc = 6 to 40 MHz/Ta = −40 to 85°C
Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Power Supply Voltage						
(DVCC = AVCC)	Vcc	3.0		3.6	V	X1=6 to 10MHz
(DVSS = AVSS = 0V)						XT1=30 to 34KHz
Power Supply Voltage						
(DVCC = AVCC)						
(DVSS = AVSS = 0V)	V _{CC}	3.0		3.6	V	X1=6 to 10MHz
for erase/program						Ta= –10 to 40°C
operations of flash memory						$(\vee \langle \rangle)$
Input Low Voltage for						
P00 to P07 (D0~D7)	VILO			0.6		\sum
P10 to P17 (D8~D15)	-					
Input Low Voltage for					(\land)	
P40 to P47 (A0 to A7)				<		
P50 to P57 (A8 to A15)						\sum
P60 to P67 (A16 to A23)	V _{IL1}			$0.3 \times VCC$	$\left(\uparrow \right)$	\sim
P76, P77					\mathcal{I}	
P80 to P82						
Input Low Voltage for		-0.3	(C
P70 to P73, P83			4	$(\)$	V	
PC0 to PC3, PD0 to PD4	V _{IL2}			$0.25 \times VCC$		
PF0 to PF5, PG0 to PG7			10		((7/
PL0 to PL3, PN0, PN3				\sim		(\bigcirc)
RESET, NMI, P74(INT0)	V _{IL2a}		$\langle \langle \rangle$	0.2 × VCC		
Input Low Voltage for	Max	6		0.3		
AM0, AM1	V _{IL3}	((0.5		
Input Low Voltage for			\bigcirc	$0.2 \times VCC$		
X1, XT1(P76)	V _{IL4}	$(C \leq$		0.2 × 000		
Input Low Voltage for	\/ =)	0.3 × VCC		
PN1, PN2, PN4, PN5	V _{IL5}			0.3×VC6	\geq	
Input High Voltage for		$\left(/ \right/ \left\{ \right\}$		\sum		
P00 to P07 (D0 to D7)	∀ IH0	2.0	6	77~~~		
P10 to P17 (D8 to D15)	$\langle \rangle \perp$		\land	())		
Input High Voltage for				\subseteq		
P40 to P47 (A0 to A7)				>		
P50 to P57 (A8 to A15)	VIH1	0.7 × VCC		/		
P60 to P67 (A16 to A23)						
P76, P77, P80 to P82	5	\wedge	~	-		
Input High Voltage for	\sim	A		VCC + 0.3		
P70 to P73, P83					v	
PC0 to PC3, PD0~PD4	V _{IH2}	$0.75 \times VCC$	7			
PF0 to PF5, PG0~PG7		(())				
PL0 to PL3, PN0, PN3						
RESET, NMI, P74(INT0)	V _{IH2a}	0.8 × VCC		-		
Input High Voltage for	V _{IH3}					
AM0, AM1	- 11 13	VCC - 0.3				
Input High Voltage for	V _{IH4}					
X1, XT1(P76)	• 104	$0.8 \times VCC$				
Input High Voltage for	V _{IH5}	0.7 imes VCC		5.5		
PN1, PN2, PN4, PN5	• ID3			0.0		

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Output Low Voltage	V _{OL}			0.45		IOL = 1.6 mA
Output Low Voltage for PN1, PN2, PN4, PN5	V _{OL2}			0.4	V	IOL = 3.0 mA
Output High Voltage	VOH	2.4				IOH = -400 μA
Input Leakage Current	ILI		0.02	±5		$0.0 \leq \text{Vin} \leq \text{VCC}$
Output Leakage Current	ILO		0.05	±10	μA	$0.2 \leq \text{Vin} \leq \text{VCC} - 0.2$
Power Down Voltage at STOP (for STOP, RAM back-up)	V _{STOP}	1.8		3.6	V	VIL2 = 0.2 × Vcc, VIH2 = 0.8 × Vcc
Pull-Up Resistor for RESET	R _{RST}					
Programmable Pull-Up Resistor for P70 to P73	R _{KH}	80		500	KΩ	
Pin Capacitance	C _{IO}			10	PF	fc = 1 MHz
Schmitt Width for P70 to P73, P83 PC0 to PC3, PD0 to PD4 PF0 to PF5, PG0 to PG7 PL0 to PL3, PN0 to PN5 RESET, P74(INT0)	VTH	0.2			v	
NORMAL (Note 2)	ICC		55	70,		
IDLE2 Mode	ICC _{IDLE2}		13	22	mA	$f_{C} = 40 \text{ MHz}$ $f_{SYS} = 20 \text{ MHz}$
IDLE1 Mode	ICC _{IDLE1}		4	9	(1545-20 WI 12
SLOW (Note 2)	ICC	,	75	120		XT1 = 32.768 KHz
SLOW-IDLE2 Mode	ICC _{IDLE2}	~	20	90	μA	(f _{SYS} = 16.384 KHz)
SLOW-IDLE1 Mode	ICC _{IDLE1}	G	10	80	[^µ]	1313 13.004 1412/
STOP	ICC _{STOP}		1.5	50		VCC =3.6V
Peak current by intermitt operation	Ісср-р	C	40		mA	VCC =3.0V~3.6V

 $V_{CC}=3.3\pm0.3V/fc=6$ to 40 MHz/Ta = –40 to $85^\circ C$


Note 1: Typical values are for when $Ta = 25^{\circ}C$ and VCC = 3.3 V unless otherwise noted.

Note 2: ICC measurement conditions (NORMAL, SLOW):

All functions are operational; output pins are opened and input pins are fixed. CL = 30 pF is loaded to data and address bus.

When the program is operating by the flash memory, or when data reed from the flash memory, the flash memory operate intermittently. Therefore, it outputs a peak current like a following diagram, momentarily. In this case, the power supply current; Icc (NORMAL/SLOW mode) is the sum of average value of a peak current and a MCU current value.

When designing the power supply, set to a circuit which a peak current can be supplied. In SLOW mode, a deference of peak current and average current is large.

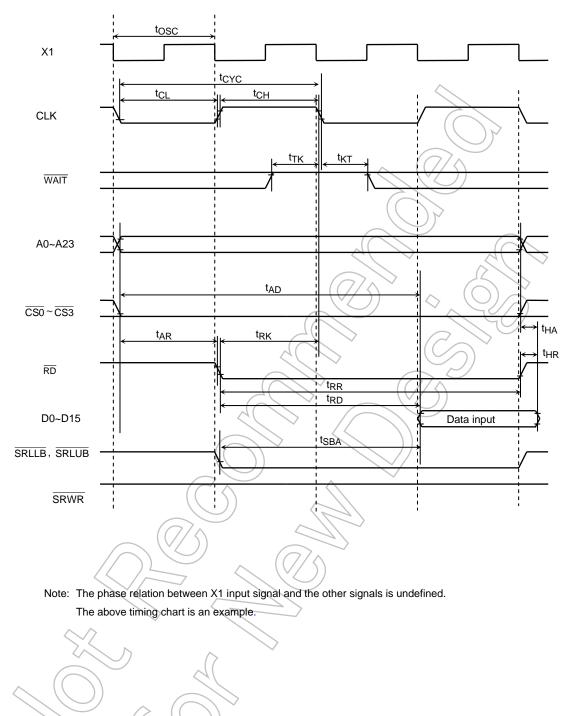
Flash memory intermittent operation

4.3 **AC Characteristics**

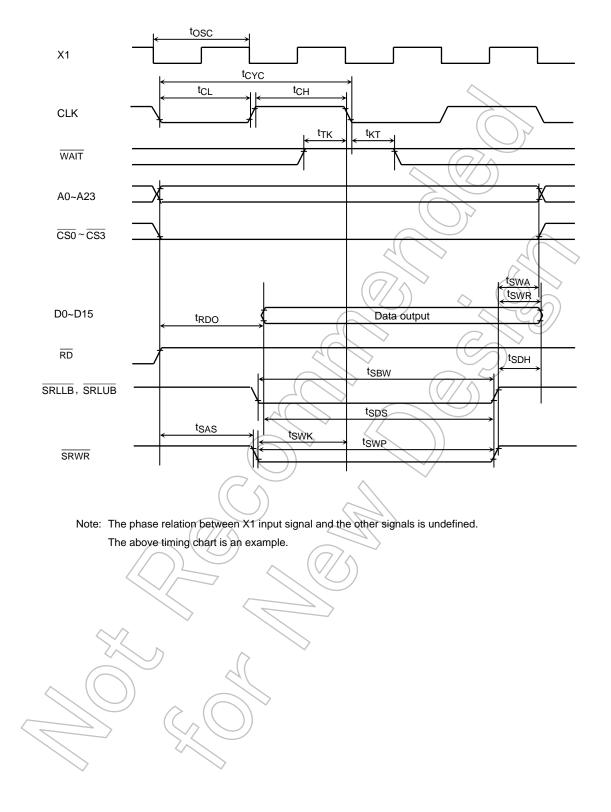
Basic Bus Cycle 4.3.1

Read cycle

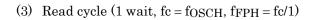
			Varia		\sim	o 40 MHz/Ta = -4 f _{SYS} = 13.5MHz	
No.	Parameter	Symbol	Min	Max		(fc = 27 MHz)	Unit
1	OSC period (X1/X2)	tosc	25		25	37.0	ns
2	System clock period (= T)	tCYC	50	~	50	74.0	ns
3	CLK Low Width	tCL	0.5T – 15	\sim	(10)	22	ns
4	CLK High Width	tCH	0.5T – 15		10	22	ns
5-1	A0 to A23 Valid \rightarrow D0 to D15 input at 0 WAIT	t _{AD}		2.0T - 50	50	98	ns
5-2	A0 to A23 Valid \rightarrow D0 to D15 input at 1 WAIT	t _{AD3}		(3.0T - 50	100	172	ns
6-1	$\overline{\text{RD}}$ Falling \rightarrow D0 to D15 input at 0 WAIT	t _{RD}		1.5T – 45	30	66	ns
6-2	$\overline{\text{RD}}$ Rising \rightarrow D0 to D15 input at 1 WAIT	t _{RD3}		2.5T – 45	80	140	ns
7-1	RD Low Width at 0 WAIT	t _{RR}	1.5T - 20	~	55	91	ns
7-2	RD Low Width at 1 WAIT	t _{RR3}	2.5T – 20		105))	165	ns
8	A0 to A23 valid $\rightarrow \overline{RD}$ Rising	tAR	0.5T - 20	(5	17	ns
9	\overline{RD} Falling $\rightarrow CLK$ Falling	I RK	0.5T – 20	(()5	17	ns
10	A0 to A23 valid \rightarrow D0 to D15 Hold	tHA	0	\frown	0	0	ns
11	$\overline{\text{RD}}$ Rising \rightarrow D0 to D15 Hold	thr	` o _<		0	0	ns
12	WAIT Set-up Time	tτĸ	20	$\langle \rangle$	20	20	ns
13	WAIT Hold Time	tкт	5		5	5	ns
14	Data Byte Control Access Time for SRAM	tSBA	\wedge	1.5T – 45	30	66	ns
15	RD High Width	t _{RRH}	0.5T – 15		10	22	ns
	Write cycle		7/5	V _{cc} = 3.3	3 ± 0.3V/fc = 6 t	o 40 MHz/Ta =	40 to 8

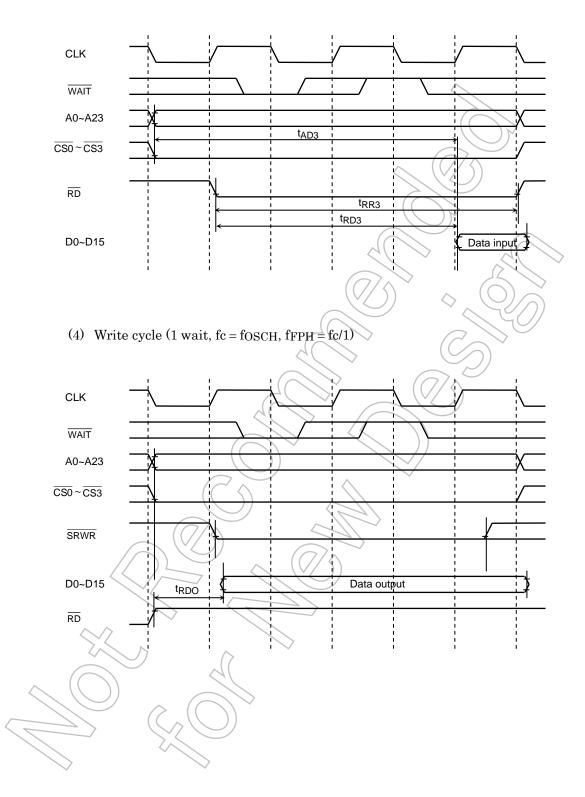

 $s = 3.3 \pm 0.3$ V/fc = 6 to 40 MHz/Ta = -40 to 85°C V.

No	Deremeter	Cumbel	Varia	able	f _{SYS} = 20 MHz	f _{SYS} = 13.5MHz	Linit
No.	Parameter	Symbol	Min	Max	(fc = 40 MHz)	(fc = 27 MHz)	Unit
16	$\overline{SRWR} \;\; Falling \to CLK \; Falling$	tswk	0.5T – 20		5	17	ns
17	$\overline{\text{SRWR}} \text{ Rising} \rightarrow \text{A0 to A23 Hold}$	t _{SWA}	0.25T – 5		7.5	13.5	ns
18	\overline{RD} Rising \rightarrow D0 to D15 Output	t _{RDO}	0.5T – 5		20	32	ns
19	Write Pulse Width for SRAM	tSWP	1.25T – 30		32.5	62.5	ns
20	Data Byte Control to End of Write for SRAM	[∼] t _{SBW}	1.25T – 30		32.5	62.5	ns
21	Address Setup Time for SRAM	tSAS	0.5T – 20		5	17	ns
22	Write Recovery Time for SRAM	tSWR	0.25T – 5		7.5	13.5	ns
23	Data Setup Time for SRAM	t _{SDS}	1.25T – 35		27.5	57.5	ns
24	Data Hold Time for SRAM	t _{SDH}	0.25T – 5		7.5	13.5	ns


AC measuring condition

Output: High = 0.7 VCC, Low = 0.3 VCC, C_L = 50 pF

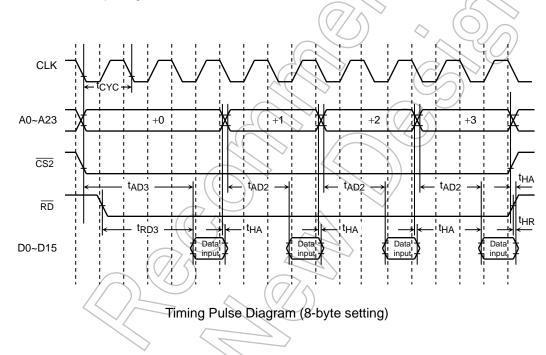

Input: High = 0.9 VCC, Low = 0.1 VCC



(1) Read cycle (0 waits, $fc = f_{OSCH}$, $f_{FPH} = fc/1$)

(2) Write cycle (0 waits, $fc = f_{OSCH}$, $f_{FPH} = fc/1$)

4.3.2 Page ROM Read Cycle


(1) 3-2-2-2 mode

			Var	iable	fovo – 20MHz	fovo – 18MHz	f _{SYS} = 13.5kHz	
No.	Parameter	Parameter Symbol Min		Max	(fc = 40 MHz)	(fc = 36 MHz)	(fc = 27 MHz)	Unit
1	System Clock Period (= T)	tCYC	50		50	55.5	74	ns
2	A0, A1 \rightarrow D0 to D15 input	t _{AD2}		2.0T - 50	50	61	98	ns
3	A2~A23 \rightarrow D0 to D15 input	t _{AD3}		3.0T – 50	100	116.5	172	ns
4	$\overline{\text{RD}}$ Falling \rightarrow D0 to D15 input	t _{RD3}		2.5T – 45	80	93.8	140	ns
5	A0 to A23 valid \rightarrow D0 to D15 Hold	t _{HA}	0		0	0	0	ns
6	$\overline{\text{RD}}$ Rising \rightarrow D0 to D15 Hold	t _{HR}	0		0	0	0	ns

 $Vcc=3.3\pm0.3$ V/fc=6~40 MHz/Ta=-40~85°C

AC measuring condition

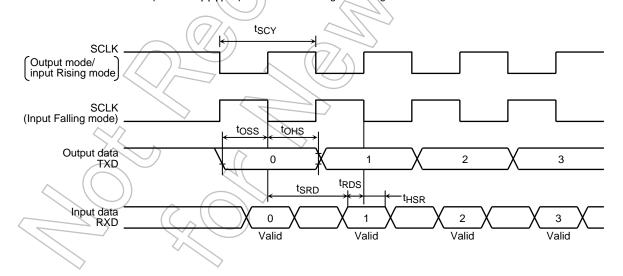
- Output: High = 0.7 VCC, Low = 0.3 VCC, CL = 50 pF
- Input: High = 0.9 VCC, Low = 0.1 VCC

4.3.3 Serial Channel Timing

(1) SCLK input mode (I/O interface mode)

Parameter	Symbol	Variable		f _{SYS} = 2 (fc = 40		f _{SYS} = 1 (fc = 27	Unit	
		Min	Max	Min	Мах	Min	Max	
SCLK cycle	tSCY	16X		0.40	\geq	0.59		μS
Output data \rightarrow SCLK Rising/Falling *	toss	$t_{SCY}/2 - 4X - 70$		30		78		ns
SCLK Rising/Falling* \rightarrow Output Data Hold	tOHS	$t_{SCY}/2 + 2X + 0$		250		370		ns
SCLK Rising/Falling* \rightarrow Input Data Hold	t _{HSR}	3X + 10		85	$\overline{\gamma}$	121		ns
SCLK Rising/Falling* \rightarrow Input Data Valid	tSRD		t _{SCY} – 0	$\langle \rangle$	400)		592	ns
Input Data Valid \rightarrow SCLK Rising/Falling*	t _{RDS}	0		0		0		ns

(2) SCLK output mode (I/O Interface mode)

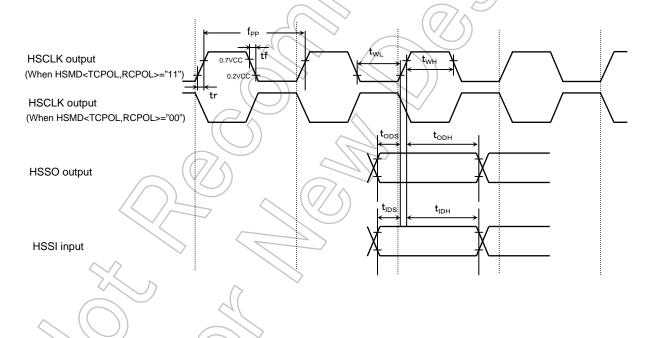

Parameter	Symbol	Varia	Variable			fsys = 13.5MHz (fc = 27 MHz)		Unit
		Min	Max	Min	Max	Min	Max	
SCLK cycle	tSCY	16X	8192X	0.40	204	0.59	303	μS
Output data \rightarrow SCLK Rising/Falling *	toss	t _{SCY} /2 - 40	$\langle \rangle$	160		256		ns
SCLK Rising/Falling* \rightarrow Output Data Hold	tOHS	t _{SCY} /2 - 40		160		256		ns
SCLK Rising/Falling* \rightarrow Input Data Hold	t _{HSR}	0	>	0	\sum	0		ns
SCLK Rising/Falling* \rightarrow Input Data Valid	tSRD		t _{SCY} – 1X –180	(\mathcal{O})	195		375	ns
Input Data Valid \rightarrow SCLK Rising/Falling*	t _{RDS}	1X+180		205	\mathcal{I}	217		ns

*: SCLK rinsing/falling edge: The rising edge is used in SCLK rising mode.

The falling edge is used in SCLK falling mode.

Note 1: $t_{SCY} = 16X$ at $f_{SYS} = 20MHz$ or 13.5MHz

Note 2: Symbol x in the above table means the period of clock f_{FPH}, it's half period of the system clock f_{SYS} for CPU core. The period of fFPH depends on the clock gear setting.



4.3.4 High Speed SIO Timing

Symbol	Parameter	Varia	ble	f _{SYS} = 20MHz	f _{SYS} = 18MHz	f _{SYS} = 13.5MHz	Unit
Symbol	Farameter	Min	Max	(fc = 40 MHz)	(fc = 36 MHz)	(fc = 27 MHz)	Unit
f _{PP}	HSCLK frequency (= 1/X)		10	10	9	6.75	MHz
tr	HSCLK rising timing		8	8	~8	8	
t _f	HSCLK falling time		8	8	8	8	
t _{WL}	HSCLK Low pulse width	0.5X-8		42	47	66	
twн	HSCLK High pulse width	0.5X-16		34	39	58	
tODS1	Output data valid → HSCLK rise	0.5X-18		32	37	56	
t _{ODS2}	Output data valid → HSCLK fall	0.5X-23		27	32	51	ns
todh	HSCLK rise/fall → Output data hold	0.5X-10		40	45	64	
t _{IDS}	Input data valid → HSCLK rise/fall	0X+20		20	20	20	
tIDH	HSCLK rise/fall → Input data hold	0X+5	(5		5	

AC measuring conditions

Output level : High = 0.7 VCC, Low = 0.2 VCC, CL = 25 pF Input level : High = 0.9 VCC, Low = 0.1 VCC

4.3.5 Interrupts

Parameter	Symbol	Variable		$f_{SYS} = 20 \text{ MHz}$ (fc = 40 MHz)		f _{SYS} = 1 (fc = 27	Unit	
		MIN	MAX	MIN	MAX	MIN	MAX	
MMI, INT0 to INT7 Low level Width	T _{INTAL}	4X + 40		140		188		ns
NMI, INT0~INT7 High level Width	T _{INTAH}	4X + 40		140		188	>	115

Note : Symbol x in the above table means the period of clock f_{FPH}, it's half period of the system clock f_{SYS} for CPU core. The period of f_{FPH} depends on the clock gear setting.

4.3.6 Event Counter (TA0IN, TB1IN0, TB1IN1)

Parameter Symbol		Variable		$f_{SYS} = 20 \text{ MHz}$ (fc = 40 MHz)		f _{SYS} = 13.5MHz (fc=27 MHz)		Unit
Falameter	Symbol	MIN	MAX	MIN	MAX <	MIN	MAX	Onit
Clock period	T _{VCK}	8X + 100	(300		396	\mathcal{S}	ns
Clock Low level Width	T _{VCKL}	4X + 40		140	(188		ns
Clock High level Width	T _{VCKH}	4X + 40		140		188		ns

Note : Symbol x in the above table means the period of clock f_{FPH}, it's half period of the system clock f_{SYS} for CPU core. The period of f_{FPH} depends on the clock gear setting.

4.4 AD Conversion Characteristics

Parameter (Symbol	Min	Тур.	Max	Unit
AD Converter Power Supply Voltage	A _{VCC}	ACC	VCC	VCC	
AD Converter GND	Avss 🖉	VSS	VSS	VSS	V
Analog Input Voltage	AVIN	Avss		AVCC	
Total error (Quantize error of ± 0.5 LSB is included)	ET	5)	±1.0	±4.0	LSB

Note 1: 1LSB = (VREFH - VREFL) / 1024 [V]

Note 2: Minimum frequency for operation

AD converter operatinon is generated only using fc (high-frequency oscillator). fs is not guaranteed. However,

if clock frequency which is selected by clock is over than 4MHz, operation is guaranteed.

Note 3: The value for Icc includes the current which flows through the $\mathsf{AV}_{\mathsf{CC}}$ pin.

4.5 Flash Characteristics

(1) Rewriting

Parameter	Condition	Min	Тур	Max	Unit
Gurantee on Flash-memory rewriting	Vcc = 3.0V to 3.6V X1 = 6MHz to 10MHz Ta = -10 to 40°C	-	-	100	Times

4.6 Recommended Oscillation Circuit

The TMP92FD23A has been evaluated by the oscillator vender below. Use this information when selecting external parts.

- Note: The total load value of the oscillator is the sum of external loads (C1 and C2) and the floating load of the actual assembled board. There is a possibility of operating error when using C1 and C2 values in the table below. When designing the board, design the minimum length pattern around the oscillator. We also recommend that oscillator evaluation be carried out using the actual board.
 - (1) Connection example

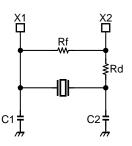


Figure 4.6.1 High-frequency oscillator

Figure 4.6.2 Low-frequency oscillator

(2) Recommended ceramic oscillator: Murata Manufacturing Co., Ltd.

	Oscillation	Oscillator		Pa	arameter	of elemen	ts	Running (Condition
MCU	Frequency [MHZ]	Product Number	Item of Oscillator	C1 (pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage of Power [V]	Ta [°C]
	6.00	SMD	CSTCR6M00G55-R0	(39)	(39)				
TMP92CY23/	0.00	Lead	CSTLS6M00G56-B0	(47)	(47)	Open	0	3.0~3.6	-20~80
TMP92FD23A	10.00	SMD	CSTCE10M0G55-R0) (33)	(33)	open	Ū	0.0 0.0	20.00
	10.00	Lead	CSTLS10M0G56-B0	(47)	(47)				

Note 1: The figure in parentheses () under C1 and C2 is the built-in condenser type. In CST **type oscillator, capacitance C1 and C2 is built-in.

Note 2: The product numbers and specifications of the oscillators made by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL:

http:// www.murata.co.jp/

5. Table of Special function registers (SFRs)

The SFRs include the I/O ports and peripheral control registers allocated to the 8-K byte address space from 000000H to 001FFFH.

(1) I/O Port			(9) UART/serial channel
(2) Interrupt control			(10) I ² CBUS/serial channel
(3) DMA controller			(11) AD converter
(4) Memory controller			(12) Watchdog timer
(5) Clock control/PLL			(13) Special timer for CLOCK
(6) 8-bit timer			(14) Key-on wake up
(7) 16-bit timer			(15) Program patch function
(8) High speed serial channel			
Table layout			
Symbol	Name	Address	7 6 1 0
			Bit symbol
			→Read/Write →Initial value after reset
		~	→Remarks
I	l		

Note: "Prohibit RMW" in the table means that you cannot use RMW instructions on these registers.

 $(\neg \uparrow \land$

Example: When setting bit0 only of the register PxCR, the instruction "SET 0, (PxCR)" cannot be used. The LD (transfer) instruction must be used to write all eight bits.

Read/Write

Itead Wilte	
R/W:	Both read and write are possible.
R: //)	Only read is possible.
W:	Only write is possible.
W*:	Both read and write are possible (when this bit is read as1)
Prohibit RMW:	Read-modify-write instructions are prohibited. (The EX, ADD, ADC,
	BUS, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET,
	RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD and RRD instruction are
	read modify write instructions.)
(R/W*:)	Read-modify-write is prohibited when controlling the pull-up resistor.

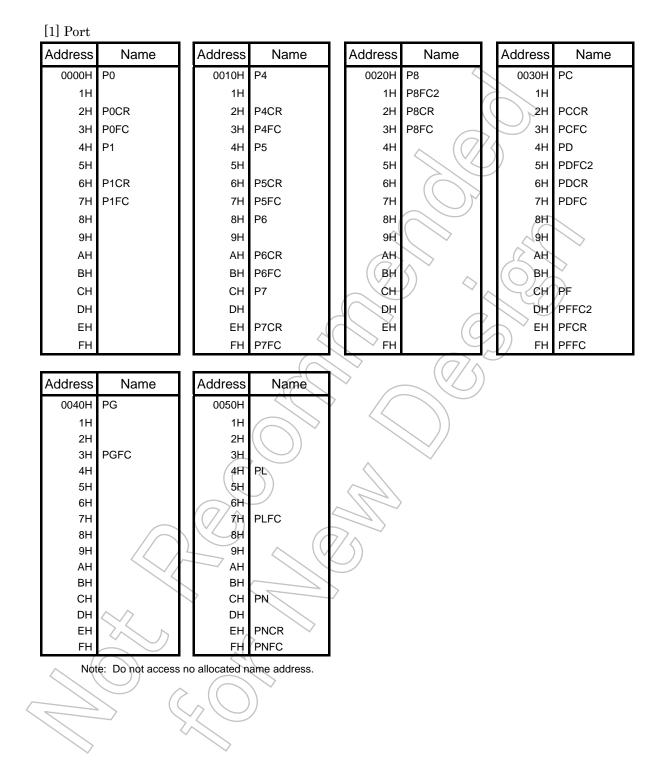


Table 5.1 I/O Register Address Map

[2] INTC	ļ,					[3] DMA	controller
Address	Name	Address	Name	Address	Name	Address	Name
00D0H	INTE01	00E0H	INTETB0	00F0H	INTTC01	0100H	DMA0V
1H	INTE23	1H	INTESTBO0	1H	INTTC23	1H	DMA1V
2H	INTE45	2H	INTETB1	2H	INTTC45	2H	DMA2V
3H	INTE67	3H	INTSTBO1	3H	INTTC67	ЗH	DMA3V
4H	INTETA01	4H	INTEPAD	4H	HSCSEL	4H	DMA4V
5H	INTETA23	5H	INTERTC	5H	SIMC	5H	DMA5V
6H	INTETA45	6H		6H	IIMC	6Н	DMA6V
7H	Reserved	7H		7H	\sim (7)	7н	DMA7V
8H	INTES0	8H		8H	INTCLR) 8н	DMAB
9H	INTES1HSC	9H		9H	Reserved	9Н	DMAR
AH	INTES2	AH		AH	IIMÇ2	AH	Reserved
BH	Reserved	BH		BH	IIMC3	BH	
СН	INTESB0	СН		CH	Reserved	СН	
DH	INTESB1	DH		DH	Reserved	CDH	\searrow
EH	Reserved	EH		EH	Reserved	EH	
FH	Reserved	FH	INTENMWDT	((ғн	Reserved	FH	
[4] Memo	ory controller		~	$\frac{1}{2}$	(C	[5] Clock	control/PLL
Address	Name	Address	Name	Address	Name	Address	Name
0140H	B0CSL	0150H	Reserved	0160H	Reserved	10E0H	SYSCR0
1H	B0CSH	1H	Reserved	111	Reserved	1H	SYSCR1
2H	MAMR0	2H	Reserved	2H	Reserved	2H	SYSCR2
3H	MSAR0	3H	Reserved	Зн		3H	EMCCR0
4H	B1CSL	4H	Reserved	4H		4H	EMCCR1
5H	B1CSH	5H	Reserved	5H		5H	EMCCR2
6H	MAMR1	6H	Reserved	6H	PMEMCR	6H	
7H	MSAR1	्रम	Reserved	7H		7H	
8H	B2CSL	8H	BEXCSL	8H		8H	PLLCR0
9H	B2CSH	He	BEXCSH	9H		9H	PLLCR1
AH	MAMR2	(AH	Reserved	AH		AH	
BH	MSAR2	BH	Reserved) вн		BH	
СН	B3CSL	СН		СН	Reserved	СН	
DH	B3CSH	DH		DH		DH	
	MAMR3			- EH		EH	
EH FH	MSAR3	EH FH		FH		FH	

[6] 8-bit	timer					[7] 16-bi	t timer			
Address	Name	Add	dress	Name		Address	Name		Address	Name
1100H	TA01RUN	1	110H	TA45RUN		1180H	TBORUN		1190H	TB1RUN
1H			1H			1H			1H	
2H	TA0REG		2H	TA4REG		2H	TB0MOD		2H	TB1MOD
3H	TA1REG		ЗH	TA5REG		3H	TB0FFCR	//	ЗН	TB1FFCR
4H	TA01MOD		4H	TA45MOD		4H		À	4H	
5H	TA1FFCR		5H	TA5FFCR		5H		$\left(\left(\right) \right)$	5H	
6H			6H			6H		/	6Н	
7H			7H			7H	\sim (7)	1	7H	
8H	TA23RUN		8H			8H	TB0RG0L)) 8Н	TB1RG0L
9H			9H			9H	TB0RG0H		9H	TB1RG0H
AH	TA2REG		AH			AH	TB0RG1L		AH	TB1RG1L
BH	TA3REG		BH			BH	TB0RG1H		BH	TB1RG1H
CH	TA23MOD		СН			CH	TB0CP0L		CH	TB1CP0L
DH	TA3FFCR		DH			DH	TB0CP0H		C DH	TB1CP0H
EH			EH			EH	TB0CP1L		EH EH	TB1CP1L
FH			FH			((FH	TB0CP1H		(FH	TB1CP1H
					(\langle))
[8] High	speed serial			~	([8] UART	vsio (C	$\langle \rangle$)/
_	speed serial Name	Add	dress	Name	$\langle \mathcal{O} \rangle$	[8] UART Address	/SIO		Address	Name
_	_	_	dress C10H	Name					Address 1210H	Name SC2BUF
Address	Name	_				Address	Name SCOBUF SCOCR			
Address 0C00H	Name HSC0MD	_	C10H	HSCOTD		Address 1200H	Name SCOBUF		1210H	SC2BUF
Address 0C00H 1H	Name HSC0MD HSC0MD	_	C10H 1H	HSCOTD HSCOTD		Address 1200H 1H	Name SCOBUF SCOCR		1210H 1H	SC2BUF SC2CR
Address 0C00H 1H 2H	Name HSC0MD HSC0MD HSC0CT	_	C10H 1H 2H	HSCOTD HSCOTD HSCORD		Address 1200H 1H 2H	Name SCOBUF SCOCR SCOMODO		1210H 1H 2H	SC2BUF SC2CR SC2MOD0
Address 0C00H 1H 2H 3H	Name HSC0MD HSC0MD HSC0CT HSC0CT	_	C10H 1H 2H 3H	HSCOTD HSCOTD HSCORD HSCORD		Address 1200H 1H 2H 3H	Name SCOBUF SCOCR SCOMODO BROCR		1210H 1H 2H 3H	SC2BUF SC2CR SC2MOD0 BR2CR
Address 0C00H 1H 2H 3H 4H	Name HSC0MD HSC0MD HSC0CT HSC0CT HSC0ST	_	C10H 1H 2H 3H 4H	HSCOTD HSCOTD HSCORD HSCORD HSCOTS		Address 1200H 1H 2H 3H 4H	Name SCOBUF SCOCR SCOMODO BROCR BROADD		1210H 1H 2H 3H 4H	SC2BUF SC2CR SC2MOD0 BR2CR BR2ADD
Address 0C00H 1H 2H 3H 4H 5H	Name HSCOMD HSCOMD HSCOCT HSCOCT HSCOST HSCOST	_	C10H 1H 2H 3H 4H 5H	HSCOTD HSCOTD HSCORD HSCORD HSCOTS HSCOTS		Address 1200H 1H 2H 3H 4H 5H	Name SCOBUF SCOCR SCOMODO BROCR BROADD		1210H 1H 2H 3H 4H 5H	SC2BUF SC2CR SC2MOD0 BR2CR BR2ADD
Address 0C00H 1H 2H 3H 4H 5H 6H	Name HSCOMD HSCOCT HSCOCT HSCOST HSCOST HSCOCR	_	C10H 1H 2H 3H 4H 5H 6H	HSCOTD HSCOTD HSCORD HSCORD HSCOTS HSCOTS HSCORS		Address 1200H 1H 2H 3H 4H 5H 6H	Name SCOBUF SCOCR SCOMODO BROCR BROADD SCOMOD1		1210H 1H 2H 3H 4H 5H 6H	SC2BUF SC2CR SC2MOD0 BR2CR BR2ADD SC2MOD1
Address 0C00H 1H 2H 3H 4H 5H 6H 7H	Name HSC0MD HSC0MD HSC0CT HSC0CT HSC0ST HSC0CR HSC0CR	_	C10H 1H 2H 3H 4H 5H 6H 7H	HSCOTD HSCOTD HSCORD HSCORD HSCOTS HSCOTS HSCORS	V/// ~ V	Address 1200H 1H 2H 3H 4H 5H 6H 7H	Name SCOBUF SCOCR SCOMODO BROCR BROADD SCOMOD1 SIROCR		1210H 1H 2H 3H 4H 5H 6H 7H	SC2BUF SC2CR SC2MOD0 BR2CR BR2ADD SC2MOD1
Address 0C00H 1H 2H 3H 4H 5H 6H 7H 8H	Name HSCOMD HSCOMD HSCOCT HSCOCT HSCOST HSCOCR HSCOCR HSCOCR HSCOIS HSCOWE	_	C10H 1H 2H 3H 4H 5H 7 8H	HSCOTD HSCOTD HSCORD HSCORD HSCOTS HSCOTS HSCORS		Address 1200H 1H 2H 3H 4H 5H 6H 7H 8H	Name SCOBUF SCOCR SCOMODO BROCR BROADD SCOMOD1 SIROCR SC1BUF		1210H 1H 2H 3H 4H 5H 6H 7H 8H	SC2BUF SC2CR SC2MOD0 BR2CR BR2ADD SC2MOD1
Address 0C00H 1H 2H 3H 4H 5H 6H 7H 8H 9H	Name HSCOMD HSCOMD HSCOCT HSCOCT HSCOST HSCOCR HSCOCR HSCOCR HSCOIS HSCOIS	_	C10H 1H 2H 3H 4H 5日 6日 7日 8日 9日	HSCOTD HSCOTD HSCORD HSCORD HSCOTS HSCOTS HSCORS		Address 1200H 1H 2H 3H 4H 5H 6H 7H 8H 9H	Name SCOBUF SCOCR SCOMODO BROCR BROADD SCOMOD1 SIROCR SC1BUF SC1CR		1210H 1H 2H 3H 4H 5H 6H 7H 8H 9H	SC2BUF SC2CR SC2MOD0 BR2CR BR2ADD SC2MOD1
Address 0C00H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	Name HSCOMD HSCOMD HSCOCT HSCOCT HSCOST HSCOCR HSCOCR HSCOCR HSCOIS HSCOWE	_	C10H 1H 2H 3H 4H 5H 4H 5H 天 5H 天 五 五	HSCOTD HSCOTD HSCORD HSCORD HSCOTS HSCOTS HSCORS		Address 1200H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	Name SCOBUF SCOCR SCOMODO BROCR BROADD SCOMOD1 SIROCR SC1BUF SC1CR SC1MODO		1210H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	SC2BUF SC2CR SC2MOD0 BR2CR BR2ADD SC2MOD1
Address 0C00H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	Name HSCOMD HSCOCT HSCOCT HSCOST HSCOST HSCOCR HSCOCR HSCOIS HSCOIS HSCOWE HSCOWE	_	C10H 1H 2H 3H 5H 5 5 7 5 7 5 8 5 8 5 8 5 8 5 8 1 8 1 8 1 1 1 1 1 1	HSCOTD HSCOTD HSCORD HSCORD HSCOTS HSCOTS HSCORS		Address 1200H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	Name SCOBUF SCOCR SCOMODO BROCR BROADD SCOMOD1 SIROCR SC1BUF SC1CR SC1MODO BR1CR		1210H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	SC2BUF SC2CR SC2MOD0 BR2CR BR2ADD SC2MOD1
Address 0C00H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	Name HSCOMD HSCOCT HSCOCT HSCOST HSCOST HSCOCR HSCOCR HSCOIS HSCOWE HSCOWE HSCOWE HSCOIE	_	C10H H H H H H H H H H H H H H H H H H H	HSCOTD HSCOTD HSCORD HSCORD HSCOTS HSCOTS HSCORS		Address 1200H 1H 2H 3H 4H 5H 6H 7H 8H 9H 8H 0H 8H CH	Name SCOBUF SCOCR SCOMODO BROCR BROADD SCOMOD1 SIROCR SC1BUF SC1CR SC1BUF SC1CR SC1MODO BR1CR BR1ADD		1210H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	SC2BUF SC2CR SC2MOD0 BR2CR BR2ADD SC2MOD1

TOSHIBA

Address	Name	Address	Name	Address	Name		Address	Name
1400H	ROMCMP00	1410H	ROMCMP20	1420H	ROMCMP40		1430H	ROMCMP60
1H	ROMCMP01	1H	ROMCMP21	1H	ROMCMP41		1H	ROMCMP61
2H	ROMCMP02	2H	ROMCMP22	2H	ROMCMP42		2H	ROMCMP62
3H		3H		3H			ЗН	
4H	ROMSUB0LL	4H	ROMSUB2LL	4H	ROMSUB4LL	$\langle \rangle$	4H	ROMSUB6LL
5H	ROMSUB0LH	5H	ROMSUB2LH	5H	ROMSUB4LH) 🖓 5H	ROMSUB6LH
6H	ROMSUB0HL	6H	ROMSUB2HL	6H	ROMSUB4HL		🧹 6Н	ROMSUB6HL
7H	ROMSUB0HH	7H	ROMSUB2HH	7H	ROMSUB4HH	\land	7H	ROMSUB6HH
8H	ROMCMP10	8H	ROMCMP30	8H	ROMCMP50))	8H	ROMCMP70
9H	ROMCMP11	9H	ROMCMP31	9H	ROMCMP51		9H	ROMCMP71
AH	ROMCMP12	AH	ROMCMP32	AH	ROMCMP52		AH	ROMCMP72
BH		BH		BH			BH	
CH	ROMSUB1LL	СН	ROMSUB3LL	СН	ROMSUB5LL		CH	ROMSUB7LL
DH	ROMSUB1LH	DH	ROMSUB3LH	DH	ROMSUB5LH		Д рн	ROMSUB7LH
EH	ROMSUB1HL	EH	ROMSUB3HL	EH	ROMSUB5HL		EH	ROMSUB7HL
FH	ROMSUB1HH	FH	ROMSUB3HH	((/テH<	ROMSUB5HH	(FL	ROMSUB7HH

[14] Program patch function

(1) I/O ports (1/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Symbol	Name	Audress								
P0	Port 0	0000H	P07	P06	P05	P04	P03 W	P02	P01	P00
10	1 010 0	000011		Data fi	rom externa	l port (Outpu		er is cleared	to "0")	
			P17	P16	P15	P14	P13	P12	P11	P10
P1	Port 1	0004H				R/				
				Data fi	rom externa	l port (Outpu		er is cleared	to "0")	
			P47	P46	P45	P44	P43	(P42)	P41	P40
P4	Port 4	0010H			•	R/	W	\sim	/	
				Data fi	rom externa	l port (Outpu	t latch regist	er is cleared	d to "0")	
			P57	P56	P55	P54	P53	P52	P51	P50
P5	Port 5	0014H				R/	-			
				Data fi	rom externa	l port (Outpu		er is cleared	to "0")	1
			P67	P66	P65	P64	P63	P62	P61	P60
P6	Port 6	0018H					W			
					rom externa	port (Outpu				-
			P77	P76		P74	P73	P72	P71	P70
				/W					x/w	
P7	Port 7	001CH		external port	$\left \right\rangle$	Data from		Data from	external port	
Γ/	FUIL	001011		ch register is o "1")		external port	(Out		gister is set t	
			5011	01)		pon	0 (Output	latch registe	er): Pull-up re	sistor OFF
				-		>-			er): Pull-up r	
						\sim	P837	P82	P81	P80
			\sim	\sim	\sim	\sim			z/W	
			\backslash	1	\bigcirc		Data from	/		
P8	Port 8	0020H			\wedge	$X \leq -$	external			
ΓO	FUILO	002011			\searrow		port (Output	0	1	1
				(())			latch	0	· ·	
			\sim	\succ		$ \land \land$	register is			
							set to "1")			
5.0				\rightarrow			PC3	PC2	PC1	PC0
PC	Port C	0030H							R	
			Δ						external port	
						PD4	PD3	PD2	PD1	PD0
						/	R/W		R Data from	R/W Data from
PD	Port D	0034H		$\left \right\rangle$	\mathbb{N}				external	external
			\supset \setminus	\checkmark		Data from	external po	rt (Note 1)	port	port
		<u>></u>						r		(Note 1)
	\sum	KN			PF5	PF4	PF3	PF2	PF1	PF0
PF	Port F	003CH						W		
A.						rom external		-		1
PG			PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0
	Port G	0040H	> ((R	o 2)		
		1 ($// \land$	フノ	Dat	a from exter		,		DI 6
			1	\langle						
	Dort I	005411		$\langle \rangle$			PL3	PL2	PL1	PL0
PL	Port L	0054H							R	
	Port L	0054H					Dat	a from exte	R rnal port (No	te 2)
	Port L Port N	0054H 005CH			PN5	PN4	Dat PN3		R	

Note1: Output latch register is cleared to "0". (There is no output latch register.)

Note2: It operates as an analog input port.(Input port disable)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Port 0	0002H	P07C	P06C	P05C	P04C	P03C	P02C	P01C	P00C
P0CR	Control	(Prohibit				٧	V			-
1001	register	RMW)	0	0	0	0	0	0	0	0
	- 3	,	_	~	~	0: Input	1: Output	A	~	
										P00F
	Port 0	0003H	$ \ge$					\sim		W
P0FC	Function	(Prohibit						()	\geq	0
	register	RMW)					G	77^		0:Port 1:Data bu:
							$\langle \langle V \rangle \rangle$	/))		(D0 to D7)
	Port 1	0006H	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
P1CR	Control	(Prohibit				V	V (>		
	register	RMW)	0	0	0	0	O	0	0	0
	-			<	<u> </u>	0: Input	1: Output			
			\sim			-4	$\frac{1}{2}$			P10F
	Port 1	0007H	>			\rightarrow				W
P1FC	Function	(Prohibit						-		0 0:Port
	register	RMW)			G				$\left(\right)$	1:Data but (D8 to D1
	_		P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C
P4CR	Port 4 Control	0012H			- 20	V V	v	$\langle \rangle \rangle$		
F40K	register	(Prohibit RMW)	0	0	\bigcirc	0	0	∠ó	0	0
	rogiotor				\langle / \rangle	0: Input	1: Output	()		
	Port 4	0013H	P47F	P46F	P45F	P44F	P43F	P42F	P41F	P40F
P4FC	Function	(Prohibit				V			1	
	register	RMW)	0	0	0	0	0	0	0	0
			50			ort 1: Addres			5510	2200
	Port 5	0016H	P57C	P56C	P55C	P54C	P53C	P52C	P51C	P50C
P5CR	Control	(Prohibit	0	0	0	a	0	0	0	0
	register	RMW)	0	9			1: Output	0	0	0
			P57F	P56F	P55F	P54F	P53F	P52F	P51F	P50F
	Port 5	0017H				V		1 021	1011	1 001
P5FC	Function	(Prohibit		0		0	0	0	0	0
	register	RMW)				rt 1: Addres	s bus (A8 to	A15)		
	Devit 0	00441	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
P6CR	Port 6 Control	001AH (Prohibit	\geq	17		V	V			
FUCK	register	RMW)	0	0	0	0	0	0	0	0
					\searrow	0: Input	1: Output			
	Port 6	001BH	P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F
P6FC	Function	(Prohibit	<	11	 	V		ı — — —	1	1
	register	RMW)	0	0	0	0	0	0	0	0
		r i	> ((_`		0: Po	rt 1: Address	s bus (A16 to	o A23)		
$\langle \langle \langle \rangle \rangle$				リ	0.10			, (<u>2</u> 0)		

I/O ports (2/4)

Currenter - I	I/O ports		7	<u>^</u>	F	Α	2	0	4	<u>^</u>
Symbol	Name	Address	7	6	5	4	3	2	1	0
	Port 7	001EH	P77C	P76C			P73C	P72C	P71C	P70C
P7CR	Control	(Prohibit	1	N 1			0	0	N o	0
	register	RMW)		1: Output					1: Output	0
						P74F	P73F	P72F	P71F	P70F
			\frown	\sim	\sim			W		
	Port 7	001FH				0	0	(0)	0	0
P7FC	Function register	(Prohibit RMW)				0: Port	0: Port	0: Port	0: Port	0: Port
	register	(((((()))))))))))))))))))))))))))))))))				input 1: INT0	1: SRLUB	1: SRLLB	1: SRWR	1: RD
						input		\bigcirc		
							P83F2		P81F2	P80F2
50500	Port 8	0021H	\geq				(\mathbf{w})			N
P8FC2	Function register 2	(Prohibit RMW)				\sim	0		0	0
	register z	$\nabla (v v v)$				41	0: <p83f> 1: TA5OUT</p83f>		0: <p81f> 1: TA3OUT</p81f>	0: <p80f> 1: TA1OU</p80f>
							P83C			
	Port 8	0022H		\sim	\sim	4927	W A	\square	\bowtie	
P8CR	Control	(Prohibit	$\overline{}$				1		$\forall \gamma \rangle$	\sim
	register	RMW)			$\overline{(}$		0: Input			
			_		6		1: Output	\sim		
							P83F 🗸	P82F	P81F	P80F
							$\overline{\Box}$	^	N	1
5050	Port 8	0023H					0	0	0 O: Dant	0 O: Dart
P8FC	Function register	(Prohibit RMW)		2(<p83f,p83c> 00: Port input</p83f,p83c>		0: Port 1: CS1	0: Port 1: CS0
	register	$\nabla (v v)$					01: Port outpu	t		
				(\bigcirc)	\sim		10: WAIT input			
			_				11: CS3 outpu PC3F	t PC2F	PC1F	PC0F
	Port C	0033H				A	TUSE		<u>FCIF</u> N	FCUF
PCFC	Function	(Prohibit	$\neg \uparrow \uparrow$				0	0	0	0
	register	RMW)				(7)	0: Port	0: Port	0: Port	0: Port
						\geq	1: INT3	1: INT2	1: INT1	1: TA0IN
	Port D	0035H	\sim	\square	\mathcal{T}	PD4F2	PD3F2	PD2F2	PD1F2	
PDFC2	Function	(Prohibit		$\neg \land$	\mathbb{X})	1	N	i	
	register 2	RMW)			\sim	0	0	0	0	
			\rightarrow			DD 40		0 PDFC>		0000
	Port D	∕> 0036H	~			PD4C	PD3C W	PD2C	\vdash	PD0C W
PDCR	Control	(Prohibit	\sim		\downarrow	0	0	0	\vdash	0
	register	RMW)		(7)				1	\vdash	0: Input
			<			0:	Input 1: Out	put		1: Output
\langle	/ /))	\rightarrow	\sim		PD4F	PD3F	PD2F	PD1F	PD0F
		- ((W	1	i
$\langle \langle \rangle$			<u>Z</u>	\sum		0	0	0	0	0
	\langle		\sim			<pdxf2,pdxf,< td=""><td>PD4</td><td>PD3 PI</td><td>02 PD1</td><td>PD0</td></pdxf2,pdxf,<>	PD4	PD3 PI	02 PD1	PD0
	\searrow	000-11	\checkmark			PDxC> 000		nput port Inpu		
PDFC	Port D Function	0037H (Prohibit				001	Output port Ou	utput port Outpu	ut port	Output port
FDFC	register	(Prohibit RMW)				010		RXD2 TB1	D2	INT4
	9.0.01					011		B1OUT0 (3-ST	TATE)	TBOOUTO
						100	SCLK2 input CTS2 input	INT7 IN	T6 INT5	
						101	SCLK2 output R		erved	
						110		TY	erved Reserved	
						111	Reserved R	eserved (Open	Drain)	\downarrow

	ports (4/4	1	7	~	-	4	0	<u>^</u>	4	~
Symbol	Name	Address	7	6	5	4	3	2	1	0
								PF2F2		
	Port F	003DH						W		
PFFC2	Function	(Prohibit						0		
	register 2	RMW)						0: <pf2f></pf2f>		
						2510	2500	1: CLK	5510	5540
	Port F	003EH			PF5C	PF4C	PF3C	PF2C	PF1C	PF0C
PFCR	Control	(Prohibit					1	$V((\cdot))$	2	
	register	RMW)			0	0	0	0	0	0
	-							1: Output		
					PF5F	PF4F	PF3F	PF2F	PF1F	PF0F
								\sim	· · · · · ·	
					0	0	0	0	0	0
					Г	<pfxf2,pfxf,pe< td=""><td>xC> PF</td><td>2 PF1</td><td>PF0</td><td>T</td></pfxf2,pfxf,pe<>	xC> PF	2 PF1	PF0	T
						000	Input			
						001	Outpu			
					[010	SCLK0		TXD0 (Open Drain)	1
						011	SCLK0		TXD0	1
						400	Reser	$\langle () \rangle$	(3-STATE)	-
	Port F	003FH			1	100	CLK of	~ 76		
PFFC	Function	(Prohibit			4	110	Reser	ved Reserve	d Reserved	
	register	RMW)			20	111	Reser	ved Reserve	d Reserved	
						<siocnt,pfxf2,pfxl< td=""><td>F,PFxC> PF</td><td>5 / PF4</td><td>PF3</td><td></td></siocnt,pfxf2,pfxl<>	F,PFxC> PF	5 / PF4	PF3	
						0000	Input	port Input po	rt Input port	
					$(\bigcirc$	0001	Output			4
				20		0010	SCLK1		TXD1 (Open Drain)	
					\sim	0011	SCLK1	output Reserve	d (3-STATE)	
					\searrow	1000	Reser	ved Reserve		
						1001	Reser	ved Reserve	d Reserved	
					/	1010	Reser	ved HSSI inp	ut Reserved	
			((\sim		1011	HSCLK	output Reserve	ed HSSO(3-stage)
			PG7F	PG6F	PG5F <	PG4F	PG3F	PG2F	PG1F	PG0F
	Port G	0043H	Ton				V 1001	1 021	1011	1 001
PGFC	Control	(Prohibit		1	1		1	1	1	1
	register	RMW)		/		Port/Key inpu			1	1
		$// \rightarrow$	\sim	\sim			PL3F	PL2F	PL1F	PL0F
	Port L	0057H	\sim	\sim	\sim	+				
PLFC	Function	(Prohibit				\sim	1	1 V		1
	register	RMW)	\rightarrow			+				
		17				DNI40			1: Analog inp	
	Port N	005EH			PN5C	PN4C	PN3C	PN2C	PN1C	PN0C
PNCR	Control	(Prohibit		$\overline{\mathcal{A}}$			1	V		^
	register	RMW)	\sim		0	0	0	0	0	0
\sim						1		1: Output		
	//	ビー	$\rightarrow \sim$	\sim	PN5F	PN4F	PN3F	PN2F	PN1F	PN0F
			$\sim \mathcal{H}$				۱	V	· · ·	
/7	Port N	005FH		\sim	0	0	0	0	0	0
PNFC	Function	(Prohibit	\sim		<pnxf,pn< td=""><td>xC> PN5</td><td>PN4 P</td><td>N3 PN2</td><td>PN1</td><td>PN0</td></pnxf,pn<>	xC> PN5	PN4 P	N3 PN2	PN1	PN0
	register	RMW)	\searrow		00	Input port	Input port Inpu	it port Input port	Input port I	nput port
					01 10	SI1 input S	SO1 output SCK	ut port Output por 1 input SI0 input	SO0 output S0	utput port CK0 input
		1			11			output SCL0 I/O		K0 output

I/O ports (4/4)

Note1: When port P70 to P73 is used in the input mode, P7 register controls the built-in pull-up resistor. Read-modify-write is prohibited in the input mode or the I/O mode. Setting the built-in pull-up resistor may be depended on the states of the input pin.

- Note 2: Notes on using low-frequency resonator to P76,P77, it is necessary to set the following procedures to reduce the consumption power supply.
 - ·connecting to a resonator

Set P7CR<P76C,P77C>="11",P7<P76,P77>="00".

- · connectiion to an oscillator
- Set P7CR<P76C,P77C>="11",P7<P76,P77>="10".
- Note 3: When using P83 as a WAIT input, while setting it as P8CR<P83C>= "0" and P8FC<P83F> = "1", it is necessary to set memory control register BxCSL<BxWW2:0> or <BxWR2:0> as "011".
- Note 4: When setting P80 to P83 as a standard chip select signal (CS0 to CS3) output, P8CR is set up after setting up P8FC.
- Note 5: PC0 is not based on a functional setup of a port, but is inputted into TAOIN of a 8-bit timer (TMRA0)
- Note 6: TB1IN0 and TB1IN1 input is inputted into the 16-bit timer TMRB1 irrespective of a functional setup of a port. Note 7: RXD2, SCLK2 input, and CTS2 input are inputted into the serial channel 2 irrespective of a functional setup of
 - a port.
- Note 8: PD2 does not have a register for 3-state / open drain setup. Moreover, there is no open drain function at the time of an output port.
- Note 9: PF0 and PF3 does not have a register for 3-state / open drain setup. Moreover, there is no open drain function at the time of an output port.
- Note10: Input channel selection of an AD converter in PG0 to PG7 and PL0 to PL3 is set up by AD mode control register ADMOD1 <ADCH3:0>. Moreover, a setup of AD trigger (ADTRG) input permission is set up by ADMOD2 <ADTRGE>.

Note11: Specify the HSCSEL<SIOCNT> when selecting TXD1 or HSSO, RXD1 or HSSI and SCLK1 or HSCLK.

(2) Interrupt control (1/4)

	Interrup								1	
Symbol	Name	Address	7	6	5	4	3	2	1	0
				IN	Г1			IN	IT0	-
	INT0 & INT1		I1C	I1M2	I1M1	I1M0	I0C	10M2	I0M1	IOMO
INTE01	enable	00D0H	R		R/W		R		R/W	
	Chabic		0	0	0	0	0	0	0	0
			1: INT1	Interr	upt request	level	1: INT0	Inter	rupt request	level
				IN	ГЗ				T2	
			I3C	I3M2	I23M1	I3M0	I2C	12M2	2 I2M1	I2M0
INTE23	INT2 & INT3 enable	00D1H	R		R/W		R		R/W	
	enable		0	0	0	0	0	7/_0	0	0
			1: INT3	Interr	upt request	level		() Inter	rupt request	level
				IN	Г5				IT4	
			I5C	I5M2	I5M1	15M0	((I4C))) I4M2	I4M1	I4M0
INTE45	INT4 & INT5	00D2H	R		R/W		R	ĺ	R/W	
	enable		0	0	0	0 ((0	0	0	0
			1: INT5	Interr	upt request	level 🔨	1: INT4	Inter	rupt request	level
				IN			$\langle \rangle$		T6	
			I7C	17M2	I7M1	(17M0 🔿	I6C	16M2	16M1	16M0
INTE67	INT6 & INT7 enable	00D3H	R		R/W		R S		R/W	
	enable		0	0	0	0	0	Co Co	100	0
			1: INT7	Interr	upt request	level	1: INT6	🗆 Inter	rupt request	level
				INTTA1 (TMRA1)	$\langle \rangle$	((/INTTA0	(TMRA0)	
	INTTA0 &		ITA1C	ITA1M2	ITA1M1	ITA1M0	ITA0C	ITA0M2	ITA0M1	ITA0M0
INTETA01	INTTA1	00D4H	R	(R/W	7	(R7/	\wedge	R/W	
	enable		0	0	0	0)) 0	0	0
			1: INTTA1	Interr	upt request	level	1: INTTAO	Inter	rupt request	level
				INTTA3 (TMRA3)	$\langle \langle$		INTTA2	(TMRA2)	
	INTTA2 &		ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0
INTETA23	INTTA3	00D5H	R		R/W		R		R/W	
	enable		0	20	0	<u> </u>	· ∨ 0	0	0	0
			1: INTTA3	Interr	upt request	level	1: INTTA2	Inter	rupt request	level
				ÚNTTA5 (TMRA5) 🔇	\sim		INTTA4	(TMRA4)	
	INTTA4 &		ITA5C	ITA5M2	ITA5M1	ITA5M0	ITA4C	ITA4M2	ITA4M1	ITA4M0
INTETA45	INTTA5	00D6H	(R))	R/W	\sim	R		R/W	
	enable		0	0	(0/)	0	0	0	0	0
		$\langle \langle \rangle$	1: INTTA5	Interr	upt request	level	1: INTTA4	Inter	rupt request	level
				INT				INT	RX0	
	INTRX0 &		ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0
INTES0	INTTX0	00D8H	R		R/W		R	ļ	R/W	
	enable	Κ.	0	0	0	0	0	0	0	0
	$\langle \rangle$	\sum	1: INTTX0		upt request	level	1: INTRX0	Inter	rupt request	level
	INTRX1 &	\sim	~	INTTX1/	NTHSC				RX1	
\sim	INTRAT &))	ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1HSC	INTHSC	00D9H	R	∇	R/W		R		R/W	
	enable	((0)) 0	0	0	0	0	0	0
//			1:/NTTX1	Interr	upt request	level	1: INTRX1	Inter	rupt request	level
		4	\sim	INT				INT	RX2	
	INTRX2 &		ITX2C	ITX2M2	ITX2M1	ITX2M0	IRX2C	IRX2M2	IRX2M1	IRX2M0
	INTTX2	00DAH	R		R/W		R	l	R/W	
INTES2		OODAIT				1		ļ	1	
INTES2	enable	OODAIT	0 1: INTTX2	0	0	0	0 1: INTRX2	0	0 rupt request	0

Symbol	Name	Address	7	6	5	4	3	2	1	0
					_			INTS	SBE0	
	INTSBE0		-	-	-	-	ISBE0C	ISBE0M2	ISBE0M1	ISBE0M0
INTESB0	enable	00DCH	-		_		R		R/W	-
	Chable		-	-	-	-	0	0	0	0
				Always	write "0"		1: INTSBE0	Inter	rupt request	level
					-				SBE1	
	INTSBE1		-	-	-	-	ISBE1C	ISBE1M2	SBE1M1	ISBE1M0
INTESB1	enable	00DDH	-		-		R		R/W	1
			-	-	-	_	0 (2/0	0	0
					write "0"		1: INTSBE1		rupt request	level
					(TMRB0)				(TMRB0)	1
	INTTB00 &		ITB01C	ITB01M2	ITB01M1	ITB01M0	ITB00C	JTB00M2	ITB00M1	ITB00M0
INTETB0	INTTB01	00E0H	R		R/W	6	R		R/W	r
	enable		0	0	0	0	0	0	0	0
			1: INTTB01	Inter	rupt request	level	1: INTTB00		rupt request	level
					-		\sim		(TMRB0)	1
	INTTBO0		_	-	-	$\left(\frac{1}{2}\right)$	ITBO0C	ITBO0M2	ITBO0M1	ITBO0M0
INTETBO0	(Overflow)	00E1H	-				R		R/W	.
	enable		-	-	- ((<u> </u>	0	0	100	0
				Always	write "0"		1: INTTBO0		rupt request	level
				INTTB11	(TMRB1)	\searrow			(TMRB1)	.
	INTTB10 &		ITB11C	ITB11M2	ITB11M1	ITB11M0	ITB10C	ITB10M2	ITB10M1	ITB10M0
INTETB1	INTTB11	00E2H	R		R/W	7	(R7/	\wedge	R/W	1
	enable		0	0	0	0	0) 0	0	0
			1: INTTB11	Inte	rupt request	level	1: INTTB10	Inter	rupt request	level
								INTTBO1	(TMRB1)	
	INTTBO1		_		<u> </u>		ITBO1C	ITBO1M2	ITBO1M1	ITBO1M0
INTETBO1	(Overflow)	00E3H	-) -		R		R/W	T
	enable		- (_	<u> </u>	0	0	0	0
				Always	write "0"		1: INTTBO1	Inter	rupt request	level
					TP0	$\langle 2 \rangle$		INT	TAD	T
	INTP0&		(IPOC/	IP0M2	IP0M1	IPOMO	IADC	IADM2	IADM1	IADM0
INTEPAD	INTAD	00E4H	(R))	R/W	\searrow	R		R/W	.
	enable		0	0		0	0	0	0	0
			1: INTP0	Inter	rupt request	level	1: INTAD	Inter	rupt request	level
								INT	RTC	T
	INTRTC		<u> </u>	$\langle -$		-	IRC	IRM2	IRM1	IRM0
INTERTC	enable	00E5H	~ _		-	i	R		R/W	•
		Κ.	-	_	<u> </u>	-	0	0	0	0
	\sim	\sum		Always	write "0"		1: INTRTC	Inter	rupt request	level
		\sim	6	1(N	MI	i		INT	WDT	.
\sim	NMI &))	INCNM	<u> </u>	-	-	INCWD	_	-	-
INTNMWDT	INTWD	00EFH	R	\sum	T	T	R		r	1
	enable		0)) -	-	-	0	_	-	-
//					lways write "	0"	1: INTWDT	A	lways write '	ʻ0"

Interrupt control (2/4)

	meenup	t control (0/1/							
Symbol	Name	Address	7	6	5	4	3	2	1	0
				INTTC1	(DMA1)			INTTC0	(DMA0)	
	INTTC0 &		ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
INTETC01	INTTC1	00F0H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			1: INTTC1	Inter	rupt request	level	1: INTTC0	Inter	rupt request	level
				INTTC3	(DMA3)			INTTC2	(DMA2)	
	INTTC2 &		ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	ITC2M2	VITC2M1	ITC2M0
INTETC23	INTTC3	00F1H	R		R/W		R		R/W	
	enable		0	0	0	0	0 ((77.0	0	0
			1: INTTC3	Inter	rupt request	level	1: INTTC2	🖉)) Inter	rupt request	level
				INTTC5	(DMA5)		\geq	MNTTC4	(DMA4)	
	NTTC4 &		ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
INTETC45	INTTC5	00F2H	R		R/W		R		R/W	
	enable		0	0	0	0 (()))	0	0	0
			1: INTTC5	Inter	rupt request	level 🔨	1: INTTC4	Inter	rupt request	level
				INTTC7	(DMA7)	\bigcirc		INTTC6	(DMA6)	
	NTTC6 &		ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C	ITC6M2	ITC6M1	ITC6M0
INTETC67	INTTC7	00F3H	R		R/W		R	y ,	R/W	
	enable		0	0	0 (0	0	6	100	0
			1: INTTC7	Inter	rupt request	level	1: INTTC6	Inter	rupt request	level

Interrupt control (3/4)

	Interrup	t control ((4/4)							
Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	-	-	-	-	-	-	SIOCNT
	HSC			•	•	R	•	•	•	R/W
HSCSEL	Selection	00F4H	0	0	0	0	0	0	0	0
	register							~		0: SIO1
								$\langle \rangle$		1: HSC
			-			/		IR2LE	IR1LE	IR0LE
	SIO		W			/			W	
	Interrupt	00F5H	0			/			1	1
SIMC	Mode	(Prohibit	Always				6	INTRX2	INTRX1	INTRX0
	Control	RMW)	write "1".				$\langle \langle \rangle$	0: edge	0: edge	0: edge
	register							mode	mode	mode
							()	1: level mode	1: level mode	1: level mode
			/	/						NMIREE
						\sim				W
	Interrupt					$\frac{1}{2}$			\square	0
	Input Mode	00F6H				K			$\langle - $	
IIMC	Control	(Prohibit				$\overline{\Omega}$	\searrow	4		0:Falling
	register	RMW)				$(\vee /)$		$\langle (\bigcirc)$		1:Falling
					(1	//))	and
									10/	Rising
			I7LE	I6LE	I5LE	I4LÉ	I3LE	I2LE	I1LE	IOLE
	Interrupt	00FAH			20		N ($\leq n$		
IIMC2	Input Mode	(Prohibit	0	0	0	0	0	\sim	0	0
	Control	RMW)	INT7	INT6	INT5	ÍNT4	INT3	INT2	INT1	INT0
	register2	,	0: Edge	0: Edge	0: Edge	0: Edge	0: Edge	0 Edge	0: Edge	0: Edge
			1: Level	1: Level	1: Level	1: Level	1: Level	1: Level	1: Level	1: Level
			17EDGE	I6EDGE	15EDGE	I4EDGE	I3EDGE	I2EDGE	I1EDGE	10EDGE
	Interrupt			(\bigcirc)			<u>N // </u>			
	Input Mode	00FBH	0	(0)) 0	0	0	0	0	0
IIMC3	Control	(Prohibit	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0
	register3	RMW)	0: Rising /High	0: Rising /High	0: Rising /High	0: Rising /High	0: Rising /High	0: Rising /High	0: Rising /High	0: Rising /High
	regiotore		1: Falling	1: Falling	1: Falling	1: Falling	1: Falling	1:Falling	1: Falling	1: Falling
			/Low	/Low	/Low	Low	/Low	/Low	/Low	/Low
	Interrupt	\bigcirc	CLRV7	CLRV6	CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0
	Clear	00F8H		<u> </u>	-(7)		N			
INTCLR	Control	(Prohibit	07	0		0	0	0	0	0
	register	RMW)			errupt reques	-	-	-	-	
	-						g o. u			

Interrupt control (4/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			\backslash		DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	DMA0	0100H		\square			R/	W	•	
DIVIAUV	start vector	01000			0	0	0	0	0	0
							DMA0 st	art vector		
					DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	DMA1	0101H					R/	W		
DIVIATV	start vector	010111			0	0	0	((0))	> 0	0
							DMA1 sta	art vector		
					DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	DMA2	0102H					R/	w)		
DIVIAZV	start vector	010211			0	0	0	0	0	0
							DMA2 sta	art vector		
					DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA3V	DMA3	0103H						W	\bigcirc	
Division	start vector	010011			0	0	Ø	0 <		0
							DMA3 sta	art vector		
			\sim	\geq	DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0
DMA4V	DMA4	0104H	\sim	$ \ge $			R/	W	$(\land) $	
	start vector				0((0	0	0	0	0
								art vector		
			\sim	\sim	DMA5V5	DMA5V4		DMA5V2	DMA5V1	DMA5V0
DMA5V	DMA5	0105H	\sim	\rightarrow			101	w		-
	start vector					0		0	0	0
			<u> </u>					art vector	B1 1 1 1 1	D 1440140
	DMAG			\rightarrow	DMA6V5	DMA6V4	DMA6V3		DMA6V1	DMA6V0
DMA6V	DMA6 start vector	0106H		$ \longrightarrow $	\sim		0 R/	1		-
	Start Vector			$\left(-\right)$	0	0		0 art vector	0	0
				\sim	DMA7V5	DMA7V4	DMA0 Sta DMA7V3	DMA7V2	DMA7V1	DMA7V0
	DMA7		\neg		DIVIATVS			W	DIVIATVI	DIVIATVU
DMA7V	start vector	0107H	A	\mathcal{A}	0	\bigcirc	0	0	0	0
			$\overline{\Box}$				÷	art vector	Ŭ	U
		\frown	DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0
		$\langle \cap \rangle$		0000		R/		BBOIL	BBOTT	00010
DMAB	DMA burst	0108H	0	0	\mathbb{V}_{0}	0	0	0	0	0
				_	1:[DMA reques	t on burst mo	ode		
			DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0
	DMA 🔨	0109H				R/	W			
DMAR	request	(Prohibit RMW)	0	0	0	0	0	0	0	0
	\sim		(>	1	DMA reque	st in softwa	re		

(3) DMA controller

⁽⁴⁾ Memory controller (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Symbol	Name	Audress				-	3		-	
				B0WW2	B0WW1	B0WW0		B0WR2	B0WR1	B0WR0
	Block 0				W				W	
	MEMC	0140H		0	1	0		0	1	0
B0CSL	Control	(Prohibit		Write waits	T 040 4			Read waits		\A/AIT
	register	RMW)		001: 0 WAI 101: 2 WAI		WAIT 8 WAIT		001: 0 WAI 101: 2 WAI		WAIT WAIT
	Low			111: 4 WAI		VAIT pin		101.2 WAI 111: 4 WAI		VAIT pin
				Others: Res				Others: Re		
			B0E	\sim	\sim	BOREC	B0OM1	BOOMO	B0BUS1	B0BUS0
			W	\sim	\sim	201120		W	202001	202000
	Block 0		0	\sim	\sim	0	0	0	0	0
	MEMC	0141H	CS select			0: Not	00: ROM/SF	-	Data Bus w	-
B0CSH	Control	(Prohibit	0: Disable			insert a	01: Reserve		00: 8-bit	
Booon	register	RMW)	1: Enable			dummy	10: Reserve		01: 16-ibt	
	High	(((((()))))))))))))))))))))))))))))))))				cycle	11: Reserve	d	10: Reserve	
						1: insert a		(11: Reserve	ed
						dummy		G	\sim	
				DUMMAG	DANAMATA	cycle	\downarrow			DUMDO
				B1WW2	B1WW1	B1WW0	\sim	B1WR2	B1WR1	B1WR0
	Block 1			0	W ((Ŵ	0
	MEMC	0144H		0 Write waits		0		0 Read waits	1	0
B1CSL	Control	(Prohibit		001: 0 WAI	т 010-1	WAIT		001: 0 WAI		WAIT
	register	RMW)		101: 2 WAI		WAIT	$\overline{\Omega}$	101: 2 WAI		WAIT WAIT
	Low			111: 4 WA		VAIT pin		111:4 WAI		VAIT pin
				Others: Res	\sim \sim \cdot			Others: Re		
			B1E		\sim	B1REC	B1OM1	B1OM0	B1BUS1	B1BUS0
			W	\sum	4			W		
	Block 1	044511	0	\mathcal{F}		0	0/	0	0	0
	MEMC	0145H	CS select			0: Not	00: ROM/SF	RAM	Data Bus w	ridth
B1CSH	control	(Due hikit	0:Disable	\sim \sim		insert a	01: Reserve		00: 8-bit	
	register	(Prohibit RMW)	1:Enable			dummy	10: Reserve		01: 16-ibt	
	High	rivivv)				cycle	11: Reserve	ed	10: Reserve	
			(7/4)			1: insert a dummy			11: Reserve	ea
)	$\overline{\mathbf{O}}$	cycle				
		//		B2WW2	B2WW1	B2WW0		B2WR2	B2WR1	B2WR0
	Dia als O				W	<u></u>	\sim		W	
	Block 2 MEMC	0148H		0		0	\backslash	0	1	0
B2CSL	control	(Prohibit	$\langle \rangle$	Write waits		-		Read waits		-
DZOOL	register	RMW)		001: 0 WAI	T 010: 1	I WAIT		001: 0 WAI		WAIT
	Low			101: 2 WAI		3 WAIT		101: 2 WAI		8 WAIT
		\searrow		111:4 WAI	T 011: Ī	VAIT pin		111: 4 WAI		VAIT pin
	6		6	Others: Res	served			Others: Re		
\frown))	B2E	B2M		B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
	\mathcal{A}			V V	\geq		1	W	1	
	Block 2	((1))0		0	0	0	0/1 (Note)	0/1 (Note)
	MEMC	0149H		0:16 MB		0: Not	00: ROM/SF		Data Bus w	ridth
B2CSH	control	(Prohibit	0:Disable	1: Sets		insert a	01: Reserve		00: 8-bit	
	register	RMW)	1:Enable	area		dummy cycle	10: Reserve 11: Reserve		01: 16-ibt 10: Reserve	he
	High					1: insert a		iu i	11: Reserve	
						dummy				
						cycle				
		•	•	•	•				•	

Note: Since after reset becomes unfixed, please be sure to set up bus bit B2CSH<B2BUS1:0> of the control register before accessing the external block address area 2.

Symbol	Name	Address	7	6	5	4	3	2	1	0
			/	B3WW2	B3WW1	B3WW0	/	B3WR2	B3WR1	B3WR0
	Block 3				W		/		W	
	MEMC	014CH		0	1	0		_ 0	1	0
B3CSL	control	(Prohibit		Write waits				Read waits		
DOCOL	register	RMW)		001: 0 WAI		1 WAIT		001: 0 WAI		WAIT
	Low			101: 2 WAI		3 WAIT		101: 2 WAI		B WAIT
				111: 4 WAI		WAIT pin		111: 4 WAI		VAIT pin
			DOF	Others: Re		DODEO	DODU	Others: Re		DODUOO
			B3E	\sim		B3REC	B3OM1	B3OM0	B3BUS1	B3BUS0
	Block 3		W					<u> </u>		
	MEMC	014DH	0			0 0. Not in a set	0	0	0 Data Dua u	0
B3CSH	control	(Prohibit	CS select 0:Disable				00: ROM/S 01: Reserve		Data Bus w 00: 8-bit	lath
	register	RMW)	1:Enable			cycle	10: Reserve		00. 8-bit 01: 16-ibt	
	High	,	T.LIIADIC			1: insert a	11: Reserve		10: Reserve	ed
	Ŭ					dummy			11: Reserve	
						cycle	\sim			
			/	BEXWW2	BEXWW1	BEXWW0		BEXWR2	BEXWR1	BEXWR0
	BLOCK EX				W				<td></td>	
	MEMC	0158H		0	1	0		0		0
BEXCSL	Control	(Prohibit		Write waits			(Read waits	7	
	register	RMW)		001: 0 WAI		1 WAIT		001: 0 WAI		WAIT
	Low	,		101: 2 WAI		3 WAIT		101: 2 WAI		3 WAIT
				111: 4 WAI		WAIT pin		111: 4 WAI		VAIT pin
				Others: Re	served			Others: Re		
					\sim	BEXREC	BEXOM1	BEXOM0	BEXBUS1	BEXBUS0
	BLOCK EX			\sim	\rightarrow			W	0	0
	MEMC	0159H				0 O: Not incott	0 00: ROM/S	0	0 Data Bus w	0 vidth
BEXCSH	Control	(Prohibit)		00. ROM/S 01: Reserve		00: 8-bit	nam
	register	RMW)		\square		cycle	10: Reserve		00: 0-bit 01: 16-ibt	
	High		((()		1: insert a	11: Reserve		10: Reserve	ed
				\square	4	dummy			11: Reserve	ed
			(α)		~	cycle				
			$\overline{\mathcal{M}}$		\geq	OPGE	OPWR1	OPWR0	PR1	PR0
					$\neg q \downarrow$	\wedge		R/W		
		$\langle \langle \rangle$	1	\square	\mathcal{H}) 0	0	0	1	0
	Page ROM				//	ROM	Wait numbe	er on page		er in a page
PMEMCR	Control	0166H			$ \rightarrow $	page	00:1 state		00:64 byte	
	register	010011	\sim			access	(n-1-1-1 n 01:2 state	node)	01:32 byte	
		2				0: Disable 1: Enable	01:2 state (n-2-2-2 n	node)	10:16 byte 11:8 byte	
	ン	$\langle \rangle$		\land	\sim	1. LIIADIC	10:3 state	1000)	11.0 Dyte	
				11			(n-3-3-3 n	node)		
			<	17			11:Reserve	,		

Memory controller (2/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Cymbol	Hamo	71001000	M0V20	M0V19	M0V18	M0V17	M0V16	A0V15	M0V14-9	M0V8
	Memory		1010 0 20	1010 0 1 9	100010	R/		100 15	1010 14-9	1010.0
MAMR0	Mask	0142H	1	1	1	1	1	1	1	1
	register 0		I	I	0: Compa		1: Compa		I	I
	Memory		M0S23	M0S22	M0S21	M0S20	M0S19	M0S18	M0S17	M0S16
	Start					R/				
MSAR0	Address	0143H	1	1	1	1	1	(1)	2 1	1
	register 0				Se	t start addre	ess A23 to A	16)	
			M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	MV15-9	M1V8
MAMR1	Memory Mask	0146H				R/	W ($\langle \rangle \rangle$		
	register 1	01400	1	1	1	1			1	1
	register i				0: Compa	re enable	1: Compa	re disable		
	Memory		M1S23	M1S22	M1S21	M1S20	M1S19	/ M1S18	M1S17	M1S16
MSAR1	Start	0147H				R/	W			
MOANT	Address	014711	1	1	1	1 <1	\searrow	1	d(1)	> 1
	register 1				Se	et start addre	ess A23 to A	16		
	Memory		M2V22	M2V21	M2V20	M2V19	M2V18	M2V17	M2V16	M2V15
MAMR2	Mask	014AH				R/	<u>w <</u>		2/	
	register 2	01-17111	1	1	1 (\sim	1		901	1
	- 3				0: Compa	re enable	1: Compa	re disable	\geq	
	Memory		M2S23	M2S22	M2\$21	M2S20	M2S19	M2S18	M2S17	M2S16
MSAR2	Start	014BH				R/	W			
	Address	01.1211	1	1	(\land)	√ 1	10/	\bigwedge 1	1	1
	register 3			6	Se	et start addre	ess A23 to A	16		
	Memory		M3V22	M3V21	M3V20	M3V19	M3V18	M3V17	M3V16	M3V15
MAMR3	Mask	014EH					w \\			
	register 3	014EII	1		1			1	1	1
	regioner e				0: Compa	re enable	1: Compa	re disable		
	Memory		M3S23	M3S22	M3S21	M3S20	M3S19	M3S18	M3S17	M3S16
MSAR3	Start	014FH		$\langle \rangle$		R/	W			
WOAR3	Address		1		1 <	14/	1	1	1	1
	register 3		(n)		< Se	et start addre	ess A23 to A	16		

Memory controller (3/3)

(5) Clock control/PLL (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			XEN	XTEN	//	/		WUEF	/	/
			R/		/		\sim	R/W	\sim	
			1	0	/		/	0	\sim	
			High-	Low-				Warm-up		
			frequency	frequency				timer		
			oscillator	oscillator				0: Write		
	System		(f _{OSCH})	(fs)				don't	>	
01/0000	Clock	405011		0: Stop 1: Oscillation				care 1: Write	~	
SYSCR0	Control	10E0H	1. OScillation	1. OScillation			G	start		
	register 0						$\langle \rangle$	timer		
							$\sum_{i=1}^{n} (i) = i$	0: Read		
							()	end		
							(\bigcirc)	✓ warm-up 1: Read		
						G		do not		
						2		end 🔨	(\bigcirc)	
								warm-up		·
						77774	SYSCK	GEAR2	GEAR1	GEAR0
						\swarrow	$\langle \rangle$		Ŵ	•
				/	\sim		0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	0
					20		Select		value of hig	gh-frequency
	System						system clock	(fc) 000: fc		
SYSCR1	Clock	10E1H				\sim	0: fc	000. fc/2		
	Control register 1				\frown	>	1: fs	010: fc/4		
	register i				$\langle \rangle \rangle$			011: fc/8		
				AC			\searrow	100: fc/16		
								101: (Reser	ved)	
					\searrow			110: (Reser 111: (Reser	ved) ved)	
			~	(WUPTM1	WUPTM0	HALTM1	HALTMO		DRVE
			W	\sum			W		\sim	R/W
	System		o ((T.	1	0	1	1		0
SYSCR2	Clock	10E2H	Always	\bigcirc	Warm-up tir		HALT mode)		1:
	Control		write "0"		00: Reserve	ed	00: Reserve			The inside
	register 2	\frown	(\vee)		01: 2 ⁸ /input	frequency	01: STOP n			of STOP
					10: 2 ¹⁴ /input 11: 2 ¹⁶ /input	frequency	10: IDLE1 n 11: IDLE2 n			mode also drives a pin
		$\langle \langle \rangle$		FCSEL	LWUPFG					
			\sim	R/W	R	\sim	\sim	\sim	\sim	\sim
			\sim	0	0	\sim	\sim	\sim	\sim	\sim
PLLCR0	PLL Control	> 10E8H	~ ~ ~	Select fc	Lock up					
LECINO	register 0			clock	timer					
	\sim	\sim		0: fosch	status flag					
		\sim	\sim	1: f _{PLL}	0: Not end 1: End					
~))								
	\langle / \rangle		PLLON	$\frac{1}{\sqrt{2}}$						
		((R/W	\downarrow						
PLLCR1	PLL Control	10E9H	0 Control	\sim			\rightarrow			
	register 1		on/off							
	\sim		0: OFF							
			1: ON							

Symbol			_	_	_		_	-		-
F	Name	Address	7	6	5	4	3	2	1	0
F			PROTECT		\sim		\sim	-	-	DRVOSCL
F			R		>		$ \ge$	<u> </u>	R/W	
EMCCR0	EMC Control	10E3H	0 Drotoot flog					0	1	1 fo oppillator
	register 0		Protect flag 0: OFF 1: ON					Always write "0"	Always write "1"	fs oscillator driver ability 1: Normal
										0: Weak
	EMC							\sim)~	
EMCCR1	Control	10E4H					~ ((77		
	register 1		:	Switch the p	rotect ON/O	FF by writing	the follow	ving to 1st-Kl	EY, 2nd-KE`	Y
						equence EM				
	EMC	· • • • • •		2nd-KE	Y: write in s	equence EN	100R1 = A	H, EMCCR	2 = 5AH	
EMCCR2	Control register 2	10E5H				G		r	\bigcirc	
	icyister z					41	\searrow		$\frac{1}{2}$	>
								5		

Symbol Name Address 7 6 5 4 3 2 0 1 **TAORUN TAORDE** I2TA01 TA01PRUN TA1RUN R/W R/W 8-bit timer 0 0 0 0 0 TA01RUN RUN 1100H IDLE2 TMRA01 Double UC1 UC0 register buffer 0: Stop prescaler 0: Disable 1: Operate 0: Stop and clear 1: Enable 1: Run (Count up) 1102H 8-bit timer **TAOREG** (Prohibit W register 0 RMW) Undefined 1103H 8-bit timer TA1REG (Prohibit W register 1 RMW) Undefined TA01M0 PWM01 PWM00 TA1CLK1 TA1CLK0 TA0CLK1 TA01M1 TA0CLK0 R/W 8-bit timer 0 0 0 0 0 0 0 n source Operation mode PWM cycle Source clock for TMRA1 Source clock for TMRA0 TA01MOD CLK & 1104H 00: TA0TRG 00: Reserved 00: TA0IN pin input 00: 8-bit timer mode mode 01: ¢T1 01: 16-bit timer mode $01 \cdot 2^6$ register 10: 8-bit PPG mode 10: 2⁷ 10: **dT**16 10: ¢T4 11·2⁸ 11: 8-bit PWM mode 11: oT256 11: oT16 TA1FFC1 TA1FFC0 TA1FFIE TA1FFIS R/₩ R/W 8-bit timer 0 0 1105H 1 1 flip-flop 00: Invert TA1FF TA1FF TA1FF TA1FFCR (Prohibit control 01: Set TA1FF control for inversion RMW) register 10: Clear TA1FF inversion select 11: Don't care 0: TMRA0 0: Disable 1: Enable 1: TMRA1 TA2RDE 12TA23 TA23PRUN TA3RUN TA2RUN R/W R/W 8-bit timer 0 0 0 0 0 TA23RUN RUN 1108H IDLE2 Double TMRA23 UC3 UC2 register buffer 0: Stop prescaler 0: Disable 1: Operate 0: Stop and clear 1: Enable 1: Run (Count up) 110AH 8-bit timer TA2REG (Prohibit W register 2 RMW) Undefined 110BH 8-bit timer **TA3REG** (Prohibit w register 3 RMW) Undefined TA3CLK1 TA3CLK0 TA23M1 TA23M0 PWM21 PWM20 TA2CLK1 TA2CLK0 R/W 8-bit timer 0 0 0 0 0 0 0 0 source CLK PWM cycle Source clock for TMRA3 Source clock for TMRA2 TA23MOD Operation mode & 110CH/ 00: Reserved 00: 8-bit timer mode 00: Reserved 00: TA2TRG mode 01: 2⁶ 01: 16-bit timer mode 01: φT1 register r 10: 8-bit PPG mode 10: 2⁷ 10: _{\$T4} 11: 8-bit PWM mode 11: 2⁸ 11: **T256 TA3FFC1 TA3FFC0 **TA3FFIE TA3FFIS** R/W R/W 8-bit timer 0 110DH 1 1 0 flip-flop 00: Invert TA3FF **TA3FF** TA3FF **TA3FFCR** (Prohibit control 01: Set TA3FF control for inversion RMW) register 10: Clear TA3FF inversion select 11: Don't care 0: Disable 0: TMRA2 1: TMRA3 1: Enable

	8-011 11me	51 (2/2)		•			•	•		
Symbol	Name	Address	7	6	5	4	3	2	1	0
			TA4RDE				I2TA45	TA45PRUN	TA5RUN	TA4RUN
			R/W		/	/		R/	W	
	8-bit timer		0				0	0	0	0
TA45RUN	RUN register	1110H	Double buffer				IDLE4 0: Stop	TMRA45 prescaler	UC5	UC4
			0: Disable 1: Enable				1: Operate	0: Stop and 1: Run (Coι		
TA4REG	8-bit timer register 4	1112H (Prohibit						76)-		
	register 4	RMW)				Und	efined	\bigcirc		
	8-bit timer	1113H					- (()			
TA5REG	register 5	(Prohibit					W	2		
	register o	RMW)				Und	efined			
			TA45M1	TA45M0	PWM41	PWM40	TA5CLK1	TA5CLK0	TA4CLK1	TA4CLK0
	8-bit timer					R	/w	<u>s</u>		
	source CLK		0	0	0		0	0((0	0
TA45MOD	& mode register	1114H	Operation mo 00: 8-bit time 01: 16-bit time	r mode	PWM cycle 00: Reserved 01: 2 ⁶		Source cloc 00: TA4TRC 01: oT1		Source clocl 00: Reserve 01: oT1	
	register		10: 8-bit PPG 11: 8-bit PWN		10: 2 ⁷ 11: 2 ⁸	\searrow	10:	\mathcal{O}	10:	
					\searrow	\sum	TA5FFC1	TA5EFC0	TA5FFIE	TA5FFIS
	0.1.11.11				\square		((/R	/w	R/	Ŵ
	8-bit timer	1115H			\sim	\searrow	$\sqrt{1}$	// 1	0	0
TA5FFCR	flip-flop control	(Prohibit		\leq			00: Invert TA		TA5FF	TA5FF
	register	RMW)			\searrow	\sim	01: Set TA5F		control for	inversion
	register			$\left(\left(\right) \right)$	Ň		10: Clear TA		inversion	
					/		1. Doint car	e		0: TMRA4 1: TMRA5
	109/3101						11: Don't car		0: Disable 1: Enable	0: TMF

- Symbol Name Address 7 6 5 4 3 2 0 1 **TBORUN TBORDE** I2TB0 **TB0PRUN** R/W R/W R/W 16-bit timer 0 0 0 0 0 **TBORUN** RUN 1180H IDLE2 TMRB0 Up counter Double Always register buffer write "0" 0: Stop prescaler (UC0) 0: Disable 1: Operate 0: Stop and clear 1: Enable 1: Run (Count up) TB0CP0I TB0CPM1 TB0CPM0 TBOCLE TB0CLK1 TB0CLK0 R/W R/W W 0 0 0 0 0 0 0 1 16-bit timer Always write "0" Software Capture timing Up counter TMRB0 source clock source 1182H 00: Disable control 00: Reserved capture **TB0MOD** CLK & (Prohibit control 01: Reserved 0: Disable RMW) mode 10: Reserved 1: Enable 0: Software register 11:TA1OUT↑ TA1OUT↓ 11: **•**T16 capture 1: Undefined TB0C0T1 TB0E1T1 TB0E0T1 TB0FFC0 TB0C1T1 TB0FFC1 _ W* R/W W* 0 0 0 $\langle 0 \rangle$ 1 1 1/ 1 16-bit timer TB0FF0 inversion trigger Control TB0FF0 Always write "11". 1183H 0: Disable trigger 00: Invert flip-flop **TB0FFCR** (Prohibit 1: Enable trigger 01: Set control RMW) 10: Clear Invert when Invert when Invert when Invert when register the UC value the UC value the UC value the UC value 11: Don't care is loaded in is loaded in matches the matches the * Always read as 11. value in value in to to TB0CP1H/L TB0CP0H/L TB0RG1H/L TB0RG0H/L 16-bit timer 1188H TB0RG0L register 0 (Prohibit W Low RMW) Undefined 16-bit timer 1189H register 0 TB0RG0H (Prohibit W High RMW) Undefined 16-bit timer 118AH TB0RG1L register 1 (Prohibit W RMW) Low Undefined 118BH 16-bit timer TB0RG1H (Prohibit W register 1 RMW) High Undefined 16-bit timer R Capture TB0CP0L 118CH register Undefined 0Low 16-bittimer Capture R TBOCPOH 118DH register 0 Undefined High 16-bit time Capture R TB0CP1L 118EH register 1 Undefined Low 16-bit timer Capture R TB0CP1H 118FH register 1 Undefined High
- (7) 16-bit timer (1/2)

Symbol Name Address 7 6 5 4 3 2 0 1 TB1PRUN TB1RUN TB1RDE I2TB1 R/W R/W R/W 16-bit timer 0 0 0 0 0 TB1RUN RUN 1190H TMRB1 Up counter Double Always IDLE2 register buffer write "0" 0: Stop prescaler (UC1) 0: Disable 1: Operate 0: Stop and clear 1: Enable 1: Run (Count up) TB1CT1 TB1CP0I TB1CPM1 TB1CPM0 TB1CLE TB1CLK1 TB1CLK0 TB1ET1 R/W W R/₩ 0 0 1 0 0 0 0 16-bit timer TB1FF1 Inversion trigger Software Capture timing Up counter TMRB1 source clock 0: Trigger disable 00: Disable control 00: TB1IN0 pin input 1192H capture source 1: Trigger enable control INT5 is rising edge 0: Disable TB1MOD CLK & (Prohibit 01: TB1N0 ↑ TB1N1 ↑ 1: Enable Invert when Invert when 0: Software RMW) mode INT5 is rising edge 11: ¢T16 capture capture to match UC0 register 10: TB1IN0 ↑ TB1IN0 ↓ capture 1: Undefined with TB1RG1H/L INT5 is falling edge register 1 11: TA3OUT ↑ TA3OUT ↓ INT5 is rising edge TB1FF1C1 TB1FF1C0 TB1E0T1 TB1C1T1 TB1C0T1 TB1E1T1 TB1FFC1 TB1FFC0 W* R/W W* 0 1 ø 0 0 1 1 TB1FF1 control TB0FF0 inversion trigger Control TB1FF0 16-bit timer 1193H 0: Disable trigger 00: Invert 00: Invert flip-flop TB1FFCR (Prohibit 01: Set 1: Enable trigger 01: Set control RMW) 10: Clear 10: Clear Invert when Invert when Invert when Invert when register 11: Don't care the UC value the UC value the UC value the UC value 11: Don't care * Always read as "11". is loaded in is loaded in matches the matches the * Always read as 11. to to value in value in TB1CP1H/L TB1CP0H/L TB1RG1H/L TB1RG0H/L 1198H 16-bit timer TB1RG0L (Prohibit W register 0 Low RMW) Undefined 16-bit timer 1199H TB1RG0H (Prohibit register 0 W RMW) High Undefined 16-bit timer 119AH TB1RG1L register 1 (Prohibit W RMW) Low Undefined 16-bit timer 119BH TB1RG1H register 1 (Prohibit W RMW) High Undefined 16-bit timer Capture R 119CH TB1CP0L register 0 Undefined Low 16-bittimer Capture R TB1CP0H 119DH register 0 Undefined High 16-bit timer Capture R TB1CP1L 119EH register 1 Undefined Low 16-bit timer Capture R TB1CP1H 119FH

register 1

High

Undefined

(8) High speed serial (1/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
				XEN0		\backslash	/	CLKSEL02	CLKSEL01	CLKSEL00
			\backslash	R/W	\sim		\sim		R/W	
				0	\sim		\sim	1	0	0
		0C00H		SYSCK		/		Select bau		Ţ
		000011		0: Disable				000:Reserv	ed 100:f _{SYS}	₅ /16
				1: Enable				001: f _{SYS} /2	101: f _S	
	High Speed							010: f _{SYS} /4		
HSC0MD	Serial					/		011: f _{SYS} /8	7	
113COIVID	Mode		LOOPBACK0	MSB1ST0	DOSTAT0		TCPOL0	RCPOLO	TDINV0	RDINV0
	register			R/W			$\langle \langle \langle \rangle \rangle$		1	0
			0	1 Start bit for			0		0	0
		0C01H	LOOPBACK test mode	transmit	(no transmit)		Synchronous clock edge	Synchronous clock edge	Invert data During	Invert data During
			0: Disable	/receive	0: fixed		during	during	transmitting	receiving
			1: Enable	0:LSB	to "0"	(transmitting	receiving	0:Disable	0:Disable
				1:MSB	1:fixed		0: fall	0: fall	1:Enable	1:Enable
					to "1"		1: rise	1: rise		7
			_	—	UNIT160	1A		ALGNENO	RXWEN0	RXUEN0
				R/W	i	\mathcal{M}		(C) R/W	
		000011	0	1	0	L.		~ ~ ~ ~	//0))	0
		0C02H	Always	Always	Data	\sim			Sequential	Receive
			write "0"	write "1"	length		(alignment	receive	UNIT 0.Diachla
	High Speed				0: 8bit 1: 16bit	\searrow		0:Disable 1:Enable	0:Disable 1:Enable	0:Disable 1:Enable
	Serial		CRC16 7 B0	CRCRX_TX_B0		/	\sim			DMAERFR0
HSC0CT	Control		01010_7_00	R/W			\neg	$\overline{\mathbb{A}}$		W
	register		0	0 \(0	\searrow	15	+	0	0
			CRC	CRC data	CRC					Micro DMA
		0C03H	select	0:Transmit					0: Disable	0: Disable
			0:CRC7	1:Receive	register		$\langle 1 \rangle$		1: Enable	1: Enable
			1:CRC16		0: Reset		\searrow			
				$P \sim$	1:Release	\land	~			
					Reset	\rightarrow	TENDO	DENDO		DEDO
				\sum			TEND0	REND0	RFW0	RFR0
								F		0
			\rightarrow			2	1 	0 Receive	1 Tronomit	0 Receive
				~			Transmitting 0:operation		Transmit buffer	buffer
		OC04H)	1: no	register	0:	0: no valid
	High Speed				$\backslash \backslash$	r		0: no data	untransmitted	data
HSC0ST	Serial Status			$\langle -$				1: exist	data exist	1: valid
	register		\sim					data	1: no	data
	. ogisto	ζ.			\geq				untransmitted data	exist
	$\langle \rangle$	\sim	\sim	$\hat{\gamma}$	~	/		\sim		
	\square	\sim								
\sim		0C05H	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $									
	\sum	((CRCD007	CRCD006	CRCD005		CRCD003	CRCD002	CRCD001	CRCD000
$\backslash $				SILCD000			2 2			
	Linh Croad	0C06H <	0	0	0	0	0	0	0	0
	High Speed Serial			U		-	ult load regi		U	U
HSC0CR	CRC			CRCD014			CRCD011	CRCD010		CRCD008
	register		CRODUIS		URODU13			CRODUIU		
	109,5(0)	0C07H	0	0	0	0	२ 0	0	0	0
			0	U	-				U	U
					UKU cal	culation resi	ult load regis	ster[15:8]		

High speed serial (2/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
5,	. tarrio			\sim	,	-	TENDIS0	RENDIS0	RFWIS0	RFRIS0
							TENDISU		W	NI NIGO
			\backslash				0	0	0	0
							Read	Read	Read	Read
								0: no		0: no
	High Speed	0C08H					interrupt	interrupt	interrupt	interrupt
	Serial						1: interrupt	1: interrupt	1: interrupt	1: interrupt
HSC0IS	Interrupt								Write	
	status						Write	Write	0: Don't care	Write
	register						1: clear	1: clear	1: clear	1: clear
				/	/	/				
			\backslash	\backslash	\backslash	\backslash		\sim	\sim	\vee
		0C09H	\backslash		\backslash			\prec		
									$\langle \rangle$	
									REWWEO	
			\backslash			\backslash	TENDWEU	~	W	KFRWEU
			\backslash				0	0	0	0
	High Speed	000411				$-(\nabla)$	Clear	Clear	Clear	Clear
	Serial	0C0AH			(HSCOIS	HSCOIS	HSCOIS	HSCOIS
HSC0WE	interrupt				1		<tendis0></tendis0>	<rendis0></rendis0>	<rfwis0></rfwis0>	<rfris0></rfris0>
HSCOWE	status					\sim	0: Disable	0: Disable	0: Disable	0: Disable
	write enable			_		\geq	1: Enable	1: Enable	1: Enable	1: Enable
	register									
	register	0C0BH		\square	\square					
					\sim	\sim	\sim	\sim		
					\sim					
				\sum		\swarrow	TENDIE0	RENDIE0	RFWIE0	RFRIE0
			/	Δ					W	
		0C0CH	\square				0	0	0	0
	High Speed	000011	((\sim		\land	TEND0	REND0	RFW0	RFR0
HSC0IE	Serial						interrupt 0: Disable	interrupt 0: Disable	interrupt 0: Disable	interrupt 0: Disable
HOCULE	Interrupt enable					$\langle \mathcal{C} \rangle$	1: Enable	1: Enable	1: Enable	1: Enable
	register		4948			Ť.				
	register		$\overline{\mathcal{A}}$	\sim	$\langle \rangle$	1	\sim	\sim	\backslash	
		0C0DH	\sum	1	$+\!\!\!/$		\sim	\sim	\sim	
		\leq		\sim						
					\mathcal{A}		TENDIR0	RENDIR0	RFWIR0	RFRIR0
					\sim	\sim			۲	
	$ \land $	\geq		\sim	\sim	\sim	0	0	0	0
	High Speed	0C0EH			\rangle		TEND0	REND0	RFW0	RFR0
	Serial	\searrow		\bigwedge			interrupt	interrupt	interrupt	interrupt
HSC0IR	Interrupt	\backslash	\langle	1/			0: None	0: None	0: None	0: None
\sim	request))		\sum			1: generate	1: generate	1: generate	1: generate
	register		\rightarrow							
		0C0FH	the second	\downarrow						
\square				\sim						
		4	\sim							
	\searrow		\sim							

	-	enar (0/0/							1	
Symbol	Name	Address	7	6	5	4	3	2	1	0
			TXD007	TXD006	TXD005	TXD004	TXD003	TXD002	TXD001	TXD000
	Link One ed	0C10H		-		R/	W	-	_	-
	High Speed Serial	001011	0	0	0	0	0	0	0	0
HSC0TD	transmission				Tra	nsmission da	ata register [7:0]		
1130010	data		TXD015	TXD014	TXD013	TXD012	TXD011	TXD010	TXD009	TXD008
	register	0C11H				R/	W			
	regiotor	001111	0	0	0	0	0	(0)	> 0	0
					Tran	smission da	ta register [15:8])	
			RXD007	RXD006	RXD005	RXD004	RXD003	RXD002	RXD001	RXD000
		0C12H				R/	W (//))		
	High Speed Serial	001211	0	0	0	0	P		0	0
HSCORD	receiving				R	eceive data	register [7:	0]		
HOCORD	data		RXD015	RXD014	RXD013	RXD012	RXD011	RXD010	RXD009	RXD008
	register	0C13H				R/	₩			
	rogiotor	00130	0	0	0	000	0	0		0
					R	eceive data	register [15:	8]		·
			TSD007	TSD006	TSD005	TSD004	TSD003	TSD002	TSD001	TSD000
		0C14H				R	yv <	\mathcal{S}	20	
	High Speed Serial	001411	0	0	0		0	0	50/	0
HSC0TS	transmit			-	Tra	nsmit data s	hift register	7:0)		-
1100010	data shift		TSD015	TSD014	TSD013	TSD012	TSD011	TSD010	TSD009	TSD008
	register	0C15H		-		R/	W			-
		001511	0	0	\bigcirc	0	0	0	0	0
				(Tran	smit data sh	ift register [15:8]		
			RSD007	RSD006	RSD005	RSD004	RSD003	RSD002	RSD001	RSD000
		0C16H			$\sum_{i=1}^{n}$	// R/	w			
	High Speed Serial	001011	0	0	∕>o	0	0)	0	0	0
HSCORS	receive			(())	Red	ceive data sł	nift register [7:0]		
11300103	data shift		RSD015	RSD014	RSD013	RSD012	RSD011	RSD010	RSD009	RSD008
	register	0C17H		\sim		R/	W			
	rogiotor		0	0	0	0	0	0	0	0
					Rec	eive data sh	ift register [1	5:8]		

High speed serial (3/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial	1200H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SC0BUF	channel 0	(Prohibit			R	(Receive)/V	/ (Transmiss	ion)		
	Buffer register	RMW)				Und	lefined			
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
	Serial		R	R/	W	R (Clea	ared to 0 whe	en read)	R	/W
	channel 0		Undefined	0	0	0	0	(0	0	0
SC0CR	Control	1201H	Received	Parity	Parity		1: Error			0: Baud rate
	register		data bit8	0: Odd 1: Even	addition 0: Disable 1: Enable	Overrun	Parity	Framing	1:SCLK0↓	generator 1: SCLK0 pin input
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
						F	.w(N N		
			0	0	0	0		0	0	0
	Serial		Transfer	Hand	Receive	Wakeup	Serial trans	mission	Serial transm	ission clock
SCOMODO	channel 0	1202H	data bit8	shake	function	function	mode		(UART)	\geq
	Mode0			0: CTS	0: Receive	0: Disable			00: TMRA0	trigger
	register			disable 1: CTS	disable 1: Receive	1: Enable	01: 7-bit UA 10: 8-bit UA	17	01: Baud ra 10: Internal	te generator
				enable	enable		11: 9-bit UA		11: Externa	
				onabio	onabio	\sim			(SCLK0	
			_	BR0ADDE	BR0CK1	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0
	Serial		-	-	70		R/W	\mathcal{O}		
	channel 0		0	0	_0	0	0		0	0
BR0CR	Baud rate Control register	1203H	Always write "0".	+(16 – K) /16 division 0: Disable 1: Enable	00:			Divided free	quency settir	g
	Carial			Ħ			BR0K3	BR0K2	BR0K1	BR0K0
	Serial channel 0 K			Ľ	\sum		\sim	F	R/W	
BR0ADD	setting	1204H	\square			\downarrow	0	0	0	0
	register			\bigcirc					ncy divisor "l N + (16 K)/1	
			12S0	FDPX0		1		/		/
	Serial		R	Ŵ	$\langle l \rangle$	1	/	/		/
SC0MOD1	channel 0	1205H		0	-++	\square				
SCONODI	Mode1		IDLE2	Duplex		\mathcal{O}				
	register		0: Stop	0: Half	$\backslash \backslash$					
			1: Run	1: Full						
	~	\sim	PLSEL	RXSEL	TXEN	RXEN	SIR0WD3	SIR0WD2	SIR0WD1	SIROWDO
	\sim	Ζ.					R/W	0	0	0
	IrDA	\sim	0	0 5	0	0	0	0	0	0
	IIDA	400711	Select <	Receive	Transmit	Receive	Select rece	-		U U
	control		100.000		0: Disable	0: Disable		e pulse widt		r more than
SIROCR	control	1207H	transmit	data	U. DISADIE					
SIROCR	control register 0	1207H		0: "H" pulse		1: Enable	$2x \times (value)$	+ 1) + 100		
SIROCR		1207H						1 to 14		

(9) UART/serial channel (1/3)

		channel (Address	7	6	5	4	3	2	1	0
Symbol	Name	Address	-			-	-		1	-
	Serial	1208H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SC1BUF	channel 1 Buffer	(Prohibit			R (/	(Transmissi	on)		
	register	RMW)		T	1	1	efined		T	T
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
	Carial		R	R	/W	R (Clea	ared to 0 whe	en read)	R/	Ŵ
	Serial channel 1		Undefined	0	0	0	0	(0)	0	0
SC1CR	Control	1209H	Received	Parity	Parity		1: Error		0:SCLK1↑	0: Baud
	register		data bit8	0: Odd 1: Even	addition 0: Disable	Overrun	Parity	Framing	1:SCLK1↓	rate
	register			I. Even	1: Enable		$\langle (($	$(\langle \rangle) \rangle$		generator 1: SCLK1
								\bigcirc		pin input
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
						-	W)		
			0	0	0	0 (a	0	0	0
	Serial		Transfer	Hand	Receive	Wakeup	Serial transm	ission mode	Serial transm	ission clock
SC1MOD0	channel 1	120AH	data bit8	shake	function	function	00: I/O interfa	ace mode	(UART)	4
	Mode0			0: CTS	0: Receive	0: Disable	01: 7-bit UAR	1.7	00: TMRA0 t	
	register			disable	disable	1: Enable	10: 8-bit UAR		01: Baud rate	0
				1: CTS enable	1: Receive enable		11: 9-bit UAR	mode	10: Internal c	lock tSYS
				enable	enable				input)	LIUCK (SCLKI
			_	BR1ADDE	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0
	Carial			DITINODE			/W		BILLIOT	BICIOU
	Serial channel 1		0	0		0	600	<u> </u>	0	0
BR1CR	Baud rate	120BH	Always	+(16 – K)	00: _{\operation} TO))		•
DIVICIN	Control	120DH	write "0".	/16	01:)		
	register			division	10: 078		[Divided frequ	uency setting	g
				0: Disable 1: Enable	11: ∳T32					
	Serial			Ĺ	\sum		BR1K3	BR1K2	BR1K1	BR1K0
	Serial channel 1 K		/	$\sum_{i=1}^{i}$			~	R/	/W	
BR1ADD	setting	120CH	7	\uparrow	/	Ł	0	0	0	0
	register				<	(1)	5	Sets frequen	cy divisor "K	
	regiotoi		(α)		\sim	\sim	(d	ivided by N	+ (16 – K)/1	6).
			12S1	FDPX1		$\frac{1}{2}$		/		
	Serial) R /	w 🚬	$\neg \leftrightarrow$					
SC1MOD1	channel 1	120DH	0	0	\mathcal{A}	\sum				
SCHNODI	Mode1	120D/1	IDLE2	Duplex	$\backslash \backslash$					
	register		0: Stop	0: Half						
			1: Run	1: Full						
	\sim		PLSEL	RXSEL	TXEN	RXEN	SIR1WD3	SIR1WD2	SIR1WD1	SIR1WD0
	~	\sim		\bigwedge		R	/W			
		\sim	0 <	0	0	0	0	0	0	0
	IrDA control		Select	Receive	Transmit	Receive	Select rece	ive pulse wi	dth	
SIR1CR	control	120FH	transmit	data	0: Disable	0: Disable		•	h for equal c	or more than
	register 1		pulse width		1: Enable	1: Enable		+ 1) + 100		
$\langle \langle \rangle$	/		0: 3/16	pulse			Can be set:		-	
		4	1: 1/16	1: "L" pulse			Can not be			
			N N		1		50			

UART/serial channel (2/3)

		channel (-	6		4	2	2	4	0
Symbol	Name	Address	7	6	5	4	3		1	0
	Serial channel 2	1210H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SC2BUF	Buffer	(Prohibit			K (,	(Transmissi efined	on)		
	register	RMW)		1	1	1	1		1	
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
	Serial		R		/W	,	ared to 0 whe		R/	1
	channel 2		Undefined	0	0	0	0	(0)	0	0
SC2CR	Control	1211H	Received	Parity	Parity		1: Error	\sim	0:SCLK2↑	0: Baud rate
	register		data bit8	0: Odd	addition	Overrun	Parity	Framing	1:SCLK2↓	generator
	0			1: Even	0: Disable		$\langle \langle \rangle$	$\langle \bigcirc \rangle$		1: SCLK2
					1: Enable					pin input
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
					T	R	W)		r
	Serial		0	0	0	0 ((0	0	0	0
	channel 2		Transfer	Hand shake	Receive	Wakeup	Serial transm		Serial transm	ission clock
SC2MOD0	Mode0	1212H	data bit8	0: CTS disable	function 0: Receive	function 0: Disable	00: I/O interfa	17	(UART) 00: TMRA0 t	iagor
	register			1: CTS	disable	1: Enable	10: 8-bit UAR	1.7	01: Baud rate	
	0			enable	1: Receive		11: 9-bit UAR		10: Internal c	0
					enable	\sim			11: External	clock (SCLK2
					G		/	$2 \sim$	input)	
			-	BR2ADDE	BR2CK1	BR2CK0	BR2S3	BR2S2	BR2S1	BR2S0
	Serial			i			W	$, \geq$	i	r
	channel 2		0	0		0	0	0	0	0
BR2CR	Baud rate	1213H	Always write "0".	+(16 – K) /16	00: φT0 01: φT2		\sim $<$ $<$))		
	Control		white U.	division	10: ¢T8			Divided frea	uency setting	r
	register			0: Disable	11: ∳T32					9
				1: Enable			\setminus //			
	Serial			\sim	\sum		BR2K3	BR2K2	BR2K1	BR2K0
	channel 2 K		\rightarrow						/W	1
BR2ADD	setting	1214H				1	0	0	0	0
	register			\bigcirc		$\langle \rangle$			cy divisor "K	
			$(\overline{O}/\overline{\zeta})$				(d	ivided by N	+ (16 – K)/1	6).
			12\$2	FDPX2	$\overline{\mathcal{A}}$					
	Serial		1	W						
SC2MOD1	channel 2	1215H	0	0	\sim					
	Mode1		IDLE2	Duplex	\geq					
	register		0: Stop	0: Half						
	\sim		1: Run	1: Full						
	2		PLSEL	RXSEL	TXEN	RXEN	SIR2WD3	SIR2WD2	SIR2WD1	SIR2WD0
				((1	/W			-
~	IrDA	$\langle \rangle$	0 <	0	0	0	0	0	0	0
SIR2CR	control) 1217H	Select	Receive	Transmit	Receive		ive pulse wi		
	register 2		transmit	data	0: Disable	0: Disable		•	h for equal c	or more than
$\langle \in$			pulse width		1: Enable	1: Enable		+ 1) + 100	ns	
			0: 3/16	pulse			Can be set:			
			1: 1/16	1: "L" pulse)		Can not be	set: 0, 15		

UART/serial channel (3/3)

⁽¹⁰⁾ I²C Bus/Serial channel (1/4)

	N.L	Autobases	7	0		4	0	0		0	
Symbol	Name	Address	7	6	5	4	3	2	1	0	
		1240H	BC2	BC1	BC0	ACK		SCK2	SCK1	SCK0/ SWRMON	
		(I ² C bus		W		R/W		١	N	R/W	
		mode)	0	0	0	0		0	0	0/1	
		(Drobibit	Number of			Acknowledge			he divide val		
	Serial bus	(Prohibit RMW)	000: 8 011: 3	001: 1 100: 4	010: 2 101: 5	mode 0: Disable		000:5 011:8	001: 6 100: 9	010: 7 101: 10	
0010001	interface 0	TXIVIVV)	110:6	100.4	101.5	1: Enable		110: 11	111: Reser		
SBI0CR1	control		SIOS	SIOINH	SIOM1	SIOM0		SCK2	SCK1	SCK0	
	register 1	1240H			N		~ 10	7/5	W		
		(SIO	0	0	0	0	\mathcal{N}		0	0	
		mode)	Transfer	Transfer	Transfer mod	le	()	Setting of the	ne divide val	ue "n"	
		(Prohibit	0: Stop	0:Continue	00: 8-bit trans			000: 4	001: 5	010: 6	
		(FIOHIDIC RMW)	1: Start	1:Abort	01: Reserved 10: 8-bit trans			011: 7	100: 8	101: 9	
					11: 8-bit rece			110:10 1	11: External	clock SCK0	
	SBI	1241H	DB7	DB6	DB5	DB4	DB3	DB2 🏠	DB1	DB0	
SBI0DBR	buffer	(Prohibit			R (F	Receiving)/W		sion)	$\gamma \sim \gamma$		
	Register	RMW)				Unde	fined <	S(C)			
			SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS	
	I ² CBUS 0	1242H				<u> </u>		\mathcal{C}			
I2C0AR	address	(Prohibit	0	0	0	0	0 (0	0 address	
	Register	`	Setting Slave address recognition								
					Setti	ng Slave ado	iress	$\langle \uparrow \rangle$		0:Enable	
					\sim))	1	1:Disable	
			MST	TRX	вВ	PIN	AL/	AAS/	AD0/	LRB/	
					\searrow	R/	SBIM1	SBIM0	SWRST1	SWRST0	
SBI0SR	Serial bus		0	$\left(\begin{array}{c} 0 \end{array} \right)$	0	1	Ø	0	0	0	
when	interface 0	404011	0:Slave	0:Receive	Bus status	INTSBE0	Arbitration		General	Last	
		1243H					ADJUAUOT				
Read	status	(l ² C bus	1:Master	1:Transmit		interrupt	lost	address	call	receive bit	
Read	status Register	-			0:Free	interrupt 0:request	lost detection	match	call detection	monitor	
Read		(I ² C bus mode)				interrupt	lost detection monitor	match detection	call	monitor 0: "0"	
Read		(I ² C bus mode) (Prohibit			0:Free	interrupt 0:request	lost detection	match	call detection	monitor	
	Register	(I ² C bus mode)			0:Free	interrupt 0:request	lost detection monitor 1:Detect	match detection monitor 1:Detect	call detection	monitor 0: "0" 1: "1"	
SBI0CR2		(I ² C bus mode) (Prohibit			0:Free 1:Busy Start/stop condition	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port mod	match detection monitor 1:Detect ode selection le	call detection 1:Detect Software reso write "10" and	monitor 0: "0" 1: "1" et generate d "01", then an	
SBI0CR2 when	Register Serial bus	(I ² C bus mode) (Prohibit			0:Free 1:Busy Start/stop condition generation	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port mod 10: I ² C mode	match detection monitor 1:Detect ode selection de	call detection 1:Detect Software res write "10" and internal reset	monitor 0: "0" 1: "1" et generate d "01", then an	
SBI0CR2	Register Serial bus interface 0	(I ² C bus mode) (Prohibit			0:Free 1:Busy Start/stop condition	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port mod	match detection monitor 1:Detect ode selection le e	call detection 1:Detect Software reso write "10" and	monitor 0: "0" 1: "1" et generate d "01", then an	
SBI0CR2 when	Register Serial bus interface 0 control	(I ² C bus mode) (Prohibit			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port mod 10: I ² C mode 01: SIO mod	match detection monitor 1:Detect ode selection le e	call detection 1:Detect Software res write "10" and internal reset	monitor 0: "0" 1: "1" et generate d "01", then an	
SBI0CR2 when	Register Serial bus interface 0 control	(I ² C bus mode) (Prohibit			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port mod 10: I ² C mode 01: SIO mod 11: Reserve	match detection monitor 1:Detect ode selection de e d	call detection 1:Detect Software res write "10" and internal reset	monitor 0: "0" 1: "1" et generate d "01", then an	
SBI0CR2 when Write	Register Serial bus interface 0 control	(I ² C bus mode) (Prohibit			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port moo 10: I ² C mode 01: SIO moo 11: Reserve SIOF/ SBIM1 R	match detection monitor 1:Detect ode selection le e d SEF/ SBIMO W	call detection 1:Detect Software reservence write "10" and internal reset generated.	monitor 0: "0" 1: "1" et generate d "01", then an signal is	
SBIOCR2 when Write SBI0SR	Register Serial bus interface 0 control Register 2 Serial bus interface 0	(I ² C bus mode) (Prohibit RMW)			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port mod 10: I ² C mode 01: SIO mod 11: Reserve SIOF/ SBIM1 R 0	match detection monitor 1:Detect ode selection le e d SEF/ SBIM0 /W 0	call detection 1:Detect Software rese write "10" and internal reset generated.	monitor 0: "0" 1: "1" et generate d "01", then an signal is	
SBI0CR2 when Write SBI0SR when	Register Serial bus interface 0 control Register 2 Serial bus interface 0 status	(I ² C bus mode) (Prohibit			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port mod 10: I ² C mode 01: SIO mod 11: Reserve SIOF/ SBIM1 R 0 Transfer	match detection monitor 1:Detect ode selection le e d SEF/ SBIMO /W 0 Shift status	call detection 1:Detect Software reservence write "10" and internal reset generated.	monitor 0: "0" 1: "1" et generate d "01", then an signal is	
SBIOCR2 when Write SBI0SR	Register Serial bus interface 0 control Register 2 Serial bus interface 0	(I ² C bus mode) (Prohibit RMW)			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port mod 10: I ² C mode 01: SIO mod 11: Reserve SIOF/ SBIM1 R 0	match detection monitor 1:Detect ode selection le e d SEF/ SBIM0 /W 0	call detection 1:Detect Software reservence write "10" and internal reset generated.	monitor 0: "0" 1: "1" et generate d "01", then an signal is	
SBI0CR2 when Write SBI0SR when	Register Serial bus interface 0 control Register 2 Serial bus interface 0 status	(I ² C bus mode) (Prohibit RMW) 1243H (SIO mode)			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port mod 10: I ² C mode 01: SIO mod 11: Reserve SIOF/ SBIM1 R 0 Transfer status	match detection monitor 1:Detect ode selection le e d SEF/ SBIM0 /W 0 Shift status 0:Stopped	call detection 1:Detect Software reservence write "10" and internal reset generated.	monitor 0: "0" 1: "1" et generate d "01", then an signal is	
SBI0CR2 when Write SBI0SR when	Register Serial bus interface 0 control Register 2 Serial bus interface 0 status	(I ² C bus mode) (Prohibit RMW) 1243H (SIO mode) (Prohibit			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port mod 10: I ² C mode 01: SIO mod 11: Reserve SIOF/ SBIM1 R 0 Transfer status 0:Stopped 1:In progress	match detection monitor 1:Detect ode selection le e d SEF/ SBIM0 /W 0 Shift status 0:Stopped 1:In progress	call detection 1:Detect Software reserving write "10" and internal reset generated.	monitor 0: "0" 1: "1" et generate d "01", then an signal is - N 0	
SBI0CR2 when Write SBI0SR when Read	Register Serial bus interface 0 control Register 2 Serial bus interface 0 status	(I ² C bus mode) (Prohibit RMW) 1243H (SIO mode)			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port moo 10: I ² C mode 01: SIO moo 11: Reserve SIOF/ SBIM1 R 0 Transfer status 0:Stopped 1:In progress Operation m	match detection monitor 1:Detect ode selection le e d SEF/ SBIM0 /W 0 Shift status 0:Stopped 1:In progress	call detection 1:Detect Software reserving write "10" and internal reset generated.	monitor 0: "0" 1: "1" et generate d "01", then an signal is - N 0 Always	
SBIOCR2 when Write SBIOSR when Read SBIOCR2	Register Serial bus interface 0 control Register 2 Serial bus interface 0 status Register Serial bus interface 0	(I ² C bus mode) (Prohibit RMW) 1243H (SIO mode) (Prohibit			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port moo 10: I ² C mode 01: SIO moo 11: Reserve SIOF/ SBIM1 R 0 Transfer status 0:Stopped 1:In progress Operation m 00: Port moo	match detection monitor 1:Detect ode selection le e d SEF/ SBIM0 /W 0 Shift status 0:Stopped 1:In progress ode selection le	call detection 1:Detect Software reserving write "10" and internal reset generated.	monitor 0: "0" 1: "1" et generate d "01", then an signal is - N 0	
SBI0CR2 when Write SBI0SR when Read	Register Serial bus interface 0 control Register 2 Serial bus interface 0 status Register Serial bus	(I ² C bus mode) (Prohibit RMW) 1243H (SIO mode) (Prohibit			0:Free 1:Busy Start/stop condition generation 0:Stop	interrupt 0:request	lost detection monitor 1:Detect Operation m 00: Port moo 10: I ² C mode 01: SIO moo 11: Reserve SIOF/ SBIM1 R 0 Transfer status 0:Stopped 1:In progress Operation m	match detection monitor 1:Detect ode selection le e d SEF/ SBIM0 /W 0 Shift status 0:Stopped 1:In progress ode selection le	call detection 1:Detect Software reserving write "10" and internal reset generated.	monitor 0: "0" 1: "1" et generate d "01", then an signal is - N 0 Always	

$1^{2}C$	Bus/Seria	al channe.	1 (2/4)							
Symbol	Name	Address	7	6	5	4	3	2	1	0
			_	I2SBI0				\sim		/
	Serial bus		W	R/W	\sim	\sim	\sim	$\left \right\rangle$	\sim	\sim
	interface 0	1244H	0	0						
SBIUBRU	baud rate	(Prohibit RMW)	Always	IDLE2				\sim		
	register 0	((VIVV)	write "0".	0: Stop						
				1: Run						
			P4EN	-						
	Serial bus			N						
	interface 0	1245H	0	0			\sim $+$			
SBI0BR1	baud rate	(Prohibit RMW)	Internal	Always				\bigcirc		
	register 1		clock	write "0".			(\bigcirc)			
			0: Stop					7		
			1: Run			(7		1		
						41			/)L	>
							\geq	(2		*
						(7/<	\backslash	~ (C	\mathcal{I}	
						$_{\sim}$) '	\circ	2/2	
					(\sim			<i>G0</i> /	
					G			\mathcal{P}	>	
					$\langle \langle \rangle$	\searrow	(()		
						<u> </u>		$\sum \mathcal{O}$		
					1()	~	((//	$\langle \uparrow \rangle$		
				~((\sim		\sim)		
				\sim						
					\searrow					
							\searrow			
				\sim		~	\searrow			
			((\sim						
				\bigcirc	<	\mathcal{A}				
			$\overline{\Omega}$		~	$// \sim$				
		\frown)						
			$) \simeq$	/	(7/)	\land				
		$\langle \langle \rangle \rangle$)				
					\bigcirc					
			\geq	$\langle \in$						
		\sim	\sim							
		$\langle \rangle$			\searrow					
	\sim	\bigtriangledown		\bigwedge						
		\mathcal{A}	<	11						
\sim))								
	\langle / \subset		> ((γ						
$\langle =$		((11~))						
	$\langle \rangle$		\sim							
	\sim		\sim							

I²C Bus/Serial channel (2/4)

I²C Bus/Serial channel (3/4)

				6	_		6	6		6
Symbol	Name	Address	7	6	5	4	3	2	1	0
		1248H	BC2	BC1	BC0	ACK		SCK2	SCK1	SCK0/ SWRMON
		(I ² C bus		W		R/W	/	١	V	R/W
		mode)	0	0	0	0		0	0	0/1
		(Prohibit	Number of 1 000: 8	transferred l 001: 1	bits 010: 2	Acknowledge mode		Setting of the 000:5	ne divide val 001: 6	ue "n" 010: 7
	Serial bus	RMW)	011: 3	100: 4	101: 5	0: Disable		011:8	100: 9	101: 10
SBI1CR1	interface 1		110: 6	111: 7	1	1: Enable		110: 11	111: Reserv	ved
	control register 1	104011	SIOS	SIOINH	SIOM1	SIOM0		SCK2	SCK1	SCK0
	register i	1248H (SIO		1	W		\sim	$\left(\begin{array}{c} \\ \end{array} \right)$	W	
		mode)	0 Transfer	0 Transfer	0 Transfer mod	0		O Setting of the	0 ne divide val	0
		,	0: Stop		00: 8-bit tran			000: 4	001:5	010: 6
		(Prohibit	1: Start	1:Abort	01: Reserved			011: 7	100: 8	101: 9
		RMW)			10: 8-bit tran		\sim	110: 10 11	11: External	clock SCK1
}	SBI 1	1249H	DB7	DB6	11: 8-bit rece DB5	DB4	DB3	DB2 🔿	DB1	DB0
SBI1DBR	buffer	(Prohibit		DB0		Receiving)/W		/		DB0
-	Register	RMW)				Unde	1	S(C)		
			SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS
					1	N //	1	\bigcirc		
	I ² CBUS 1	BUS 1 124AH	0	0	0	0	0 (\bigcirc	0	0
I2C1AR	address	(Prohibit			Address					
	Register	RMW)			Setti	ng Slave add	Iress	\sim		recognition
				G		.		\mathcal{D}		0:Enable
				4					4.00/	1:Disable
			MST	TRX	вв	PIN	AL/ SBIM1	AAS/ SBIM0	AD0/ SWRST1	LRB/ SWRST0
			R/W							
SBI1SR	Serial bus		0		0	1	<u></u> 0	0	0	0
when	interface 1 status	124BH	0:Slave	0:Receive	Bus status	INTSBE1	Arbitration		General	Last
Read	Register	(l ² C bus	1:Master	1:Transmit	monitor 0:Free	interrupt	lost detection	address match	call detection	receive bit monitor
	regiotor	mode)	$\overline{\Omega}$		1:Busy	0:request	monitor	detection	1:Detect	0: "0"
		(Prohibit	$(\vee /)$)		1:Cancel	1:Detect	monitor		1: "1"
		RMW)			$-(\overline{O}/\overline{O})$	\cap		1:Detect		
SBI1CR2	Serial bus	$\langle \langle \rangle \rangle$			Start/stop condition	\mathcal{O}	Operation m 00: Port mod		Software reso	et generate d "01", then an
when	interface 1	ontrol			generation		10: I ² C mode		internal reset	
Write	Register 2		\supset	$\langle -$	0: Stop		01: SIO mod		generated.	-
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	>			1: Start		11: Reserve			
	$\sim$	~ ~			$\sim$		SIOF/ SBIM1	SEF/ SBIM0	-	-
	Serial bus			(	$\sim$			/W	V	V
SBI1SR	interface 1		$\sim$	$\langle \langle \rangle$	$\sim$	$\sim$	0	0	0	0
when Read	status	124BH (SIO		$\langle \rangle$			Transfer	Shift status		
Read	Register	mode)		))			status	0:Stopped		
/	/		XV				0:Stopped 1:In	1:In progress		
		(Prohibit	$\sim$				progress			
001/005	Serial bus	RMW)	$\sim$					ode selection	-	Always
SBI1CR2	interface 1						00: Port mod 10: I ² C mode		write "0".	write "0".
when Write	control						10: 1 C mode 01: SIO mod			
VVIILE	Register 2						11: Reserve			

12C	Bus/Seria	1	1	1	1			1	1	-
Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	I2SBI1		/	/			
SBI1BR0	Serial bus	404011	W	R/W		/		/		/
	interface 1	124CH (Prohibit	0	0		/				
	baud rate	RMW)	Always	IDLE2				$\sim$		
	register 0	,	write "0".	0: Stop						
				1: Run			_			
			P4EN	-				$\mathcal{A}$		
	Serial bus			N						
SBI1BR1	interface 1	124DH (Prohibit	0	0			$\sim$ $+$			
SBIIBRI	baud rate	(Prohibit RMW)	Internal	Always				$\bigcirc$		
	register 1	(((iviv))	clock	write "0".			$(\bigcirc$			
			0: Stop 1: Run					$)^{\sim}$		
	I	1	1. 1.011	1	I	(7	$\overline{\langle}$	1		
									20	

I²C Bus/Serial channel (4/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0		
,	-		EOCF	ADBF	_	_	ITMO	REPEAT	SCAN	ADS		
				2		1	-	/W				
			0	0	0	0	0	0	0	0		
			AD	AD	Always	Always	Interrupt	Repeat mode	Scan mode	AD		
			conversion	conversion	write "0".	write "0".		specification	specification	conversion		
ADMOD0	AD Mode		end flag 0:	busy flag 0:			in conversion	0: Single conversion	0: Conversion	start 0: Don't care		
	Control	12B8H	Conversion	Conversion			channel	1: Repeat	channel	1: Start		
	register 0		in progress	stopped			fixed repeat	conversion	fixed mode	conversion		
			1:	1:			mode	mode	1:	AL		
			Conversion complete	Conversion in progress			0: Every conversion	$(\bigcirc)$	Conversion channel	Always "0" when read		
			complete	progroco			1: Every		scan mode	monroda		
							fourth					
			VEEDAL	10.1 5		(	conversion					
			VREFON	I2AD	-	- ((	ADCH3	ADCH2	ADCH1	ADCH0		
			0	0	0		w o	0 (2	0	0		
			VREF	IDLE2	Always	Always	·	ut channel se		0		
				0: Stop	write "0".	write "0".	0000: ANO	$\sim$ $\sim$	76			
			control	1: Operate	G		0001: AN1		<i>G0</i> /			
	AD Mode Control	12B9H	0: OFF 1: ON		20		0010: AN2 AN0 $\rightarrow$ AN1 $\rightarrow$ AN2					
			$0011: AN3 (AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$									
						Ň	0100: AN4 0101: AN5	$\sim$ /	$  \rightarrow AN2 \rightarrow AI$ $  \rightarrow AN2 \rightarrow AI$			
					$( \land )$	$\sim$		$\rightarrow AN5$	$\rightarrow AINZ \rightarrow AI$	$N_{3} \rightarrow AIN_{4}$		
				.(			0110: AN6	) )	$\rightarrow$ AN2 $\rightarrow$ AI	$N3 \rightarrow AN4$		
ADMOD1				$\leq \langle$			$\frown$	$\rightarrow$ AN5 $\rightarrow$ A				
	register 1				$\searrow$		0111: AN7	N7 AN0 $\rightarrow$ AN1 $\rightarrow$ AN2 $\rightarrow$ AN5 $\rightarrow$ AN6 $\rightarrow$ AN		$N3 \rightarrow AN4$		
							1000: AN8		$A \to A \to$	$N3 \rightarrow AN4$		
									$N6 \rightarrow AN7 \rightarrow$			
			((	$\sim$		$\langle \rangle$	1001: AN9		$\rightarrow$ AN2 $\rightarrow$ AI			
				$\bigcirc$	<		4040. 414			$AN8 \rightarrow AN9$		
			$\square$		$\sim$	$\langle \langle \rangle$	1010: AN10	$\begin{array}{c} AN0 \rightarrow AN1 \\ \rightarrow AN5 \rightarrow A \end{array}$	$\rightarrow AN2 \rightarrow AI$			
		$\frown$	(// 5)			>		$\rightarrow$ AN9 $\rightarrow$ A		,		
					(0)		1011: AN1 ²	1 AN0 $\rightarrow$ AN1	$\rightarrow$ AN2 $\rightarrow$ AI	$N3 \rightarrow AN4$		
		$\langle \langle \rangle \rangle$		$\sim$					$N6 \rightarrow AN7 \rightarrow$	AN8		
					$\bigcirc$	/	1100 to 111 ²		$N10 \rightarrow AN11$			
			-			-	-	-	-	ADTRGE		
	$ \land $	$\rightarrow$				R	/W		·			
	AD Mode	$\langle \rangle$	0	0	> 0	0	0	0	0	0		
ADMOD2	Control	12BAH	Always	Always	Always	Always	Always	Always	Always	AD		
	register 2		write "0". <	write "0".	write "0".	write "0".	write "0".	write "0".	write "0".	conversion trigger start		
		))								control		
	$\backslash \rangle$	6	> (( )	$\mathcal{D}$						0: Disable		
	$\rightarrow$			2						1: Enable		
		4	$\sim$									

(11) AD converter (1/3)

### AD converter (2/3)

nD (	converter	(2,0)											
Symbol	Name	Address	7	6	5	4	3	2	1	0			
	AD result		ADR01	ADR00						ADR0RF			
ADREG0L	register 0	12A0H	F	र	/	$\square$			4 ADR03 4 ADR13 4 ADR13 4 ADR23 4 ADR23 4 ADR33 4 ADR33 4 ADR33	R			
	low		Unde	efined						0			
	AD result		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02			
ADREG0H	register 0	12A1H				F	२	$\sim$					
	High					Unde	efined						
	AD result		ADR11	ADR10				$\mathcal{H}$		ADR1RF			
ADREG1L	register 1	12A2H	F	२						R			
	low		Unde	efined				7/		0			
	AD result		ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12			
ADREG1H	register 1	12A3H				F	۲ <u>ک</u>						
	High					Unde	efined						
	AD result		ADR21	ADR20			Ľ			ADR2RF			
ADREG2L	register 2	12A4H	F	२		4	ľ		$\sim$	R			
	low		Unde	efined			K			0			
	AD result		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22			
ADREG2H	register 2	12A5H	$\left( \frac{1}{2} \right)$										
	High			Undefined									
	AD result		ADR31	ADR30		$\mathcal{H}$		$\mathbb{A}$	764	ADR3RF			
ADREG3L	register 3	12A6H	I	२		1			$\sim$	R			
	low		Unde	efined	74	$\sim$				0			
	AD result	12A7H	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32			
ADREG3H	register 3		R										
	High			(		Unde	efined	)]	-				
	AD result		ADR41	ADR40	$\rightarrow$	$\rightarrow \leftarrow$		$\langle \rangle$		ADR4RF			
ADREG4L	register 4	12A8H		۲	$\sum$	$\sim$	$\mathcal{A}$			R			
	low			efined			$\sim$			0			
	AD result		ADR49	ADR48	ADR47	ADR46	ADR45	ADR44	ADR43	ADR42			
ADREG4H	register 4	gh	R Undefined										
	High					Unde	efined						
	AD result		ADR51	ADR50		42				ADR5RF			
ADREG5L	register 5	12AAH		2						R			
	low			fined						0			
	AD result		ADR59	ADR58	ADR57	ADR56	ADR55	ADR54	ADR53	ADR52			
ADREG5H	register 5	12ABH	R										
	High			(		Unde	efined		$\sim$				
	AD result	404.011	ADR61	ADR60	$\rightarrow$					ADR6RF			
ADREG6L	register 6 low	12ACH		२						R			
				efined						0			
	AD result		ADR69	ADR68	ADR67	ADR66	ADR65	ADR64	ADR63	ADR62			
ADREG6H	register 6	12ADH		1			<del>۲</del>						
	High	))				Unde	efined						
	AD result		ADR71	ADR70					$\sim$	ADR7RF			
ADREG7L	register 7 low	12AEH		<u>२))</u>	$\left  \right\rangle$				$\sim$	R			
			7	efined						0			
	AD result	10451	ADR79	ADR78	ADR77	ADR76	ADR75	ADR74	ADR73	ADR72			
ADREG7H	register 7	12AFH	V				<u>२</u>						
	High					Undefined							

### AD converter (3/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0			
	AD result		ADR81	ADR80		/				ADR8RF			
ADREG8L	register 8	12B0H	R							R			
	low		Undefined			/	/	/		0			
	AD result		ADR89	ADR88	ADR87	ADR86	ADR85	ADR84	ADR803	ADR82			
ADREG8H	register 8	12B1H	R										
	High			Undefined									
	AD result		ADR91	ADR90		/	/	Į		ADR9RF			
ADREG9L	register 9	12B2H	F	र			/			R			
	low		Undefined			/	4	$\overline{\mathcal{A}}$		0			
	AD result		ADR99	ADR98	ADR97	ADR96	ADR95	ADR94	ADR93	ADR92			
ADREG9H	register 9	12B3H				F	2						
	High					Unde	efined	$\sum$					
	AD result		ADRA1	ADRA0			$\mathcal{H}$	$\sum$		ADRARF			
ADREGAL	register A		R			4	ľ	/		R			
	low		Unde	fined		1	$\lambda$		$\mathbb{Z}$	> 0			
	AD result		ADRA9	ADRA8	ADRA7	ADRA6	ADRA5	ADRA4	ADRA3	ADRA2			
ADREGAH	register A	12B5H				((// 4	र	~ (C					
	High					Unde	fined		2/n				
	AD result		ADRB1	ADRB0	$\mathcal{A}$	$\widetilde{\mathcal{N}}$		ľ	764	ADRBRF			
ADREGBL	register B	12B6H	F	2	X	1	/			R			
	low		Unde	fined	Ť	$\downarrow$		b A		0			
	AD result		ADRB9	ADRB8	ADRB7	ADRB6	ADRB5	ADRB4	ADRB3	ADRB2			
ADREGBH	register B	12B7H			$\left( \right)$	V F	۲ ( <i>(</i> )	$\langle \wedge \rangle$					
	High			G	$\sim$	Unde	fined	)]					

## (12) Watch dog timer

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			WDTE	WDTP1	WDTP0		-	I2WDT	RESCR	-	
				R/W			R/W				
			1	0	0		0	0	0	0	
WDMOD	WDT Mode register	1300H	WDT control 1: Enable	WDT detect 00: 2 ¹⁵ /f _{SYS} 01: 2 ¹⁷ /f _{SYS} 10: 2 ¹⁹ /f _{SYS} 11: 2 ²¹ /f _{SYS}			Always write "0".	IDLE2 0: Stop 1: Operate	1: Internally connects WDT out to the reset pin	write "0"	
WDCR	WDT Control register	1301H (Prohibit RMW)	W B1H: WDT disable code 4E: WDT clear code								

(13	) Special ti	imer for (	CLOCK			4(		5	$( \land )$	
Symbol	Name	Address	7	6	5	4	> 3	2	Ţ	0
			-			$\forall\forall A$	4	RTCSEL1	RTCSEL0	RTCRUN
		R/W		$\backslash$	Z		$\sim$	R/W		
			0		4	ľ	/	0	$\bigcirc$	0
RTCCR	RTC control	1310H	Always				((	00: 2 ¹⁴ /fs		0: Stop &
	register		write "0"			$\searrow$	C	01: 2 ¹³ /f _S		Clear
					$\langle \rangle$	>	$\overline{\Omega}$	10: 2 ¹² /f _S		1: RUN
								11: 2 ¹¹ /f _S		

## (14) Key-on wake up

	,	-		$\langle \bigcirc \rangle$				-	-	
Symbol	Name	Address	7	(6)	5	4	3	2	1	0
			KI7EN	KI6EN	KI5EN	KI4EN	<b>KI3EN</b>	KI2EN	KI1EN	KI0EN
	KEY input	10.0.011	( (	$\langle \rangle$		// V	V			
KIEN	enable	13A0H (Prohibit	0	Ø	0 <	9	0	0	0	0
NEN	setting	(FIOHIDIC RMW)	KI7Input	KI6Input	KI5Input	KI4Input	KI3Input	KI2Input	KI1Input	KI0Input
	register	ter	0: Disable	0: Disable	0: Disable	0: Disable	0: Disable	0: Disable	0: Disable	0: Disable
			1: Enable	1: Enable	1: Enable (	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable
			<b>KI7EDGE</b>	KI6DGE	<b>KISEDGE</b>	KI4EDGE	<b>KI3EDGE</b>	KI2EDGE	KI1EDGE	KI0EDGE
			W							
KICR	KEY input	13A1H (Brobibit	0	Q		0	0	0	0	0
		egister RMW)	KI7 edge	KI6 edge	KI5 edge	KI4 edge	KI3 edge	KI2 edge	KI1 edge	KI0 edge
	register		0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising
	~		1: Falling	1>Falling	1: Falling	1: Falling	1: Falling	1: Falling	1: Falling	1: Falling

### (15) Program patch function (1/4)

	Program	-			-	4	_	-	4	<u>^</u>
Symbol	Name	Address	7	6	5	4	3	2	1	0
	Address	1400H	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02		
ROMCMP00	compare	(Prohibit		i	V		i	i		
	register 00	RMW)	0	0	0	0	0	0		
	- 3				et ROM add		· ·			
	Address	1401H	ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
ROMCMP01	compare	(Prohibit		i	i		N		i	
		RMW)	0	0	0	0	0		0	0
				1	J		ress (Middle		)	
	Address	1402H	ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16
ROMCMP02	compare	(Prohibit		i	i		M ()	( ) )	i	
	register 02	RMW)	0	0	0	0	0	Ó	0	0
	- 3				Targ	et ROM add	Iress (Upper	8 bit)		
	Address	1404H	ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00
ROMSUB0LL	substitution	(Prohibit				0	A		$\frown$	
NOWBODULL	register 0LL	RMW)	0	0	0	0	0	0		0
	TOGISTOT DEL					Patch code	Lower 8 bits	s) 🔨	$\sim j_j$	
	A ddraea	4.40511	ROMS15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08
ROMSUB0LH	Address substitution	1405H (Prohibit					N C	( )		
RONSOBOLH	register 0LH	RMW)	0	0	0		0	~ ~ ~ ~ ~	0	0
		,			1	Patch code	(Upper 8 bits		0	
			ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16
		Address 1406H bstitution (Prohibit pister 0HL RMW)			<u> </u>	$\sim$ 1	N (	$\mathcal{T}$		
ROMSUB0HL			0	0	0	0	0	6	0	0
	register 0HL		-			Patch code	(Lower 8 bits	5	-	-
			ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24
	Address	itution (Prohibit					W			
ROMSUB0HH	substitution		0	0	0		0	0	0	0
	register 0HH					Patch code	Upper 8 bits	-	-	-
		eare (Prohibit	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02		$\sim$
	Address			7	V				$\sim$	$\vee$
ROMCMP10	compare		0 ((	0	0	0	0	0	$\sim$	$\square$
	register 10				et ROM add	ress (Lower	-	Ů		
			ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
	Address	1409H		)			N			
ROMCMP11	compare	· • • • • • • • • • • • • • • • • • • •	0	0	$\left( \right) $	0	0	0	0	0
	register 11			$\sim$	Tard	et ROM add	ress (Middle	8 bit)		
			ROMC23	ROMC22			ROMC19		ROMC17	ROMC16
	Address	140AH					N			
ROMCMP12	compare	(Prohibit	→ 0	0	0	0	0	0	0	0
	register 12	RMW)	U				Iress (Upper		0	U
			ROMS07	/ROMS06	ROMS05	ROM add	ROMS03	ROMS02	ROMS01	ROMS00
	Address	140CH		NON200	KON905		N ROMSU3	KUW302	NOW301	NOWS00
ROMSUB1LL	substitution	(Prohibit		0	0	0	0	0	0	0
$\sim$	register 1LL	RMW)	U	0		-	-	-	U	U
	$\rightarrow \rightarrow \rightarrow$		POMOAF	ROMS14			(Lower 8 bits		POMEOO	POMeoo
	Address	140DH	ROMS15		ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08
ROMSUB1LH	substitution	(Prohibit	X		1		N	i _	i _	-
	register 1LH	`RMW) 4	<u> </u>	0	0	0	0	0	0	0
			$\sim$		I		(Upper 8 bits	/		
		140EH	ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16
ROMSUB1HL	substitution	(Prohibit					N			
2	register 1HL	RMW)	0	0	0	0	0	0	0	0
	- <u>j</u>					Patch code	(Lower 8 bits			
	Address	140FH	ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24
						١	N			
	substitution									
ROMSUB1HH	substitution register 1HH	(Prohibit RMW)	0	0	0	0	0	0	0	0

#### Program patch function (2/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	A	4.44.01.1	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02		/
ROMCMP20	Address	1410H (Prohibit			V	V	_			
ROIVICIVIP20	compare	(PTOHIDIC RMW)	0	0	0	0	0	0		
	register 20			Targ	et ROM add	ress (Lower	6 bit)			
	A	4 4 4 4 1 1	ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
DOMONDO	OMCMP21 compare register 21	1411H (Prohibit				١	W	2		
RUNUNP21		(FIOHIDIC RMW)	0	0	0	0	0		0	0
	Tegister 21	(((((((((((((((((((((((((((((((((((((((			Targ	et ROM add	lress (Middle	8 bit)		
		4.44.011	ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16
ROMCMP22	Address	1412H (Prohibit					w (0)	(/ 5)		
RUNGNP22	compare register 22	RMW)	0	0	0	0	0	$\bigcirc$	0	0
	register 22				Targ	et ROM add	lress (Upper	8 bit)		
			ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00
	Address	1414H					Ŵ		$\frown$	
ROMSUB2LL	substitution	(Prohibit RMW)	0	0	0	0 (	0	0		0
	register 2LL					Patch code	Lower 8 bits	5)	$\sim$ )?	
			ROMS15	ROMS14	ROMS13	ROMS12	RØMS11	ROMS10	ROMS09	ROMS08
	Address	1415H					Ŵ /	$\langle (0) \rangle$		
ROMSUB2LH	substitution	(Prohibit	0	0	0	0	0	~0~	(/ ₀ )	0
	register 2LH	RMW)	-	-	( /	Patch code	(Upper 8 bits		10/	-
			ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16
	Address	stitution (Prohibit	Tto MOLO	ROMOLL			W		Romon	Romoro
ROMSUB2HL			0	0	0	0	0	0	0	0
	register 2HL		0	U		V	(Lower 8 bits	A	0	0
		ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24	
	Address 1417H		Romost				W	TOMO20	TOMO25	Itolwi024
ROMSUB2HH	substitution		0	0	0	$\langle \rangle$	0	0	0	0
register	register 2HH	RMW)	Ū				Upper 8 bits	-	Ŭ	Ŭ
			ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02		$\backslash$
	Address	re (Prohibit		7		VA			$\sim$	
ROMCMP30	compare		0 ((	0	0	0	0	0	$\sim$	$\sim$
	register 30			-	et ROM add	ress (Lower	-	-		
			ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
	Address	1419H	$\left( V \right)$	)			W			
ROMCMP31	compare	· Z./	0	0	$\left( 0\right) $	0	0	0	0	0
	register 31		5	$\sim$	Targ	et ROM add	ress (Middle	8 bit)		
			ROMC23	ROMC22			ROMC19		ROMC17	ROMC16
	Address	141AH				•	W			
ROMCMP32	compare	(Prohibit	✓ 0	0	0	0	0	0	0	0
	register 32	RMW)	-				Iress (Upper		-	-
		$\langle \rangle$	ROMS07	/ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00
	Address	141CH					W			
ROMSUB3LL	substitution	(Prohibit	0	0	0	0	0	0	0	0
$\sim$	register 3LL	RMW)	6			-	(Lower 8 bits		-	-
	$\overline{}$	( )	ROM\$15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08
	Address	141DH (			Romoro		W	Romoro	rtomooo	Remote
ROMSUB3LH	DMSUB3LH substitution register 3LH	(Prohibit	0	0	0	0	0	0	0	0
		RMW)		0			Upper 8 bits		0	0
	Address 141E		ROMS23	ROMS22	ROMS21		ROMS19	ROMS18	ROMS17	ROMS16
		141EH		RUIVI322	RUN921	ROMS20	W ROMS19	RUNISIN	RUNST	KUIVIS10
ROMSUB3HL	substitution	(Prohibit	0	0	0	0	0	0	0	0
	register 3HL	RMW)	0	0		-	-	-	0	0
			DOMOSA	DOMOGO		1	(Lower 8 bits	<u></u>	DOMOSE	DOMOGA
	Address	141FH	ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24
ROMSUB3HH	substitution	(Prohibit	0	0	0	1	W	0	0	0
	register 3HH	RMW)	0	0	0	0 Datab aada	0	0	0	0
		RMW)				raich code	(Upper 8 bits	>)		

### Program patch function (3/4)

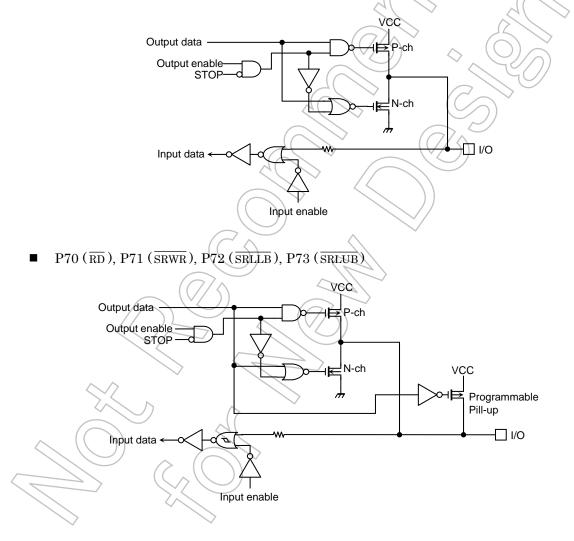
Symbol	Name	Address	7	6	5	4	3	2	1	0
-			ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02		
	Address	1420H				V				$\sim$
ROMCMP40	compare	(Prohibit RMW)	0	0	0	0	0	0	$\backslash$	
	register 40	(((((((((((((((((((((((((((((((((((((((		Targ	et ROM add	ress (Lower	6 bit)			
			ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
	Address	1421H					W			
ROMCMP41 compare	(Prohibit RMW)	0	0	0	0	0	0	0	0	
	register 41	((iviv))		-		-	Iress (Middle	8 bit)	P	
			ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16
	Address	1422H					w (C	7/		
ROMCMP42	compare	(Prohibit	0	0	0	0	i a V	$\bigcirc d$	0	0
	register 42	RMW)	0	0	-	-	dress (Upper		0	0
			DOM007	DOMOGO	1				DOMODA	DOMOGO
	Address	1424H	ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00
ROMSUB4LL	substitution	(Prohibit		0	0	( /	W	0		0
	register 4LL	RMW)	0	0	0			0		0
			DOMONE	DOMO			(Lower 8 bits	/	DOMODO	DOMOGO
	Address	1425H	ROMS15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08
ROMSUB4LH	substitution	(Prohibit			1		Ŵ	$\rightarrow (\bigcirc$		
	register 4LH	`RMW)	0	0	0		0	0	()	0
	Ŭ					Patch code	(Upper 8 bits		70/	-
	Address	1426H	ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16
ROMSUB4HL		(Prohibit			$\mathcal{A}(\mathcal{A})$	$\searrow$ 1	w (	$\langle \rangle$		
KOMSOB4HL	SUB4HL substitution register 4HL		0	0	0	0	0		0	0
					$\left( \bigcap \right)$	Patch code	(Lower 8 bits	$\sim$		
			ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24
	Address	112711		2(			W/			
ROMSUB4HH	substitution	(Prohibit RMW)	0	0	0	< 0	0	0	0	0
	register 4HH	,		( )		Patch code	(Upper 8 bits	5)		
		are (Prohibit	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02	/	
DOMONDES	Address			$\sim$	/ N	V _	$\sim$	•	/	
ROMCMP50	compare		0 ((	0	0	0	0	0	/	
	register 50			Targ	et ROM add	ress (Lower	6 bit)	•		
			ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
	Address	1429H	$\left( \left( // \right) \right)$				W			
ROMCMP51	compare	DAMAN	$\langle \langle \phi \rangle \rangle$	0	07	0	0	0	0	0
	register 51			$\wedge$	Tard	et ROM add	Iress (Middle	8 bit)		
		$\langle / /$	ROMC23	ROMC22			ROMC19	,	ROMC17	ROMC16
	Address	142AH					W			
ROMCMP52	compare	(Prohibit	○ 0	0		0	0	0	0	0
	register 52	RMW)	~ 0			-	dress (Upper	÷	0	0
			ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00
	Address	142CH	KOIVIS07	KOW300	KOIVI303		W	ROM302	KOW501	KOW500
ROMSUB5LL	substitution	(Prohibit		0	0		0	0	0	0
$\sim$	register 5LL	RMW)	0			0 Datab aada	Lower 8 bits		0	0
			DOMONT	DOMOLA	1	1	<u>`</u>	/	DOMOGO	DOMOGO
	Address	142DH	ROM\$15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08
ROMSUB5LH	substitution	(Prohibit		<u> </u>	1	1	W			
	register 5LH	`RMW) 🛛	0	0	0	0	0	0	0	0
	Š					Patch code	(Upper 8 bits	5)		
	Address 142F	142EH	ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16
ROMSUB5HL	substitution	(Prohibit	ļ				W	n		_
LONIOUDOLL	register 5HL	(Pronibit RMW)	0	0	0	0	0	0	0	0
	I CONSIGN OF IL	, 				Patch code	(Lower 8 bits	5)		
	ا معامات ا	4.405	ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24
DOMOUREU	Address	142FH	'			l.	Ŵ			
ROMSUB5HH	substitution	(Prohibit RMW)	0	0	0	0	0	0	0	0
	register 5HH		I		•	Patch code	(Upper 8 bits	;)		

## Program patch function (4/4)

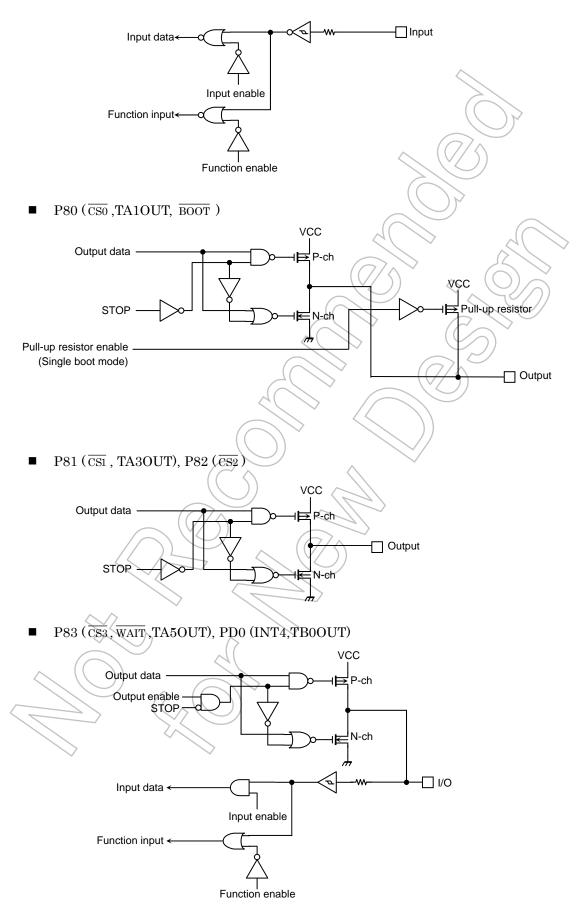
Symbol	Name	Address	7	6	5	4	3	2	1	0
			ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02		
ROMCMP60	Address	1430H (Prohibit			V	V			$\sim$	/
RUNCINPOU	compare register 60	(Pronibit RMW)	0	0	0	0	0	0		
	register 60	,		Targ	et ROM add	ress (Lower	6 bit)			
	A ddraea		ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
ROMCMP61	Address COMCMP61 compare	1431H (Prohibit					N	$\geq$		
KUNICIVIFOI	register 61	RMW)	0	0	0	0	0		0	0
	register of	,			Targ	et ROM add	ress (Middle	8 bit)	)`	
	Address	4 40 01 1	ROMC23	ROMC22	ROMC21	ROMC20	ROMC19	ROMC18	ROMC17	ROMC16
ROMCMP62	compare	1432H (Prohibit				<u>۱</u>	N ()	( ) )		-
	register 62	RMW)	0	0	0	0	0	0	0	0
	regiotor oz				Targ	et ROM add	Iress (Upper	8 bit)		
	Address	4 4 2 4 1 1	ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00
ROMSUB6LL	substitution	1434H (Prohibit				. a	R Start		$\frown$	
RUMOUDOLL	register 6LL	RMW)	0	0	0	0/(	0	0		0
	TOGISTOT DEL					Patch code	Lower 8 bits	s) 🔨	$\sim )$	
	Address	4.40511	ROMS15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08
ROMSUB6LH	Address 1435H						N C	$\sim (O)$		
RUIVISUBOLI		egister 6LH (Prohibit RMW)	0	0	0		0		( )	0
						Patch code	(Upper 8 bits		90	
			ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16
DOMOLIDALI	Address	1436H			$\langle \langle \rangle$	$\searrow$ 1	N V	> ) )		
ROMSUB6HL	36HL substitution register 6HL	(Prohibit RMW)	0	0	0	0	0	0	0	0
		,			$1( \bigcirc$	Patch code	(Lower 8 bits	5)	•	
		ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24	
DOMOUDOUU	Address	Address 1437H ubstitution (Prohibit gister 6HH RMW)		$\zeta$			N			
ROMSUB6HH			0	6	0	6	0	0	0	0
				$\left( \left( \right) \right)$		Patch code	(Upper 8 bits	3)	_	
	Address	ddress 1438H ompare (Prohibit nister 70 RMW)	ROMC07	ROMC06	ROMC05	ROMC04	ROMC03	ROMC02		
ROMCMP70				~~~	V	V	·	i		
	register 70		0 ((	0	0	0	0	0		
	- 5				et ROM add		· ·	1		
	Address	1439H	ROMC15	ROMC14	ROMC13	ROMC12	ROMC11	ROMC10	ROMC09	ROMC08
ROMCMP71	compare	(Prohibit	$\mathcal{N}$	)		~	N	i _	i _	
	register 71			0		0	0	0	0	0
							ress (Middle			<b>DOMO</b> / 0
	Address	143AH	ROMC23	ROMC22	ROMC21		•	ROMC18	ROMC17	ROMC16
ROMCMP72	compare	(Prohibit	$\rightarrow$ -	$\langle \nabla \rangle$		i	N		<u> </u>	
	register 72	RMW)	0	0	0	0	0	0	0	0
						-	Iress (Upper	,		
	Address	143CH	ROMS07	ROMS06	ROMS05	ROMS04	ROMS03	ROMS02	ROMS01	ROMS00
ROMSUB7LL	substitution	(Prohibit				i	N			
$\sim$	register 7LL	RMW)	0	0	0	0	0	0	0	0
	$\rightarrow \rightarrow$		2 DOMAS				(Lower 8 bits	1	DOMOSS	DOMOGO
	Address	143DH	ROM\$15	ROMS14	ROMS13	ROMS12	ROMS11	ROMS10	ROMS09	ROMS08
ROMSUB7LH	7	(Prohibit			1 .	1	N	i _	<u> </u>	i _
	register 7LH	RMW)		0	0	0	0	0	0	0
			$\searrow$	D.01.10-1	i .		(Upper 8 bits			
	Address	143EH	ROMS23	ROMS22	ROMS21	ROMS20	ROMS19	ROMS18	ROMS17	ROMS16
ROMSUB7HL	substitution	(Prohibit	^	^			N	_	_	
	register 7HL	`RMW)	0	0	0	0	0	0	0	0
							(Lower 8 bits	/	<b>DO</b>	DOMEST
	Address	143FH	ROMS31	ROMS30	ROMS29	ROMS28	ROMS27	ROMS26	ROMS25	ROMS24
ROMSUB7HH	substitution	(Prohibit	<u>^</u>	^			N			
	substitution register 7HH	RMW)	0	0	0	0 Datah asala	0	0	0	0
						Patch code	(Upper 8 bits	5)		

## 6. Port Section Equivalent Circuit Diagram

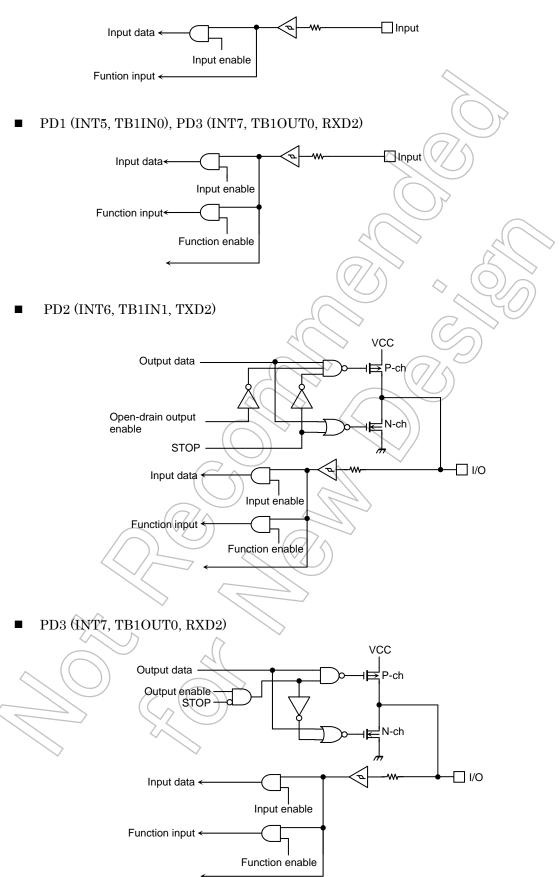
Reading the circuit diagram


Basically, the gate symbols written are the same as those used for the standard CMOS logic IC [74HCXX] series.

The dedicated signal is described below.


STOP: This signal becomes active "1" when the halt mode setting register is set to the STOP mode and the CPU executes the HALT instruction. When the drive enable bit <DRVE> is set to "1", however, STOP remains at "0".

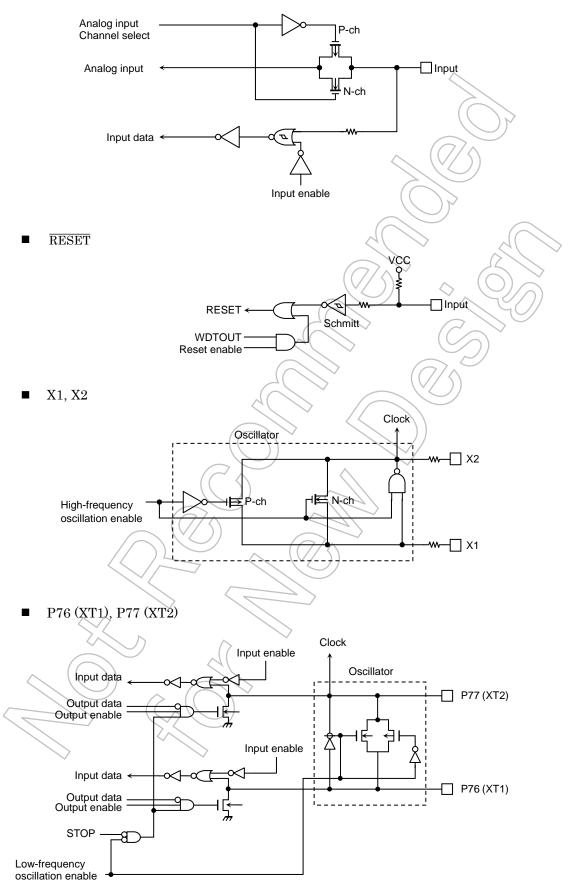
The input protection resistance ranges from several tens of ohms to several hundreds of ohms.


P0 (D0 to D7), P1 (D8 to D15), P4 (A0 to A7), P5 (A8 to A15), P6 (A16 to A23)




■ P74 (INT0), PC1 to PC3 (INT1 to INT3)




■ PC0 (TA0IN)



 PD4 (TB10UT1,SCLK2, CTS2), PF1 (RXD0), PF2 (SCLK0, CTS0, CLK), PF4 (RXD1, HSSI), PF5 (SCLK1, CTS1, HSCLK), PN0 (SCK0), PN3 (SCK1)



■ PG (AN0 to AN7), PL (AN8 to AN11)



■ NMI

NMI ← - Input  $\mathcal{I}$ AM0 to AM1 -U vec Input data < Ē

### 7. Points to Note and Restrictions

#### (1) Notation

- a. The notation for built-in/ I/O registers is as follows register symbol <Bit symbol> (e.g., TA01RUN <TA0RUN> denotes bit TA0RUN of register TA01RUN).
- b. Read-modify-write instructions

An instruction in which the CPU reads data from memory and writes the data to the same memory location in one instruction.

Example 1:	SET	3, (TA01R	UN) Set bit 3 of TA01RUN.
Example 2:	INC	1, (100H)	Increment the data at 100H.
• Examples	s of read-modify	-write inst	ructions on the TLCS-900
Exchange i	nstruction		$\langle ( ) \rangle$
EX	(mem), R		
Arithmetic	operations		
ADD	(mem), R/#	ADC	(mem), R/#
SUB	(mem), R/#	SBC	(mem), R/#
INC	#3, (mem)	DEC	#3, (mem)
Logic opera	tions		$\searrow$ ( $\bigcirc$ / $\bigcirc$ )
AND	(mem), R/#	OR	(mem), R/#
XOR	(mem), R/#		
	((		
Bit manipu	lation operation	is	$\sim$
STCF	#3/A, (mem)	RES	#3, (mem)
SET	#3, (mem)	CHG	#3, (mem)
TSET	#3, (mem)	G	7/~
		$\langle \langle \langle \rangle$	$\langle \mathcal{O} \rangle$
	shift operations		
RLC	(mem)	RRC	) (mem)
RL	(mem)	RR	(mem)
SLA	(mem)	SRA	(mem)
SLL	(mem)	SRL	(mem)
RLD	(mem)	RRD	(mem)

fc, fs, fFPH, fSYS and one state

The clock frequency input on X1 and 2 is called  $f_{OSCH}$ . The clock selected by PLLCR0<FCSEL> is called fc.

The clock selected by SYSCR1<SYSCK> is called fFPH. The clock frequency give by fFPH divided by 2 is called fSYS.

One cycle of fSYS is referred to as one state.

- (2) Points to note
  - a. AM0 and AM1 pins

This pin is connected to the  $V_{\rm CC}$  or the  $V_{\rm SS}$  pin. Do not alter the level when the pin is active.

b. Reserved address areas

The 16-byte area from FFFFF0H to FFFFFFH is reserved as internal area and cannot be used. When using Toshiba's Flash programming service, prepare your ROM data (Hex file) by leaving these 16 bytes blank or setting them all to "FF" and register it with our ROM data entry system.

Moreover, when using an emulator, since it is used for control of an emulator, 64K bytes with arbitrary 16M byte area of use cannot be performed.

c. HALT mode (IDLE1)

When the HALT instruction is executed in IDLE1 mode (in which only the oscillator operates), the internal Special timer for CLOCK operate. When necessary, stop the circuit by setting RTCCR<RTCRUN> to 0, before the HALT instructions is executed,

d. Warm-up counter

The warm-up counter operates when STOP mode is released, even if the system is using an external oscillator. As a result a time equivalent to the warm-up time elapses between input of the release request and output of the system clock.

e. Watchdog timer

The watchdog timer starts operation immediately after a reset is released. When the watchdog timer is not to be used, disable it.

f. AD converter

The string resistor between the VREFH and VREFL pins can be cut by a program so as to reduce power consumption. When STOP mode is used, disable the resistor using the program before the HALT instruction is executed.

g. CPU (Micro DMA)

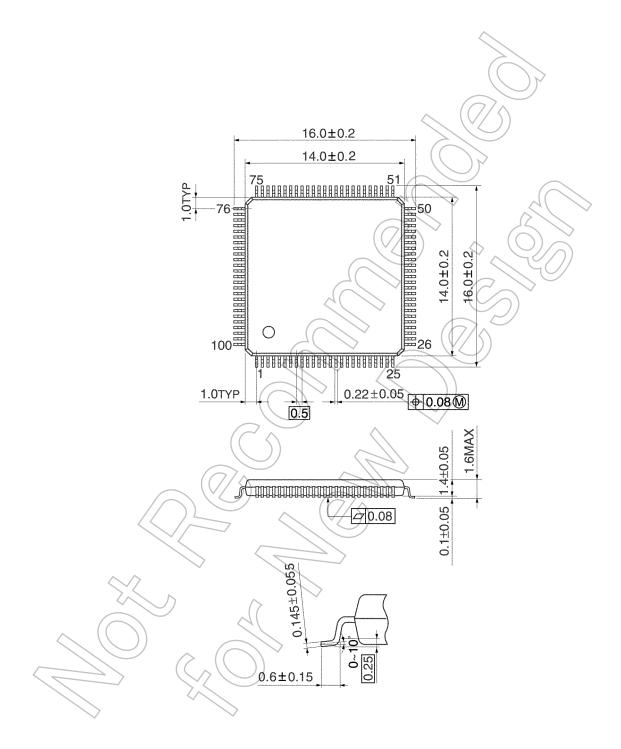
Only the "LDC er, r" and "LDC r, cr" instructions can be used to access the control registers in the CPU (e.g., the transfer source address register (DMASn)).

h. Undefined SFR

The value of an undefined bit in an SFR is undefined when read.

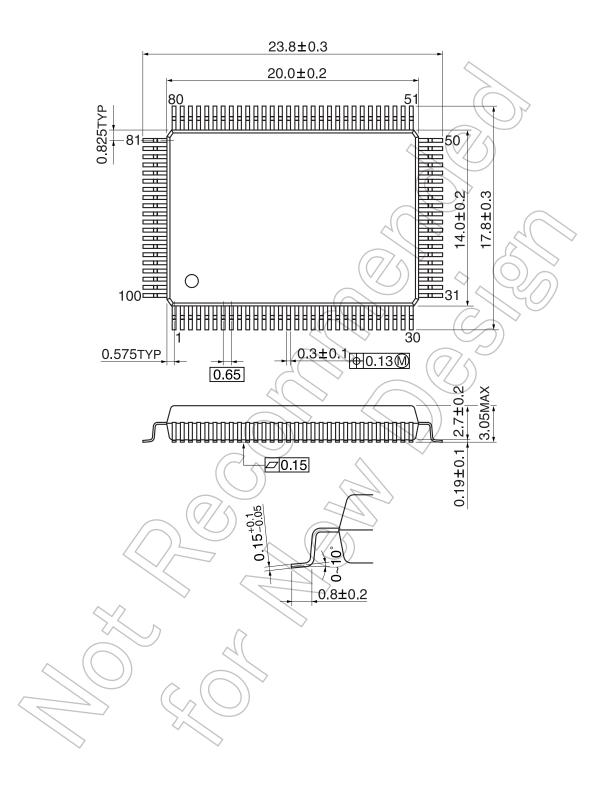
i. POP SR instruction

Please execute the POP SR instruction during DI condition.


### Interrupt

When you use interruption, be sure to set "1" as the bit 7 of a SIMC register.

# 8. Package Dimensions


## Package Name: LQFP100-P-1414-0.50F

Unit: mm



Package Name: QFP100-P-1420-0.65A

Unit: mm

