TB67S109A 使用上の注意点

概要

TB67S109A は、PWM チョッパ型 2 相バイポーラ駆動、クロックインデコーダ内蔵のステッピングモータドライバです。BiCD プロセスを採用し、出力耐圧 $50\,\mathrm{V}$ 、最大電流 $4.0\,\mathrm{A}$ を実現しています。

TOSHIBA

目次

概要	1
目次	2
1. 電源電圧	4
1.1. 電源電圧と動作範囲	4
1.2. 電源シーケンス	4
2. 出力電流	4
3. 制御入力	4
4. PWM 制御	5
5. ADMD 制御	7
6. スイッチング特性	10
7. ファンクション説明	10
8. 応用回路例	12
9. IC の消費電力	17
10. 許容損失	18
11. 参考フットパターン例	19
12. 基板図面	20
12.1. 入力関連	20
12.2. 主要部品関連	21
12.3. 基板オプション関連	22
記載内容の留意点	23
使用上のご注意およびお願い事項	23
使用上の注意事項	23
毎田上の図音占	24

図目次

义	1.1	電源電圧と動作範囲	4
义	4.1	OSCM 発振周波数	5
义	4.2	チョッピング周波数 (100 kHz の場合)	6
义	4.3	チョッピング周波数 (50 kHz の場合)	6
义	5.1	ADMD 制御	7
义	5.2	Auto Decay Mode の波形	7
义	5.3	ADMD 電流波形	8
図	5.4	ADMD 電流波形 (fchop 1 周期以上の場合)	8
义	5.5	ADMD 電流波形 (設定電流値が減少方向の場合)	9
図	5.6	ADMD 電流波形 (1 周期到達する場合)	9
义	6.1	スイッチング特性	10
义	8.1	応用回路例	12
义	8.2	過熱検出回路の不感帯時間	15
义	8.3	過電流検出回路の不感帯時間	16
义	10.1	許容損失	
义	11.1	QFN48 フットパターン	19
义	11.2	HTSSOP48 フットパターン	19
义	12.1	入力関連	20
义	12.2	主要部品関連	21
义	12.3	基板オプション関連	22
		表目次	
		スイッチング特性	
表	7.1	CLK のファンクション	10
		ENABLE のファンクション	
		CW/CCW のファンクション	
		DMODE のファンクション	
表	8.1	電源端子用コンデンサ推奨値	13
表	8.2	電流検出抵抗推奨値	13
表	8.3	モニタ端子用抵抗推奨値	14

1. 電源電圧

1.1. 電源電圧と動作範囲

TB67S109A をご使用頂くにあたり、IC へは VM, VREFA, VREFB の端子へ電圧印加が必要になります。 VM 電源電圧の絶対最大定格は 50~V ですが、動作範囲: $10\sim47~V$ の範囲内でご使用ください。

VREF 電圧の絶対最大定格は 5V ですが、動作範囲: $0\sim3.6V$ の範囲でご使用ください。

なお、VREF 電圧につきましては IC 内部レギュレータの電圧 (VCC) をご使用頂くことも可能です (ただし内部レギュレータの能力以上に電流を引くと、VCC のレギュレーションを保持できなくなる可能性があります。 VCC 電圧を分圧して VREF 電圧としてご使用される場合には、分圧抵抗の合計が $10 \ k\Omega$ 未満とならないようご注意願います)。

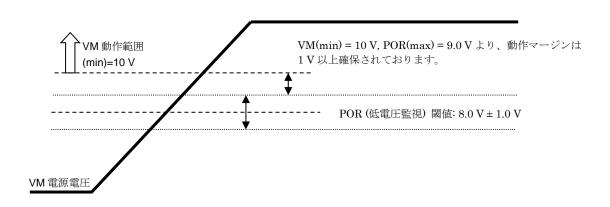


図 1.1 電源電圧と動作範囲

1.2. 電源シーケンス

TB67S109Aには、低電圧監視回路 (POR)を内蔵しているため電源投入/遮断時の手順は特に必要ありません。ただしVM電圧の不安定な、電源立ち上げ/立ち下げ(過渡領域)時にはモータ動作をOFF状態にすることを推奨致します。電源電圧が安定な状態になってから入力信号を切り替えてモータを動作させてください。

2. 出力電流

モータの電流は動作範囲: 3 A 以下でご使用ください。また使用条件(周囲環境温度や基板配線、放熱経路、励磁設計など)によって実際に使用可能な最大電流値が制限されます。動作環境下で熱計算/実評価の上最適な電流値に設定いただきますようお願い致します。

3. 制御入力

VM 電圧が供給されていない状態でロジック入力信号が入力された場合でも、信号入力による起電力は発生しない構成となっておりますが、「1.2. 電源シーケンス」記載の内容をご参考に電源投入前は入力信号も Low レベルに設定頂くことを推奨致します。

4. PWM 制御

TB67S109A は、OSCM 端子へ接続する外付部品の定数によって内部発振周波数 (fOSCM) と、それに伴うチョッピング周波数 (fchop) を調整頂くことができます。

• OSCM 発振周波数 (fOSCM) とチョッピング周波数 (fchop) の関係式

 $fOSCM = 1 / [0.56 \times {C \times (R1 + 500)}]$ fchop = fOSCM / 16

※ C, R1: OSCM 用外付け定数 (C = 270 pF, R1 = 5.1 k Ω で fOSCM は約 1.12 MHz(typ.)、 fchop は約 70 kHz(typ.) 相当になります)

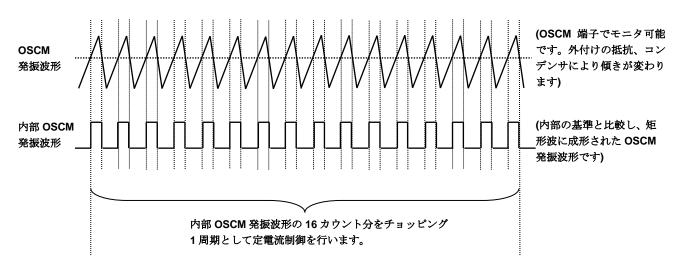


図 4.1 OSCM 発振周波数

5/25

チョッピング周波数を上げた場合、電流ステップの追従性が良くなり、モータをより高速で回転させることができます。ただし出力 MOSFET のスイッチング回数が、チョッピング周波数が低い場合と比べ増えるため、スイッチング損失/発熱量の増加につながる場合があります。

(例 1) チョッピング周波数 (fchop) = 100 kHz の場合

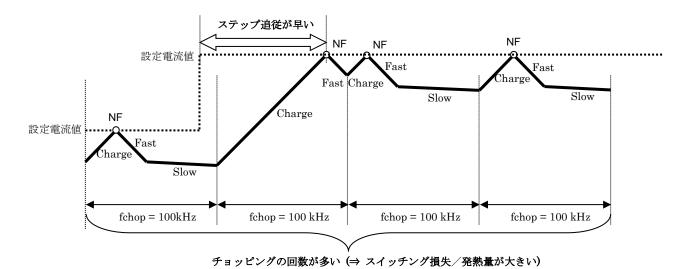
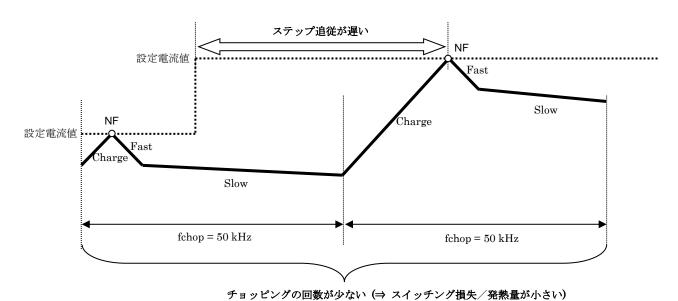



図 4.2 チョッピング周波数 (100 kHz の場合)

(例 2) チョッピング周波数 (fchop) = 50 kHz の場合

図 4.3 チョッピング周波数 (50 kHz の場合)

一般的には 70 kHz 程度の周波数を基準にし、50 kHz から 100 kHz 程度の周波数範囲で設定される事を推奨します。

5. ADMD 制御

定電流制御の際、電流のふれ幅(電流脈流分)を決定する、ADMD (Advanced Dynamic Mixed Decay) threshold の割合は、IC 固有の値です。

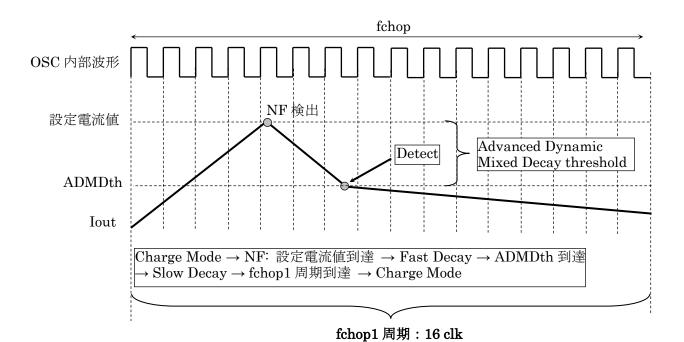
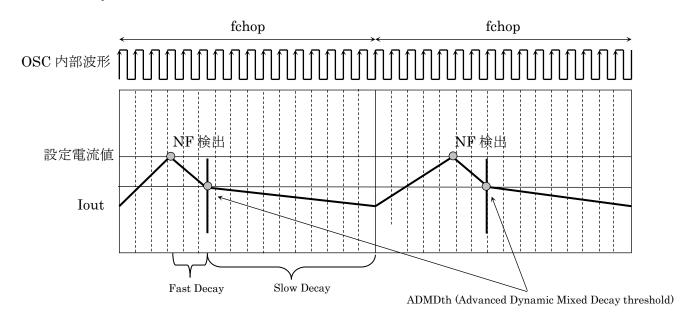



図 5.1 ADMD 制御

Auto Decay Mode の波形 (電流波形)

タイミングチャートは機能・動作を説明するため、単純化しています。

図 5.2 Auto Decay Mode の波形

ADMD 電流波形について

• 設定電流値が増加方向の場合

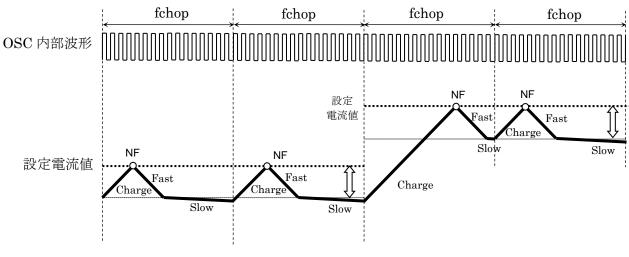


図 5.3 ADMD 電流波形

• Charge 期間が fchop 1 周期以上の場合

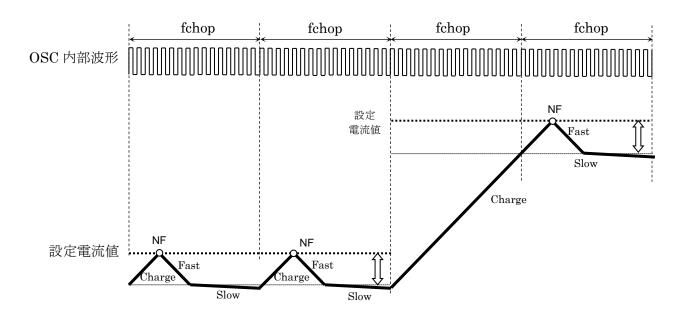


図 5.4 ADMD 電流波形 (fchop 1 周期以上の場合)

設定電流値 (ステップ) の切り替わりなど、次の設定値にモータ電流が到達するまでの期間 (Charge 期間) が、設定されたチョッピング周期 (fchop) の 1 サイクルを超える場合、次の fchop サイクルも Charge が継続し、NF 到達後に ADMD 制御へ移行します。

設定電流値が減少方向の場合

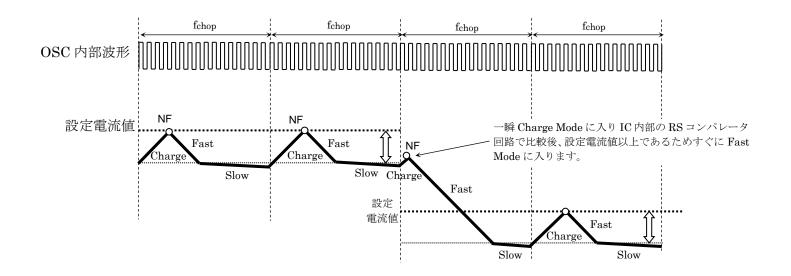


図 5.5 ADMD 電流波形 (設定電流値が減少方向の場合)

• Fast 期間中に fchop 1 周期到達する場合 (fchop 周期内に電流が ADMDth に到達しない)

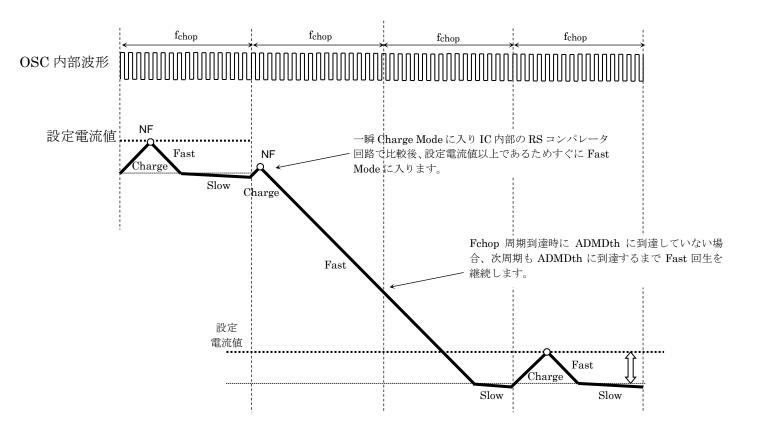


図 5.6 ADMD 電流波形 (1 周期到達する場合)

9 / 25 2015-12-17

6. スイッチング特性

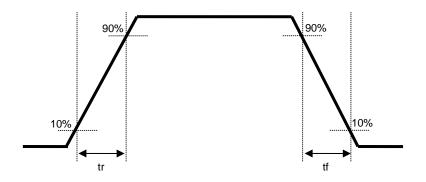


図 6.1 スイッチング特性

表 6.1 スイッチング特性

T_a = 25°C、VM = 24 V、無負荷

項目	標準値	単位		
タロ	体干胆	平位		
tr	80	ns		
tf	90	ns		

7. ファンクション説明

(1) CLK のファンクション

CLK 毎に電気角が1つ進みます。Upエッジで信号が反映されます。

表 7.1 CLK のファンクション

CLK 入力	ファンクション	
↑	アップエッジで次のステップへ	
\downarrow	- (前状態を保持)	

(2) ENABLE のファンクション

ステッピングモータを駆動する場合に、電流の ON/OFF を指定します。モータを OFF モード (ハイインピーダンス: \mathbf{Z}) で停止させる場合や、モータを駆動する場合には、この端子を制御することによって切り替えます。電源の立ち上げや立ち下げのときは、この端子を \mathbf{L} に固定してください。

表 7.2 ENABLE のファンクション

ENABLE 入力	ファンクション	
Н	出カトランジスタ ON 動作 (通常動作)	
L	出力トランジスタ動作 OFF (ハイインピーダンス: Hi-Z)	

10 / 25 2015-12-17

(3) CW/CCW および出力端子のファンクション (Charge スタート時の出力論理)

ステッピングモータの回転方向を切り替えます。CW/CCW の定義は、

CW: A 相電流が B 相電流より位相が 90° 進んで出力されます。 CCW: B 相電流が A 相電流より位相が 90° 進んで出力されます。

表 7.3 CW/CCW のファンクション

CW/CCW 入力	OUT (+)	OUT (-)
H: 正転 (CW)	Н	L
L: 逆転 (CCW)	L	Н

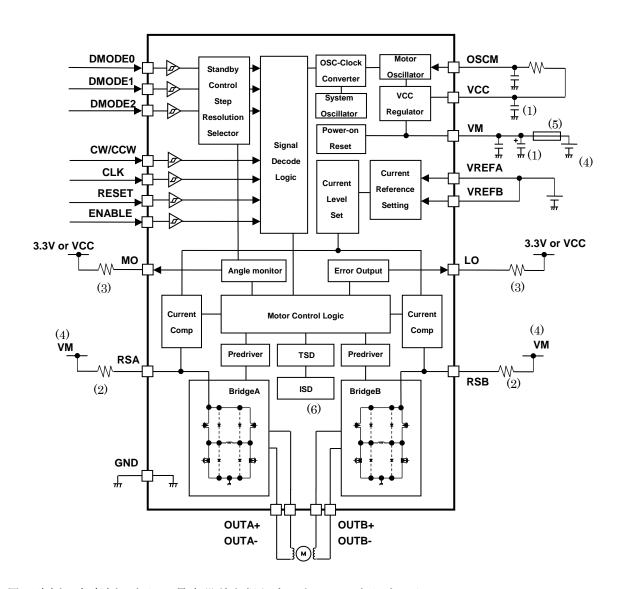

(4) DMODE (励磁設定) のファンクション

表 7.4 DMODE のファンクション

DMODE0	DMODE1	DMODE2	ファンクション	
L	L	L	STANDBY MODE (OSCM 停止、出力トランジスタ動作停止)	
L	L	Н	2 相励磁設定	
L	Н	L	1-2 相励磁(a)設定	
L	Н	Н	W1-2 相励磁設定	
Н	L	L	1-2 相励磁(b)設定	
Н	L	Н	2W1-2 相励磁設定	
Н	Н	L	4W1-2 相励磁設定	
Н	Н	Н	8W1-2 相励磁設定	

※ STANDBY MODE 解除後、内部回路が安定するまで信号入力を行わないようお願い致します (STANDBY 解除後 1 ms 経過を目安に信号入力いただきますようお願い致します)。 DMODE0, 1, 2 の変更は、イニシャル状態 (MO = Low) で RESET を Low とした後に変更することを推奨致します。

8. 応用回路例

応用回路例は参考例であり、量産設計を保証するものではありません。

図 8.1 応用回路例

12 / 25 2015-12-17

(1) 電源端子用コンデンサ

IC に印加頂く電源電圧安定化、およびノイズリジェクトのため各端子へ適切な値のコンデンサを接続してください。なお、コンデンサはできるだけ IC の近くに接続頂くことを推奨致します。特にセラミックコンデンサを IC 近傍に配置頂くことで高周波数の電源変動やノイズを抑えることに効果的です。

項目	品暗	標準値	推奨範囲
VM-GND 間	電解コンデンサ	100 μF	47 ~ 100 μF
	セラミックコンデンサ	0.1 μF	0.01∼1 µF
VCC-GND 間	セラミック/電解コンデンサ	0.1 μF	0.01∼1 µF
(VREF-GND 間)	セラミックコンデンサ	0.1 μF	0.01∼1 µF

表 8.1 電源端子用コンデンサ推奨値

- ※ VREF-GND 間はご使用環境に合わせ、必要に応じてコンデンサ接続をご検討ください。
- ※ モータ負荷条件や基板パターンなどによっては、各部品を省く、推奨値以外のコンデンサを使用する、 なども可能です。

(2) 電流検出抵抗

この IC では、VM-RS 端子間に電流検出抵抗を挿入頂くことで定電流検出閾値を設定致します。なお、 検出抵抗は IC の近くに接続頂くことを推奨します (基板の配線抵抗などの影響を抑えることができ、より 設定値に近い電流 (電流精度の高い状態) でモータを制御することができます)。

項目	品部	標準値	推奨範囲
VM-RS 間	チップ/リード抵抗	0.22 Ω (1.5~3.0 A)	0.22~1.0 Ω
VM-RS 間	チップ/リード抵抗	0.51 Ω (0~1.5 A)	0.22~1.0 Ω

表 8.2 電流検出抵抗推奨値

定電流検出閾値、Vref電圧、RS 検出抵抗の関係式は以下のとおりです。

$$lout(max) = Vref(gain) \times \frac{Vref(V)}{RRS(\Omega)}$$

Vref(gain): Vref 減衰比は 1/5.0(typ.) です。

なお、電流検出抵抗につきましては推奨範囲以外の定数でもご使用いただけます。ただし抵抗値が小さい場合、大きい場合には下記点をご注意ください。

- 検出抵抗を小さくすることで、内部の基準電圧と比較する VM-RS 間の差電圧が小さくなるため、設定電流値に対する誤差が大きくなる場合があります。
- 検出抵抗を大きくすることで、モータ動作時に検出抵抗にかかる電力が増える (P=I²×R) ため、抵抗値が小さいものと比較し同じ電流を流す場合は、電力許容値の大きなものを使う必要があります。

(3) モニタ端子用抵抗

この IC では MO, LO のオープンドレイン端子を 2 つ設けています。内部の MOSFET が OFF の場合、端子レベルとしてはハイインピーダンスとなります。正しくハイ/ローレベルで動作させるため、ご使用にあたっては $3.3\,\mathrm{V}$ or $5\,\mathrm{V}$ 電源へプルアップ抵抗を接続してください。

表 8.3 モニタ端子用抵抗推奨値

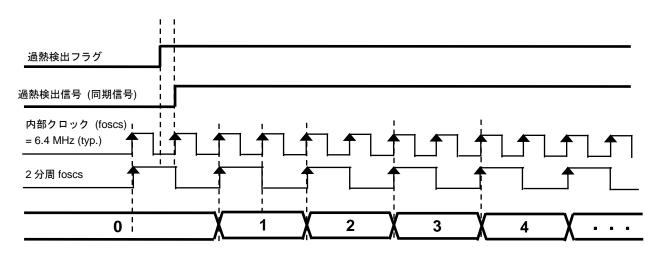
項目	品略	標準値	推奨範囲
MO,LO- (3.3V or VCC) 間	チップ/リード抵抗	10 kΩ	10 ∼ 100 kΩ

(4) 電源/GND 用配線パターン

特に VM, RS, GND パターンへは大電流が流れることが想定されるため、配線インピーダンスなどの影響を受けないよう十分な配線パターンを確保いただきますようお願い致します。また面実装パッケージ品は、IC 裏面の放熱板から基板 GND へ熱を逃がすことが極めて重要になるため、熱設計を考慮したパターン設計をしてください。

(5) ヒューズ

過電流の発生やICが故障した場合などで、継続的に大電流が流れ続けることの無いよう、電源ラインへは適切なヒューズを挿入の上ご使用ください。ICは、絶対最大定格を超えた使い方、誤った配線、および配線や負荷から誘起される異常パルスノイズなどが原因で破壊することがあり、この結果ICに大電流が流れ続けることで発煙や発火に至ることがあります。破壊における大電流の流出入を想定し、影響を最小限にするため、ヒューズの容量や溶断時間、挿入回路位置などの適切な設定が必要となります。


この IC には出力に過大な電流が流れたことを検出し、出力を OFF にする過電流検出回路 (ISD) が内蔵されていますが、あらゆる条件で IC の保護を保証するものではありません。異常検出回路動作後は速やかに過電流状態を解除するようお願いします。絶対最大定格を超えた場合など、ご使用方法や状況により過電流検出回路が正常に動作しないことや、動作する前に IC が破壊する可能性があります。また、過電流が流れ続けた場合、ご使用方法や状況によっては IC が発熱などにより破壊することがあります。過電流状態が継続した場合に、2 次破壊が懸念されることや、ノイズによる誤動作を防止するため、過電流検出回路に不感帯時間を持つことから、出力負荷条件によって必ずしも動作しないことが懸念されます。万が一のことを考慮し、異常状態が継続することを避けるため、電源へのヒューズ使用をお願い致します。

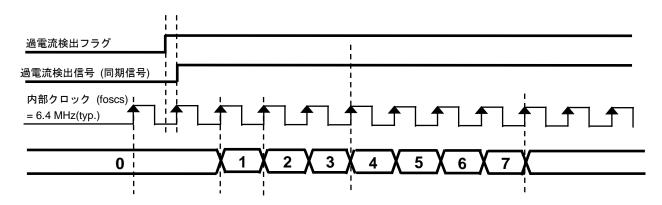
(6) 異常検出機能

• 過熱検出機能 (TSD)

IC のジャンクション温度が規定温度に達した場合、内部検出回路が働き、出力部を OFF 状態にします。スイッチングなどによる誤動作を避けるため、IC 内部で不感帯時間を設けております。 TSD の動作状態では、IC はスタンバイモードになります。過熱検出後は、電源の再投入または DMODE 端子でスタンバイモードに設定頂くことで解除することが可能です。 TSD 機能は IC が異常発熱した場合に検出する機能です。 TSD 機能を積極的に活用するようなご使用方法は避けてください。

過熱検出回路の不感帯時間

タイミングチャートは機能・動作を説明するため、単純化しています。


図 8.2 過熱検出回路の不感帯時間

過熱検出回路には、誤検出を防ぐために不感帯時間を設定しています。この不感帯時間は、内部のカウンタを IC 内の固定周波数 (6.4 MHz(typ.)) でカウントアップすることで設定しています。

• 過電流検出機能 (ISD)

モータ出力に規定値以上の電流が流れた場合、内部検出回路が働き、出力部を OFF 状態にします。スイッチングなどによる誤動作を避けるため、IC 内部で不感帯時間を設けております。ISD の動作状態では、IC はスタンバイモードになります。過電流検出後は、電源の再投入または DMODE 端子でスタンバイモードに設定頂くことで解除することが可能です。

過電流検出回路の不感帯時間

タイミングチャートは機能・動作を説明するため、単純化しています。

図 8.3 過電流検出回路の不感帯時間

過電流検出回路には、スイッチング時のスパイク電流による誤検出を防ぐために、不感帯時間を設定しています。

この不感帯時間は、内部のカウンタを IC 内の固定周波数 (6.4 MHz (typ.)) でカウントアップすることで設定しています。

※ foscs = 6.4 MHz(typ.) internal clock $1/\text{foscs} \times 7 \sim 8 \text{ clk}$ 相当 $(1.09 \sim 1.25 \text{ } \mu\text{s})$

9. IC の消費電力

IC が消費する電力については、大枠、出力部のトランジスタが消費する電力とロジック部の消費する電力の2つの部分に分けることができます。

P(total) = P(out) + P(bias)

 モータ出力部の消費電力 出力部の電力 (P(out)) は H-Bridge 上下の MOSFET によって消費されます。

P(out) = H-Bridge \bigotimes × Iout (A) × VDS (V) = 2 (ch) × Iout (A) × Iout (A) × Ron (Ω)......(1)

モータ出力の電流波形が理想波形 (2 相励磁/矩形波) になった場合に、出力部の平均電力は以下のとおり計算できます。

Ron =
$$0.49\Omega$$
, Iout (peak: Max) = 1.5 A, VM = 24 V とすると下記のように計算できます。 P(out) = 2 (ch) × 1.5 (A) × 1.5 (A) × 0.49 (Ω)......(2) = 2.205 (W)

• ロジックと IM 系の消費電力 ロジックと IM 系の消費電力は動作時と停止時に分けて計算します。

I (IM3) = 5.5 mA (typ.): 動作時 I (IM2) = 3.5 mA (typ.): 停止時

出力系は、VM (24V) に接続されています。(出力系: VM に接続される回路により消費される電流と出力段がスイッチングすることにより消費される電流の合計)

消費電力は以下のように計算できます。

$$P(bias) = 24 \text{ (V)} \times 0.0055 \text{ (A)}.$$
 (3)
= 0.132 (W)

• 消費電力

計算式(2)、(3)の値から最終的な消費電力 P(total)は、以下のように計算できます。

P(total) = P(out) + P(bias) = 2.205 + 0.132 = 2.337 (W) となります。

なおスタンバイは解除され、モータ非動作時(動作待機時)の消費電力は以下のように計算できます。

$$P = 24 \text{ (V)} \times 0.0035 \text{ (A)} = 0.084 \text{ (W)}$$

なお実際のモータ動作では、電流ステップの遷移時間や定電流 PWM によるリップルなどによって平均電流は計算値より低くなります。上記計算値をご参考に、基板などにおける熱設計に関して十分実装評価を行った上、マージンをもって設定いただきますようお願いします。

10. 許容損失

周囲環境温度 (T_a) とジャンクション温度 (T_j) 、およびジャンクションから周囲温度間の熱抵抗 $(R_{th(j-a)})$ の関係式は以下のとおりです。

$$T_j = T_a + P \times R_{th(j-a)}$$

(例) 4 層基板実装時($R_{th(j-a)}$ = 25°C/W と仮定)、 T_a = 25°C、P(total) = 2.337 W (I_{out} = 1.5 A、2 相励磁) T_j = 25 (°C) + 25 (°C/W) × 2.337 (W) = 83.425°C となります。

(ご参考) 許容損失/周囲環境温度の関係について

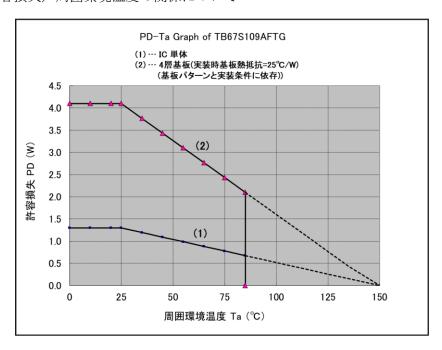


図 10.1 許容損失

※ T_a , $R_{th(j-a)}$, P(total) はご使用される環境によって依存しますのでご注意願います。また、周囲環境温度が高い場合、許容可能な消費電力はその分小さくなります。

11. 参考フットパターン例

(1) QFN48 フットパターン例 (単位: mm)

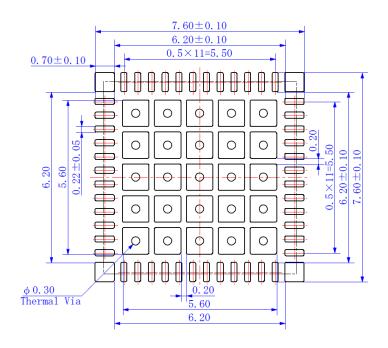


図 11.1 QFN48 フットパターン

(2) HTSSOP48 フットパターン例 (単位: mm)

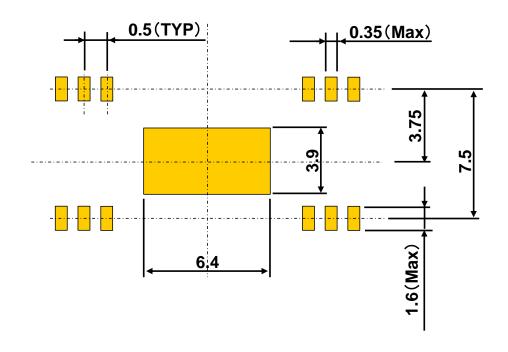


図 11.2 HTSSOP48 フットパターン

フットパターン例は参考例であり、量産設計を保証するものではありません。

実装基板の寸法設定の際には、半田ブリッジ/半田接合強度/基板製作時のパターン精度/IC搭載機の搭載精度などを十分考慮頂き、最適パターンを決定ください。

12. 基板図面

12.1. 入力関連

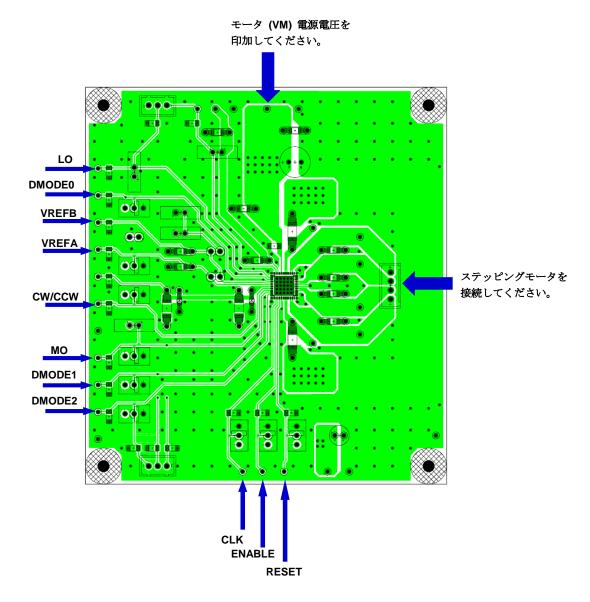


図 12.1 入力関連

各電源、制御信号を上図のとおり入力してください。

20 / 25 2015-12-17

12.2. 主要部品関連

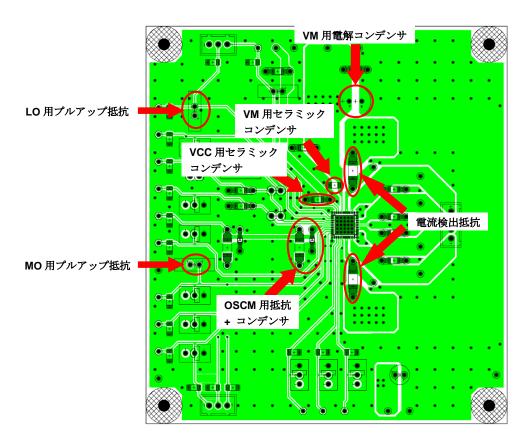


図 12.2 主要部品関連

「8. 応用回路例」を参考に各部品を接続してください。

12.3. 基板オプション関連

してください。

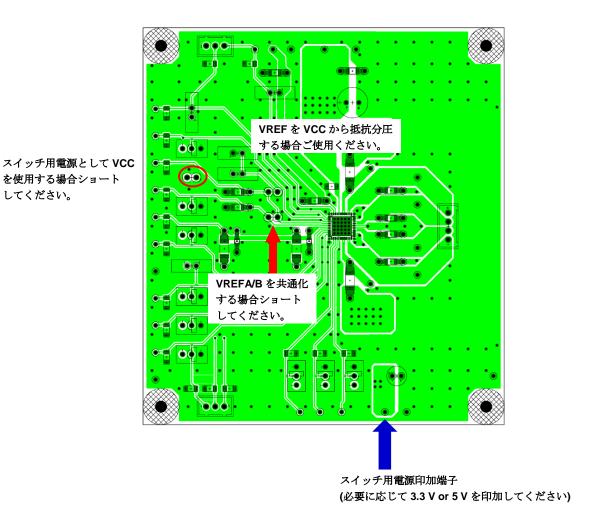


図 12.3 基板オプション関連

2015-12-17 22 / 25

記載内容の留意点

1. ブロック図

ブロック図内の機能ブロック/回路/定数などは、機能を説明するため、一部省略・簡略化している場合があります。

2. 等価回路

等価回路は、回路を説明するため、一部省略・簡略化している場合があります。

- 3. タイミングチャート タイミングチャートは機能・動作を説明するため、単純化している場合があります。
- 4. 応用回路例 応用回路例は、参考例であり、量産設計に際しては、十分な評価を行ってください。

また、工業所有権の使用の許諾を行うものではありません。

5. 測定回路図

測定回路内の部品は、特性確認のために使用しているものであり、応用機器の誤動作や故障が発生しないことを保証するものではありません。

使用上のご注意およびお願い事項

使用上の注意事項

- (1) 絶対最大定格は複数の定格の、どの1つの値も瞬時たりとも超えてはならない規格です。 複数の定格のいずれに対しても超えることができません。 絶対最大定格を超えると破壊、損傷および劣化の原因となり、破裂・燃焼による傷害を負うこと があります。
- (2) デバイスの逆差し、差し違い、または電源のプラスとマイナスの逆接続はしないでください。電流や消費電力が絶対最大定格を超え、破壊、損傷および劣化の原因になるだけでなく、破裂・燃焼により傷害を負うことがあります。なお、逆差しおよび差し違いのままで通電したデバイスは使用しないでください。
- (3) 過電流の発生や IC の故障の場合に大電流が流れ続けないように、適切な電源ヒューズを使用してください。IC は絶対最大定格を超えた使い方、誤った配線、および配線や負荷から誘起される異常パルスノイズなどが原因で破壊することがあり、この結果、IC に大電流が流れ続けることで、発煙・発火に至ることがあります。破壊における大電流の流出入を想定し、影響を最小限にするため、ヒューズの容量や溶断時間、挿入回路位置などの適切な設定が必要となります。
- (4) モータの駆動など、コイルのような誘導性負荷がある場合、ON 時の突入電流や OFF 時の逆起電力による負極性の電流に起因するデバイスの誤動作あるいは破壊を防止するための保護回路を接続してください。IC が破壊した場合、傷害を負ったり発煙・発火に至ったりすることがあります。保護機能が内蔵されている IC には、安定した電源を使用してください。電源が不安定な場合、保護機能が動作せず、IC が破壊することがあります。IC の破壊により、傷害を負ったり発煙・発火に至ったりすることがあります。
- (5) パワーアンプおよびレギュレータなどの外部部品(入力および負帰還コンデンサなど)や負荷部品(スピーカなど)の選定は十分に考慮してください。 入力および負帰還コンデンサなどのリーク電流が大きい場合には、IC の出力 DC 電圧が大きくなります。この出力電圧を入力耐電圧が低いスピーカに接続すると、過電流の発生や IC の故障によりスピーカの発煙・発火に至ることがあります (IC 自体も発煙・発火する場合があります)。 特に出力 DC 電圧を直接スピーカに入力する BTL (Bridge Tied Load) 接続方式の IC を用いる際は留意が必要です。

使用上の留意点

(1) 過電流検出回路

過電流検出回路 (ISD) はどのような場合でも IC を保護するわけではありません。動作後は、速やかに過電流状態を解除するようお願いします。

絶対最大定格を超えた場合など、ご使用方法や状況により、過電流検出回路が正常に動作しなかったり、動作する前に IC が破壊したりすることがあります。また、動作後、長時間過電流が流れ続けた場合、ご使用方法や状況によっては、IC が発熱などにより破壊することがあります。

(2) 過熱検出回路

過熱検出回路 (TSD) は、どのような場合でも IC を保護するわけではありません。動作後は、速やかに過熱状態を解除するようお願いします。

絶対最大定格を超えて使用した場合など、ご使用法や状況により、過熱検出回路が正常に動作しなかったり、動作する前に IC が破壊したりすることがあります。

(3) 放熱設計

パワーアンプ、レギュレータ、ドライバなどの、大電流が流出入する IC の使用に際しては、適切な放熱を行い、規定接合温度 (Tj) 以下になるように設計してください。これらの IC は通常使用時でも、自己発熱をします。IC 放熱設計が不十分な場合、IC の寿命の低下・特性劣化・破壊が発生することがあります。また、IC の発熱に伴い、周辺に使用されている部品への影響も考慮して設計してください。

(4) 逆起電力

モータを逆転やストップ、急減速を行った場合に、モータの逆起電力の影響でモータから電源へ電流が流れ込みますので、電源の Sink 能力が小さい場合、IC の電源端子、出力端子が定格以上に上昇する恐れがあります。逆起電力により電源端子、出力端子が定格電圧を超えないように設計してください。

24 / 25

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this
 document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY
 HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF
 HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for
 specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities,
 equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic
 signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to
 electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO
 LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR
 PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER,
 INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING
 WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2)
 DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR
 INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
 ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please
 use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without
 limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF
 NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.