1.6kW Server Power Supply

Reference Guide

RD001-RGUIDE-02

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

Table of Contents

1.	Introduction
2.	Specification4
2.1.	Specification
2.2.	Outline
2.3.	Block Diagram6
2.4.	Bill of Material7
2.5.	Printed Wiring Board (PWB) Layout12
2.J.	
	Operating Procedure
3.	Operating Procedure
3. 3.1. 3.2.	Operating Procedure
3. 3.1. 3.2. 3.3.	Operating Procedure

1. Introduction

This reference guide describes the specification, operating method and performance of the 1.6 kW server power supply (this power supply). This power supply provides 1.6 kW power at 12 VDC. The AC input (90 to 264 V) is converted into 12 VDC by a semi-bridgeless PFC circuit and an isolated phase-shift full-bridge (PSFB) circuit. This power supply contains an ORing circuit and can be used for the designing of a power supply that requires an N+1 redundant operation. This power supply is designed to fit in a 1U rack shelf and is suitable for power supply applications of various sizes and purposes, including a general 1U server power supply. Incorporating Toshiba's fast-switching MOSFETs as switching devices, this power supply provides high efficiency.

2. Specification

2.1. Specification

The following table is the input and output specification of this power supply.

Table 2.1.1 1.6kW Sever Power Supply Specification

Parameter	Condition	Min	Tup	Max	UNIT
Input characteristics	Condition	1*1111	Тур.	IMAX	UNIT
AC input voltage (rms)		90		264	V
		90		-	v
AC input current (rms)	VinAC = 90 V, Iout = 66.7 A			12	A
AC input frequency		47		63	Hz
Primary side 12V		11.4	12.0	12.6	V
power supply voltage					
Primary side 12V				400	mA
power supply current					
Secondary side 12V		11.4	12.0	12.6	V
power supply voltage					
Secondary side 12V				400	mA
power supply current					
_	cuit output characteristics (inte	rnal chara			
Output voltage			380		V
Output current	VinAC = 230 V		4.7		A
	VinAC = 115 V		2.4		
Maximum output	VinAC = 230 V			1.6	kW
power	VinAC = 115 V			0.8	kW
Switching frequency			60		kHz
Output characteristics (PSFB circuit)				
Output voltage		11.4	12.0	12.6	V
Output current	VinAC = 230 V			133	Α
	VinAC = 115 V			66.7	Α
Maximum output	VinAC = 230 V			1.6	kW
power	VinAC = 115 V			0.8	kW
Output ripple voltage	Ta=25℃			200	mV
Switching frequency			60		kHz

2.2. Outline

The following image shows this power supply.

Fig. 2.2.1 1.6kW Server Power Supply

Outline size

307mm x 133mm x 43mm(including the base plate under PCB and the cover plate over heatsink)

2.3. Block Diagram

The following is the block diagram of this power supply. It is simplified to make it easy to understand the entire circuit from the AC input section to the 12 VDC output section. Note, therefore, that it differs from the actual circuit. Refer to RD001-SCHEMATIC-01 for the actual circuit diagram. This power supply requires external auxiliary 12 V power supplies on both the primary and secondary sides. To develop an actual product, it is necessary to generate 12 V power from an AC source according to its specification.

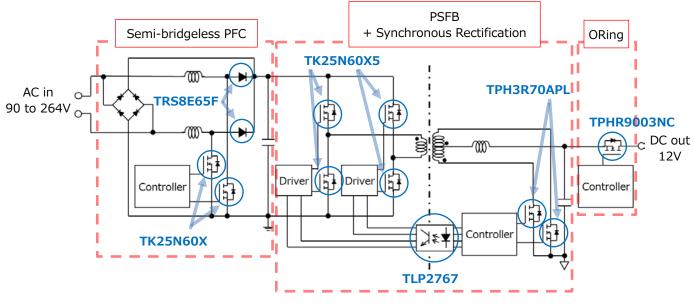


Fig. 2.3.1 Block Diagram

2.4. Bill of Material

The following table is a bill of material for this power supply.

Table 2.4.1 Bill of Material

Item No.	Designator	Quantity	Value	Part Number	Manufacturer	Description	Package	Not Mounted
1	C1, C7	2	330 uF	450MXH330	RUBYCON	Aluminum Electrolytic, 450 V, ±20%		
2	C101	1	220 pF	DE2B3KY221KA3BM02F	MURATA	Disc Ceramic, 250 V, ±10 %		
3	C18, C19, C23, C42, C47, C71-C74, C92- C98, C100, C102	18	100 nF			Ceramic, 25 V, ±10 %	1005	
4	C21	1	18 nF			Ceramic, 25 V, ±10 %	1005	
5	C22	1	1800 pF			Ceramic, 50 V, ±10 %	1005	
6	C24, C55, C58, C60-C62, C67, C70, C99	9	1 uF			Ceramic, 25 V, ±20 %	1005	
7	C25	1	150 nF			Ceramic, 25 V, ±10 %	1005	
8	C26, C59, C75, C76	4	2.2 nF			Ceramic, 50 V, ±10 %	1005	
9	C27, C51	2	220 nF			Ceramic, 25V, ±10 %	1005	
10	C2-C6	5	1500 uF	25ZLQ1500MEFC10X25	RUBYCON	Aluminum Electrolytic, 25 V, ±20 %		
11	C30	1	470 nF	LE474-M	ΟΚΑΥΑ	Polypropylene Film, 275 V, ±10 %		
12	C31, C32, C63, C64	4	2.2 nF	DE2E3KY222MN3AM02F	MURATA	Disc Ceramic, 250 V , ±20 %		
13	C33, C65	2	2.2 uF	890324026034CS	WURTH	Polypropylene Film, 275 V, ±10 %		
14	C34, C36	2	4.7 pF			Ceramic, 50 V, ±0.1 pF	1005	
15	C35, C37	2	47 nF			Ceramic, 25 V, ±10 %	1005	
16	C38, C39	2	1.2 nF			Ceramic, 50 V, ±10 %	1005	
17	C40	1	120 nF			Ceramic, 25 V, ±10 %	1608	
18	C41	1	1 uF			Ceramic, 25 V, ±10 %	2012	
19	C43, C45, C80, C81	4	1 nF			Ceramic, 50 V, ±10 %	1005	
20	C44, C46	2	3.3 nF			Ceramic, 25 V, ±10 %	1005	
21	C48	1	22 uF			Ceramic, 25 V, ±10 %	3216	
22	C49	1	470 nF			Ceramic, 25 V, ±10 %	1005	
23	C50	1	2.7 nF			Ceramic, 50 V, ±10 %	1005	
24	C52	1	220 nF	LE224-M	ΟΚΑΥΑ	Polypropylene Film, 275 V, ±10 %		
25	C66	1	10 uF			Ceramic, 25 V, ±20 %	1608	
26	C78, C79	2	100 pF	DE2B3KY101KA3BM02F	MURATA	Disc Ceramic, 250 V, ±10 %		
27	C82-C91	10	10 uF			Ceramic, 25 V, ±10 %	3216	
28	fan1	1		9CRB0412P5S201	SANYO DENKI	Counter Rotating FAN		
29	CN1	1	15 A	AC-P05CP24	ECHO ELECTRIC	250 V		
30	CN10	1		A2-2PA-2.54DSA	HIROSE			
31	CN2-CN5	4	3 A	A2-1PA-2.54DSA	HIROSE	200 V		

Item No.	Designator	Quantity	Value	Part Number	Manufacturer	Description	Package	Not Mounted
32	CN6, CN7	2		OP-1100	OSADA			
33	CN8	1		5045-02A	MOLEX			
34		1		51191-0200	MOLEX		Housing (for CN8)	
35	D1, D2	2		TRS8E65F	TOSHIBA			
36	D12-D14, D30-D33	7		1SS352(TPH3,F)1-1E1A	TOSHIBA			
37	D16-D19	4		CMF01	TOSHIBA			
38	D20, D21, D34, D35	4		CMH01	TOSHIBA			
39	D22-D29	8		TBAT54	TOSHIBA			
40	D3	1		GSIB2580	VISHAY			
41	D36-D47, D51-D58	20		CUS01(TE85L,Q)	TOSHIBA			
42	D48	1		BAS316	TOSHIBA			
43	D50	1		MMSZ4699T1G	ON Semiconductor			
44	D8, D9	2		CRG04	TOSHIBA			
45	F1	1	15 A	0215015.MXEP	Littelfuse			
46	FB1, FB2	2		FBMJ3216HS800-T	TAIYO YUDEN			
47	HS1-HS4	4		HOLE2.8	-		Through Hole	-
48	IC1	1		HF81	MPS			
49	IC10	1		UCC28950PWR	TEXAS			
50	IC11	1		TLV70433DBVT	TEXAS			
51	IC13-IC16	4		TLP2767	TOSHIBA			
52	IC2, IC6, IC7	3		UCC27524AD	TEXAS			
53	IC20	1		ALKG8210	PANASONIC			
54	IC21-IC24	4		TC7SZ04FU	TOSHIBA			
55	IC3	1		UCC28070A	TEXAS			
56	IC4, IC5	2		UCC27714DR	TEXAS			
57	IC8	1		TPS2412D	TEXAS			
58	L1, L2	2	230 uH/ 350 uH (Rated Current/Id c=0)	THN23/14V-08231	ТМР		29 × 18	
59	L11, L12	2	13 mH	SCF27-10-1300	TOKIN	10 A	34.5 × 25.5	
60	L3	1	Terminals are shorted by 22AWG Cable			22AWG Cable		
61	L5, L6	2	3.5 uH	TR-AG1341	TOKYO SEIDEN	90 A, ±25 %		
62	Q1, Q2	2		TK25N60X	TOSHIBA			
63	Q15-Q24	10		TPHR9003NC	TOSHIBA			
64	Q3-Q6	4		TK25N60X5	TOSHIBA			
65	Q7-Q14, Q25-Q28	12		TPH3R70APL	TOSHIBA			

Item No.	Designator	Quantity	Value	Part Number	Manufacturer	Description	Package	Not Mounted
66	R1, R89, R91, R92, R94, R95	6	1 M			100 mW, ±5 %	1608	
67	R100	1	124 k			100 mW, ±1 %	1608	
68	R101	1	187 k			100 mW, ±1 %	1608	
69	R102	1	30 k			100 mW, ±1 %	1608	
70	R114, R115	2	2.2			500 mW, ±5 %	3225	
71	R116, R118, R120-R125	8	1			100 mW, ±5 %	1608	
72	R126, R127, R132-R137	8	0			500mW	3216	
73	R138	1	10_5W- FUSE	RF-5-4 10ΩJ	TAKMAN			
74	R149-R152, R227, R228	6	680			100 mW, ±1 %	1608	
75	R178, R179	2	300 k			1 W, ±5 %	6432	
76	R18, R20, R23, R24, R212-R215	8	3.01			500 mW, ±1 %	3216	
77	R185	1	20			250 mW, ±5 %	3216	
78	R19, R21, R22, R25, R28, R29, R31, R33, R71, R73	10	10 k			100 mW, ±5 %	1608	
79	R194-R197	4	620			100 mW, ±1 %	1608	
80	R199	1	680			1 W, ±1 %	6432	
81	R2, R90	2	23.2 k			100 mW, ±1 %	1608	
82	R42	1	9.09 k			100 mW, ±1 %	1608	
83	R43-R45	3	2.37 k			100 mW, ±1 %	1608	
84	R62, R69, R110-R113, R117, R153-R157, R160, R163, R166, R204-R206, R216-R219	22	0			100 mW	1608	
85	R47	1	8.25 k			100 mW, ±1 %	1608	
86	R49	1	22.6			100 mW, ±1 %	1608	
87	R51, R52	2	22 k			100 mW, ±1 %	1608	
88	R53, R104, R186-R193	10	100 k			100 mW, ±5 %	1608	
89	R54	1	15 k			100 mW, ±5 %	1608	
90	R56	1	127 k			10 0mW, ±1 %	1608	
91	R57	1	100 k			100 mW, ±1 %	1608	
92	R6	1	2.2			100 mW, ±5 %	1608	

Item No.	Designator	Quantity	Value	Part Number	Manufacturer	Description	Package	Not Mounted
93	R60	1	47 k			100 mW, ±5 %	1608	
94	R61	1	330			125 mW, ±5 %	1608	
95	R63, R130, R172, R173	4	100			125 mW, ±5 %	1608	
96	R64, R65, R66, R98, R99	5	6.8 k			100 mW, ±5 %	1608	
97	R67, R81, R85, R169, R170	5	1 k			125 mW, ±5 %	1608	
98	R7, R8	2	33			500 mW, ±5 %	3225	
99	R72, R74, R108, R109	4	5.11			500 mW, ±1 %	3216	
100	R75	1	49.9			125 mW, ±1 %	1608	
101	R76, R105	2	100 k			250 mW, ±1 %	3216	
102	R77, R106	2	1 k			3 W, ±5 %		
103	R79, R80	2	75 k			500 mW, ±1 %	3225	
104	R82, R86	2	1.78 k			100 mW, ±1 %	1608	
105	R83, R87	2	3.56 k			100 mW, ±1 %	1608	
106	R9	1	2 k			100 mW, ±5 %	1608	
107	R93, R103	2	115 k			100 mW, ±1 %	1608	
108	R96	1	3.9 k			100 mW, ±5 %	1608	
109	R97	1	3.65 k			100 mW, ±1 %	1608	
110	RV1	1	560 V	TND14V-561KB00AAA0	NIPPON CHEMICON			
111	Т2, Т3	2	1:200	P009-203	PONY			
112	T4	1	1:100	PE-63587	PULSE			
113	т5, т6	2	20:1:1	TR-AN0536	TOKYO SEIDEN			
114	TP1-TP15, TP17-TP40, TP44	40		НК-2-S	MAC8			
115	TP41, TP42	2		LC-22-S-BLACK	MAC8			
116	TP43, TP45	2		LC-22-S-WHITE	MAC8			
901	C20, C77	2	100 pF			Ceramic, 50 V, \pm 5 %	1608	Not Mounted
902	C53, C54, C56, C57	4	220 pF			Ceramic, 50 V, ±5 %	1608	Not Mounted
903	D49	1		CRZ15	TOSHIBA			Not Mounted
904	R46, R48, R55, R58, R59, R70, R171, R174-R177, R180-R182, R184, R198, R207-R209, R220-R225	25	0			100 mW	1608	Not Mounted
905	R50	1	825 k			100 mW, ±1 %	1608	Not Mounted
906	R78, R107, R128, R129	4	1 k			3 W, ±5 %		Not Mounted

Item No.	Designator	Quantity	Value	Part Number	Manufacturer	Description	Package	Not Mounted
907	R200-R203	4	680			1W,±1%	6432	Not Mounted
908	R210, R211	2	6.8 k			100 mW, ±5 %	1608	Not Mounted

2.5. Printed Wiring Board (PWB) Layout

The following image shows the layout of Layer 1 of the PWB of this power supply.

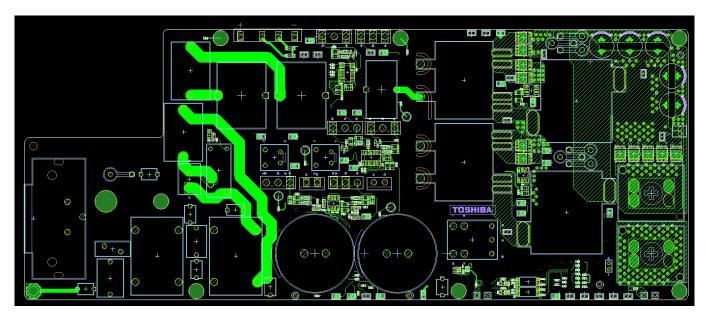
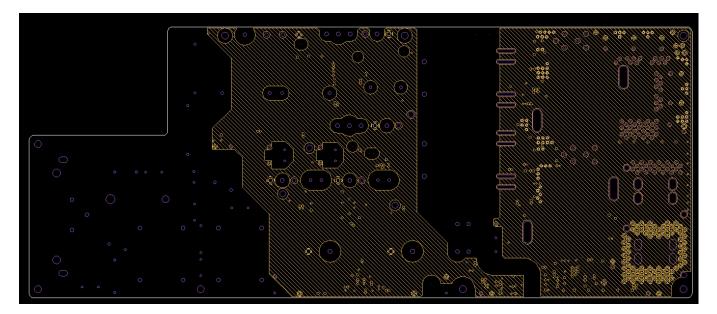
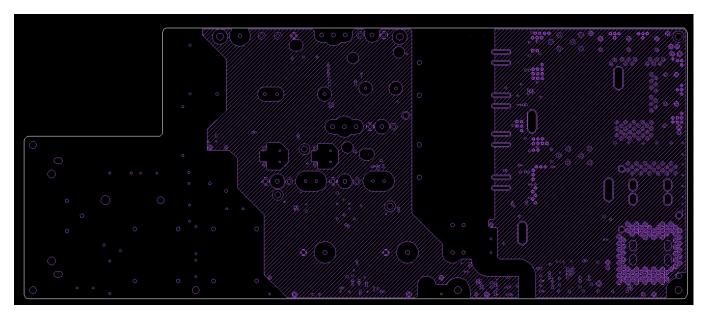



Fig. 2.5.1 Layer1

The following image shows the layout of Layer 2 of the PWB of this power supply.

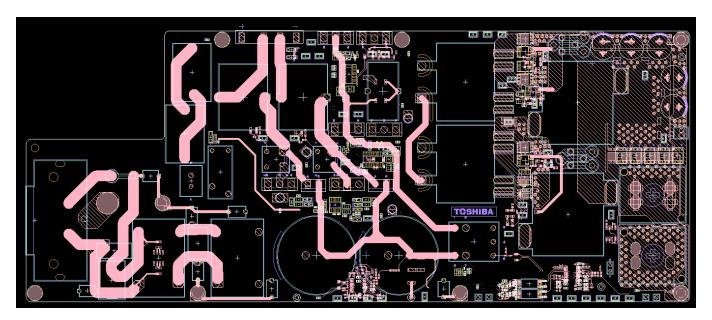
Fig. 2.5.2 Layer2

The following image shows the layout of Layer 3 of the PWB of this power supply.


Fig. 2.5.3 Layer3

The following image shows the layout of Layer 4 of the PWB of this power supply.

Fig. 2.5.4 Layer4



The following image shows the layout of Layer 5 of the PWB of this power supply.

Fig. 2.5.5 Layer5

The following image shows the layout of Layer 6 of the PWB of this power supply.

Fig. 2.5.6 Layer6

3. Operating Procedure

This section describes the operating procedure of this power supply.

3.1. Connection with External Equipment

Fig. 3.1.1 shows the connections of this power supply with external equipment. Red rectangles indicate terminals connected to external power supplies. Connect an AC plug to the AC inlet. Connect the 12 V input terminal on the primary side and the 12 V input terminal on the secondary side to external power supplies using jumpers. Choose appropriate power supplies, jumpers, cables and connectors that meet the specification shown in Section 2.1, "Specification." Blue rectangles indicate 12 V output terminals. A load is connected to these terminals as needed. Choose an appropriate load, cables and connectors that meet the specification shown in Section 2.1, "Specification 2.1, "Specification."

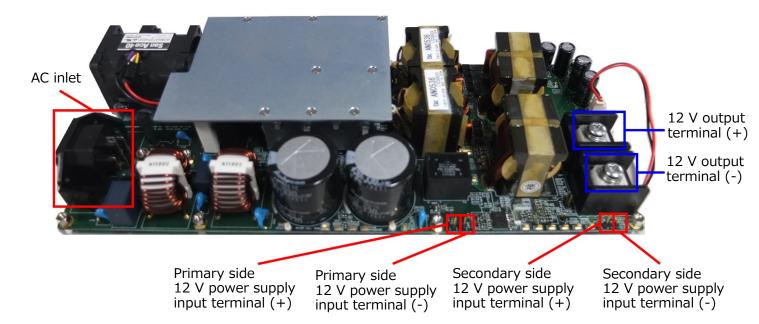


Fig. 3.1.1 Terminals for External Equipment

3.2. Power-Up Procedure

For power-up, make sure that the 12 V output, the PFC output, and the 12 V power supply outputs on the primary and secondary sides are at 0 V and follow the steps shown below. Allow an interval of at least 500 ms between each step.

- 1. Turn on the AC input power.
- 2. Turn on the 12 V power supply on the primary side.
- 3. Turn on the 12 V power supply on the secondary side.

If this sequence is not followed, components inside this power supply can be permanently damaged by an inrush current from the AC power.

For power-off, follow the steps shown below. Allow an interval of at least 500 ms between each step. Note that, even after power-off, electric shock hazards exist because electric charge remains in capacitors.

- 1. Turn off the 12 V power supply on the secondary side.
- 2. Turn off the 12 V power supply on the primary side.
- 3. Turn off the AC input power.

3.3. Precautions for Evaluation (Electric Shock, Burn Injury, etc.)

You can receive an electric shock if you touch the primary side while AC power is being applied to this power supply. Don't touch any portion on the primary side regardless of the status of the 12 V power supplies on the primary and secondary sides while AC power is being applied to this power supply. The red dashed line in Fig. 3.3.1 indicates the boundary between the primary and secondary sides. Be careful when measuring waveforms. You can also receive an electric shock even after power-off because electric charge remains in the PFC output capacitor and other capacitors. Make sure that the voltage at each portion of the PCB is low enough before you touch it.

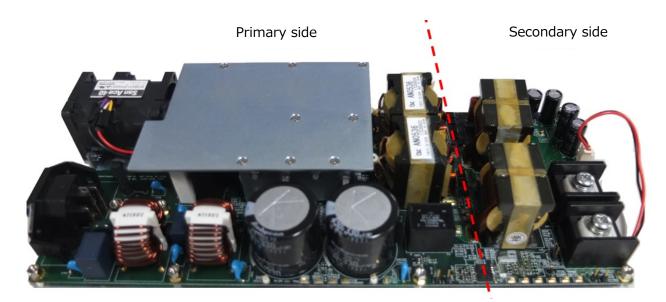
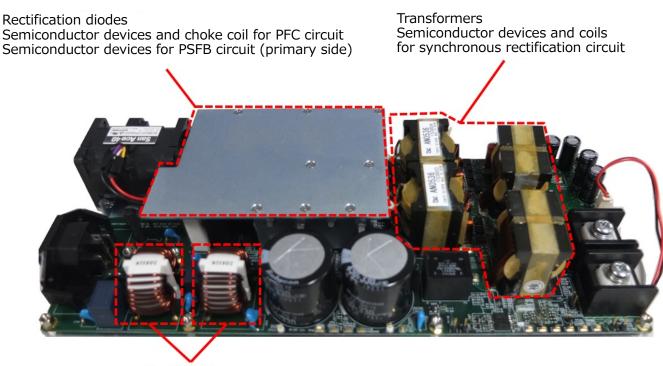
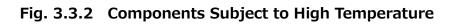




Fig. 3.3.1 Primary Side Area / Secondary Side Area

Semiconductor devices, transformers and other components on printed wiring board can heat up while the 1.6 kW server power supply is on. The portions highlighted by red dashed lines in Fig. 3.3.2 dissipate much heat. Don't touch these areas while the power supply is on. Doing so causes a burn hazard.

Common mode choke coil

4. Performance

This section describes the efficiency of this power supply.

4.1. Efficiency

This power supply requires external 12 V power supplies on both the primary and secondary sides. The results of efficiency measurement shown below were calculated, assuming the efficiencies of 12 V power supplies on the primary and secondary sides are 50%. Note that, if the efficiencies of the 12 V power supplies in an actual product are less than 50%, the actual efficiency will be lower than shown below. Obviously, if the 12 V power supplies in an actual product have an efficiency of more than 50%, the actual efficiency will be higher than shown below. This power supply contains redundancy with an ORing circuit at the output stage. If a non-redundant configuration is adopted, the ORing circuit is unnecessary. If the ORing circuit is deleted, the actual efficiency will be higher than the results shown below because a power loss caused by the ORing circuit loss disappears.

Measurements were taken at VinAC = 115 V and VinAC = 230 V. The maximum output power at VinAC = 115 V is 800 W, and the maximum output power at VinAC = 230 V is 1.6 kW according to this power supply specification.

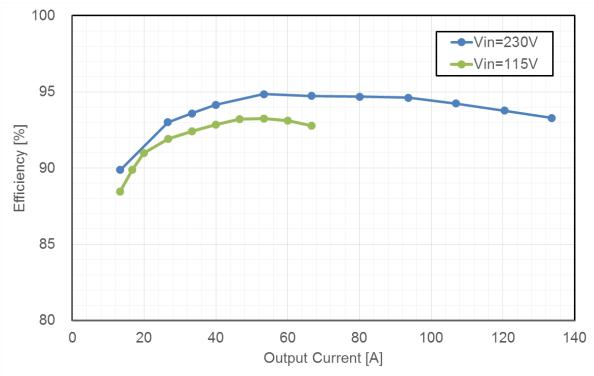


Fig. 4.1.1 Efficiency Result (VinAC = 115 V, VinAC = 230 V)

Graphs that compare 80 PLUS criteria are shown below for reference. These graphs are intended only as a guide to show the 80 PLUs certification level of this power supply. The 80 PLUS efficiency levels shown in the graphs are as of May 2017. The criteria for these certification levels may vary; check the latest information.

This power supply is not certified to 80 PLUS. If an 80 PLUS certification is necessary, you need to measure the efficiency of an actual product and apply for a certification.

Fig. 4.1.2 shows the efficiency measured at VinAC=115 V and the thresholds necessary to obtain an 80 PLUS certification for the 115V Internal Non-Redundant type.

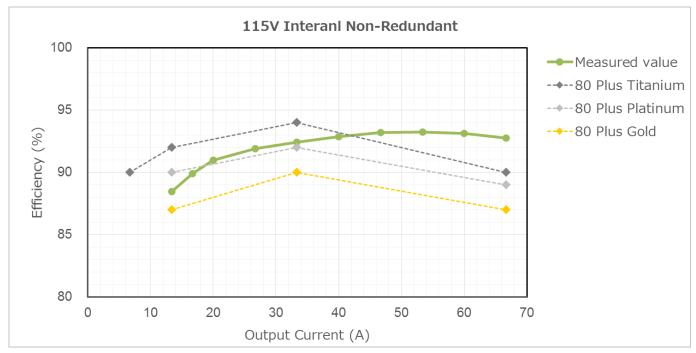


Fig. 4.1.2 Efficiency Result (VinAC = 115 V, 80 PLUS: 115V Internal Non-Redundant)

Fig. 4.1.3 shows the efficiency measured at VinAC=115 V and the thresholds necessary to obtain an 80 PLUS certification for the 115V Industrial type.

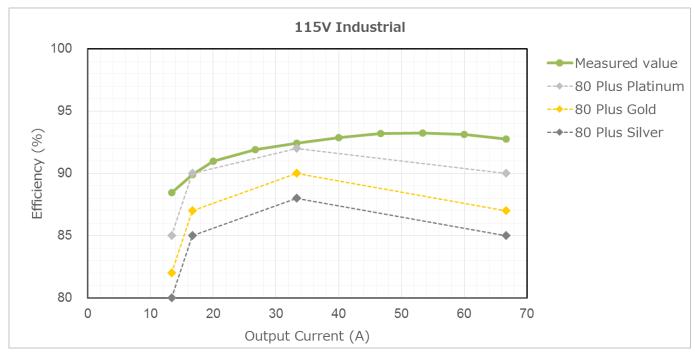


Fig. 4.1.3 Efficiency Result (VinAC = 115 V, 80 PLUS: 115V Industrial)

Fig. 4.1.4 shows the efficiency measured at VinAC = 230 V and the thresholds necessary to obtain an 80 PLUS certification for the 230V EU Internal Non-Redundant type.

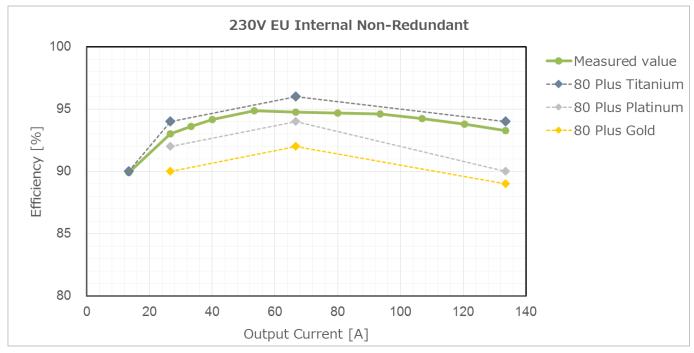


Fig. 4.1.4 Efficiency Result (VinAC = 230 V, 80 PLUS: 230V EU Internal Non-Redundant)

Fig. 4.1.5 shows the efficiency measured at VinAC = 230 V and the thresholds necessary to obtain an 80 PLUS certification for the 230 V Internal Redundant type.

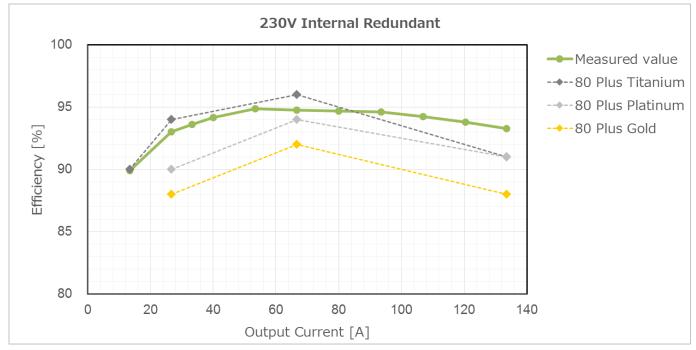


Fig. 4.1.5 Efficiency Result (VinAC=230 V, 80 PLUS: 230V Internal Redundant)

Terms of Use

This terms of use is made between Toshiba Electronic Devices and Storage Corporation ("We") and customers who use documents and data that are consulted to design electronics applications on which our semiconductor devices are mounted ("this Reference Design"). Customers shall comply with this terms of use. Please note that it is assumed that customers agree to any and all this terms of use if customers download this Reference Design. We may, at its sole and exclusive discretion, change, alter, modify, add, and/or remove any part of this terms of use at any time without any prior notice. We may terminate this terms of use at any time and for any reason. Upon termination of this terms of use, customers shall destroy this Reference Design. In the event of any breach thereof by customers, customers shall destroy this Reference Design, and furnish us a written confirmation to prove such destruction.

1. Restrictions on usage

1. This Reference Design is provided solely as reference data for designing electronics applications. Customers shall not use this Reference Design for any other purpose, including without limitation, verification of reliability.

2. This Reference Design is for customer's own use and not for sale, lease or other transfer.

3. Customers shall not use this Reference Design for evaluation in high or low temperature, high humidity, or high electromagnetic environments.

4. This Reference Design shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

2. Limitations

1. We reserve the right to make changes to this Reference Design without notice.

2. This Reference Design should be treated as a reference only. We are not responsible for any incorrect or incomplete data and information.

3. Semiconductor devices can malfunction or fail. When designing electronics applications by referring to this Reference Design, customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of semiconductor devices could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Customers must also refer to and comply with the latest versions of all relevant our information, including without limitation, specifications, data sheets and application notes for semiconductor devices, as well as the precautions and conditions set forth in the "Semiconductor Reliability Handbook".

4. When designing electronics applications by referring to this Reference Design, customers must evaluate the whole system adequately. Customers are solely responsible for all aspects of their own product design or applications. WE ASSUME NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.

5. No responsibility is assumed by us for any infringement of patents or any other intellectual property rights of third parties that may result from the use of this Reference Design. No license to any intellectual property right is granted by this terms of use, whether express or implied, by estoppel or otherwise.

6. THIS REFERENCE DESIGN IS PROVIDED "AS IS". WE (a) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (b) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO THIS REFERENCE DESIGN, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

3. Export Control

Customers shall not use or otherwise make available this Reference Design for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). This Reference Design may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of this Reference Design are strictly prohibited except in compliance with all applicable export laws and regulations.

4. Governing Laws

This terms of use shall be governed and construed by laws of Japan.