

東芝 ハイスピード 4チャネル デジタルアイソレーター

DCL541x01,DCL542x01

DCL541L01/DCL541H01/DCL542L01/DCL542H01

1. アプリケーション

- 産業用オートメーション
- モーター制御
- インバーター
- スイッチング電源

2. 概要

DCL541L01/DCL541H01/DCL542L01/DCL542H01は、4チャネルの高速のデジタル・アイソレーターです。 東芝のCMOSプロセスと磁気結合構造により、高性能な特性を達成しています。また、UL1577準拠で、絶縁電圧として5000 V_{rms} の定格を備えています。本製品は、周囲温度-40~110 $^{\circ}$ C の環境下で2.25~5.5 Vまでの広い電源電圧で動作が可能です。

3. 特長

データ伝送速度 : 最大150 Mbps

電源電圧 : 2.25 V ~ 5.5 V

動作温度範囲 : -40 °C ~ 110 °C

伝搬遅延時間 : 10.9 ns Typ.(5.0 V 動作時)

デフォルト出力 : High とLowのオプション

CMTI(min) : 100 kV/µs

絶縁耐圧 : 5 kV_{rms}

パッケージ: 16pin SOIC Wide body

安全規格 :

UL: UL 1577, File No. E519997

cUL : CSA Component Acceptance Service Notice No. 5A, File No. E519997

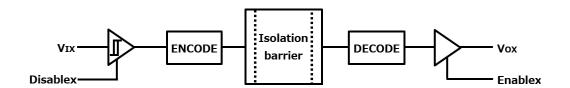
VDE : DIN EN IEC 60747-17 (VDE V 0884-17) Certificate No.40055132 (注1)

CQC : GB 4943.1-2022 Certificate No. CQC22001345018

注1:VDE認定品を採用する場合は、必ず弊社営業窓口までお問合せください。

製品量産開始時期

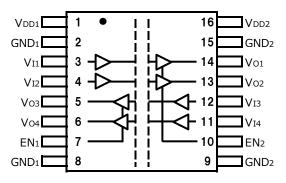
2023-11



目次

1.	アプリケーション	1
2.	概要	1
3.	特長	1
4.	内部回路構成	3
5.	ピン配置と機能	3
5.1	ピン機能	4
6.	真理値表	5
7.	絶対最大定格 (Ta = 25 °C)	6
8.	推奨動作条件 (注)	6
9.	電気的特性	7
9.1	電気的特性 5 V 動作	7
9.2	電気的特性 3.3 V 動作	8
9.3	電気的特性 2.5 V 動作	9
9.4	動作電流特性 5V動作	10
9.5	動作電流特性 3.3 V 動作	11
9.6	動作電流特性 2.5 V 動作	12
10.	絶縁仕様	13
11.	安全最大定格	14
12.	測定回路	15
13.	特性図	22
14.	アプリケーションノート	24
14.1	アイ・ダイアグラム	24
14.2	PCB レイアウト	24
15.	パッケージ情報	25
製品	取り扱い上のお願い	26

4. 内部回路構成



5. ピン配置と機能

DCL541L01 / DCL541H01

16 V_{DD1} V_{DD2} 15 2 GND₁ GND₂ VII V01 13 VI2 Voz 12 V04 VI4 EN₂ 10 EN₁ 9 8 GND₁ GND₂

DCL542L01 / DCL542H01

5.1 ピン機能

	ピン			
名称	DCL541L01 DCL541H01	DCL542L01 DCL542H01	属性	説明
V _{DD1}	1	1	-	1次側 電源
GND ₁	2, 8	2, 8	-	1次側 GND
VI1	3	3	I	入力チャネル1
V ₁₂	4	4	I	入力チャネル2
Vı3	5	12	I	入力チャネル3
V ₁₄	11	11	I	入力チャネル4
EN ₁	7	7	I	1次側出カイネーブル.1次側の出力ピンはEN ₁ がハイまたはオープンの時イネーブル、EN ₁ がローでハイインピーダンス。
GND ₂	9, 15	9, 15	-	2次側 GND
EN ₂	10	10	I	2次側出カイネーブル.2次側の出カピンはEN2 がハイまたはオープンの時イネーブル、EN2が ローでハイインピーダンス。
V ₀₄	6	6	0	出力チャネル4
V _o 3	12	5	0	出力チャネル3
V _{o2}	13	13	0	出力チャネル2
V _{o1}	14	14	0	出力チャネル1
V_{DD2}	16	16	-	2次側 電源

6. 真理值表

(1) DCL541L01/DCL541H01 / DCL542L01/DCL542H01

VDDI	V _{DDO}	OUTPUT ENABLE (ENx)	INPUT (V _{IX})	OUTPUT (Vox)	説明
			L	L	·通常動作
PU	PU	H or OPEN	Н	Н	」 进 希 到↑F
PU	PU		OPEN	Default	デフォルトモード DCL54xL01=L , DCL54xH01=H
		L	*	Z	出力ディセーブルモード
PU	PD	*	*	Undetermined	V _{DDO} に電源が供給されていない状態では出力は不定となります。
PD	PU	H or OPEN	*	Default	デフォルトモード DCL54xL01=L , DCL54xH01=H
PD	FU	L	*	Z	出力ディセーブルモード
PD	PD	*	*	Undetermined	VDDO に電源が供給されていない状態では出力は不定となります。

PU= 電圧 ON (V_{DD}≥2.25V), PD= 電圧 OFF (V_{DD}≤1.7 V), H= 高レベル, L= 低レベル, *= Don't Care

V_{DDI}, V_{DDO}: 各チャネルの入力側と出力側の供給電圧。 : Vox 出力と同じ側の出力イネーブル信号。

Vix, Vox : 各チャネルの入力信号と出力信号。

電源が OFF のサイドの入力端子を"H"とすると ESD 回路を介してデバイスに給電されるため使用禁止です。

7. 絶対最大定格 (Ta = 25°C)

項目	記号	最小	最大	単位
電源電圧	V _{DD1} ,V _{DD2}	-0.5	6.0	V
入力電圧	Vı	-0.5	V _{DDX} +0.5 ⁽¹⁾	V
出力電圧	Vo	-0.5	V _{DDX} +0.5 ⁽¹⁾	V
出力電流	lo	-15	15	mA
保存温度	T _{stg}	-65	150	°C
動作温度	Topr	-40	110	°C
はんだ付け温度 (10 s)	T _{sol}	-	260	°C
絶縁耐圧 (1 min.)	BVs	-	5000	V _{rms}

注(1): 最大電圧は $6 \ V$ を超えてはいけません。X = 1または2

8. 推奨動作条件 (注)

項目	記号	最小	最大	単位
電源電圧	V_{DD1} , V_{DD2}	2.25	5.5	V
接合温度	TJ	-40	150	°C
動作温度	Topr	-40	110	°C

注:推奨動作条件は、期待される性能を得るための設計指標です。また、各項目はそれぞれ独立した指標となっておりますの で,設計の際は電気的特性などで規定された値も合わせてご確認願います。

注:高周波特性の良いバイパスコンデンサー $0.1\,\mu F$ を 1 次側の電源ピン($1pin\ V_{DD1}$ と $2Pin\ GND1$ 間)と 2 次側の電源 ピン (16pin V_{DD2} と 15pin GND2 間) に、できる限り IC の根本付近に配置してください (10 mm 以内)。 ない場合には、スピードや ON/OFF の正常な動作をしない場合があります。

9. 電気的特性

9.1 電気的特性 5V 動作

全ての代表的な仕様は Ta=25 ℃、VDD1=VDD2=5 V 時の値です。最小/最大仕様は特に指定の無い限り、4.5 V≦VDD1 ≦5.5 V、4.5 V≦VDD2≦5.5 V、-40 ℃≦Ta≦110 ℃の全推奨動作範囲に適用されます。

項目	条件	図	記号	最小	標準	最大	単位
DC 特性							
	スレッシュホルド (電源電圧立上り時)		V _{DDXUV+}	-	2.10	2.25	
低電圧ロックアウト電圧	スレッシュホルド (電源電圧立下り時)	12.1 12.3	V _{DDXUV} -	1.7	1.9	-	V
	電源電圧ヒステリシス		V _{DDXUVH}	0.1	0.2	-	
ハイレベル出力電圧	V _{IX} =H , I _{OH} =-20 μA	12.5	V	V _{DDO⁽¹⁾-0.1}	$V_{\text{DDO}^{(1)}}$	-	V
ハイレベル山刀电圧	V _{IX} =H , I _{OH} =-4 mA	<u>12.5</u>	V _{OH}	V _{DDO} ⁽¹⁾ -0.4	V _{DDO} ⁽¹⁾ -0.2	-	V
ローレベル出力電圧	V _{IX} =L , IοL =20 μA	10 E	Vol	-	0.0	0.1	V
ローレベル田刀电圧	V _{IX} =L , IoL =4 mA	<u>12.5</u>	VOL	-	0.2	0.4	V
出力インピーダンス	-	<u>12.5</u>	Zo	-	50	-	Ω
ハイレベル入力電圧	-	<u>12.7</u>	ViH	0.7*V _{DDI⁽¹⁾}	-	-	V
ローレベル入力電圧	-	<u>12.7</u>	VIL	-	-	0.3*V _{DDI⁽¹⁾}	V
入力ヒステリシス幅	-	<u>12.7</u>	V _{HYS}	-	0.37	-	V
入力電流	V _I = V _{DDI⁽¹⁾} or 0 V	-	I _I	-	-	±10	μΑ
スイッチング特性							
データ伝送速度	-	-	t _{bps}	DC	-	150	Mbps
パルス幅	-	-	PW	6.6	-	-	ns
伝搬遅延	50 kHz, Duty=50 %, t _r =t _f =2 ns,C _L =15 pF	<u>12.9</u>	t _{PHL} , t _{PLH}	-	10.9	18.3	ns
パルス幅歪	t _{PHL} — t _{PLH}	<u>12.9</u>	PWD	-	0.8	2.8	ns
伝搬遅延差 (部品間)(2)	-	-	tpsk	-	-	10	ns
チャネル間伝搬遅延差	同方向	<u>12.9</u>	t _{skCD}	-	-	3.2	no
アヤイル间伝版建進左	逆方向	<u>12.9</u>	t _{skOD}	-	-	3.6	ns
出力立ち上がり時間	10 % - 90 %	<u>12.9</u>	t _r	-	0.9	-	ns
出力立ち下がり時間	90 % - 10 %	<u>12.9</u>	tf	-	0.9	-	ns
Enable 伝搬遅延 ⁽³⁾ (From HiZ)	50 kHz, Duty=50 %, t _r =t _f =2 ns,C _L =15 pF	12.12	t_{pZL} , t_{pZH}	-	-	15.0	ns
Enable 伝搬遅延(To HiZ)	注(3)	<u>12.12</u>	t _{pLZ} , t _{pHZ}	-	-	18.0	ns
コモンモード過渡耐性	V _I = V _{DDI} or 0 V , VCM=1500V , T _a =25 °C	<u>12.15</u>	CMTI	100	-	-	kV/µs

注(1): VDDI=入力側VDDx, VDDO=出力側VDDx

注(2): 伝搬遅延差 (部品間)は、同一動作条件下 (電源電圧、入力電流、温度条件など) で適用されます。

注(3): ENx信号をLow→High or OPENとした場合、Enable 出力イネーブル時間以降から出力信号(Vox)が有効となります。 出力イネーブル時間内の出力信号 (Vox) は不定となります。

電気的特性 3.3 V動作 9.2

全ての代表的な仕様は Ta=25℃、VDD1=VDD2=3.3V 時の値です。最小/最大仕様は特に指定の無い限り、3.0V≦VDD1≦ 3.6V、3.0V≦VDD2≦3.6V、-40℃≦Ta≦110℃の全推奨動作範囲に適用されます。

項目	条件	図	記号	最小	標準	最大	単位
DC 特性							
	スレッシュホルド (電源電圧立上り時)		V _{DDXUV+}	-	2.10	2.25	
低電圧ロックアウト電圧	スレッシュホルド (電源電圧立下り時)	<u>12.1</u> <u>12.3</u>	V _{DDXUV} -	1.7	1.9	-	V
	電源電圧ヒステリシス		V _{DDXUVH}	0.1	0.2	-	
ハイレベル出力電圧	V _{IX} =Η , I _{OH} =-20 μA	10 5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{DDO} ⁽¹⁾ -0.1	$V_{DDO^{(1)}}$	-	V
ハイレベル田刀竜圧	V _{IX} =H , I _{OH} =-4 mA	12.5	V _{OH}	V _{DDO} ⁽¹⁾ -0.4	V _{DDO} ⁽¹⁾ -0.2	-]
ローレベル出力電圧	V _{IX} =L , Iο _L =20 μA	10 E	V-	-	0.0	0.1	V
ローレベル四刀竜圧	V _{IX} =L , IoL =4 mA	12.5	V _{OL}	-	0.2	0.4]
出カインピーダンス	-	<u>12.5</u>	Zo	-	50	-	Ω
ハイレベル入力電圧	-	<u>12.7</u>	ViH	0.7* VDDI ⁽¹⁾	-	-	V
ローレベル入力電圧	-	<u>12.7</u>	VIL	-	-	0.3* V _{DDI⁽¹⁾}	V
ヒステリシス幅	-	12.7	V _{HYS}	-	0.32	-	V
入力電流	V _I = V _{DDI⁽¹⁾} or 0 V	-	lı	-	-	±10	μΑ
スイッチング特性							
データ伝送速度	-	-	t _{bps}	DC	-	150	Mbps
パルス幅	-	-	PW	6.6	-	-	ns
伝搬遅延	50 kHz, Duty=50 %, t _r =t _r =2 ns,C _L =15 pF	12.9	t _{PHL} , t _{PLH}	-	11.6	19.1	ns
パルス幅歪	tphl — tplh	<u>12.9</u>	PWD	-	0.8	2.8	ns
伝搬遅延差 (部品間)(2)	-	-	tpsk	-	-	10	ns
イッカル即た極度な关	同方向	<u>12.9</u>	t _{skCD}	-	-	3.3	
チャネル間伝搬遅延差	逆方向	<u>12.9</u>	t _{skOD}	-	-	3.7	ns
出力立ち上がり時間	10 % - 90 %	12.9	t _r	-	0.8	-	ns
出力立ち下がり時間	90 % - 10 %	12.9	t _f	-	0.8	-	ns
Enable 伝搬遅延 ⁽³⁾ (From HiZ)	50 kHz, Duty=50 %,	12.12	t_{pZL} , t_{pZH}	-	-	15.0	ns
Enable 伝搬遅延(To HiZ)	t _r =t _f =2 ns,C _L =15 pF	<u>12.12</u>	t _{pLZ} , t _{pHZ}	-	-	18.0	ns
コモンモード過渡耐性	V _I = V _{DDI} or 0 V , VCM=1500V,T _a =25 °C	12.15	CMTI	100	-	-	kV/μs

注(1): VDDI=入力側VDDx, VDDO=出力側VDDx

注(2): 伝搬遅延差 (部品間)は、同一動作条件下 (電源電圧、入力電流、温度条件など) で適用されます。

注(3): ENx信号をLow→High or OPENとした場合、Enable 出力イネーブル時間以降から出力信号(Vox)が有効となります。 出力イネーブル時間内の出力信号(Vox)は不定となります。

電気的特性 2.5 V動作 9.3

全ての代表的な仕様は T_a=25 ℃、V_{DD1}=V_{DD2}=2.5 V 時の値です。最小/最大仕様は特に指定の無い限り、2.25 V≦V_{DD1} ≦2.75 V、2.25 V≦VDD2≦2.75 V、-40 ℃≦Ta≦110 ℃の全推奨動作範囲に適用されます。

項目	条件	図	記号	最小	標準	最大	単位
DC 特性							
	スレッシュホルド (電源電圧立上り時)		V _{DDXUV+}	-	2.10	2.25	
低電圧ロックアウト電圧	スレッシュホルド (電源電圧立下り時)	<u>12.1</u> <u>12.3</u>	V _{DDXUV} -	1.7	1.9	-	V
	電源電圧ヒステリシス		V _{DDXUVH}	0.1	0.2	-	
ハイレベル出力電圧	V _{IX} =Η , I _{OH} =-20 μA	10.5	V _{OH}	V _{DDO} ⁽¹⁾ -0.1	$V_{DDO^{(1)}}$	-	V
ハイレベル田刀电圧	V _{IX} =H , I _{OH} =-4 mA	12.5	VOH	V _{DDO} ⁽¹⁾ -0.4	V _{DDO⁽¹⁾-0.2}	-	\ \ \
ローレベル出力電圧	V _{IX} =L , IοL =20 μA	40.5		-	0.0	0.1	V
ローレベル田刀电圧	V _{IX} =L , IoL =4 mA	12.5	VoL	-	0.2	0.4	\ \ \
出カインピーダンス	-	<u>12.5</u>	Zo	-	50	-	Ω
ハイレベル入力電圧	-	12.7	ViH	0.7*V _{DDI} ⁽¹⁾	-	-	V
ローレベル入力電圧	-	12.7	VIL	-	-	0.3*V _{DDI} ⁽¹⁾	V
ヒステリシス幅	-	12.7	V _{HYS}	-	0.32	-	V
入力電流	V _I = V _{DDI⁽¹⁾ or 0 V}	-	lı	-	-	±10	μA
スイッチング特性							
データ伝送速度	-	-	t _{bps}	DC	-	150	Mbps
パルス幅	-	-	PW	6.6	-	-	ns
伝搬遅延	50 kHz, Duty=50 %, t _r =t _f =2 ns,C _L =15 pF	12.9	t _{PHL} , t _{PLH}	-	12.6	21.0	ns
パルス幅歪	tphl — tplh	<u>12.9</u>	PWD	-	1.0	3.0	ns
伝搬遅延差 (部品間)(2)	-	-	tpsk	-	-	10	ns
チャネル間伝搬遅延差	同方向	12.9	t _{skCD}	-	-	3.5	
ナヤイル间伝版遅延左	逆方向	12.9	t _{skOD}	-	-	3.9	ns
出力立ち上がり時間	10 % - 90 %	12.9	t _r	-	0.8	-	ns
出力立ち下がり時間	90 % - 10 %	12.9	t _f	-	0.8	-	ns
Enable 伝搬遅延 ⁽³⁾ (From HiZ)	50 kHz, Duty=50 %, t _r =t _f =2 ns,C _L =15 pF	12.12	t_{pZL} , t_{pZH}	-	-	15.0	ns
Enable 伝搬遅延(To HiZ)		<u>12.12</u>	t _{pLZ} , t _{pHZ}	-	-	18.0	ns
コモンモード過渡耐性	V _I = V _{DDI} or 0 V , VCM=1500V , T _a =25 °C	<u>12.15</u>	CMTI	100	-	-	kV/μs

注(1): VDDI=入力側VDDx, VDDO=出力側VDDx

注(2): 伝搬遅延差 (部品間)は、同一動作条件下 (電源電圧、入力電流、温度条件など) で適用されます。

注(3): ENx信号をLow→High or OPENとした場合、Enable 出力イネーブル時間以降から出力信号(Vox)が有効となります。 出力イネーブル時間内の出力信号(Vox)は不定となります。

動作電流特性 5 V動作 9.4

全ての代表的な仕様は T_a =25 $^{\circ}$ C、 V_{DD1} = V_{DD2} =5 V 時の値です。最小/最大仕様は特に指定の無い限り、 $4.5~V \leq V_{DD1}$ ≦5.5 V、4.5 V≦V_{DD2}≦5.5 V、-40 ℃≦T_a≦110 ℃の全推奨動作範囲に適用されます。

(1) DCL541x01

項目	条件	記号	最小	標準	最大	単位
	V _I =0 (DCL541L01)	I _{DD1(Q)}	-	3.0	4.3	mA
DC 電流	V _i =1 (DCL541H01)	I _{DD2(Q)}	-	4.5	6.6	mA
DC 电流	V _I =0 (DCL541H01)	I _{DD1(Q)}	-	16.6	22.5	mA
	V _I =1 (DCL541L01)	I _{DD2(Q)}	-	10.2	14.1	mA
4 M la ma	f _{CLK} =500kHz, Duty=50%の方形波 C _L =15pF	I _{DD1(1)}	-	10.0	15.5	mA
1Mbps		I _{DD2(1)}	-	7.6	10.2	mA
OFMbas	fclk=12.5MHz, Duty=50%の方形波	I _{DD1(25)}	-	12.1	18.2	mA
25Mbps	C _L =15pF	I _{DD2(25)}	-	10.6	15.4	mA
100Mbpa	fclĸ=50MHz, Duty=50%の方形波	I _{DD1(100)}	-	17.4	24.5	mA
100Mbps	C _L =15pF	I _{DD2(100)}	-	22.5	35.2	mA

(2) DCL542x01

項目	条件	記号	最小	標準	最大	単位
	V _i =0 (DCL542L01)	I _{DD1(Q)}	-	3.8	5.5	mA
DO 画次	V _i =1 (DCL541H01)	I _{DD2(Q)}	-	3.8	5.5	mA
DC 電流	V _I =0 (DCL542H01)	I _{DD1(Q)}	-	13.4	18.3	mA
	V _I =1 (DCL542L01)	I _{DD2(Q)}	-	13.4	18.3	mA
4.84	f _{CLK} =500 kHz, Duty=50 %の方形波 C _L =15 pF	I _{DD1(1)}	-	8.8	12.9	mA
1 Mbps		I _{DD2(1)}	-	8.8	12.9	mA
05.14	f _{CLK} =12.5 MHz, Duty=50 %の方形波	I _{DD1(25)}	-	11.4	16.8	mA
25 Mbps	C _L =15 pF	I _{DD2(25)}	-	11.4	16.8	mA
400 Mb	fclк=50 MHz, Duty=50 %の方形波	I _{DD1(100)}	-	20.0	29.9	mA
100 Mbps	C _L =15 pF	I _{DD2(100)}	-	20.0	29.9	mA

9.5 動作電流特性 3.3 V動作

全ての代表的な仕様は T_a =25 $\,^\circ$ C、 V_{DD1} = V_{DD2} =3.3 V 時の値です。最小/最大仕様は特に指定の無い限り、3.0 $V \le V_{DD1} \le$ 3.6 V、3.0 $V \le V_{DD2} \le$ 3.6 V、-40 $\,^\circ$ C \le $T_a \le$ 110 $\,^\circ$ Cの全推奨動作範囲に適用されます。

(1) DCL541x01

項目	条件	記号	最小	標準	最大	単位
	V _I =0 (DCL541L01)	I _{DD1(Q)}	-	2.9	4.1	mA
D.C. 雨法	V _i =1 (DCL541H01)	I _{DD2(Q)}	-	4.4	6.5	mA
DC 電流	V _I =0 (DCL541H01)	I _{DD1(Q)}	-	16.5	22.3	mA
	V _I =1 (DCL541L01)	I _{DD2(Q)}	-	10.1	14.0	mA
4 Mb is a	fcLк=500 kHz, Duty=50 %の方形波 CL=15 pF	I _{DD1(1)}	-	9.9	14.9	mA
1 Mbps		I _{DD2(1)}	-	7.5	9.5	mA
OF Mhns	f _{CLK} =12.5 MHz, Duty=50 %の方形波	I _{DD1(25)}	-	10.8	16.6	mA
25 Mbps	C _L =15 pF	I _{DD2(25)}	-	9.7	12.8	mA
100 Mbps	fclk=50 MHz, Duty=50 %の方形波	I _{DD1(100)}	-	14.5	19.9	mA
100 Mbps	C _L =15 pF	I _{DD2(100)}	-	16.6	26.0	mA

(2) DCL542x01

項目	条件	記号	最小	標準	最大	単位
	V _i =0 (DCL542L01)	I _{DD1(Q)}	-	3.7	5.3	mA
DC 電流	V _i =1 (DCL542H01)	I _{DD2(Q)}	-	3.7	5.3	mA
DU 电流	V _i =0 (DCL542H01)	I _{DD1(Q)}	-	13.3	18.2	mA
	V _I =1 (DCL542L01)	I _{DD2(Q)}	-	13.3	18.2	mA
4 Mbn c	fclк=500 kHz, Duty=50 %の方形波 Cl=15 pF	I _{DD1(1)}	-	8.7	12.2	mA
1 Mbps		I _{DD2(1)}	-	8.7	12.2	mA
OF Mana	f _{CLK} =12.5 MHz, Duty=50 %の方形波	I _{DD1(25)}	-	10.3	14.7	mA
25 Mbps	C _L =15 pF	I _{DD2(25)}	-	10.3	14.7	mA
100 Mbns	fclк=50 MHz, Duty=50 %の方形波	I _{DD1(100)}	-	15.6	23.0	mA
100 Mbps	C _L =15 pF	I _{DD2(100)}	-	15.6	23.0	mA

9.6 動作電流特性 2.5 V動作

全ての代表的な仕様は T_a =25 \mathbb{C} 、 V_{DD1} = V_{DD2} =2.5 V 時の値です。最小/最大仕様は特に指定の無い限り、2.25 $V \le V_{DD1}$ \le 2.75 V、2.25 $V \le V_{DD2} \le$ 2.75 V、-40 \mathbb{C} \le $T_a \le$ 110 \mathbb{C} の全推奨動作範囲に適用されます。

(1) DCL541x01

項目	条件	記号	最小	標準	最大	単位
	V _I =0 (DCL541L01)	I _{DD1(Q)}	1	2.9	4.1	mA
DC 電流	V _I =1 (DCL541H01)	I _{DD2(Q)}	1	4.5	6.4	mA
	V _I =0 (DCL541H01)	I _{DD1(Q)}	1	16.4	22.2	mA
	V _I =1 (DCL541L01)	I _{DD2(Q)}	-	10.0	13.9	mA
1 Minns	f _{CLK} =500 kHz, Duty=50 %の方形波 C _L =15 pF	I _{DD1(1)}	1	9.8	14.8	mA
		I _{DD2(1)}	1	7.4	9.5	mA
25 Mbps fclk=12.5 MHz, D CL=15 pF	f _{CLK} =12.5 MHz, Duty=50 %の方形波	I _{DD1(25)}	-	10.4	16.1	mA
	C _L =15 pF	I _{DD2(25)}	1	9.2	12.2	mA
100 Mbps	f _{CLK} =50 MHz, Duty=50 %の方形波 C _L =15 pF	I _{DD1(100)}	1	13.1	18.2	mA
		I _{DD2(100)}	-	14.3	24.1	mA

(2) DCL542x01

項目	条件	記号	最小	標準	最大	単位
	V _I =0 (DCL542L01)	I _{DD1(Q)}	-	3.7	5.3	mA
DC 配法	V _i =1 (DCL541H01)	I _{DD2(Q)}	-	3.7	5.3	mA
DC 電流 V	V _I =0 (DCL542H01)	I _{DD1(Q)}	-	13.2	18.1	mA
	V _I =1 (DCL542L01)	I _{DD2(Q)}	-	13.2	18.1	mA
1 Mbps	fcLк=500 kHz, Duty=50 %の方形波 CL=15 pF	I _{DD1(1)}	-	8.6	12.2	mA
		I _{DD2(1)}	-	8.6	12.2	mA
25 Mbps f _{CLK} =12.5 MHz, C _L =15 pF	fclĸ=12.5 MHz, Duty=50 %の方形波	I _{DD1(25)}	-	9.8	14.2	mA
	C _L =15 pF	I _{DD2(25)}	-	9.8	14.2	mA
100 Mbps	fclk=50 MHz, Duty=50 %の方形波	IDD1(100)	-	13.7	21.2	mA
	C _L =15 pF	I _{DD2(100)}	-	13.7	21.2	mA

10. 絶縁仕様

項目	記号	測定条件	値	単位
最小空間距離	CLR	空気中での端子間最短距離	8	mm
最小沿面距離	CPG	パッケージ表面での端子間最短距離	8	mm
最小アイソレーションギャップ	DTI	最小内部ギャップ	17	μm
トラッキング指数	CTI	-	600	V
Material Group	-	IEC 60664-1	I	-
	-	定格主電圧 ≤ 300 V _{rms}	I-IV	-
IEC 60664-1 に基づく過電圧カテ ゴリー	-	定格主電圧 ≤ 600 V _{rms}	I-IV	-
_ ,	-	定格主電圧 ≤ 1000 V _{rms}	1-111	-
DIN EN IEC 60747-17; (VDE 08	84-17)			
最大許容動作絶縁電圧	VIORM	AC voltage (bipolar)	1414	V_{PK}
最大過渡絶縁電圧	V _{IOTM}	V _{TEST} =V _{IOTM} , t = 60 s (qualification) , V _{TEST} = 1.2 x V _{IOTM} , t= 1 s (100 % production)	8000	V_{PK}
最大インパルス電圧	V_{IMP}	IEC 61000-4-5 1.2/50µs waveform	8000	V_{PK}
最大サージ絶縁電圧	Viosm	Test method per IEC 61000-4-5, 1.2/50 μ s waveform, $V_{IOSM} \ge 1.3 \times V_{IMP}$ (qualification)	12800	V _{PK}
	V _{pd(m)}	Method A, After Input/Output safety test subgroup2&3, $V_{\text{ini,a}}=V_{\text{IOTM}}, V_{\text{pd(m)}}=1.2 \text{ x } V_{\text{IORM}}$ $t_{\text{ini}}=60 \text{ s}, t_{\text{m}}=10 \text{ s},$ partial discharge < 5 pC	1697	V _{PK}
部分放電試験電圧		Method A, After environmental tests subgroup 1, $V_{\text{ini,a}} = V_{\text{IOTM}}$, $V_{\text{pd(m)}} = 1.6 \text{ x } V_{\text{IORM}}$ $t_{\text{ini}} = 60 \text{ s}$, $t_{\text{m}} = 10 \text{ s}$, partial discharge < 5 pC	2263	
		Method B1; At routine test (100% production) and preconditioning (type test) Vini,b ≥ 1.2 x V _{IOTM} , V _{pd(m)} =1.875 x V _{IORM} t _{ini,b} = 1 s, t _m = 1 s partial discharge < 5 pC	2652	
入出力間バリア容量	Сю	f = 1 MHz	1.5	pF
入力容量	Cı	V _{IX}	1.8	pF
	Rio	V _{IO} = 500 V, T _A = 25 °C	>1012	
入出力間絶縁抵抗		V _{IO} = 500 V, 100 °C ≤ T _A ≤ 110 °C	>10 ¹¹	Ω
		V _{IO} = 500 V at T _S = 150 °C	>109	
汚染度	-	-	2	-
環境試験クラス	-	-	40/110/21	-
UL 1577	•			
最大絶縁耐圧	V _{ISO}	$V_{TEST} = V_{ISO}$, $t = 60$ s (qualification), $V_{TEST} = 1.2 \times V_{ISO}$, $t = 1$ s (100 % production)	5000	V_{rms}

11. 安全最大定格

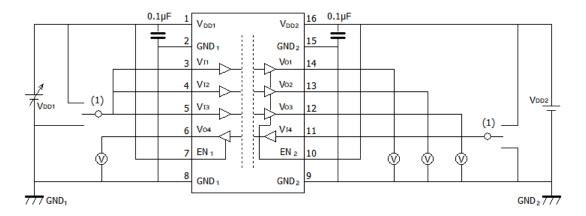
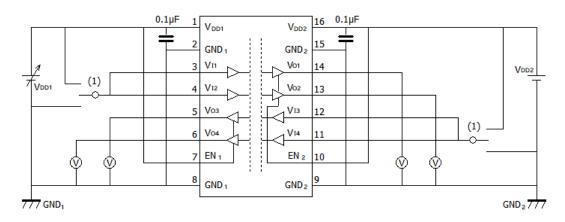
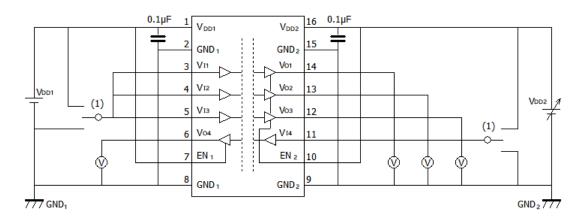

項目	記号	測定条件	値	単位
		V _{DD1} =V _{DD2} =5.5 V, T _j =150 °C,T _a =25 °C	284	mA
安全最大電流	Is	V _{DD1} =V _{DD2} =3.6 V, T _j =150 °C,T _a =25 °C	434	mA
		V _{DD1} =V _{DD2} =2.75 V, T _j =150 °C,T _a =25 °C	568	mA
電力(全許容損失)	Ps	T _j =150 °C, T _a =25 °C	1562	mW
安全最大温度	Ts	-	150	°C

図 11.1 熱ディレーティング曲線、安全限界値-Ta周囲温度

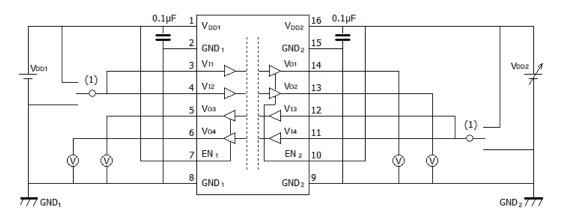


12. 測定回路

1: Default=L : V_{DDx} , Default=H : GND_x


図 12.1: DCL541L01/DCL541H01 VDD1UV+/ VDD1UV-特性測定回路図

1: Default=L : V_{DDx} , Default=H : GND_x


図 12.2: DCL542L01/DCL542H01 VDD1UV+/ VDD1UV-特性測定回路図

1: Default=L : V_{DDx} , Default=H : GND_x

図 12.3: DCL541L01/DCL541H01 VDD2UV+/ VDD2UV-特性測定回路図

1: Default=L : V_{DDx} , Default=H : GND_x

図 12.4: DCL542L01/DCL542H01 VDD2UV+/ VDD2UV-特性測定回路図

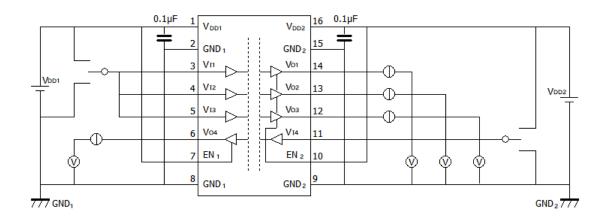


図 12.5: DCL541L01/DCL541H01 V_{OH}/V_{OL}特性測定回路図

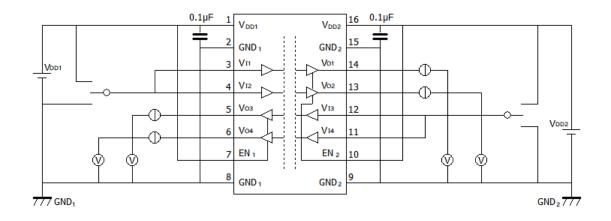


図 12.6: DCL542L01/DCL542H01 V_{OH}/V_{OL}特性測定回路図

17

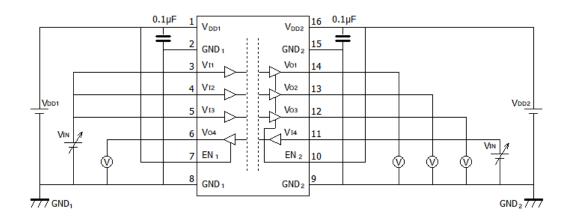
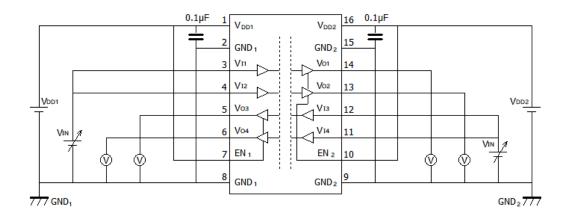
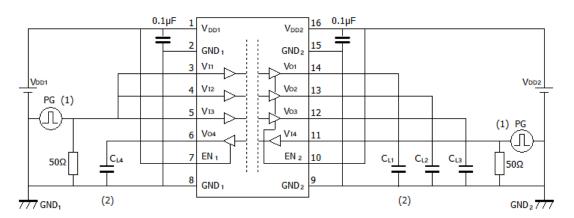
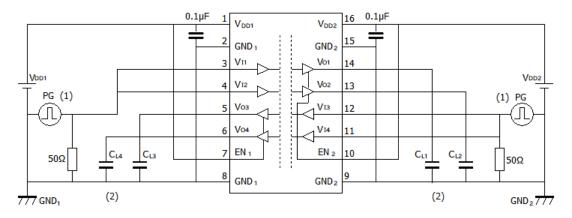


図 12.7: DCL541L01/DCL541H01 V_{IH}/V_{IL}特性測定回路図

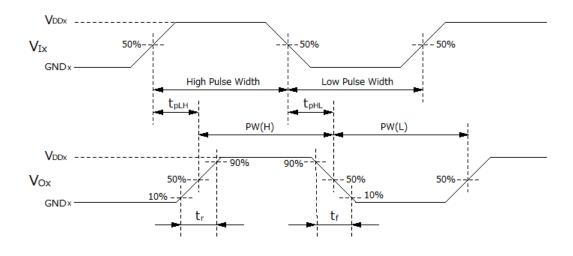
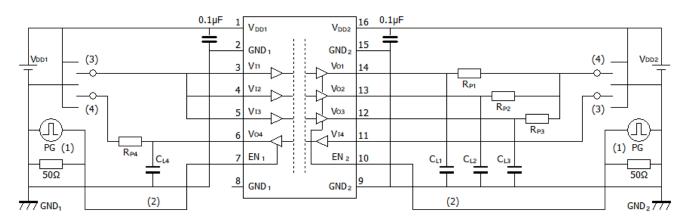

図 12.8: DCL542L01/DCL542H01 V_{IH}/V_{IL}特性測定回路図

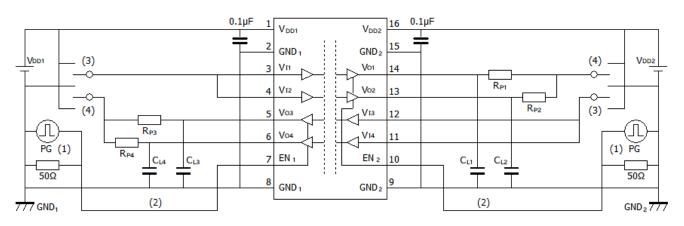
- 1: 入力パルスは PRR \leq 50 kHz、デューティー・サイクル 50 %、tr \leq 2 ns、tf \leq 2 ns tf \leq 3 ns tf \leq 3 ns tf \leq 3 ns tf \leq 4 ns tf \leq 5 ns
- 2: C_{LX}=15 pF にはプローブと配線容量を含みます。

図 12.9: DCL541L01/DCL541H01 Switching 特性測定回路図

- 1: 入力パルスは PRR \leq 50 kHz、デューティー・サイクル 50 %、 $tr \leq$ 2 ns、 $tf \leq$ 2 ns $tf \leq$ 2 ns $tf \leq$ 2 ns $tf \leq$ 2 ns $tf \leq$ 3 ns $tf \leq$ 3 ns $tf \leq$ 4 ns $tf \leq$ 3 ns $tf \leq$ 4 ns $tf \leq$ 3 ns $tf \leq$ 4 ns $tf \leq$ 4 ns $tf \leq$ 5 ns $tf \leq$ 5 ns $tf \leq$ 6 ns $tf \leq$ 6 ns $tf \leq$ 6 ns $tf \leq$ 7 ns $tf \leq$ 7 ns $tf \leq$ 7 ns $tf \leq$ 7 ns $tf \leq$ 8 ns $tf \leq$ 8 ns $tf \leq$ 9 ns $tf \leq$ 8 ns $tf \leq$ 9 ns $tf \leq$ 9
- 2: C_{LX} =15 pF にはプローブと配線容量を含みます。

図 12.10: DCL542L01/DCL542H01 Switching 特性測定回路図

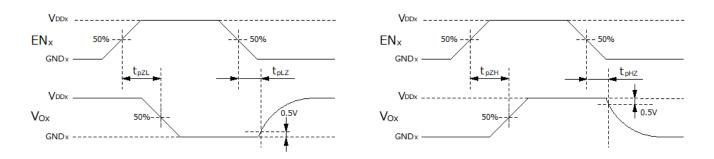
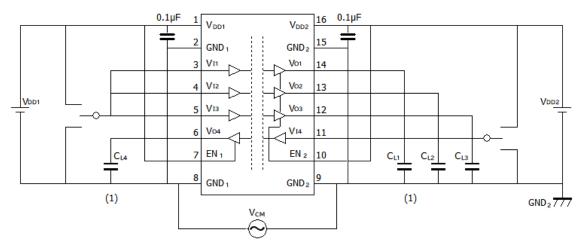

図 12.11: DCL54xL01/DCL54xH01 Switching 特性波形図

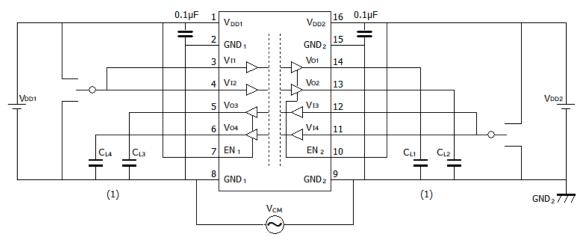
- 1: 入力パルスは PRR \leq 50 kHz、デューティー・サイクル 50 %、tr \leq 2 ns、tf \leq 2 ns tf \leq 3 ns tf \leq 3 ns tf \leq 3 ns tf \leq 4 ns tf \leq 5 ns
- 2: C_{LX}=15 pF にはプローブと配線容量を含みます。
- 3: t_{pZL}, t_{pLZ}の場合 GND_x, t_{pZH}, t_{pHZ}の場合 V_{DDx}
- 4: t_{pZL}, t_{pLZ}の場合 V_{DDx}, t_{pZH}, t_{pHZ}の場合 GND_x

図 12.12: DCL541L01/ DCL541H01 イネーブル伝搬遅延時間テスト回路図

- 1: 入力パルスは $PRR \le 50 \text{ kHz}$ 、デューティー・サイクル 50 %、 $tr \le 2 \text{ ns}$ 、 $tf \le 2 \text{ ns}$ 、 $Z_0 = 50 \Omega$ の特性を持つジェネレーターから供給してください。入力ジェネレーター信号を終端するために 50Ω の抵抗が必要です。 実際のアプリケーションでは必要ありません。
- 2: C_{LX} =15 pF にはプローブと配線容量を含みます。
- 3: t_{pZL}, t_{pLZ}の場合 GND_x, t_{pZH}, t_{pHZ}の場合 V_{DDx}
- 4: t_{pZL}, t_{pLZ}の場合 V_{DDx}, t_{pZH}, t_{pHZ}の場合 GND_x

図 12.13: DCL542L01/ DCL542H01 イネーブル伝搬遅延時間テスト回路図


図 12.14: DCL54xL01/ DCL54xH01 イネーブル伝搬遅延時間波形図

- 1: C_{LX}=15 pF にはプローブと配線容量を含みます。
- 2: IC の出力端子側の GND 端子を基準として V_{CM} を印加します。IC の入力端子側の GND は、出力端子側から絶縁された GND です。どの チャンネルを測定するかによって GND_1 を基準として V_{CM} を印加する場合と、 GND_2 を基準として V_{CM} を印加する場合があります。

図 12.15: DCL541L01/DCL541H01 コモンモード過渡耐性テスト回路図

- 1: C_{LX} =15 pF にはプローブと配線容量を含みます。
- 2: IC の出力端子側の GND 端子を基準として V_{CM} を印加します。IC の入力端子側の GND は、出力端子側から絶縁された GND です。どの チャンネルを測定するかによって GND_1 を基準として V_{CM} を印加する場合と、 GND_2 を基準として V_{CM} を印加する場合があります。

図 12.16: DCL542L01/DCL542H01 コモンモード過渡耐性テスト回路図

13. 特性図 (注)

注: 特性図の値は、特に指定のない限り保証値ではなく参考値です。

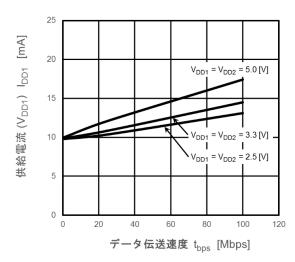


図 13.1: DCL541x01 IDD1 動作電流 - データレート

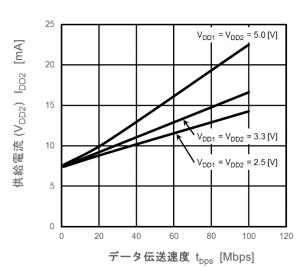


図 13.2: DCL541x01 IDD2 動作電流 - データレート

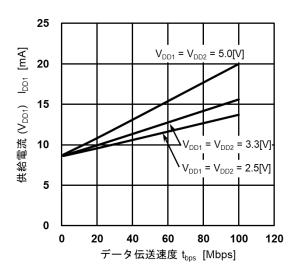


図 13.3: DCL542x01 IDD1 動作電流 - データレート

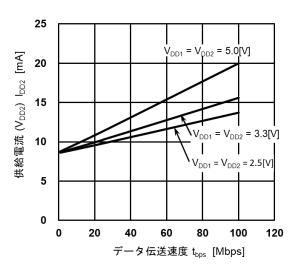


図 13.4: DCL542x01 IDD2 動作電流 - データレート

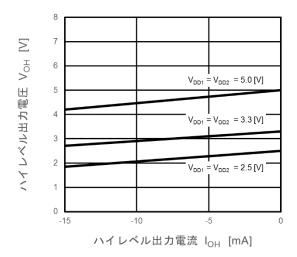


図 13.5 : Vон-Іон

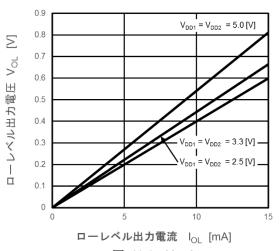


図 13.6: V_{он}-I_{он}

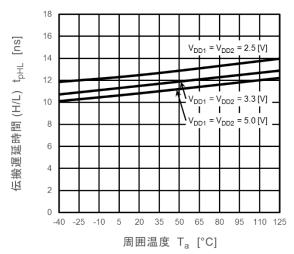


図 13.7: 伝搬遅延 t_{PHL} -Ta

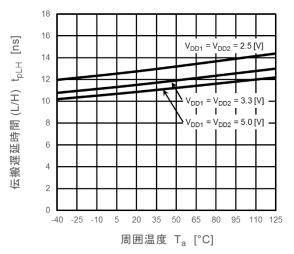


図 13.8: 伝搬遅延 t_{PLH} -Ta

14. アプリケーションノート

14.1 アイ・ダイアグラム

下図に DCL541x01 のアイ・ダイアグラムを示しています。擬似ランダム・ビット・シーケンス (PRBS)、データ伝送速度 150 Mbps、電源電圧 3.3 V で観測しています。

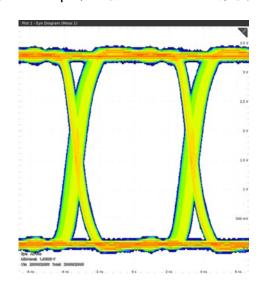


図 14.1: DCL541L01 のアイ・ダイアグラム例

14.2 PCBレイアウト

電源電圧の安定化と当製品の安定動作のために、1 次側の電源ピン(1 $pin V_{DD1}$ と 2 $pin GND_1$ 間)と 2 次側の電源ピン(16 $pin V_{DD2}$ と 15 $pin GND_2$ 間)に平滑コンデンサーを接続してください。高周波特性の良いバイパスコンデンサー0.1 $pin V_{DD2}$ と 10 $pin V_{DD2}$ と 15 $pin GND_2$ 間)に平滑コンデンサーを接続してください。(10 $pin V_{DD1}$ と 2 $pin GND_2$ 間)に平滑コンデンサーを接続してください。(10 $pin V_{DD2}$ と 2 $pin GND_2$ 間)に平滑コンデンサーを接続してください。高周波特性の良いバイパスコンデンサーの.1 $pin V_{DD2}$ と 2 $pin GND_2$ 間)に平滑コンデンサーを接続してください。

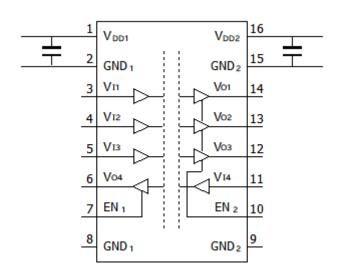


図 14.2: 推奨 PCB レイアウト

15. パッケージ情報

実装区分	表面実装	
ピン数	16	
質量 (g)	0.426 (標準)	
パッケージ寸法 幅×長さ×高さ (mm)	10.3×10.0×2.45 (標準)	
パッケージ寸法 (mm) / 参考パッド寸法 (mm)	パッケージ寸法 10.3±0.2 16 15 14 13 12 11 10 9 B 1 2 3 4 5 6 7 8 0.38±0.1 中 00.1 0 A B 10±0.2 ランドパターン寸法(ご参考)	
	1.27	

製品取り扱い上のお願い

株式会社東芝およびその子会社ならびに関係会社を以下「当社」といいます。本資料に掲載されているハードウエア、ソフトウエアおよびシステムを以下「本製品」といいます。

- 本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載 複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- 当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウエア・ソフトウエア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下"特定用途"という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器(ヘルスケア除く)、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、発電関連機器などが含まれますが、本資料に個別に記載する用途は除きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口まで、または当社 Web サイトのお問い合わせフォームからお問い合わせください。
- ◆ 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事 用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用 ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品のRoHS適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本製品のご使用 に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合 するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかね ます。

26

東芝デバイス&ストレージ株式会社

https://toshiba.semicon-storage.com/jp/