

eFuse IC TCKE805 シリーズ応用回路

デザインガイド

RD164-DGUIDE-02

概要

本資料は当社の eFuse IC TCKE805 シリーズの応用回路について解説したものです。TCKE805 シリーズの基本的な使い方、各種保護機能と設定などについて説明していますので、TCKE805 シリーズを機器に応用する際の一助としていただければ幸いです。

東芝デバイス&ストレージ株式会社

Rev.2

目次

1.	はじめに	3
2.	回路設計	4
2.1.	TCKE805 シリーズ応用回路仕様	4
2.2.	応用回路	4
2.3.	オートリトライタイプ゜ (過熱保護機能)	5
2.4.	過電流保護制限電流の算出	7
2.5.	短絡保護電流について	7
2.6.	突入電流抑制機能 (スルーレートコントロール) の設定	8
2.7.	逆流防止回路の設計	9
2.8.	TCKE805 シリーズその他の機能について	. 10
3.	PCB 設計	11
3.1.	部品配置例	. 11
3.2.	PCB パターン設計	. 11
4.	設計に際しての注意事項	12
5.	製品概要	13
5.1.	特長	. 13
5.2.	外観と端子配置	. 13
5.3.	内部回路ブロック図	. 14
5 4	烂子 铅阳	11

1. はじめに

現在、各種電子機器において過熱や発火などを防止する部品として、定格以上の電流が流れることにより発生するジュール熱を利用したガラス管ヒューズやチップ電流ヒューズ、ポリスイッチ(リセッタブルヒューズ、ポリヒューズ)といった部品が多用されています。これらは内蔵する金属部品の溶断(ガラス管ヒューズ、チップ電流ヒューズ)や導電性ポリマーの熱膨張による抵抗値の急激な増大(ポリスイッチ)により、通電を遮断、あるいは制限して回路を保護、機器の破壊を防止していますが、いずれも動作する電流の精度が低く遮断電流が不明確であることや、ジュール熱を使用するため過電流の流れ始めから保護開始までに時間がかかることといった短所があります。また、金属を溶断させるヒューズでは、一度動作すると不可逆的に破壊するためヒューズ自体の交換作業が必要になるというデメリットもあります。

eFuse IC (電子ヒューズ) は、通電の遮断を MOSFET スイッチで行うことにより、これらのデメリットを解決する製品です。 従来ヒューズ同様に使用できるほか、過電流以外のさまざまな保護機能を内蔵することも可能です。

当社では eFuse IC TCKE805 シリーズを開発しました。 過電流保護のほか、 短絡、 過電圧、 過熱に対する保護機能、 ラッシュ電流抑制機能 (スルーレートコントロール)、 逆流防止機能を内蔵しています。 TCKE805 シリーズは、 過電圧保護 時のクランプ電圧を 6.04 V として 5 V 電源系の回路に対応しています。

表 1.1 TCKE805NA の特徴

製品名	過電圧クランプ電圧	復帰動作
TCKE805NA	6.04 V	オートリトライタイプ

本ガイドでは、TCK805シリーズの応用回路について解説します。詳細特性については下記リンク先をご参照ください。

TCKE805 シリーズのデータシートはこちら →

Click Here

当社eFuse ICの基本的な使い方、内蔵機能の詳細などについては下記リンク先のアプリケーションノートもご参照ください。

eFuse IC のアプリケーションノートはこちら \rightarrow

Click Here

2. 回路設計

2.1. TCKE805 シリーズ応用回路仕様

本ガイドで説明する TCKE805 シリーズの応用回路の仕様を示します。

項目仕様過電圧保護クランプ電圧6.04 V過電流保護制限電流2.96 A突入電流制限 (V_{IN}=5V)0.6 ms使用 eFuse IC東芝デバイス&ストレージ (株) 製 TCKE805NA逆流防止外付け N-ch MOSFET (使用する場合)東芝デバイス&ストレージ (株) 製 SSM6K513NU

表 2.1 TCKE805 シリーズ応用回路仕様

2.2. 応用回路

eFuse IC はロードスイッチの一種で、従来のヒューズやポリスイッチと同様、電源ラインに挿入して使用します。TCKE805シリーズの代表的な応用回路を図 2.1 に示します。

図 2.1 eFuse IC の応用回路

入力端子 VIN には電源を接続します。通常の動作時には、eFuse IC に内蔵されている MOSFET を経て出力端子 VOUT から電圧が出力されますが、内蔵されている MOSFET はオン抵抗が低いため、VIN とほぼ同じ電圧が出力され負荷に供給されます。

VINと VOUT 端子には、短絡や過電流の保護時など電流が急減した時に配線などのインダクタンス成分の逆起電力で高いスパイク電圧が発生し、ダメージによる劣化や破壊の恐れがあります。スパイク電圧を下げるには、VIN、VOUT それぞれの

端子と GND 間の外付けコンデンサーが有効で、一般的に $0.1~\mu F$ 以上のコンデンサーが使用されます。この応用回路では、 余裕を見て VIN 側コンデンサーC1、VOUT 側コンデンサーC4 とも $1~\mu F$ としています。

ILIM 端子には過電流保護の制限電流 ILIM を決定する抵抗を接続します。図 2.1 では制限電流 3 A に設定されています。

dV/dT 端子には突入電流抑制のためのスルーレートコントロール用のコンデンサーを接続します。この機能については 2.6 項で説明します。

EFET 端子は外付けの逆流防止用 N-ch MOSFET のゲート駆動用の端子です。図 2.1 では逆流防止機能を使用しない場合の応用回路例です。この端子には、外付け素子のゲート駆動用の電圧として内部で昇圧された電圧 (V_{IN}+4.9 V (Typ.)) が通常動作時に出力されますので、逆流防止機能を使用しない場合はオープンとしてください。逆流防止機能を使用する場合については 2.7 項で説明します。

EN/UVLO 端子は外部からの信号を入力して IC のオン/オフ制御を行う端子です。H 信号が入力されているとき IC は動作、通電状態となります。この機能については 2.8 項で説明します。

2.3. オートリトライタイプ (過熱保護機能)

本回路は過電流、短絡、過電圧の各保護動作から通常動作へ自動復帰のオートリトライタイプを使用しています。

過電流、短絡、過電圧の各保護動作は、最終的に過熱保護機能 (TSD = Thermal Shut Down) を利用しています。過熱保護機能は、IC のジャンクション温度が 160 °C (Typ.) まで上昇すると過熱状態と判定して動作を停止、保護するというものですが、この保護動作にオートリトライタイプはラッチをかけず、ラッチタイプはラッチをかけるという違いがあります。

過電流および過電圧クランプ動作が継続した場合や、短絡保護の自動復帰試行 (2.5 項参照) 時に短絡が解消しておらず大電流が流れた場合には、ジャンクション温度の上昇により過熱保護機能が動作しますが、その後は電流が流れなくなるので、温度は低下し始めます。

過熱保護動作温度は、20 °C (Typ.) の幅のヒステリシスを持っており、ここまで温度が下がるとラッチをかけないオートリトライタイプは通常動作に復帰しますが、そのときに過電流、過電圧、短絡が継続していると再び過熱保護が動作し、以後過電流、過電圧、短絡が解消するまで過熱保護動作と解除を繰り返すことになります。オートリトライタイプはこの動作を利用して自動的に復帰を試行しています。

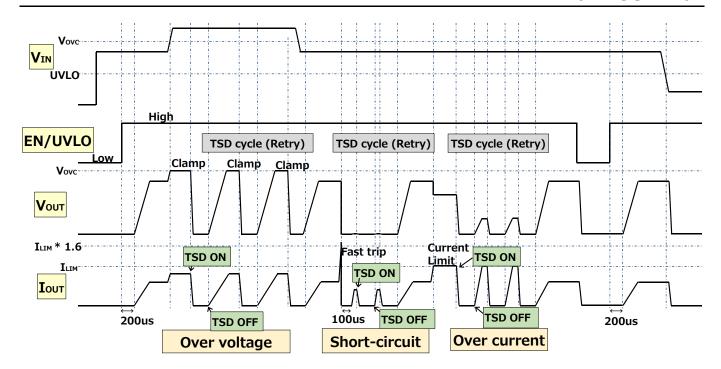


図 2.2 各種保護動作のタイミングチャート (オートリトライタイプ)

なお、過熱保護動作に入る前に過電圧、過電流が解消すれば、その時点で通常動作に復帰します。

2.4. 過電流保護制限電流の算出

TCKE805 シリーズの過電流保護制限電流 I_{LIM} は抵抗 R3 により設定します。 I_{LIM} は下記の式にて計算され、本ガイドの応用回路では R3=36 k Ω としておりますので、制限電流は 2.96 A となります。計算値と実測値のずれが大きくなる場合もありますので、抵抗値の選定にあたっては実機で必ず確認してください。

$$I_{LIM} = 0.13 + \frac{101.8}{R3} = 0.13 + \frac{101.8}{36} \approx 2.96 \quad (A)$$

R3: ILIM 端子外付け抵抗 (kΩ)

ご参考として、図 2.3 に上記計算式による R3 と制限電流 ILIM のグラフを示します。

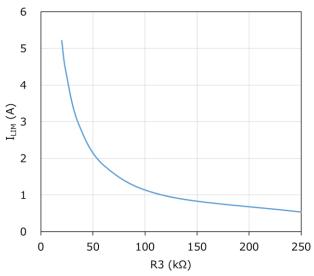


図 2.3 R3 と制限電流の関係 (計算値)

2.5. 短絡保護電流について

短絡保護機能は、電源ラインや負荷が何らかの異常で短絡(ショート)した際、過電流制限機能が動作するよりも早く電流が制限電流 (I_{LIM}) の 1.6 倍に達したときに短絡と判定し、MOSFET を OFF して IC などを保護する機能です。短絡検出電流は制限電流と連動しており、常に R3 で設定した制限電流の 1.6 倍に設定されます。

TCKE805 シリーズは高速短絡保護回路技術 (Fast trip 機能) を採用しており、短絡発生から 150 ns (設計値、Typ.) で電流を遮断することができます。

Fast trip 動作から 100 μs 後で自動的に復帰を試行しますが、短絡が解消していなければ、そのときに流れる大電流によって発熱し、過熱保護動作に入ります。その後の動作は、2.3 項で述べたとおりです。

© 2019-2025

2.6. 突入電流抑制機能 (スルーレートコントロール) の設定

動作を開始して出力がオンしたとき、負荷側に接続されたコンデンサーを充電する突入電流が流れます。この電流が過電流 保護の制限電流を超えた場合に保護回路が動作し、起動不能や出力のオーバーシュートを発生させることがあります。この機 能は、突入電流を制限して出力電圧の立ち上がり時のスルーレートをコントロールしてこれらの現象を防ぎます。

TCKE805 シリーズは dV/dT 端子の外付けコンデンサーC2 で出力電圧の立ち上がり時間 (t_{dV/dT}) を適切に設定することができます。本ガイドの応用回路では外付けコンデンサー120 pF としています。この設定時の立ち上がり時間は、次式のとおり計算されます。

$$t_{dV/dT}(s) = 0.36 \times 10^{6} \times V_{IN} \times (C2 + 50 \times 10^{-12}) + 3 \times 10^{-4}$$
$$= 0.36 \times 10^{6} \times 5 \times (120 + 50 \times 10^{-12}) + 3 \times 10^{-4}$$
$$\approx 0.0006(s) = 0.6(ms)$$

V_{IN}: 入力電圧 = 5 V 、C2: dV/dT 端子外付け容量 (nF)

C2と立ち上がり時間の関係を図 2.4 に示します。



図 2.4 C2 と立ち上がり時間の関係

2.7. 逆流防止回路の設計

TCKE805 シリーズの逆流防止機能を使用することもできます。この機能は、VIN に接続された電源電圧の低下やオフにより eFuse IC の動作が停止したときに、eFuse IC に内蔵されている MOSFET のボディーダイオードを経由して出力側から入力側に電流が逆流することを防止するものです。この機能を使用した応用回路を図 2.5 に示します。

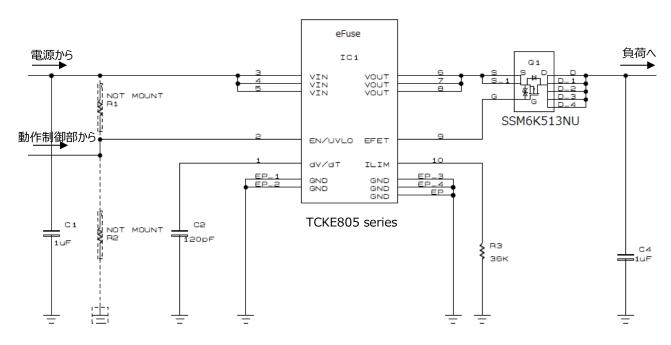


図 2.5 逆流防止機能を使用した応用回路

eFuse IC の VOUT 端子に、EFET 端子でゲート駆動される外付け MOSFET のソース端子を接続して、この素子を eFuse IC と連動させることにより、動作停止時に外付け MOSFET のボディーダイオードで出力端子から入力側に逆流する 電流を阻止します。この機能を使用する場合、出力容量は図2.5のように外付け MOSFET のドレイン側に接続してください。 逆流防止用外付け FET には当社製 SSM6K513NU を推奨します。SSM6K513NU のデータシートなど詳細は下記リンク先をご参照ください。

SSM6K513NU の詳細はこちら → <u>Click Here</u>

なお、EFET 端子は内部で昇圧された電圧 $V_{IN}+4.9V$ (Typ.) が出力されていますので、この機能を使用しない場合はオープンとしてください。

2.8. TCKE805 シリーズその他の機能について

TCKE805 シリーズの持つその他の機能について説明します。これらの機能の詳細については下記リンク先のアプリケーションノートをご参照ください。

eFuse IC のアプリケーションノートはこちら \rightarrow

Click Here

● 低電圧誤動作防止機能 (UVLO = Under Voltage Lock-Out)

入力電圧低下時に IC の動作を停止し、負荷の誤動作を防ぐ機能です。TCKE805 シリーズは入力電圧立ち上がり時には 4.15 V (Typ.) で動作を開始するよう設計されていますが、立ち下がり時の動作停止は 5% (Typ.) のヒステリシスを持たせており、4.15 V より低い約 3.95 V 付近で動作を停止します。

● EN/UVLO 端子

外部からこの端子に信号を入力して IC のオン/オフ制御を行うことができます。H 信号入力で IC は動作しますが、スレッショルド電圧はヒステリシスを持っており、1.1 V (Typ.) 以上で H、0.96 V (Typ.) 以下で L となります。

この端子に入力電圧を外付け抵抗で分圧したものを入力することにより UVLO として使用することもできますが、上述の内蔵 UVLO 動作電圧より低い値には設定できません。このような応用例と詳細についてはアプリケーションノートをご参照ください。

● 過電圧クランプ機能

過電圧クランプ機能は出力を制限電圧でクランプすることにより、それ以上の電圧が出力されないようにして負荷に 過電圧が印加されることを防ぐ機能です。制限電圧は TCKE805 シリーズは 6.04 V (Typ.) に設定されています。 制限電圧によるクランプ動作が継続すると、やがて過熱保護機能により動作は停止します。

3. PCB 設計

3.1. 部品配置例

図 3.1 に部品配置例を示します。

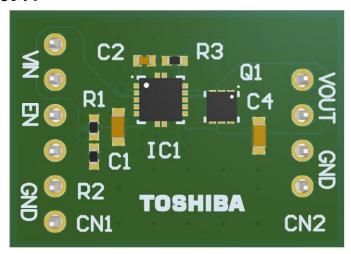


図 3.1 部品配置例

3.2. PCB パターン設計

図 3.2 に PCB パターン例を示します。

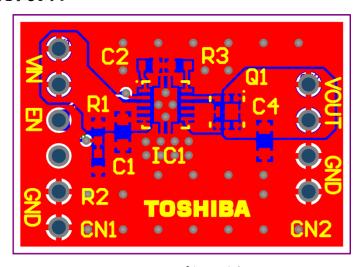


図 3.2 パターン例

4. 設計に際しての注意事項

● EN/UVLO 端子について

EN/UVLO 端子がオープン (不定) になると IC が正常に動作しない恐れがあります。 入力信号レベルが H/L いずれの場合にも、この端子がオープンとなることがないよう注意してください。

● EFET 端子について

IC が通常動作している場合、EFET 端子には逆流防止用外付け MOSFET のゲート駆動用に内部で昇圧された電圧 $V_{IN}+4.9V$ (Typ.) が出力されています。逆流防止機能を使用しない場合はオープンとしてください。

● 入出力端子のスパイク電圧対策

2.1 項で述べた、電流の急減時に VIN 端子で発生するスパイク電圧が最大定格を超えるなど、問題になる場合には TVS ダイオード (ESD 保護用ダイオード) を入力端子と GND の間に接続してください。

VOUT 端子で発生するマイナスのスパイク電圧に対しては、SBD (ショットキーバリアダイオード) を出力端子と GND 間に、GND 側をアノードとして接続してください。

TVS ダイオードとして DF2S23P2CTC を、SBD として CUS10F30 を、それぞれ推奨いたします。この製品の詳細は下記リンク先をご参照ください。

TVS ダイオード DF2S23P2CTC の詳細はこちら →

Click Here

ショットキーバリアダイオード CUS10F30 の詳細はこちら →

Click Here

● PCB パターンでの入出力端子のスパイク電圧対策

上述スパイク電圧に対して、PCB パターン設計に際してはインダクタンス成分を低減するため、入力側と出力側の配線長はできるだけ短く、また配線幅を広くしてください。逆流防止機能を使用する場合は、IC の出力端子と外付け FET のソース間の配線およびドレインから負荷側への配線にもご注意ください。

また、GND のインピーダンスを下げるため、GND 配線領域はできるだけ広く取ってください。

● 逆流防止機能を使用する場合

基板上での部品配置にあたっては、IC 本体と逆流防止用外付け FET はできるだけ近くして、出力の配線長が最短になる向きに配置してください。また、入力容量は入力端子直近に、出力容量は外付け FET のドレイン直近に、それぞれ配置してください。

5. 製品概要

5.1. 特長

TCKE805 シリーズは 18V 入力可能な 1 入力 1 出力の eFuse IC です。繰り返し利用可能なヒューズとして使用することができ、さらに、外付け抵抗による調整可能な過電流保護機能、短絡保護機能、過電圧クランプ機能、外付け容量によるスルーレート調整機能、低電圧誤動作防止機能、過熱保護機能、外付け MOSFET による逆流防止機能と多くの保護機能を搭載しております。

オン抵抗は 28 mΩ (Typ.) と低く、出力電流は最大 5 A かつ幅広い動作入力電圧を持ち、ハードディスクドライブやバッテリーの充電アプリケーション等の電源管理に最適です。

パッケージは小型の 0.4 mmピッチ WSON10B(3.0 mm x 3.0 mm, t: 0.7 mm (Typ.))で、携帯機器などの高密度実装が求められるアプリケーションに最適です。

- 高耐圧入力電圧: V_{IN} (Max) = 18 V
- 高出力電流: Iout (DC) = 5.0 A
- 低オン抵抗: R_{ON} = 28 mΩ (Typ.)
- 動作電流を調整可能な過電流保護機能内蔵: 5.0 A(Max)
- 固定過電圧クランプ回路内蔵
- 5 V 電源ライン用: Vovc = 6.04 V (Typ.)
- 突入電流抑制のための外付け容量によるスルーレート調整回路内蔵
- 外付け抵抗により調整可能な低電圧誤動作防止回路内蔵
- 内蔵の MOSFET ドライバーにより OFF 時逆流防止機能をサポート
- 過熱保護回路内蔵
- オートディスチャージ機能内蔵
- 小型パッケージ採用: WSON10B (3.0 mm x 3.0 mm, t: 0.7 mm (Typ.))

5.2. 外観と端子配置

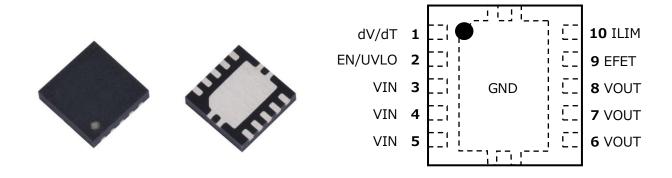


図 5.1 TCKE805NA 外観写真

図 5.2 端子配置

5.3. 内部回路ブロック図

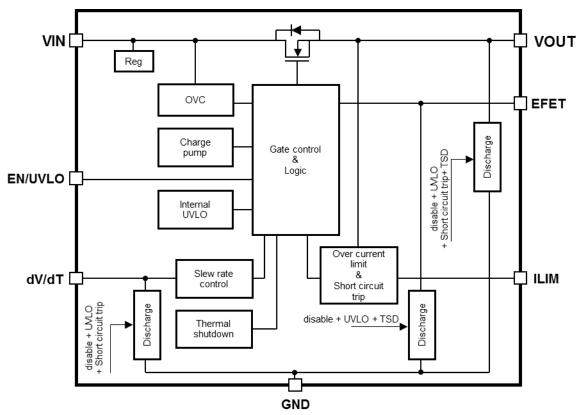


図 5.3 内部回路ブロック図

5.4. 端子説明

表 5.1 端子説明

端子番号	端子名	説明	
1	dV/dT	GND との間に接続した外付け容量で電源投入時の VOUT 立ち上がりスルーレ	
		ートを設定します。	
2	EN/UVLO	内蔵 MOSFET および EFET 端子の出力電圧を制御します。"H"のときイネーブ	
2		ルです。オープンにならないようにしてください。	
3, 4, 5	VIN	電源入力端子	
6, 7, 8	VOUT	出力端子	
9	EFET	逆流防止用外付け MOSFET のゲートを駆動します。逆流防止機能を使用しな	
9		い場合はオープンとしてください。	
10	ILIM	GNDとの間に接続した外付け抵抗で過電流保護回路の制限電流値を設定しま	
10		す。	
GND	GND	接地端子	

ご利用規約

本規約は、お客様と東芝デバイス&ストレージ株式会社(以下「当社」といいます)との間で、当社半導体製品を搭載した機器を設計する際に参考となるドキュメント及びデータ(以下「本デザインデザイン」といいます)の使用に関する条件を定めるものです。お客様は本規約を遵守しなければなりません。

第1条 禁止事項

お客様の禁止事項は、以下の通りです。

- 1. 本デザインデザインは、機器設計の参考データとして使用されることを意図しています。信頼性検証など、それ以外の目的には使用しないでください。
- 2. 本デザインデザインを販売、譲渡、貸与等しないでください。
- 3. 本デザインデザインは、高低温・多湿・強電磁界などの対環境評価には使用できません。
- 4. 本デザインデザインを、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用しないでください。

第2条 保証制限等

- 1. 本デザインデザインは、技術の進歩などにより予告なしに変更されることがあります。
- 2. 本デザインデザインは参考用のデータです。当社は、データ及び情報の正確性、完全性に関して一切の保証をいたしません。
- 3. 半導体素子は誤作動したり故障したりすることがあります。本デザインデザインを参考に機器設計を行う場合は、誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウェア・ソフトウェア・システムに必要な安全設計を行うことをお願いします。また、使用されている半導体素子に関する最新の情報(半導体信頼性ハンドブック、仕様書、データシート、アプリケーションノートなど)をご確認の上、これに従ってください。
- 4. 本デザインデザインを参考に機器設計を行う場合は、システム全体で十分に評価し、お客様の責任において適用可否を判断して下さい。当社は、適用可否に対する責任は負いません。
- 5. 本デザインデザインは、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証又は実施権の許諾を行うものではありません。
- 6. 当社は、本デザインデザインに関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をせず、また当社は、本デザインデザインに関する一切の損害(間接損害、結果的損害、特別損害、付随的損害、逸失利益、機会損失、休業損害、データ喪失等を含むがこれに限らない。)につき一切の責任を負いません。

第3条 契約期間

本デザインデザインをダウンロード又は使用することをもって、お客様は本規約に同意したものとみなされます。本規約は予告なしに変更される場合があります。当社は、理由の如何を問わずいつでも本規約を解除することができます。本規約が解除された場合は、お客様は本デザインデザインを破棄しなければなりません。さらに当社が要求した場合には、お客様は破棄したことを証する書面を当社に提出しなければなりません。

第4条 輸出管理

お客様は本デザインデザインを、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用してはなりません。また、お客様は「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用ある輸出関連法令を遵守しなければなりません。

第5条 準拠法

本規約の準拠法は日本法とします。

第6条 管轄裁判所

本デザインデザインに関する全ての紛争については、別段の定めがない限り東京地方裁判所を第一審の専属管轄裁判所とします。