概要
本資料はフォトカプラに関わる安全規格について、部品規格および装置規格の観点で頻出する用語と事例をまとめたものです。
目次

1. 規格体系 ... 3
2. 部品規格と装置規格 ... 4
3. 安全規格概要 .. 6
 3.1 UL 1577 ... 6
 3.2 EN 60747-5-5 (IEC 60747-5-5) .. 7
 3.3 IEC 62368-1 ... 8
 3.4 IEC 60335-1 ... 8
4. 安全規格の規定の中で使用される主なパラメータまたは用語 ... 9
 4.1 過電圧カテゴリ Over voltage category ... 9
 4.2 汚染度 Pollution degree .. 10
 4.3 CTI 値 Comparative Tracking Index ... 10
 4.4 絶縁の種類 .. 11
 4.5 絶縁保護クラス ... 11
5. フォトカプラにおける構造パラメータ ... 12
 5.1 絶縁耐圧 ... 12
 5.2 空間距離 ... 13
 5.3 沿面距離： ... 13
 5.4 絶縁物厚： ... 14
 5.5 沿面・空間距離に対してのフォトカプラの適合事例 ... 14
6. さいごに ... 15

製品取り扱い上のお願い ... 17
フォトカプラは電気的な「絶縁」を極めて重要な機能とするデバイスで、発光素子と受光素子を光透過性の絶縁物を介してパッケージ化したもので、応用の一例がスイッチング電源です。スイッチング電源は液晶テレビなどの家電機器やMFP（複合機）などの事務機器の商用電源機器に組み込まれています。この電源の一、二次間の信号伝達の目的で使用されるフォトカプラは、人体に対する感電を防ぐために安全規格による規制を受けることになります。安全規格は国際規格をもとに各国ごとに制定されています。代表的なものにドイツのVDE規格やDIN規格、米国のUL規格などがあります。本資料では安全規格の概要について説明します。

1. 規格体系

電気、電子、通信などの分野では、IEC（国際電気標準会議）により国際標準が定められています。また、この国際標準・規格を基に電圧など地域ごとの事情を加味して制定されるものが地域標準です。さらに、各国ごとにこのIECや地域標準に基づき安全規格が制定されています（図1.1）。これら規格の認証を得るためには各国の認証機関に申請を行い、各規格に基づく試験に合格する必要があります。

世界標準（IEC）規格：全世界の標準として加盟各国が協議して制定された規格
IEC（International Electrotechnical Commission）

地域標準：IECに基づき、地域ごとの事情を加味しながら、地域単位に標準化された規格
例；ヨーロッパ規格（EN規格）など EN(European Norm)

国別規格など：IEC規格、地域標準規格に基づき各国ごとに制定された規格
例；UL（アメリカ）、DIN（ドイツ）など

次に代表的な認証機関について簡単に触れてみます。

図 1.1 世界の主な認証機関と規格
フォトカプラの安全規格

UL : Underwriters Laboratories Inc. は材料から製品までの様々な安全に関する規格策定、試験、認証を行っています。UL から製品安全の認証を受けた製品には UL マークが表示されます。アメリカに対して電気製品や電気部品を含む製品を輸出する場合、この UL 認定を取得している必要がある場合がほとんどです。フォトカプラの部品規格である UL 1577 では高電圧印加時の絶縁破壊の有無により絶縁性能を規定しています。

CSA : Canadian Standard Association（カナダ規格協会）はカナダにおける電気機器等の安全性について規定しています。カナダの各州法により、商用電源に接続する機器は CSA に適合している必要があります。アメリカとカナダは MRA（Multi Recognition Agreement）締結により相互承認が可能となっています。UL にてカナダ向けの認証を受けた製品はこの相互承認により CSA と同等に認証され、それを示す cUL マークを使用する事が出来ます。東芝は多くのフォトカプラでこの cUL 認定を取得しています。

VDE : Verband Der Elektrotechnik Elektronik Informationstechnik e.V.（ドイツ電気技術者連合）はドイツの民間機関で、独自の VDE 規格の制定やドイツの国家規格（DIN 規格）などの適合検査、認証を行っています。フォトカプラの部品規格である DIN EN 60747-5-5（旧 DIN VDE 0884）では部分放電試験によりフォトカプラの絶縁性能を規定しています。東芝フォトカプラで VDE 認定を受けている製品はこの EN 60747-5-5 の認定を取得しています。また EN 60747-5-5 取得時のオプションとして EN 60065, EN60950-1, EN 62368-1 を取得している製品もあります。

SEMKO : Svenska Elektriska Materialkontroll Anstalten（スウェーデン電気機器検査協会）はスウェーデンの電気製品の規格制定・製品認証を行う機関で、東芝フォトカプラで SEMKO 認定を受けている製品では EN 60065, EN 60950-1 の認定を取得しています。

CQC : China Quality Certification center 中国品質認証センターは中国の認証機関であり、CCC 認証（中華人民共和国内に輸入される製品に対する中国国家規格適合管理制度）を中心に、中国国家規格への適合検査、承認を行っています。東芝フォトカプラで CQC 認証を取得している製品では GB4943.1（IEC 60950-1 MOD*）、GB8898（IEC 60065 MOD*）の認定を取得しています。

*MOD とは IEC 規格の修正を意味しています。国家規格の制定に際して国際規格の構成が反映されており、構成の変更は両規格の技術的成分と構成の比較が容易に行えることが可能な場合のみ許可されます。

2. 部品規格と装置規格

設計、製造の立場から安全規格を見ると、装置規格で部品規格に分類できます。フォトカプラが関わる主な装置規格、部品規格の例を表 2.1 に示します。

装置規格は装置の安全性を考慮して制定された規格で、主なものは事務機器を含む情報技術機器に適用される IEC 60950-1 やオーディオ・ビデオ類などに適用される IEC 60065 が挙げられます。各国では IEC 規格や EN 規格に基づき規定しており、例えばドイツでは DIN EN 60950-1 として規定されています。IEC 60950-1/IEC 60065 の中では絶縁により分離する部分間に対して絶縁耐量や物理的な距離などが規定されており、その絶縁部分に使用されるフォトカプラではこれらの要求に対する試験を受けて認定を取得しています。
表2.1 装置規格と部品規格

<table>
<thead>
<tr>
<th>装置規格</th>
<th>IEC規格</th>
<th>EN規格</th>
<th>国別規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>情報技術機器</td>
<td>IEC 60950-1</td>
<td>EN 60950-1</td>
<td>DIN EN 60950-1, BS EN 60950-1, GB4943.1 など</td>
</tr>
<tr>
<td>オーディオ・ビデオ類</td>
<td>IEC 60065</td>
<td>EN 60065</td>
<td>DIN EN 60065, BS EN 60065, GB8898 など</td>
</tr>
<tr>
<td>IT機器 (IEC60950/IEC60065 統合)</td>
<td>IEC 62368-1</td>
<td>EN 62368-1</td>
<td>-</td>
</tr>
<tr>
<td>家庭用電気機器安全</td>
<td>IEC 60335-1</td>
<td>EN 60335-1</td>
<td>-</td>
</tr>
<tr>
<td>インバータ装置</td>
<td>IEC 61800-5</td>
<td>EN 61800-5</td>
<td>-</td>
</tr>
<tr>
<td>太陽光発電システム</td>
<td>IEC 62109-1</td>
<td>EN 62109-1</td>
<td>-</td>
</tr>
<tr>
<td>産業制御機器</td>
<td>IEC 61010-1</td>
<td>EN 61010-1</td>
<td>-</td>
</tr>
<tr>
<td>低電圧システム</td>
<td>IEC 60664-1</td>
<td>EN 60664-1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>部品規格</th>
<th>IEC 60747-5-5</th>
<th>EN 60747-5-5</th>
<th>DIN EN 60747-5-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>フォトカプラの規格</td>
<td>UL1577*</td>
<td>CSA component acceptance notice No.5A (CA5A)*</td>
<td></td>
</tr>
</tbody>
</table>

*UL1577, CA5AはIEC60747-5-5と絶縁試験の規格内容が異なります。

IEC 60950-1: Information technology equipment - Safety - Part 1: General requirements
IEC 60065: Audio, video and similar electronic apparatus - Safety requirements
IEC 62368-1: Audio/video, information and communication technology equipment - Part 1: Safety requirements
IEC 60335-1: Household and similar electrical appliances - Safety - Part 1: General requirements
IEC 61800-5-1: Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy
IEC 62109-1: Safety of power converters for use in photovoltaic power systems - Part 1: General requirements
IEC 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements
IEC 60664-1: Insulation coordination for equipment within low-voltage systems - Part 1: Principles, requirements and tests
IEC 60747-5-5: Semiconductor devices - Discrete devices - Part 5-5: Optoelectronic devices – Photocouplers
一方、部品規格は部品単体に対する規格で、フォトカプラに関する規格としては UL 1577, IEC 60747-5-5 などが挙げられます。これら規格では入出力間の絶縁性能を測る試験方法と、判定基準が異なって定義されています。部品規格と装置規格は基本的に独立していますが、装置規格の IEC 60950-1 では部品規格の IEC 60747-5-5 を取得する事で強化絶縁に対するカプラ内部の 0.4mm の絶縁物厚要求を免除するなど規格の一部内容に関しては相互性が認められる場合があります。これら規格の詳細は次の第 3 項で述べます。

3.2 項でも述べますが、特に IEC 60747-5-5 においては部品規格として部分放電試験を課しています。産業系装置規格に代表される IEC 61800-5, IEC 62109-1, IEC 61010-1 などは装置規格としても部分放電試験が課されますので、それら装置に採用されるフォトカプラにおいても部分放電試験に対応した製品が選ばれています。

安全規格への適合性は各国の安全認証機関にて判定され認証書が発行されます。フォトカプラで部品の認証として取得する主な安全規格を表 2.2 に示します。なお、フォトカプラの安全規格はその用途に応じて製品別に取得していきますので、製品を選択される際は東芝デバイス&ストレージ株式会社のホームページや個別データシートで取得している安全規格をご確認ください。

<table>
<thead>
<tr>
<th>取得機関</th>
<th>安全規格</th>
<th>取得認定内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL</td>
<td>UL 1577 CA5A (cUL)</td>
<td>絶縁耐圧、絶縁樹脂の難燃性などを基に認定されています。</td>
</tr>
<tr>
<td>VDE</td>
<td>DIN EN 60747-5-5 EN 62368-1</td>
<td>部分放電試験などを基に認定されています。</td>
</tr>
<tr>
<td>CQC</td>
<td>GB4943.1 GB8898</td>
<td>規格内の絶縁距離や絶縁抵抗・絶縁耐力試験などを基に認定されています。</td>
</tr>
<tr>
<td>SEMKO</td>
<td>EN 60950-1 EN 60065 EN 62368-1</td>
<td>規格内の絶縁距離や絶縁抵抗・絶縁耐力試験などを基に認定されています。</td>
</tr>
</tbody>
</table>

3. 安全規格概要

本項では、フォトカプラに対し適用させることを求められる部品規格の中で中心になる UL 1577 と EN 60747-5-5 について、および部品搭載される機器の装置規格として適用対象になることが多い IEC 62368-1 と IEC 60335-1 についてその概要を説明します。

3.1 UL 1577

UL 1577 では絶縁耐圧試験法(Dielectric Strength Test)を用い、高電圧印加時の絶縁破壊の有無によって判定する試験を行います。通常は 1 分間、50Hz または 60Hz の AC 正弦波電圧に対する入出力間絶縁耐量の規定であり、入出力間に定常的に印加される電圧に対する安全動作を規定するものではありません。東芝フォトカプラの絶縁耐压 BVs は UL 1577 に基づいて試験を行っています。
3.2 EN 60747-5-5 (IEC 60747-5-5)

EN 60747-5-5 では部分放電試験法(Partial Discharge Test)を用い、高電圧印加時の部分コロナ放電による発生電荷が 5pC 以下であることを基準として絶縁性能を判定する試験を行います。例えば図 3.1(b)の電圧条件で全数試験でフォトカプラに印加され、発生電荷<5pC の検出判定が必要です。したがって、EN 60747-5-5 に対応した製品は部分放電試験を実施する必要があり、東芝フォトカプラにおいてはその試験は通常の出荷試験内容に追加で実施されます。

(a) EN 60747-5-5 による試験電圧波形、手順 a)、破壊試験（型式試験や抜取り試験に適用）

(b) EN 60747-5-5 による試験電圧波形、手順 b)、非破壊試験（全数試験に適用）

EN 60747-5-5 認定の対応製品は通常の出荷試験に部分放電試験を追加する必要がある為、東芝では EN 60747-5-5 認定品を次のように運用しています。

(1) EN 60747-5-5 の要求試験を適用したものは、オプション (D4)または(V4) 仕様として統一した呼称を付与します。

(2) オプション (D4)/(V4) 仕様品には表 3.1 に示すような統一した製品名を付与します。

(3) DIP や SDIP 等の沿面・空間距離 6.4mm 以上の保証が可能なパッケージ品には(D4), SO4/SO6/MFSOP6 等の沿面・空間距離 5mm 以下の面実装パッケージ品には(V4)の品名を付与します。

図 3.1 EN 60747-5-5 による試験電圧波形（TLP701H の場合）
フォトカプラの安全規格

Table 3.1 オプション (D4) / (V4)仕様品の呼び方

<table>
<thead>
<tr>
<th>例 1: DIP8 パッケージ</th>
<th>一般品 TLP352 (TP1,F) → TLP352 (D4-TP1,F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D4: EN 60747-5-5 オプション指定</td>
</tr>
<tr>
<td></td>
<td>TP1: テープ型仕様</td>
</tr>
<tr>
<td></td>
<td>F: [[G]]/ RoHS COMPATIBLE</td>
</tr>
<tr>
<td>ただし、安全規格のセット申請に際しては、従来とおり標準形名を使用してください。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>例: TLP352(D4-TP1,F) → TLP352</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>例 2: SO6 パッケージ</th>
<th>一般品 TLP2368(V4-TPL,E) → TLP2368(V4-TPL,E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V4: EN60747-5-5 オプション指定</td>
<td></td>
</tr>
<tr>
<td>TPL: テープ型仕様</td>
<td></td>
</tr>
<tr>
<td>E: [[G]]/ RoHS COMPATIBLE</td>
<td></td>
</tr>
<tr>
<td>ただし、安全規格のセット申請に際しては、従来とおり標準形名を使用してください。</td>
<td></td>
</tr>
<tr>
<td>例: TLP2368(V4-TPL,E) → TLP2368</td>
<td></td>
</tr>
</tbody>
</table>

3.3 IEC 62368-1

IEC 62368-1 は情報機器などに適用される安全規格で、機器の使用者や保守者に対する感電や障害などの危険性を減らすために規定されています。その安全確保に必要な手段の一つがフォトカプラなどによる絶縁です。絶縁部品の絶縁条件の沿面距離、空間距離などの物理的なパラメータが要求されますが、これらは電気機器が設置される環境や使用する絶縁材料の分類などにより異なる値で設定されています。これは電気機器が使用される環境によって必要な保護レベルが変わる為です。設置環境は主に IEC 60664-1 にて規定されており、次の第 4 項以降でこれらの分類の概要と東芝フォトカプラの適用事例を示します。

3.4 IEC 60335-1

IEC 60335-1 は家庭用の電気機器などに適用される安全規格（装置規格）で、絶縁部には 3.2 表の電圧にて絶縁試験が課されます。なお、この絶縁電圧は 50Hz または 60Hz の正弦波 1 分間で定義されています。当社のフォトカプラはこれらの絶縁電圧に見合った豊富なラインアップを揃えております。

表 3.2 IEC 60335-1 における絶縁試験電圧

<table>
<thead>
<tr>
<th>定格電圧</th>
<th>基礎絶縁</th>
<th>付加絶縁</th>
<th>強化絶縁</th>
</tr>
</thead>
<tbody>
<tr>
<td>安全特別低電圧(SELV)</td>
<td>500 Vac</td>
<td>－</td>
<td>－</td>
</tr>
<tr>
<td>＜25Vac/60Vdc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤130V</td>
<td>1000 Vac</td>
<td>1500 Vac</td>
<td>2500 Vac</td>
</tr>
<tr>
<td>＞130V</td>
<td>1000 Vac</td>
<td>2750 Vac</td>
<td>3750 Vac</td>
</tr>
</tbody>
</table>
4. 安全規格の規定の中で使用される主なパラメータまたは用語

電気機器の安全性は使用される環境や使用される電圧クラス等によって異なるため、フォトカプラを選択する際には適用する機器がどのクラスに分類され、どのパラメータが要求されるかを確認する必要があります。安全規格内ではそれらを分類する各種パラメータが規定されています。本項ではフォトカプラと装置規格の適合性を見極め場合にその関わり程度が大きいパラメータまたは用語の説明を行います。装置規格においては IEC 60664-1 の規定を引用、適用されることが多く、その定義に基づいた説明になります。

IEC 60664-1：Insulation coordination for equipment within low-voltage systems - Part 1: Principles, requirements and tests

4.1 過電圧カテゴリ Over voltage category

交流主電源からは電気機器の通常の動作電圧以上の過電圧が印加される可能性があり、その電圧の大きさは電源電圧や設置状況により変わります。設置される機器への過電圧に対する保護として、電気機器を4つの過電圧カテゴリに分類し過渡電圧を設定しています。

過電圧カテゴリⅠ: 建物に配線されたコンセント等に接続された機器の二次回路
過電圧カテゴリⅡ: 建物に配線されたコンセント等に接続された機器の一次回路。一般的な家庭用機器などが該当します。
過電圧カテゴリⅢ: 建物の分電盤、および分電盤からコンセント等への配線に接続された機器。産業系機器の大半が該当します。
過電圧カテゴリⅣ: 分電盤から外側、例えば柱上変圧器から分電盤までの間の配線に接続される機器で、電力量メータなどが該当します。

過電圧カテゴリが高くなるほど過電圧にさらされる危険性が高まります。過電圧カテゴリⅣは送電線からの高電圧にさらされる可能性のある部分に設置される機器で、電力量メータなどが該当します。過電圧カテゴリⅢでは分電盤などの保護回路により過電圧が低減されます。一般にエアコンなどの固定設備は過電圧カテゴリー III に設置されることを想定して設計されています。コンセントに差し込むタイプの家庭用の電気機器、例えばテレビや冷蔵庫などは通常過電圧カテゴリⅡに分類されます。一般にこれらの機器は過電圧カテゴリⅢに該当する過電圧には耐量が不足する為、分電盤からの配線に直接接続する事はできません。

図 4.1 過電圧カテゴリの概要図
4.2 汚染度 Pollution degree
電気機器の使用環境による汚染度を分類した項目です。汚染度が高いほど絶縁に対する環境は厳しくなる為、
沿面距離・空間距離などのパラメータに対してより高いレベルが要求されます。

污染度 1：汚染が無いか、または乾燥した非伝導性の汚染だけが発生する。
 例：ほこりや湿気が侵入しないようにシール、あるいはポッティングされた製品環境
污染度 2：非導電性の汚染だけが発生する。ただし、結露による一時的な導電性は予想される。
 例：オフィスや家庭などの環境
污染度 3：導電性の汚染が発生する。または、結露により導電性となる乾燥した非導電性汚染が生じる。
 例：工場の製造現場などの環境
污染度 4：導電性のほこり、または雨もしくは雪によって持続的な導電性が生じる。
 例：屋外環境

4.3 CTI 値 Comparative Tracking Index
トラッキングとは絶縁材料の表面において微小放電の繰り返しで炭化導電路が形成され絶縁破壊する現象を示
します。IEC 60112 においては指定の条件で絶縁材料の表面に塩化アンモニウム溶液を滴下しトラッキングが起き
ない最大電圧を CTI 値といい、IEC 60664-1 ではこの CTI 値により成形材料をグループ化しています。東芝フォ
トカプラが主に使用している絶縁材料は材料グループ IIIa です。

<table>
<thead>
<tr>
<th>公称電圧 Vrms</th>
<th>過渡電圧の許容値 unit:[V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>330</td>
</tr>
<tr>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>150</td>
<td>800</td>
</tr>
<tr>
<td>300</td>
<td>1500</td>
</tr>
<tr>
<td>600</td>
<td>2500</td>
</tr>
<tr>
<td>1000</td>
<td>4000</td>
</tr>
</tbody>
</table>

IEC 60664-1 : Insulation coordination for equipment within low-voltage systems - Part 1: Principles, requirements and tests
IEC 60112 : Method for the determination of the proof and the comparative tracking indices of solid insulating materials

表 4.1 過渡電圧の許容値
4.4 絶縁の種類

前項までの3つは絶縁に影響を与える環境に関する分類定義です。絶縁の構造の種類でIEC60950-1などでは5種類の定義でクラス分けされています。

- 機能絶縁：機器の本来の機能のためにのみ必要となる絶縁。感電から保護するものではないが、発火の発生の可能性を低減させることがある。
- 基礎絶縁：感電に対して基本的な保護となる絶縁。
- 付加絶縁：基礎絶縁が破壊した場合の感電に対する危険性を減少させるため、基礎絶縁に追加して設けられる独立した絶縁。
- 二重絶縁：基礎絶縁と付加絶縁の双方からなる絶縁。
- 強化絶縁：感電からの危険に対して二重絶縁によるものと同等の保護を与える単一の絶縁。

4.5 絶縁保護クラス

感電に関する保護に関して、IEC 60950-1などでは機器は次のようにクラス分けされます。

- クラスI：感電に対する保護が基礎絶縁で施されており、かつその基礎絶縁が破壊した場合の安全措置として、人が接触する可能性のある導電性部分が建物配線中の保護接地に接続されている機器。
- クラスII：感電に対する保護が基礎絶縁のみではなく、基礎絶縁と付加絶縁とからなる二重絶縁または強化絶縁によって分離された機器。
- クラスIII：感電に対する保護がSELV回路からの電源供給に基づいており、危険電圧を発生しない機器。

クラスI機器は保護接地されている必要があり、恒久的に接続される機器には保護接地端子を示すマーキングが必要になります（表4.2）。クラスII機器は基礎絶縁が故障した場合でも付加絶縁によって安全性が確保される必要があります。このクラスの機器は通常それを示すマーキングがされます。例えば日本の一般家庭の2穴コンセントに接続するような機器が挙げられます。日本では定格電圧がAC150V以下の機器にはクラス0という分類が認められる場合がありますので、必ずしも全ての家電にこのマークが付けられるわけではないです。ノートパソコンのACアダプタのように入力電圧の範囲が広い製品を確認してみるとこのマーキングを見つけることができるでしょう。クラスIII機器はSELV（安全特別低電圧回路）からの電源に基づいている為、危険電圧が存在しないとして感電に関する要求はされません。

表 4.2 4.5 絶縁保護クラスのマーキング

<table>
<thead>
<tr>
<th>クラスI 保護接地を示すマーク</th>
<th>クラスIIを示すマーク</th>
</tr>
</thead>
<tbody>
<tr>
<td>三分之一</td>
<td>正方形</td>
</tr>
</tbody>
</table>
5. フォトカプラにおける構造パラメータ

絶縁により分離する部分に対して物理的な距離が要求され、この距離はこれまでに挙げたような環境や絶縁の種類により決められています。フォトカプラにおけるこれらの構造パラメータの定義を表5.1、図5.1に示します。

<table>
<thead>
<tr>
<th align="left">構造パラメータ</th>
<th align="left">説明</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">絶縁耐圧(Isolation Voltage)</td>
<td align="left">入力-出力端子間の絶縁耐量を示す電圧</td>
</tr>
<tr>
<td align="left">沿面距離(Creepage Distance)</td>
<td align="left">絶縁物質に沿った2つの導体間(入力-出力間)の最短距離</td>
</tr>
<tr>
<td align="left">空間距離(Clearance Distance/Clearance)</td>
<td align="left">空気中で2つの導体間(入力-出力間)の最短距離</td>
</tr>
<tr>
<td align="left">絶縁物厚(Insulation Thickness/Isolation Thickness)</td>
<td align="left">2つの導体間(入力-出力間)に存在する絶縁物の最小厚み</td>
</tr>
</tbody>
</table>

5.1 絶縁耐圧

AC 50Hzまたは60Hzの正弦波、またはピーク値に等しい直流電圧で試験し絶縁破壊が無い事を見認びます。試験電圧は主に絶縁の種類(基礎絶縁、強化絶縁など)と動作電圧で決定されます。
5.2 空間距離

空間距離・沿面距離はこれまでに述べた設備カテゴリや汚染度を含む様々な条件によって決定されます。情報機器系と産業機器系の主要な設置規格は IEC 60664-1 での定義に基づき 4.1 項で述べた過電圧カテゴリに応じて最小空間距離がそれぞれ定義されていますが、情報機器系の IEC 62368-1 では表 5.2 のようになります。絶縁に対する条件が厳しくなるほど、より長い距離が要求されます。また、高度 2000m 以上の高地上で使用される場合には規定の係数を考慮する必要があります。GB4943.1-2011 では 2000m 以上 5000m 未満の高地で使用される機器に対しては地上の空間距離を 1.48 倍にすることを規定しています。

![image](image.jpg)

表 5.2 IEC 62368-1 での定義に基づく最小空間距離

<table>
<thead>
<tr>
<th>過電圧カテゴリ</th>
<th>公称 AC 主電源電压 Vrms</th>
<th>基礎絶縁</th>
<th>強化絶縁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅱ (情報機器など)</td>
<td>150</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>3.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Ⅲ (産業機器など)</td>
<td>600</td>
<td>5.5</td>
<td>8.0</td>
</tr>
</tbody>
</table>

5.3 沿面距離

沿面距離はフォトカプラの場合パッケージ外側に沿った距離となるため、その距離を決める条件にパッケージ材料の CTI 値（材料グループ）が含まれます。また、沿面距離は前項で述べた空間距離以上となることを要求されます。東芝フォトカプラで使用される材料はグループ IIIa なので、IEC 62368-1 での定義に基づきまた材料グループ IIIa の場合、最小沿面距離は表 5.3 のようになります。通常、強化絶縁に必要とされる空間距離は基礎絶縁に要求される距離の 2 倍となります。

![image](image.jpg)

表 5.3 IEC 62368-1 での定義に基づく最小沿面距離

<table>
<thead>
<tr>
<th>動作電圧(最大) Vrms</th>
<th>基礎絶縁</th>
<th>強化絶縁</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>1.6</td>
<td>3.2</td>
</tr>
<tr>
<td>200</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>250</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>320</td>
<td>3.2</td>
<td>6.4</td>
</tr>
<tr>
<td>400</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>630</td>
<td>6.3</td>
<td>12.6</td>
</tr>
<tr>
<td>800</td>
<td>8.0</td>
<td>16.0</td>
</tr>
</tbody>
</table>

汚染度 2, 材料グループ IIIa。上記表の中間に位置する電圧の場合は沿面距離を線形補間できる。
5.4 絶縁物厚:

例えば装置規格 IEC 62368-1 の場合、機能絶縁、基礎絶縁に対しては絶縁物厚 0.4mm 以上が必要です。ただし IEC 60747-5-5 に適合すると絶縁物厚の要求が異なります。一方、他の装置規格では絶縁物厚 0.4mm が必要な場合もありますので、当社は強化絶縁への対応として絶縁物厚 0.4mm を保証した製品を多数リリースしています。

5.5 沿面・空間距離に対するフォトカプラの適合事例

当社のフォトカプラの 5Mbps クラスの高速 IC カプラの代表製品で例を挙げます。小型パッケージの製品では MFSOP6(TLP105) と SO6(TLP2355)をラインアップしています。この 2 種の間ではピン配置や実装の際の推奨パッド寸法は同じですが、SO6 の方が沿面・空間距離が 1mm 長い 5mm(最小)を保証しています。当社は構造設計の最適化により、MFSOP6 よりも高い電圧クラスでの使用が可能な SO6 パッケージを開発し、SO6 パッケージの製品ラインアップを拡充しています。またさらに高い電圧クラスに対しては沿面・空間距離 8mm 保証した SO6L(TLP2745) と、SO6L の LF4 リードフォーミング(TLP2745(LF4)) をラインアップしております。これらの製品特性は同等ですので必要な安全クラスによって製品をお選びいただけます。

<table>
<thead>
<tr>
<th>パッケージ</th>
<th>製品名</th>
<th>沿面距離</th>
<th>空間距離</th>
<th>絶縁物厚</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFSOP6</td>
<td>TLP105</td>
<td>4.0 mm</td>
<td>4.0 mm</td>
<td>-</td>
</tr>
<tr>
<td>SO6</td>
<td>TLP2355</td>
<td>5.0 mm</td>
<td>5.0 mm</td>
<td>0.4 mm</td>
</tr>
<tr>
<td>SO6L</td>
<td>TLP2745</td>
<td>8.0 mm</td>
<td>8.0 mm</td>
<td>0.4 mm</td>
</tr>
<tr>
<td>SO6L(LF4)</td>
<td>TLP2745</td>
<td>8.0 mm</td>
<td>8.0 mm</td>
<td>0.4 mm</td>
</tr>
</tbody>
</table>

これまでに述べた装置規格 IEC 62368-1 を例にした場合の、沿面距離、空間距離、絶縁物厚の要求と表 5.4 で取り上げた 5Mbps クラスの高速 IC カプラ製品の適用推奨を表 5.5 にまとめます。MFSOP6 の TLP105 では絶縁物厚の規定をしていませんので、基礎絶縁までの対応となります。一方、SO6 の TLP2355 では絶縁物厚 0.4mm を保証しており、強化絶縁、動作電圧 250Vrms のシステムまで対応する事ができます。将来のシステムの設計変更などへの柔軟性を考慮して SO6 製品を推奨しています。また、強化絶縁の場合、SO6L の TLP2745 で動作電圧 400Vrms までのシステムに対応することができます。
表 5.5 装置規格 IEC 62368-1 の場合の沿面距離、空間距離、絶縁物厚の要求と高速 IC カプラー製品の適用対応例

過電圧カテゴリ II，汚染度 2，材料グループ IIIa，強化絶縁

<table>
<thead>
<tr>
<th>動作電圧(最大) Vrms</th>
<th>沿面距離</th>
<th>空間距離</th>
<th>絶縁物厚</th>
<th>推奨製品</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>3.0</td>
<td>1.0</td>
<td>0.4</td>
<td>TLP2355</td>
</tr>
<tr>
<td>200</td>
<td>4.0</td>
<td>3.0</td>
<td>0.4</td>
<td>TLP2355</td>
</tr>
<tr>
<td>250</td>
<td>5.0</td>
<td>3.0</td>
<td>0.4</td>
<td>TLP2355</td>
</tr>
<tr>
<td>300</td>
<td>6.0</td>
<td>3.0</td>
<td>0.4</td>
<td>TLP2745</td>
</tr>
<tr>
<td>400</td>
<td>8.0</td>
<td>5.5</td>
<td>0.4</td>
<td>TLP2745(LF4)</td>
</tr>
</tbody>
</table>

6. さいごに
本資料では安全規格の概要をまとめました。安全規格では電気機器を設置する環境や動作電圧クラスによりフォトカプラーに対する要求パラメータも変化します。本資料で述べた内容の他にも別の条件が規定されている場合や例外などがありますので、フォトカプラーを選択する場合には搭載する電気機器の仕様を元に必ず最新の安全規格の原文をご確認ください。
<table>
<thead>
<tr>
<th>バージョン情報</th>
<th>日付</th>
<th>変更内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1.0</td>
<td>2014-08-25</td>
<td>初版</td>
</tr>
<tr>
<td>Rev. 2.0</td>
<td>2018-03-26</td>
<td>改訂</td>
</tr>
<tr>
<td>Rev. 3.0</td>
<td>2018-04-06</td>
<td>改訂（表3.2）</td>
</tr>
</tbody>
</table>
製品取り扱い上のお願い

株式会社東芝およびその子会社ならびに関係会社を以下「当社」といいます。本資料に掲載されているハードウェア、ソフトウェアおよびシステムを以下「本製品」といいます。

・本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。

・文書による当社の事前承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前承諾を得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。

・当社は品質、信頼性の向上を努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合がありま
す。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウェア・ソフトウェア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報（本書、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど）および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、本書資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他の応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。

・本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器（以下“特定用途”という）に使用される場合は意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器、車載・輸送機器、交通信号機器、昇降機器、電力機器、金融関連機器などが含まれますが、本書資料に個別に記載する用途に限ります。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口までお問い合わせください。

・本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。

・本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。

・本資料に掲載されている技術情報は、製品の代表的な動作・応用を説明するためのもので、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。

・別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証（機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。）をしておりません。

・本製品にはGaAs（ガリウムヒ素）が使われています。その粉末や蒸気等は人体に対し有害ですので、破壊、切断、粉砕や化学的な分解はしないでください。

・本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用ある関連法令を遵守し、それらの定めに従い必要な手続きを行ってください。

・本製品のRoHS適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。