32-Bit RISC Microcontroller TXZ+ Family TMPM4K Group(1)

Reference Manual Exception (EXCEPT-M4K(1))

Revision 1.0

2024-07

Toshiba Electronic Devices & Storage Corporation

Contents

Preface	5
Related document	5
Conventions	6
Terms and Abbreviations	8
1. Outlines	9
1.1. Exception Types	9
1.2. Exception Handling Flowchart	10
1.2.1. Exception Request and Detection	
1.2.2. Exception Handling and Branch to Interrupt Service Routine (Pre-emption)	13
1.2.3. Handling ISR	14
1.2.4. Exception Exit	15
2. Reset Exception	
3. SysTick	
4. Interrupts	
4.1. Non-maskable Interrupt (NMI)	
4.2. Maskable Interrupt	
4.3. Interrupt Request	
4.3.1. Interrupt Route	19
4.3.2. Interrupt Request Generation	
4.3.3. Monitor of Interrupt Request	23
4.3.4. Transmission of Interrupt Request	23
4.3.5. Precautions When Using External Interrupt Pins	23
4.4. List of Interrupt Sources	24
4.4.1. About Joint Interrupt	29
4.5. Interrupt Detection Level	31
4.5.1. Precautions When Releasing Low-power Consumption Mode	31
4.6. Interrupt Handling	32
4.6.1. Flowchart of Handling Interrupt Processing	
4.6.2. Preparation	
4.6.3. Detection (INTIF)	35
4.6.4. Detection (CPU)	35
4.6.5. CPU Processing	35
4.6.6. Processing in Interrupt Service Routine (Clearing Interrupt Source)	
5. Exception/Interrupt-Related Registers	
5.1. Register List	37
5.2. Interrupt Control Registers A	41
5.2.1. [IANIC00] (Non-maskable Interrupt A Control Register 00)	
5.2.2. [IAIMC00 to 03, 32 to 35] (Interrupt A Mode Control Register n)	41
5.3. Interrupt Control Registers B	
5.3.1. [IBNIC00] (Non-maskable Interrupt B Control Register 00)	42

TOSHIBA

5.3.2. [IBIMC000 to 040] (Interrupt B Mode Control Register n)	42
5.4. Reset Flag Registers	44
5.4.1. [RLMRSTFLG0] (Reset Flag Register 0)	44
5.4.2. [RLMRSTFLG1] (Reset Flag Register 1)	45
5.5. Interrupt Monitor Flag Registers	46
5.5.1. [IMNFLGNMI] (Non-maskable Interrupt Monitor Flag Register)	46
5.5.2. [IMNFLG1] (Interrupt Monitor Flag Register 1)	46
5.5.3. [IMNFLG2] (Interrupt Monitor Flag Register 2)	46
5.5.4. [IMNFLG3] (Interrupt Monitor Flag Register 3)	47
5.5.5. [IMNFLG4] (Interrupt Monitor Flag Register 4)	49
5.6. NVIC Registers	50
5.6.1. SysTick Control and Status Register	50
5.6.2. SysTick Reload Value Register	50
5.6.3. SysTick Current Value Register	50
5.6.4. SysTick Calibration Value Register	51
5.6.5. Interrupt Control Registers	52
5.6.5.1. Interrupt Set-Enable Register	52
5.6.5.2. Interrupt Clear-Enable Register	56
5.6.5.3. Interrupt Set-Pending Register	60
5.6.5.4. Interrupt Clear-Pending Register	64
5.6.6. Interrupt Priority Register	68
5.6.7. Vector Table Offset Register	69
5.6.8. Application Interrupt and Reset Control Register	70
5.6.9. System Handler Priority Register	71
5.6.10. System Handler Control and State Register	72
6. List of Interrupt Sources for Each Product	73
6.1. TMPM4K4/TMPM4K2/TMPM4K1	73
7. Revision History	77
RESTRICTIONS ON PRODUCT USE	78

List of Figures

	0	
Figure 4.1	Interrupt Transfer Route Diagram	20

List of Tables

Table 1.1	Exception Types and Priority Level	11
Table 1.2	Priority Grouping Setting	12
Table 4.1	Explanation of Each Interrupt Transfer Route	21
Table 4.2	List of Interrupt Sources (Non-maskable Interrupt)	24
Table 4.3	List of Interrupt Sources (Interrupt Control Register A)	24
Table 4.4	List of Interrupt Sources (Interrupt Control Register B) (1/4)	25
Table 4.5	List of Interrupt Sources (Interrupt Control Register B) (2/4)	
Table 4.6	List of Interrupt Sources (Interrupt Control Register B) (3/4)	
Table 4.7	List of Interrupt Sources (Interrupt Control Register B) (4/4)	
Table 4.8	List of Joint Interrupt (1)	
Table 4.9	List of Joint Interrupt (2)	
Table 7.1	Revision History	77

Preface

Related document

Document name
Oscillation Frequency Detector
Clock Selective Watchdog Timer
Voltage Detection Circuit
Clock Control and Operation Mode
Arm Cortex-M4 Processor Technical Reference Manual

Conventions

 Numeric formats follow the rules as shown below:

 Hexadecimal:
 0xABC

 Decimal:
 123 or 0d123
 - Only when it needs to be explicitly shown that they are decimal numbers.

 Binary:
 0b111
 - It is possible to omit the "0b" when the number of bits can be

ary:	0b111	- It is possible to omit the "0b" when the number of bits can be
		distinctly understood from a sentence.

- "_N" is added to the end of signal names to indicate low active signals.
- It is called "assert" that a signal moves to its active level, "deassert" to its inactive level.
- When two or more signal names are referred, they are described like as [m:n]. Example: S[3:0] shows four signal names S3, S2, S1 and S0 together.
- The characters surrounded by [] defines the register. Example: [ABCD]
- "N" substitutes suffix number of two or more same kind of registers, fields, and bit names. Example: [*XYZ1*], [*XYZ2*], [*XYZ3*] → [*XYZn*]
- "x" substitutes suffix number or character of units and channels in the register list.
- In case of unit, "x" means A, B, and C, ...
 Example: [ADACR0], [ADBCR0], [ADCCR0] → [ADxCR0]
- In case of channel, "x" means 0, 1, and 2, ... Example: [*T32A0RUNA*], [*T32A1RUNA*], [*T32A2RUNA*] → [*T32AxRUNA*]
- The bit range of a register is written like as [m: n]. Example: Bit[3: 0] expresses the range of bit 3 to 0.
- The configuration value of a register is expressed by either the hexadecimal number or the binary number. Example: [ABCD] < EFG > = 0x01 (hexadecimal), [XYZn] < VW > = 1 (binary)
- Word and byte represent the following bit length.

Byte:	8 bits
Half word:	16 bits
Word:	32 bits
Double word:	64 bits

• Properties of each bit in a register are expressed as follows:

R: Read only

W: Write only

R/W: Read and write are possible.

- Unless otherwise specified, register access supports only word access.
- The register defined as "Reserved" must not be rewritten. Moreover, do not use the read value.
- The value read from the bit having default value of "-" is unknown.
- When a register containing both of writable bits and read-only bits is written, read-only bits should be written with their default value, In the cases that default is "-", follow the definition of each register.
- Reserved bits of the write-only register should be written with their default value. In the cases that default is "-", follow the definition of each register.
- Do not use read-modified-write processing to the register of a definition which is different by writing and read out.

All other company names, product names, and service names mentioned herein may be trademarks of their respective companies.

TOSHIBA

Terms and Abbreviations

Some of abbreviations used in this document are as follows:

ADC	Analog to Digital Converter
A-ENC32	Advanced Encoder input Circuit (32-bit)
A-PMD	Advanced Programmable Motor Control Circuit
DMAC	Direct Memory Access Controller
DNF	Digital Noise Filter
EI2C	I ² C Interface Version A
IA	Interrupt Control Register A
IB	Interrupt Control Register B
IMCxx	Interrupt Mode Control xx
IMNFLGNMI	Interrupt Monitor Flag NMI
IMNFLGx	Interrupt Monitor Flag x
INT	Interrupt
INTIF	Interrupt Interface Logic
ISR	Interrupt Service Routine
I2C	Inter-Integrated Circuit
LVD	Voltage Detection Circuit
NICxx	Non-maskable Interrupt Control xx
NVIC	Nested Vectored Interrupt Controller
OFD	Oscillation Frequency Detector
POR	Power-on Reset Circuit
PORF	Power-on Reset Circuit for FLASH and Debug
RLMRSTFLGx	RLM Reset Flag x
SIWDT	Clock Selective Watchdog Timer
TSPI	Serial Peripheral Interface
T32A	32-bit Timer Event Counter
UART	Asynchronous Serial Communication Circuit

Exceptions have close relation to the CPU core. Refer to "Arm documentation set for the Arm Cortex-M4 processors" if needed.

1. Outlines

Exceptions require CPU to suspend the currently executing process, and to start another process.

There are two types of exceptions: those that are generated when some error condition occurs or when an instruction to generate an exception is executed; and those that are generated by hardware, such as an interrupt request signal from an external pin or peripheral function.

All exceptions are handled by the Nested Vectored Interrupt Controller (NVIC) in the CPU according to the respective priority levels. When an exception occurs, the CPU stores the current state to the stack and branches to the corresponding interrupt service routine (ISR). Upon completion of the ISR, the information stored to the stack is automatically restored.

1.1. Exception Types

This product has the following types of exceptions.

For detailed descriptions on each exception, refer to "Arm documentation set for the Arm Cortex-M4 processors".

- Reset
- Non-maskable Interrupt (NMI)
- Hard Fault
- Memory Management
- Bus Fault
- Usage Fault
- SVCall (Supervisor Call)
- Debug Monitor
- PendSV
- SysTick
- External Interrupt

1.2. Exception Handling Flowchart

The following shows how an exception/interrupt is handled. In the following descriptions, exception handling by hardware and that by software are explained.

Each step is described later in this reference manual.

1.2.1. Exception Request and Detection

(1) Exception Occurrence

Exception occurs by the sources include instruction execution by the CPU, memory accesses, and interrupt requests from external interrupt pins or peripheral functions.

An exception by the instruction execution occurs when the CPU executes an instruction that causes an exception or when an error condition occurs during instruction execution.

An exception also occurs by an instruction fetch from the Execute Never region or an access violation to the Fault region.

The request of the exception by the external interrupt pin or the peripheral function occurs by each functional factor. Regarding to interrupt which connected via INTIF, the setup of the interrupt control register is needed. For details, refer to the chapter, "4 Interrupts".

(2) Exception Detection

If several exceptions occur simultaneously, the CPU takes the exception with the highest priority depending on the priority level of exceptions.

Table 1.1 shows the priority of exceptions. "Configurable" means that the exception can be set priority level. Memory Management, Bus Fault and Usage Fault exceptions can be enabled or disabled. If the disabled exception occurs, it is handled as Hard Fault.

Exception type	Priority level	Factor generates exception	
Reset	-3 (highest)	Reset pin, POR reset, PORF reset, OFD reset, SIWDT reset, LVD reset, SYSRESETREQ reset, and LOCKUP reset	0x00
Non-maskable Interrupt	-2	SIWDT, LVD	0x08
Hard Fault	-1	Fault that cannot activate because a higher-priority fault is being handled or it is disabled	0x0C
Memory Management	Configurable	Exception from the Memory Protection Unit (MPU) Instruction fetch from the Execute Never (XN) region	0x10
Bus Fault	Configurable	Access violation to the Hard Fault region of the memory map	0x14
Usage Fault	Configurable	Undefined instruction execution or other faults related to instruction execution	0x18
Reserved	-	-	0x1C to 0x28
SVCall	Configurable	System service call with SVC instruction	0x2C
Debug Monitor	Configurable	Debug monitor when the CPU is not faulting	0x30
Reserved	-	-	0x34
PendSV	Configurable	Pending system service request	0x38
SysTick	Configurable	Notification from system timer	0x3C
External Interrupt	Configurable	External interrupt pin or peripheral function (Note)	0x40

 Table 1.1
 Exception Types and Priority Level

Note: External interrupts have different sources and numbers in each product. For details, see "4.4 List of Interrupt Sources".

(3) Priority Setting

Priority Level

The external interrupt priority level is set to the Interrupt Priority Register and other exceptions are set to <PRI_n> bit in the System Handler Priority Register.

The configuration <PRI_n> can be changed, and the number of bits required for setting the priority level from 3 bits to 8 bits depending on products. Thus, the settable range of priority level is different depending on products.

In the case of 8-bit configuration, the priority level can be configured in the range from 0 to 255. The highest priority is "0". If several factors are set the same priority, the factor which has the smaller number becomes the higher priority level.

TMPM4K Group(1) has the upper 4 bits of <PRI_n>. The priority level can be configured in the range from 0 to 15.

Priority Grouping

The priority level can be grouped. By setting the <PRIGROUP> of the Application Interrupt and Reset Control Register, <PRI_n> can be split into the pre-emption priority and the sub priority. At first, the priorities are compared with the pre-emption priority. If the priorities are the same as the pre-emption priority, then they are compared with the sub priority. If the priorities are the same as the sub priority, oner of them which has the smaller exception number becomes the higher priority. Table 1.2 shows the priority group setting. The number of pre-emption priority and the number of sub priority in the table are shown in the case that <PRI_n> is defined as an 8-bit configuration.

<prigroup[2:0]></prigroup[2:0]>	<pri_i< th=""><th colspan="2">RI_n[7:0]> Number of</th><th colspan="2">Number of</th></pri_i<>	RI_n[7:0]> Number of		Number of	
setting	Pre-emption field	Sub priority field	pre-emption priorities	sub priorities	
000	[7:1]	[0]	128	2	
001	[7:2]	[1:0]	64	4	
010	[7:3]	[2:0]	32	8	
011	[7:4]	[3:0]	16	16	
100	[7:5]	[4:0]	8	32	
101	[7:6]	[5:0]	4	64	
110	[7]	[6:0]	2	128	
111	None	[7:0]	1	256	

Table 1.2 Priority Grouping Setting

Note: If the configuration of <PRI_n> is less than 8 bits, the lower bit is "0". For the example in the case of 4-bit configuration, the priority is set as <PRI_n[7:4]> and <PRI_n[3:0]> is "0000".

1.2.2. Exception Handling and Branch to Interrupt Service Routine (Pre-emption)

When an exception occurs, the CPU suspends the currently executing process and branches to the interrupt service routine. This is called "pre-emption".

(1) Stacking

When the CPU detects an exception, it pushes the contents of the following eight registers to the stack in the following order:

- (i) Program Counter (PC)
- (ii) Program Status Register (xPSR)
- (iii) r0 to r3
- (iv) r12
- (v) Link Register (LR)

The SP is decremented by eight words after the completion of the stack push. The following shows the state of the stack after the register contents have been pushed.

$Old\;SP\;\rightarrow\;$	Previous content
	xPSR
	PC
	LR
	r12
	r3
	r2
	r1
$SP\rightarrow$	rO

(2) Fetching an ISR

The CPU performs instruction fetch for the ISP simultaneously with the pushing of registers. Prepare a vector table containing the top addresses of ISRs for each exception. After reset, the vector table is located at address 0x00000000 in the Code area. The vector table is located at any address in the Code or SRAM space by setting Vector Table Offset Register.

The vector table should be also set the initial value of the main stack.

(3) Late-arriving

If the CPU detects a higher priority exception before executing the ISR for a previous exception, the CPU handles the higher priority exception first. This is called "late-arriving".

A late-arriving exception causes the CPU to fetch an instruction for the new detected ISR once again and. the CPU branches to it. But the CPU does not newly push the register contents to the stack.

(4) Vector Table Configuration

The vector table is configured as shown below.

Set the first four words (initial value of stack, reset ISR address, NMI ISR address, and Hard Fault ISR address).

For other exceptions, the ISR addresses are prepared if necessary.

Offset	Exception	Contents	Setting
0x00	Reset	Initial value of the stack	Required
0x04	Reset	ISR address	Required
0x08	Non-maskable Interrupt	ISR address	Required
0x0C	Hard Fault	ISR address	Required
0x10	Memory Management	ISR address	Optional
0x14	Bus Fault	ISR address	Optional
0x18	Usage Fault	ISR address	Optional
0x1C to 0x28	Reserved	-	-
0x2C	SVCall	ISR address	Optional
0x30	Debug Monitor	ISR address	Optional
0x34	Reserved	-	-
0x38	PendSV	ISR address	Optional
0x3C	SysTick	ISR address	Optional
0x40	External Interrupt	ISR address	Optional

1.2.3. Handling ISR

An ISR performs the necessary processing for the corresponding the generated exception. ISRs must be prepared by the user.

An ISR may need to include code for clearing the interrupt request so that the same interrupt will not occur again upon return to normal program execution.

For details about interrupt handling, refer to "4 Interrupts".

If a higher priority exception occurs during ISR execution for the current exception, the CPU suspends the currently executing ISR and services the newly detected exception.

1.2.4. Exception Exit

(1) Actions after Returning from ISR

When returning from an ISR, the CPU takes one of the following actions:

Tail-chaining

If a pending exception exists and there are no stacked exceptions, or the pending exception has higher priority than all stacked exceptions, the CPU returns to the ISR of the pending exception. In this case, the CPU skips the pop of eight registers and push of eight registers when exiting one ISR and entering another. This is called "tail-chaining".

• Returning to the last stacked ISR

If there are no pending exceptions or if the priority of stacked exception is higher priority than the pending exception, the CPU returns to the last stacked ISR.

• Returning to the previous program

If there are no pending or stacked exceptions, the CPU returns to the previous program.

(2) Exception Exit Sequence

When returning from an ISR, the CPU performs the following operations:

• Pop eight registers

Pop eight registers (PC, xPSR, r0 to r3, r12, and LR) from the stack and adjust the SP.

• Load current active interrupt number

Loads the current active interrupt number from the pushed xPSR. The CPU uses this to control which interrupt to return to.

Select SP

If returning to an exception (Handler Mode), SP is SP_main. If returning to Thread Mode, SP can be SP_main or SP_process.

2. Reset Exception

Reset exceptions are generated from the following sources. Use the *[RLMRSTFLGn]* of the Reset Flag Register to identify the source of a reset exception.

• Reset exception by the reset pin

A reset exception occurs when the reset pin changes from "Low" to "High".

• Reset exception by POR

A reset exception occurs by POR. For details, refer to Reference Manual "Clock Control and Operation Mode"

• Reset exception by OFD

A reset exception occurs by OFD. For details, refer to Reference Manual "Oscillation Frequency Detector".

• Reset exception by SIWDT

A reset exception occurs by SIWDT. For details, refer to Reference Manual "Clock Selective Watchdog Timer".

• Reset exception by LVD

A reset exception occurs by LVD. For details, refer to Reference Manual "Voltage Detector Circuit".

• Reset exception by PORF

A reset exception occurs by PORF. For details, refer to Reference Manual "Clock Control and Operation Mode ".

• Reset exception by <SYSRESETREQ>

A reset exception occurs by setting the <SYSRESETREQ> in the NVIC's Application Interrupt and Reset Control Register.

• Reset exception by LOCKUP signal

A reset exception occurs by the LOCKUP signal which can be output from the Cortex-M4 with FPU Processor when the un-recoverable interrupt occurs. For details of the LOCKUP signal, please refer to "Arm Cortex-M4 Processor Technical Reference Manual".

3. SysTick

SysTick provides interrupt function using the CPU's system timer.

When set a value to the SysTick Reload Value Register and enable the SysTick function in the SysTick Control and Status Register, the counter re-loads with the value set in the SysTick Reload Value Register and begins counting down. When the counter reaches "0", a SysTick exception occurs. The generated exception can be pended, and the flag can be monitored to know when the timer reaches "0".

4. Interrupts

This chapter explains the route which an interrupt request are transmitted, source ,and the required setup.

4.1. Non-maskable Interrupt (NMI)

Non-maskable interrupts are generated from the following sources.

- Non-maskable interrupt by SIWDT The non-maskable interrupt occurs by SIWDT. For details, refer to Reference Manual "Clock Selective Watchdog Timer".
- Non-maskable interrupt by LVD The non-maskable interrupt occurs by LVD. For details, refer to reference manual "Voltage Detector Circuit".

4.2. Maskable Interrupt

Refer to interrupt control register A and interrupt control register B in "4.4 List of Interrupt Sources" for the sources of maskable interrupt.

4.3. Interrupt Request

The CPU is notified of interrupt requests by the interrupt request signal from each interrupt source. It sets priority on interrupts and handles an interrupt request with the highest priority.

4.3.1. Interrupt Route

The interrupt is available for releasing from a low power consumption mode, and a route varies according to a source.

Figure 4.1 shows the interrupt transfer route diagram and Table 4.1 shows the explanation of each interrupt transfer route.

• The interrupt that is releasable from IDLE and STOP1 modes

Interrupt which can be released of IDLE and the STOP1 modes goes via INTIF and is controlled by the interrupt control register B in INTIF and is notified to CPU. (Route A, B, and C)

• The interrupt that is releasable from IDLE and STOP1 modes

Interrupt which can be released of IDLE and the STOP1 modes goes via INTIF and is controlled by the interrupt control register B in INTIF and is notified to CPU. (Route D, E, and F)

• The interrupt which can be releasable from IDLE mode

Some sources of interrupt which can be released of IDLE mode goes via INTIF and is controlled by the interrupt control register B in INTIF (Route G). But other sources are notified to CPU directly no passing through INTIF. (Route H)

When the interrupt sources that go through INTIF regardless of low power consumption mode releasing is used, setting of interrupt control register A or B is necessary.

Refer to the chapter of "Release Sources of Low Power Consumption Mode" of a Reference Manual "Clock Control and Operation Mode" for the details of the low-power-consumption mode release sources.

Route	Interrupt number	Interrupt request	Route description
A	-	LVD interrupt	This route is NMI. It is a route which is input into CPU via INTIF. The interrupt release setup is set to the interrupt control register A ([IANIC00]).
В	0 to 3	External interrupts (00 to 03)	The interrupt request of a port is a route which is input into CPU via INTIF. Enable/Disable of selection of interrupt detection level, interrupt release setup, and interrupt request setup are set to the interrupt control register A (<i>[IAIMCxx]</i>) for every source.
С	-	-	This is a route which is input into CPU via INTIF. Enable/Disable of interrupt release setup and interrupt request setup are set to the interrupt control register A (<i>[IAIMCxx]</i>) for every source.
D	-	SIWDT interrupt	This route is NMI. It is a route which is input into CPU via INTIF. The interrupt release setup is set to the interrupt control register B (<i>[IBNIC00]</i>).
E	4 to 10	External interrupts (04 to 10)	The interrupt request of a port is a route which is input into CPU via INTIF. Enable/Disable of selection of interrupt detection level, interrupt release setup, and an interrupt request setup are set to the interrupt control register B ([IBIMCxx]) for every source.
F	-	-	This is a route which input into CPU via INTIF. Enable/Disable of interrupt request setup is set to the interrupt control register B ([IBIMCxx]) for every source.
G	84, 85	DMAC transmission end interrupt (ch0 to 31) DMAC transmission error interrupt (Note)	It is a route which is input into CPU via INTIF. The interrupt release setup is set to the interrupt control register B ([IBIMCxxx]) for every factor.
н	13 to 22, 26 to 83, 87, 89 to 98	Other interrupts	It is a route which is directly input into CPU not passing through INTIF.

Note: DMAC transmission end interrupt is an interrupt which combinates two or more channel interrupts into one interrupt number. Refer to "4.4.1 About Joint Interrupt" for details.

4.3.2. Interrupt Request Generation

An interrupt request is generated from an external interrupt pin or peripheral function which is assigned as interrupt request sources, or by setting the relevant bit of NVIC's Interrupt Set-Pending Register for interrupt request source.

• Interrupt from external interrupt pin

Make the pin as the external interrupt pin by setting the port control registers when the external interrupt pin is used.

• Interrupt from peripheral function

It is required that the peripheral function outputs interrupt requests. Refer to the reference manual of each peripheral function for details.

• By setting Interrupt Set-Pending Register (forced pending)

An interrupt request can be forced to be generated by setting the relevant bit of the Interrupt Set-Pending Register of NVIC.

CPU will recognize the "High" level of the interrupt request as an interrupt.

4.3.3. Monitor of Interrupt Request

INTIF has the interrupt monitor flags. It can know that the interrupt request has occurred by monitoring the flag. If one request source is representing several interrupt requests, The interrupt monitor register can be used to identify the actual interrupt request source.

For detail, please refer to "4.4 List of Interrupt Sources".

4.3.4. Transmission of Interrupt Request

An interrupt request which is not passing through the Interrupt Control Register will be directly input to the CPU. The interrupts connected to the CPU through INTIF, which are used as interrupt request sources for releasing the low-power consumption mode, will need proper setting of the Interrupt Control Register in INTIF. A "High" level interrupt signal will be sent to the CPU, when the interrupt is used to release the low-power consumption mode.

Please setup an interrupt detection level and interrupt enable/disable by INTIF.

By the way, please be cautious about external interrupt pin as in the next section.

4.3.5. Precautions When Using External Interrupt Pins

When an external interrupt is used, take care about the following points so that an unexpected interrupt does not occur.

If the *[PxIE]*<PxmIE> is set to "0", the input signal from external interrupt pin is "Low". Then the input signal from the external interrupt pin is "Low". When the Interrupt Control Register A *[IAIMCxx]*<INTMODE> is "Low", the CPU recognizes that level of the external interrupt pin input "Low" level interrupt request. Therefore, interrupt occurs when the corresponding interrupts are enabled by the CPU until the CPU recognizes that the external interrupt pin is input "Low" level interrupt pin is input "Low" level interrupt request.

Set the interrupt pin input as "High" level and enable it. Then, enable interrupts by the CPU.

4.4. List of Interrupt Sources

Table 4.2 shows the list of interrupt sources of non-maskable interrupts. The setting for clearing the NMI sources can be done by Interrupt Control Registers A and B.

Interrupt source	Interrupt request	Interrupt control register	Interrupt monitor register
INTLVD	LVD interrupt	[IANIC00]	<i>[IMNFLGNMI]</i> <int000flg></int000flg>
INTWDT0	SIWDT interrupt	[IBNIC00]	<i>[IMNFLGNMI]</i> <int016flg></int016flg>

 Table 4.2
 List of Interrupt Sources (Non-maskable Interrupt)

Table 4.3 shows the list of interrupt sources of Interrupt Control Register A. These interrupt sources can be used for releasing the low-power consumption mode. The Interrupt Control Register A will perform several settings for detecting the release of the low-power consumption mode, and interrupt enable/disable.

Interrupt number	Interrupt source	Interrupt request	Interrupt control register	Interrupt monitor register
0		External interrupt 00a	[IAIMC00]	<i>[IMNFLG1]</i> <int032flg></int032flg>
0	INT00	External interrupt 00b	[IAIMC32]	<i>[IMNFLG2]</i> <int064flg></int064flg>
4	INT01	External interrupt 01a	[IAIMC01]	<i>[IMNFLG1]</i> <int033flg></int033flg>
1		External interrupt 01b	[IAIMC33]	<i>[IMNFLG2]</i> <int065flg></int065flg>
2	INT02	External interrupt 02a	[IAIMC02]	<i>[IMNFLG1]</i> <int034flg></int034flg>
2		External interrupt 02b	[IAIMC34]	<i>[IMNFLG2]</i> <int066flg></int066flg>
3	INT03	External interrupt 03a	[IAIMC03]	<i>[IMNFLG1]</i> <int035flg></int035flg>
3		External interrupt 03b	[IAIMC35]	<i>[IMNFLG2]</i> <int067flg></int067flg>

 Table 4.3
 List of Interrupt Sources (Interrupt Control Register A)

The factor list of the interrupt control registers B is shown in Table 4.4 to Table 4.7. The Interrupt Control Register B will perform interrupt enable/disable for several interrupt request.

Interrupt number	Interrupt source	Interrupt request	Interrupt control register	Interrupt monitor
		E		register [IMNFLG4]
4	INT04	External interrupt 04	[IBIMC033]	<int129flg></int129flg>
5	INT05	External interrupt 05	[IBIMC034]	<i>[IMNFLG4]</i> <int130flg></int130flg>
6	INT06	External interrupt 06	[IBIMC035]	<i>[IMNFLG4]</i> <int131flg></int131flg>
7	INT07	External interrupt 07a	[IBIMC036]	<i>[IMNFLG4]</i> <int132flg></int132flg>
7		External interrupt 07b	[IBIMC040]	<i>[IMNFLG4]</i> <int136flg></int136flg>
8	INT08	External interrupt 08	[IBIMC037]	<i>[IMNFLG4]</i> <int133flg></int133flg>
9	INT09	External interrupt 09	[IBIMC038]	<i>[IMNFLG4]</i> <int134flg></int134flg>
10	INT10	External interrupt 10	[IBIMC039]	<i>[IMNFLG4]</i> <int135flg></int135flg>
11		Reserved		
12		Reserved		
13	INTEMG0	A-PMD ch0 EMG interrupt		
14	INTEMG1	A-PMD ch1 EMG interrupt		
15	INTOVV0	A-PMD ch0 OVV interrupt		
16	INTOVV1	A-PMD ch1 OVV interrupt		
17	INTPWM0	A-PMD ch0 PWM interrupt		
18	INTPWM1	A-PMD ch1 PWM interrupt		
19	INTENC00	A-ENC32 ch0 encoder input interrupt 0		
20	INTENC01	A-ENC32 ch0 encoder input interrupt 1		
21	INTADAPDA	ADC unit A PMD trigger interrupt A		
22	INTADAPDB	ADC unit A PMD trigger interrupt B		
23		Reserved		
24		Reserved		
25	Reserved			
26	INTADACP0	ADC unit A monitor function 0 interrupt		
27	INTADACP1	ADC unit A monitor function 1 interrupt		
28	INTADATRG	NTADATRG ADC unit A general-purpose trigger interrupt		
29	INTADASGL ADC unit A single conversion interrupt			
30	INTADACNT	ADC unit A continuous conversion interrupt		

 Table 4.4
 List of Interrupt Sources (Interrupt Control Register B) (1/4)

Table 4.5 List of interrupt Sources (interrupt Control Register B) (2/4)					
Interrupt number	Interrupt source	Interrupt request	Interrupt control register	Interrupt monitor register	
31	INTSCORX	TSPI ch0 receive interrupt UART ch0 reception interrupt			
32	INTSC0TX	TSPI ch0 transmit interrupt UART ch0 transmission interrupt			
33	INTSC0ERR	TSPI ch0 error interrupt UART ch0 error interrupt			
34	INTSC1RX	TSPI ch1 receive interrupt UART ch1 reception interrupt			
35	INTSC1TX	TSPI ch1 transmit interrupt UART ch1 transmission interrupt			
36	INTSC1ERR	TSPI ch1 error interrupt UART ch1 error interrupt			
37	INTSC2RX	TSPI ch2 receive interrupt UART ch2 reception interrupt			
38	INTSC2TX	TSPI ch2 transmit interrupt UART ch2 transmission interrupt			
39	INTSC2ERR	TSPI ch2 error interrupt UART ch2 error interrupt			
40	INTSC3RX	TSPI ch3 receive interrupt UART ch3 reception interrupt			
41	INTSC3TX	TSPI ch3 transmit interrupt UART ch3 transmission interrupt			
42	INTSC3ERR	TSPI ch3 error interrupt UART ch3 error interrupt			
43	INTI2CONST	I2C ch0 interrupt/ EI2C ch0 status interrupt			
44	INTI2C0ATX	I2C ch0 arbitration lost detection interrupt/ EI2C ch0 transmit buffer empty interrupt			
45	INTI2C0BRX	I2C ch0 bus free detection interrupt/ EI2C ch0 receive buffer full interrupt			
46	INTI2C0NA	I2C ch0 I2C NACK detection interrupt			
47	INTT32A00AC	T32A ch0 timer A/C match, overflow, and underflow			
48	INTT32A00ACCAP0	T32A ch0 timer A/C capture 0			
49	INTT32A00ACCAP1	T32A ch0 timer A/C capture 1			
50	INTT32A00B	T32A ch0 timer B match, overflow, and underflow			
51	NTT32A00BCAP0	T32A ch0 timer B capture 0			
52	INTT32A00BCAP1	T32A ch0 timer B capture 1			
53	INTT32A01AC	T32A ch1 timer A/C match, overflow, and underflow			
54	INTT32A01ACCAP0	T32A ch1 timer A/C capture 0			
55	INTT32A01ACCAP1	T32A ch1 timer A/C capture 1			
56	INTT32A01B	T32A ch1 timer B match, overflow, and underflow			
57	INTT32A01BCAP0	T32A ch1 timer B capture 0			
58	INTT32A01BCAP1	T32A ch1 timer B capture 1			

Interrupt number	Interrupt source	Interrupt Sources (Interrupt C	Interrupt control register	Interrupt monitor register
59	INTT32A02AC	T32A ch2 timer A/C match, overflow, and underflow		
60	INTT32A02ACCAP0	T32A ch2 timer A/C capture 0		
61	INTT32A02ACCAP1	T32A ch2 timer A/C capture 1		
62	NTT32A02B	T32A ch2 timer B match, overflow, and underflow		
63	INTT32A02BCAP0	T32A ch2 timer B capture 0		
64	INTT32A02BCAP1	T32A ch2 timer B capture 1		
65	INTT32A03AC	T32A ch3 timer A/C match, overflow, and underflow		
66	INTT32A03ACCAP0	T32A ch3 timer A/C capture 0		
67	INTT32A03ACCAP1	T32A ch3 timer A/C capture 1		
68	INTT32A03B	T32A ch3 timer B match, overflow, and underflow		
69	INTT32A03BCAP0	T32A ch3 timer B capture 0		
70	INTT32A03BCAP1	T32A ch3 timer B capture 1		
71	INTT32A04AC	T32A ch4 timer A/C match, overflow, and underflow		
72	INTT32A04ACCAP0	T32A ch4 timer A/C capture 0		
73	INTT32A04ACCAP1	T32A ch4 timer A/C capture 1		
74	INTT32A04B	T32A ch4 timer B match, overflow, and underflow		
75	INTT32A04BCAP0	T32A ch4 timer B capture 0		
76	INTT32A04BCAP1	T32A ch4 timer B capture 1		
77	INTT32A05AC	T32A ch5 timer A/C match, overflow, and underflow		
78	INTT32A05ACCAP0	T32A ch5 timer A/C capture 0		
79	INTT32A05ACCAP1	T32A ch5 timer A/C capture 1		
80	INTT32A05B	T32A ch5 timer B match, overflow, and underflow		
81	INTT32A05BCAP0	T32A ch5 timer B capture 0		
82	INTT32A05BCAP1	T32A ch5 timer B capture 1		

Table 4.6	List of Interrupt Sources	(Interrupt Control Register B) (3/4)

Interrupt number	Interrupt source	Interrupt request	Interrupt control register	Interrupt monitor register
83	INTPARI	RAMP RAM Parity interrupt		
84	INTDMAATC	DMAC unit A transmission end interrupt (ch0 to 31)	[IBIMC000] to [IBIMC031] (Note)	[IMNFLG3] <int096flg> to <int127flg> (Note)</int127flg></int096flg>
85	INTDMAAERR	DMAC unit A transmission error interrupt	[IBIMC032]	<i>[IMNFLG4]</i> <int128flg></int128flg>
86		Reserved		
87	INTFLCRDY	Code FLASH Ready interrupt		
88		Reserved		
89	INTENC10	A-ENC32 ch1 encoder input interrupt 0		
90	INTENC11	A-ENC32 ch1 encoder input interrupt 1		
91	INTADBPDA	ADC unit B PMD trigger interrupt A		
92	INTADBPDB	ADC unit B PMD trigger interrupt B		
93	INTADBCP0	ADC unit B monitor function 0 interrupt		
94	INTADBCP1	ADC unit B monitor function 1 interrupt		
95	INTADBTRG	TADBTRG ADC unit B general-purpose trigger interrupt		
96	INTADBSGL	ADC unit B Single conversion interrupt		
97	INTADBCNT	ADC unit B continuous conversion interrupt		
98	INTADCCMP	AD conversion result comparison interrupt		

Table 4 7	List of Interrunt Sources	(Interrupt Control Register B) (4/4)	
1 able 4.7	List of interrupt sources	(interrupt Control Register D) (4/4)	1

Note: Please refer to "4.4.1 About Joint Interrupt".

4.4.1. About Joint Interrupt

The details of interrupts which are jointed in TMPM4K Group(1) are as follows.

Table 4.8 List of Joint Interrupt (1)				
Interrupt number	Interrupt source	Interrupt request	Interrupt control register	Interrupt monitor register
0		External interrupt 00a	[IAIMC00]	[IMNFLG1] <int032flg></int032flg>
0	INT00	External interrupt 00b	[IAIMC32]	<i>[IMNFLG2]</i> <int064flg></int064flg>
1	INT01	External interrupt 01a	[IAIMC01]	[IMNFLG1] <int033flg></int033flg>
		External interrupt 01b	[IAIMC33]	[IMNFLG2] <int065flg></int065flg>
2	INT02	External interrupt 02a	[IAIMC02]	[IMNFLG1] <int034flg></int034flg>
2		External interrupt 02b	[IAIMC34]	[IMNFLG2] <int066flg></int066flg>
3	INT03	External interrupt 03a	[IAIMC03]	[IMNFLG1] <int035flg></int035flg>
3		External interrupt 03b	[IAIMC35]	[IMNFLG2] <int067flg></int067flg>
7		External interrupt 07a	[IBIMC036]	<i>[IMNFLG4]</i> <int132flg></int132flg>
7	INT07	External interrupt 07b	[IBIMC040]	<i>[IMNFLG4]</i> <int136flg></int136flg>

Table 4.8 List of Joint Interrupt (1)

Interrupt			Interrupt control	
number	Interrupt source		register	Interrupt monitor register
		ch0	[IBIMC000]	[IMNFLG3] <int096flg></int096flg>
		ch1	[IBIMC001]	[IMNFLG3] <int097flg></int097flg>
		ch2	[IBIMC002]	[IMNFLG3] <int098flg></int098flg>
		ch3	[IBIMC003]	[IMNFLG3] <int099flg></int099flg>
		ch4	[IBIMC004]	[IMNFLG3] <int100flg></int100flg>
		ch5	[IBIMC005]	[IMNFLG3] <int101flg></int101flg>
		ch6	[IBIMC006]	[IMNFLG3] <int102flg></int102flg>
		ch7	[IBIMC007]	[IMNFLG3] <int103flg></int103flg>
		ch8	[IBIMC008]	[IMNFLG3] <int104flg></int104flg>
		ch9	[IBIMC009]	[IMNFLG3] <int105flg></int105flg>
		ch10	[IBIMC010]	[IMNFLG3] <int106flg></int106flg>
		ch11	[IBIMC011]	[IMNFLG3] <int107flg></int107flg>
		ch12	[IBIMC012]	[IMNFLG3] <int108flg></int108flg>
		ch13	[IBIMC013]	[IMNFLG3] <int109flg></int109flg>
	DMAC unit A	ch14	[IBIMC014]	[IMNFLG3] <int110flg></int110flg>
84	transmission end interrupt	ch15	[IBIMC015]	[IMNFLG3] <int111flg></int111flg>
04	(INTDMAATC)	ch16	[IBIMC016]	[IMNFLG3] <int112flg></int112flg>
		ch17	[IBIMC017]	[IMNFLG3] <int113flg></int113flg>
		ch18	[IBIMC018]	[IMNFLG3] <int114flg></int114flg>
		ch19	[IBIMC019]	[IMNFLG3] <int115flg></int115flg>
		ch20	[IBIMC020]	[IMNFLG3] <int116flg></int116flg>
		ch21	[IBIMC021]	[IMNFLG3] <int117flg></int117flg>
		ch22	[IBIMC022]	[IMNFLG3] <int118flg></int118flg>
		ch23	[IBIMC023]	[IMNFLG3] <int119flg></int119flg>
		ch24	[IBIMC024]	[IMNFLG3] <int120flg></int120flg>
		ch25	[IBIMC025]	[IMNFLG3] <int121flg></int121flg>
		ch26	[IBIMC026]	[IMNFLG3] <int122flg></int122flg>
		ch27	[IBIMC027]	[IMNFLG3] <int123flg></int123flg>
		ch28	[IBIMC028]	[IMNFLG3] <int124flg></int124flg>
		ch29	[IBIMC029]	[IMNFLG3] <int125flg></int125flg>
		ch30	[IBIMC030]	[IMNFLG3] <int126flg></int126flg>
		ch31	[IBIMC031]	[IMNFLG3] <int127flg></int127flg>

Table 4.9 List of Joint Interrupt (2)

4.5. Interrupt Detection Level

When using interrupt via INTIF, interrupt detection level ("Low" level, "High" level, Rising edge, or Falling edge) can be selected by interrupt control register A or B. The detected interrupt is output to the CPU with a "High" level signal.

The interrupt signals which are directly input from the various peripheral functions to the CPU, a "High" pulse is output to the CPU as an interrupt request.

The CPU recognizes the "High" level of interrupt signal as an interrupt request.

4.5.1. Precautions When Releasing Low-power Consumption Mode

Following settings should be done when releasing STOP1 mode.

- The setup of the interrupt control register. ([IAIMCxx], [IBIMCxxx])
 - Interrupt detection level
 - Interrupt detection enable/disable
- The setup of the NVIC interrupt enable set register
 - enable/disable setup

The operation to return from STOP1 mode to NORMAL mode is as follows.

By jumping to the interrupt service routine after the high-speed clock oscillation resumes, operation resumes from the instruction following the instruction to enter STOP1 mode.

4.6. Interrupt Handling

4.6.1. Flowchart of Handling Interrupt Processing

The following shows the flowchart of handling interrupt process. The flowchart below explains the handling process by hardware and software.

4.6.2. Preparation

When preparing for an interrupt, need to pay attention to the order of configuration to avoid any unexpected interrupt on the way.

Starting an interrupt or changing its configuration must be implemented in the following order basically. First, disable the interrupt detection of the CPU. Then, configure from the farthest route from the CPU. Finally, enable the interrupt detection of the CPU.

To configure the INTIF, the configuration of INTIF must be implemented in the following order indicated here. First, configure the precondition. Secondly, clear the status related to the interrupt in the INTIF not to cause any unexpected interrupt. Finally, enable the interrupt detection of the INTIF.

The following sections are listed in the order of interrupt handling and describe how to configure them.

- (1) Disabling Interrupt Acceptance of CPU
- (2) CPU Interrupt Settings
- (3) Preparation (1) (Interrupt from External Interrupt Pins)
- (4) Preparation (2) (Interrupt from peripheral Functions)
- (5) Preparation (3) (Interrupt by Set-Pending Register)
- (6) INTIF settings
- (7) Enabling interrupt acceptance of CPU
- (1) Disabling Interrupt Acceptance of CPU

To make the CPU for not accepting any interrupt, write "1" to [PRIMASK]. All interrupts and exceptions other than non-maskable interrupts and hard faults can be masked.

Use "MSR" instruction to set this register.

	Interrupt mask register			
	[PRIMASK]		\leftarrow	"1" (interrupt disabled)
4		1. 0. 1	1	1 1

Note 1: [PRIMASK] register cannot be modified in the user access level

Note 2: If a fault causes when "1" is set to the [PRIMASK], it is handled as a hard fault.

(2) CPU Interrupt Settings

A priority level is set by writing to <PRI_n> of an Interrupt Priority Register in the NVIC.

Each interrupt source is provided with eight bits for assigning a priority level from 0 to 255, but the number of bits actually used varies with each product. Priority level 0 is the highest priority level. If several sources have the same priority, the smallest-numbered interrupt source has the highest priority.

A grouping priority by writing to the <PRIGROUP> of the Application Interrupt and Reset Control Register.

NVIC register			
<pri_n></pri_n>	\leftarrow	"Priority"	
<prigroup></prigroup>	Ļ	"group priority" (This is configurable if required)	

Note: "n" indicates the corresponding exception number and interrupt number.

This product uses four bits for assigning a priority level.

(3) Preparation (1) (Interrupt from External Interrupt Pins)

In order to use external interrupt pin, it is necessary to do proper setting to the port function register of the corresponding pin. Setting "1" to *[PxIE]*<PxmIE> allows the pin to be used as the function pin and the input port.

Port register				
[PxIE] <pxmie></pxmie>	\leftarrow	"1"		

Note: x: port number, m: corresponding bit

Be careful not to enable interrupts that are not used when performing interrupt setting. Also be aware of the description of "4.3.5 Precautions When Using External Interrupt Pins"

(4) Preparation (2) (Interrupt form Peripheral Functions)

The setting varies depending on the peripheral functions to be used. Refer to the Reference Manual of each peripheral function for details.

(5) Preparation (3) (Interrupt by Set-Pending Register)

To generate an interrupt by using the Interrupt Set-Pending Register, set "1" to the corresponding bit of this register.

NVIC register				
<setpend></setpend>	\leftarrow	"1"		

Note: <SETPEND>: corresponding bit

(6) INTIF Setting

Enabling the interrupt via INTIF is sets by interrupt control registers.

[IANIC00], *[IBNIC00]*, *[IAIMCxx]*, and *[IBIMCxxx]* registers are used for configuring each interrupt source. Before enabling an interrupt, clear the interrupt request in order to avoid unexpected interrupt in the interrupt detection circuit.

For details of the interrupt control register, refer to the followings.

Interrupt control register			
[IAIMCxx] <intmode> [IBIMCxxx]<intmode></intmode></intmode>	—	Value corresponding to the interrupt to be used (Only for the interrupt having interrupt detection level)	
[IANICO0] <intnclr> [IBNICO0]<intpclr> [IAIMCxx]<intpclr><intnclr> [IBIMCxxx]<intpclr><intnclr></intnclr></intpclr></intnclr></intpclr></intpclr></intnclr>		Interrupt request clear to use	
[IAIMCxx] <inten> [IBIMCxxx]<inten></inten></inten>	↓	"1" (Interrupt detection enabled)	

Note: xx and xxx: number specific to the interrupt request

(7) Enabling Interrupt Acceptance of CPU

Enabling interrupt acceptance of CPU is shown below.

Clear the pending interrupt by the Interrupt Clear-Pending Register. Enable the interrupt acceptance with the Interrupt Set-Enable Register. Each bit of the register is assigned to a single interrupt request. Writing "1" to the corresponding bit of the Interrupt Clear-Pending Register clears the pending interrupt request. Writing "1" to the corresponding bit of the Interrupt Set-Enable Register enables the interrupt acceptance.

To generate interrupt requests by the Interrupt Set-Pending Register setting, requests to trigger interrupts are lost if pending interrupts are cleared. Thus, this operation is not necessary.

At the end, [PRIMASK] register is cleared to "0".

NVIC register		
<clrpend></clrpend>	\leftarrow	"1"
<setena></setena>	Ļ	"1"
Interrupt mask register		
[PRIMASK]	\leftarrow	"0"

Note 1: <CLRPEND>,<SETENA>: corresponding bit

Note 2: [PRIMASK] register cannot be modified by the user access level.

4.6.3. Detection (INTIF)

When an interrupt request is detected by the INTIF, it sends as the interrupt signal of "High" level from the INTF to the CPU.

The INTIF has the functions of the interrupt detection level selection logic, the functions of detection logic, and the function of the interrupt enable/disable. Each function of INTIF is set by the interrupt control register A or B. It keeps sending the interrupt signal of High" level to the CPU until the <detection flag> is cleared by the interrupt control register after the INTF detects an interrupt. If the ISR is exited without clearing the interrupt request, the same interrupt will be detected again. Thus, be sure to clear <detection flag> of each interrupt request in the ISR. At the same time, the corresponding interrupt monitor flag register is also cleared.

4.6.4. Detection (CPU)

The CPU detects an interrupt request with the highest priority in accordance with priority.

4.6.5. CPU Processing

On detecting an interrupt request, the CPU pushes the contents of xPSR, PC, LR, r12, and r3 to r0 to the stack then enter the ISR.

4.6.6. Processing in Interrupt Service Routine (Clearing Interrupt Source)

An ISR requires specific programming according to the application to be used. This section describes what is recommended in the interrupt service routine and how the source is cleared.

(1) Process in Interrupt Service Routine

An ISR normally pushes register contents to the stack and handles an interrupt as required. The Cortex-M4 processor with FPU automatically pushes the contents of xPSR, PC, LR, r12, and r3to r0 to the stack. No extra programming is required for them.

Push the contents of other registers if needed.

Interrupt requests with higher priority and exceptions such as NMI are accepted even when an ISR is being executed. It is recommended that the contents of general-purpose registers that might be rewritten are pushed.

(2) Clearing an Interrupt Source

Some interrupt requests have to be cleared by the interrupt control register.

If an interrupt detection level is set as level-sensitive, an interrupt request continues to exist unless the source itself is cleared. Therefore, the interrupt source must be cleared. If an interrupt source is cleared in level detection, the interrupt request signal from INTIF will be cleared automatically.

An interrupt source is cleared by clearing the <interrupt flag> of the interrupt control register of INTIF in the case of edge detection. When an effective edge occurs again, it is anew recognized as an interrupt source.

Note: After clearing <interrupt flag> of the Interrupt Control Register, please be sure to read the flag which was cleared.
5. Exception/Interrupt-Related Registers

5.1. Register List

Control Registers and their addresses are as follows.

Interrupt Control Registers A			
Peripheral function		Channel/Unit	Base address
Interrupt control register A	IA	-	0x4003E000

Register name		Address (+BASE)
Non-maskable Interrupt A Control Register 00	[IANIC00]	0x0000
Interrupt A Mode Control Register 00	[IAIMC00]	0x0020
Interrupt A Mode Control Register 01	[IAIMC01]	0x0021
Interrupt A Mode Control Register 02	[IAIMC02]	0x0022
Interrupt A Mode Control Register 03	[IAIMC03]	0x0023
Interrupt A Mode Control Register 32	[IAIMC32]	0x0040
Interrupt A Mode Control Register 33	[IAIMC33]	0x0041
Interrupt A Mode Control Register 34	[IAIMC34]	0x0042
Interrupt A Mode Control Register 35	[IAIMC35]	0x0043

Note: Byte access is needed for [IANIC00] and [IAIMCxx]

Interrupt	Control	Dogiotoro	D
interrupt	Control	Registers	D

Peripheral func	tion	Channel/Unit	Base address
Interrupt control register B	IB	-	0x400F4E00

Register name		Address (+BASE)	
Non-maskable Interrupt B Control Register 00	[IBNIC00]	0x0010	
Interrupt B Mode Control Register 000	[IBIMC000]	0x0060	
Interrupt B Mode Control Register 001	[IBIMC001]	0x0061	
Interrupt B Mode Control Register 002	[IBIMC002]	0x0062	
Interrupt B Mode Control Register 003	[IBIMC003]	0x0063	
Interrupt B Mode Control Register 004	[IBIMC004]	0x0064	
Interrupt B Mode Control Register 005	[IBIMC005]	0x0065	
Interrupt B Mode Control Register 006	[IBIMC006]	0x0066	
Interrupt B Mode Control Register 007	[IBIMC007]	0x0067	
Interrupt B Mode Control Register 008	[IBIMC008]	0x0068	
Interrupt B Mode Control Register 009	[IBIMC009]	0x0069	
Interrupt B Mode Control Register 010	[IBIMC010]	0x006A	
Interrupt B Mode Control Register 011	[IBIMC011]	0x006B	
Interrupt B Mode Control Register 012	[IBIMC012]	0x006C	
Interrupt B Mode Control Register 013	[IBIMC013]	0x006D	
Interrupt B Mode Control Register 014	[IBIMC014]	0x006E	
Interrupt B Mode Control Register 015	[IBIMC015]	0x006F	
Interrupt B Mode Control Register 016	[IBIMC016]	0x0070	
Interrupt B Mode Control Register 017	[IBIMC017]	0x0071	
Interrupt B Mode Control Register 018	[IBIMC018]	0x0072	
Interrupt B Mode Control Register 019	[IBIMC019]	0x0073	
Interrupt B Mode Control Register 020	[IBIMC020]	0x0074	
Interrupt B Mode Control Register 021	[IBIMC021]	0x0075	
Interrupt B Mode Control Register 022	[IBIMC022]	0x0076	
Interrupt B Mode Control Register 023	[IBIMC023]	0x0077	
Interrupt B Mode Control Register 024	[IBIMC024]	0x0078	
Interrupt B Mode Control Register 025	[IBIMC025]	0x0079	
Interrupt B Mode Control Register 026	[IBIMC026]	0x007A	
Interrupt B Mode Control Register 027	[IBIMC027]	0x007B	
Interrupt B Mode Control Register 028	[IBIMC028]	0x007C	
Interrupt B Mode Control Register 029	[IBIMC029]	0x007D	
Interrupt B Mode Control Register 030	[IBIMC030]	0x007E	
Interrupt B Mode Control Register 031	[IBIMC031]	0x007F	
Interrupt B Mode Control Register 032	[IBIMC032]	0x0080	
Interrupt B Mode Control Register 033	[IBIMC033]	0x0081	
Interrupt B Mode Control Register 034	[IBIMC034]	0x0082	
Interrupt B Mode Control Register 035	[IBIMC035]	0x0083	
Interrupt B Mode Control Register 036	[IBIMC036]	0x0084	
Interrupt B Mode Control Register 037	[IBIMC037]	0x0085	
Interrupt B Mode Control Register 038	[IBIMC038]	0x0086	
Interrupt B Mode Control Register 039	[IBIMC039]	0x0087	
Interrupt B Mode Control Register 040	[IBIMC040]	0x0088	

Note: Byte access is needed for [IBNIC00] and [IBIMCxxx] Registers

Reset Flag Registers

Reset Flag Registers			
Peripheral function		Channel/Unit	Base address
Low-speed oscillation/power control/reset	RLM	-	0x4003E400

Register name		Address (+BASE)
Reset Flag Register 0	[RLMRSTFLG0]	0x0002
Reset Flag Register 1	[RLMRSTFLG1]	0x0003

Note: Byte access is needed for Reset Flag Register

Interrupt Monitor Flag Registers

Peripheral function		Channel/Unit	Base address
Interrupt Monitor	IMN	-	0x400F4F00

Register name		Address (+BASE)
Non-maskable Interrupt Monitor Flag Register	[IMNFLGNMI]	0x0000
Interrupt Monitor Flag Register 1	[IMNFLG1]	0x0004
Interrupt Monitor Flag Register 2	[IMNFLG2]	0x0008
Interrupt Monitor Flag Register 3	[IMNFLG3]	0x000C
Interrupt Monitor Flag Register 4	[IMNFLG4]	0x0010

NVIC Registers	
----------------	--

NVIC Registers			
Peripheral function		Channel/Unit	Base address
NVIC Register	-	-	0xE000E000

Register name	Address (+Base)
SysTick Control and Status Register	0x0010
SysTick Reload Value Register	0x0014
SysTick Current Value Register	0x0018
SysTick Calibration Value Register	0x001C
Interrupt Set-Enable Register 0	0x0100
Interrupt Set-Enable Register 1	0x0104
Interrupt Set-Enable Register 2	0x0108
Interrupt Set-Enable Register 3	0x010C
Interrupt Clear-Enable Register 0	0x0180
Interrupt Clear-Enable Register 1	0x0184
Interrupt Clear-Enable Register 2	0x0188
Interrupt Clear-Enable Register 3	0x018C
Interrupt Set-Pending Register 0	0x0200
Interrupt Set-Pending Register 1	0x0204
Interrupt Set-Pending Register 2	0x0208
Interrupt Set-Pending Register 3	0x020C
Interrupt Clear-Pending Register 0	0x0280
Interrupt Clear-Pending Register 1	0x0284
Interrupt Clear-Pending Register 2	0x0288
Interrupt Clear-Pending Register 3	0x028C
Interrupt Priority Register	0x0400 to 0x0462
Vector Table Offset Register	0x0D08
Application Interrupt and Reset Control Register	0x0D0C
System Handler Priority Register	0x0D18, 0x0D1C, 0x0D20
System Handler Control and State Register	0x0D24

5.2. Interrupt Control Registers A

5.2.1. *[IANIC00]* (Non-maskable Interrupt A Control Register 00)

Bit	Bit symbol	After reset	Туре	Function
7	INTNCLR	0	W	Detection flag clear control 0: - 1: Clear Read as "0".
6	-	0	R	Read as "0".
5	INTNFLG	0	R	Detection flag 0: Not detected 1: Detected
4:0	-	00101	R	Read as "00101".

5.2.2. [IAIMC00 to 03, 32 to 35] (Interrupt A Mode Control Register n)

(1) [IAIMC00 to 03, 32 to 35] Registers

Bit	Bit symbol	After reset	Туре	Function
7	INTNCLR	0	W	Falling edge detection flag clear control 0: - 1: Clear Read as "0".
6	INTPCLR	0	W	Rising edge detection flag clear control 0: - 1: Clear Read as "0".
5	INTNFLG	0	R	Falling edge detection flag 0: Not detected 1: Detected
4	INTPFLG	0	R	Rising edge detection flag 0: Not detected 1: Detected
3:1	INTMODE[2:0]	000	R/W	Interrupt detection level selection 000: Low level 001: High level 010: Falling edge 011: Rising edge 100: Both edge 101: Reserved 110: Reserved 111: Reserved
0	INTEN	0	R/W	Interrupt control 0: Interrupt detection disabled 1: Interrupt detection enabled

5.3. Interrupt Control Registers B

5.3.1. [IBNIC00] (Non-maskable Interrupt B Control Register 00)

Bit	Bit symbol	After reset	Туре	Function
7	-	0	R	Read as "0".
6	INTPCLR	0	W	Detection flag clear control 0: - 1: Clear Read as "0".
5	-	0	R	Read as "0".
4	INTPFLG	0	R	Detection flag 0: Not detected 1: Detected
3:0	-	0111	R	Read as "0111".

5.3.2. [IBIMC000 to 040] (Interrupt B Mode Control Register n)

(1) [IBIMC000 to 032] Registers

Bit	Bit symbol	After reset	Туре	Function
7	-	0	R	Read as "0".
6	INTPCLR	0	W	Detection flag clear control 0: - 1: Clear Read as "0".
5	-	0	R	Read as "0".
4	INTPFLG	0	R	Detection flag 0: Not detected 1: Detected
3:0	-	0111	R	Read as "0111".

(1) [IBIMC033 to 040] Registers

Bit	Bit symbol	After reset	Туре	Function
7	INTNCLR	0	W	Falling edge detection flag clear control 0: - 1: Clear Read as "0".
6	INTPCLR	0	W	Rising edge detection flag clear control 0: - 1: Clear Read as "0".
5	INTNFLG	0	R	Falling edge detection flag 0: Not detected 1: Detected
4	INTPFLG	0	R	Rising edge detection flag 0: Not detected 1: Detected
3:1	INTMODE[2:0]	000	R/W	Interrupt detection level selection 000: Low level 001: High level 010: Falling edge 011: Rising edge 100: Both edge 101: Reserved 110: Reserved 111: Reserved
0	INTEN	0	R/W	Interrupt control 0: Interrupt detection disabled 1: Interrupt detection enabled

5.4. Reset Flag Registers

5.4.1. [RLMRSTFLG0] (Reset Flag Register 0)

Bit	Bit symbol	After power on reset	Туре	Function	
7:6	-	Undefined	R	Read as an undefined value.	
5	LVDRSTF	Undefined	R	LVD/PORF reset flag 0: - 1: Reset by LVD/PORF	
5	LVDK3TF	Undenned	W	LVD/PORF reset flag 0: Clear 1: don't care	
4		Undefined	R	Read as an undefined value.	
4	-	Undefined	W	Write as "0".	
3	3 PINRSTF Undefined	Undefined	R	Reset pin flag 0: - 1: Reset by reset pin	
5	TINKOTI	Undefined -	W	W	Reset pin flag 0: Clear 1: don't care
0.1		l la defin e d	R	Read as an undefined value.	
2:1	-	Undefined	W	Write as "00".	
0	DODOT		R	Power-on reset flag 0: - 1: Reset by Power-on reset	
0	PORSTF 1 -	W	Power on reset flag 0: Clear 1: don't care		

Note: Reset flags except <PORSTF> become undefined after power-on reset is released. When releasing power-on reset is detected, set all the reset flags to "0" for initializing reset flags.

5.4.2. [RLMRSTFLG1] (Reset Flag Register 1)

Bit	Bit symbol	After power on reset	Туре	Function
7:4	-	0	R	Read as "0".
3	OFDRSTF	0	R	OFD reset flag 0: - 1: Reset by OFD
3	OFDRSTF	0	W	OFD reset flag 0: Clear 1: don't care
	WETCOTE	/DTRSTF 0	R	SIWDT reset flag 0: - 1: Reset by SIWDT
2	WDIRSIF		W	SIWDT reset flag 0: Clear 1: don't care
1	LOCKRSTF	0	0 R W	LOCKUP reset flag 0: - 1: Reset by LOCKUP
	LUCKKSTF	0		LOCKUP reset flag 0: Clear 1: don't care
0	SYSRSTF	0	R	<sysresetreq> reset flag 0: - 1: Reset by <sysresetreq></sysresetreq></sysresetreq>
0			W	<sysresetreq> reset flag 0: Clear 1: don't care</sysresetreq>

5.5. Interrupt Monitor Flag Registers

5.5.1. [IMNFLGNMI] (Non-maskable Interrupt Monitor Flag Register)

Bit	Bit symbol	After reset	Туре	Function
31:17	-	0	R	Read as "0".
16	INT016FLG	0	R	INTWDT0 Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
15:1	-	0	R	Read as "0".
0	INT000FLG	0	R	INTLVD Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected

5.5.2. [IMNFLG1] (Interrupt Monitor Flag Register 1)

Bit	Bit symbol	After reset	Туре	Function
31:4	-	0	R	Read as "0".
3	INT035FLG	0	R	INT03a Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
2	INT034FLG	0	R	INT02a Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
1	INT033FLG	0	R	INT01a Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
0	INT032FLG	0	R	INT00a Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected

5.5.3. [IMNFLG2] (Interrupt Monitor Flag Register 2)

Bit	Bit symbol	After reset	Туре	Function
31:4	-	0	R	Read as "0".
3	INT067FLG	0	R	INT03b Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
2	INT066FLG	0	R	INT02b Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
1	INT065FLG	0	R	INT01b Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
0	INT064FLG	0	R	INT00b Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected

5.5.4. [IMNFLG3] (Interrupt Monitor Flag Register 3)

Bit	Bit symbol	After reset	Туре	Function
31	INT127FLG	0	R	INTDMAATC (ch31) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
30	INT126FLG	0	R	INTDMAATC (ch30) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
29	INT125FLG	0	R	INTDMAATC (ch29) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
28	INT124FLG	0	R	INTDMAATC (ch28) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
27	INT123FLG	0	R	INTDMAATC (ch27) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
26	INT122FLG	0	R	INTDMAATC (ch26) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
25	INT121FLG	0	R	INTDMAATC (ch25) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
24	INT120FLG	0	R	INTDMAATC (ch24) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
23	INT119FLG	0	R	INTDMAATC (ch23) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
22	INT118FLG	0	R	INTDMAATC (ch22) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
21	INT117FLG	0	R	INTDMAATC (ch21) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
20	INT116FLG	0	R	INTDMAATC (ch20) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
19	INT115FLG	0	R	INTDMAATC (ch19) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
18	INT114FLG	0	R	INTDMAATC (ch18) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
17	INT113FLG	0	R	INTDMAATC (ch17) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
16	INT112FLG	0	R	INTDMAATC (ch16) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
15	INT111FLG	0	R	INTDMAATC (ch15) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
14	INT110FLG	0	R	INTDMAATC (ch14) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
13	INT109FLG	0	R	INTDMAATC (ch13) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
12	INT108FLG	0	R	INTDMAATC (ch12) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected

Bit	Bit symbol	After reset	Туре	Function
11	INT107FLG	0	R	INTDMAATC (ch11) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
10	INT106FLG	0	R	INTDMAATC (ch10) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
9	INT105FLG	0	R	INTDMAATC (ch9) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
8	INT104FLG	0	R	INTDMAATC (ch8) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
7	INT103FLG	0	R	INTDMAATC (ch7) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
6	INT102FLG	0	R	INTDMAATC (ch6) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
5	INT101FLG	0	R	INTDMAATC (ch5) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
4	INT100FLG	0	R	INTDMAATC (ch4) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
3	INT099FLG	0	R	INTDMAATC (ch3) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
2	INT098FLG	0	R	INTDMAATC (ch2) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
1	INT097FLG	0	R	INTDMAATC (ch1) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
0	INT096FLG	0	R	INTDMAATC (ch0) Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected

5.5.5. [IMNFLG4] (Interrupt Monitor Flag Register 4)

Bit	Bit symbol	After reset	Туре	Function
31:9	-	0	R	Read as "0".
8	INT136FLG	0	R	INT07b Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
7	INT135FLG	0	R	INT10 Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
6	INT134FLG	0	R	INT09 Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
5	INT133FLG	0	R	INT08 Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
4	INT132FLG	0	R	INT07a Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
3	INT131FLG	0	R	INT06 Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
2	INT130FLG	0	R	INT05 Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
1	INT129FLG	0	R	INT04 Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected
0	INT128FLG	0	R	INTDMAAERR Interrupt detection flag 0: Interrupt not detected 1: Interrupt detected

5.6. NVIC Registers

5.6.1. SysTick Control and Status Register

Bit	Bit symbol	After reset	Туре	Function
31:17	-	0	R	Read as "0".
16	COUNTFLAG	0	R/W	0: Timer not counted to "0" 1: Timer counted to "0" Returns "1" if timer counted to "0" since last time this was read. Clears on read of any part of the SysTick Control and Status Register.
15:3	-	0	R	Read as "0".
2	CLKSOURCE	0	R/W	0: External reference clock (fosc/64) 1: CPU clock(fsys)
1	TICKINT	0	R/W	0: Do not pend SysTick 1: Pend SysTick
0	ENABLE	0	R/W	0: Disable 1: Enable If "1" is set, it re-load to a counter with the value of the Reload Value Register and starts operation.

5.6.2. SysTick Reload Value Register

Bit	Bit symbol	After reset	Туре	Function
31:24	-	0	R	Read as "0".
23:0	RELOAD[23:0]	Undefined	R/W	Reload value Set the value to load into the SysTick Current Value Register when the timer reaches "0".

5.6.3. SysTick Current Value Register

Bit	Bit symbol	After reset	Туре	Function
31:24	-	0	R	Read as "0".
			R	Current SysTick timer value
23:0	CURRENT[23:0]	Undefined	W	Clear Writing to this bit symbol with any value clears timer counter to "0". Clearing this bit symbol also clears the <countflag> of the SysTick Control and Status Register.</countflag>

5.6.4. SysTick Calibration Value Register

Bit	Bit symbol	After reset	Туре	Function
31	NOREF	0	R	0: Reference clock provided 1: No reference clock
30	SKEW	1	R	0: Calibration value is 10 ms. 1: Calibration value is not 10ms.
29:24	-	0	R	Read as "0".
23:0	TENMS	0x000000	R	Calibration value (Note)

Note: This product does not prepare the calibration value.

5.6.5. Interrupt Control Registers

Following registers will be used to control each interrupt source; Interrupt Set-Enable Register, Interrupt Clear-Enable Register, Interrupt Set-Pending Register, and Interrupt Clear-Pending Register. Each bit corresponds to the specified number of interrupts.

5.6.5.1. Interrupt Set-Enable Register

This register can be used to enable interrupts and check the enable/disable condition.

Writing "1" to a bit in this register enables the corresponding interrupt.

Writing "0" has no effect.

Reading the bits can be checked the enable/disable condition of the corresponding interrupts.

Writing "1" to a corresponding bit in the Interrupt Clear-Enable Register clears the bit in this register.

Bit	Bit symbol	After reset	Туре	Function
31	SETENA (Interrupt31)	0		[Write]
30	SETENA (Interrupt30)	0		1: Enable interrupt.
29	SETENA (Interrupt29)	0	R/W	
28	SETENA (Interrupt28)	0	F\/ V V	[Read]
27	SETENA (Interrupt27)	0		0: Interrupt is disabled. 1: Interrupt is enabled.
26	SETENA (Interrupt26)	0		1. Interrupt is enabled.
25	-	0	R/W	Write as "0".
24	-	0	R/W	Write as "0".
23	-	0	R/W	Write as "0".
22	SETENA (Interrupt22)	0		
21	SETENA (Interrupt21)	0		
20	SETENA (Interrupt20)	0		[\//rito]
19	SETENA (Interrupt19)	0		[Write] 1: Enable interrupt.
18	SETENA (Interrupt18)	0		
17	SETENA (Interrupt17)	0	R/W	[Read] 0: Interrupt is disabled. 1: Interrupt is enabled.
16	SETENA (Interrupt16)	0		
15	SETENA (Interrupt15)	0		
14	SETENA (Interrupt14)	0		
13	SETENA (Interrupt13)	0		
12	-	0	R/W	Write as "0".
11	-	0	R/W	Write as "0".
10	SETENA (Interrupt10)	0		
9	SETENA (Interrupt9)	0		
8	SETENA (Interrupt8)	0		
7	SETENA (Interrupt7)	0		[Write]
6	SETENA (Interrupt6)	0		1: Enable interrupt.
5	SETENA (Interrupt5)	0	R/W	[Read]
4	SETENA (Interrupt4)	0		0: Interrupt is disabled.
3	SETENA (Interrupt3)	0		1: Interrupt is enabled.
2	SETENA (Interrupt2)	0		
1	SETENA (Interrupt1)	0		
0	SETENA (Interrupt0)	0		

(a) Interrupt Set-Enable Register 0

(b) Interrupt Set-Enable Register 1

Bit	Bit symbol	After reset	Туре	Function
31	SETENA (Interrupt63)	0		
30	SETENA (Interrupt62)	0		
29	SETENA (Interrupt61)	0		
28	SETENA (Interrupt60)	0		
27	SETENA (Interrupt59)	0		
26	SETENA (Interrupt58)	0		
25	SETENA (Interrupt57)	0		
24	SETENA (Interrupt56)	0		
23	SETENA (Interrupt55)	0		
22	SETENA (Interrupt54)	0		
21	SETENA (Interrupt53)	0		
20	SETENA (Interrupt52)	0		
19	SETENA (Interrupt51)	0		
18	SETENA (Interrupt50)	0		
17	SETENA (Interrupt49)	0		[Write] 1: Enable interrupt.
16	SETENA (Interrupt48)	0	R/W	1. Enable interrupt.
15	SETENA (Interrupt47)	0	K/VV	[Read]
14	SETENA (Interrupt46)	0		0: Interrupt is disabled. 1: Interrupt is enabled.
13	SETENA (Interrupt45)	0		1. Interrupt is enabled.
12	SETENA (Interrupt44)	0		
11	SETENA (Interrupt43)	0		
10	SETENA (Interrupt42)	0		
9	SETENA (Interrupt41)	0		
8	SETENA (Interrupt40)	0		
7	SETENA (Interrupt39)	0		
6	SETENA (Interrupt38)	0		
5	SETENA (Interrupt37)	0		
4	SETENA (Interrupt36)	0		
3	SETENA (Interrupt35)	0		
2	SETENA (Interrupt34)	0		
1	SETENA (Interrupt33)	0		
0	SETENA (Interrupt32)	0		

(c) Interrupt Set-Enable Register 2

Bit	Bit symbol	After reset	Туре	Function
31	SETENA (Interrupt95)	0		
30	SETENA (Interrupt94)	0		[Write]
29	SETENA (Interrupt93)	0		1: Enable interrupt
28	SETENA (Interrupt92)	0	R/W	[Read]
27	SETENA (Interrupt91)	0		0: Interrupt is disabled
26	SETENA (Interrupt90)	0		1: Interrupt is enabled
25	SETENA (Interrupt89)	0		
24	-	0	R/W	Write as "0".
23	SETENA (Interrupt87)	0	R/W	[Write] 1: Enable interrupt. [Read] 0: Interrupt is disabled. 1: Interrupt is enabled.
22	-	0	R/W	Write as "0".
21	SETENA (Interrupt85)	0		
20	SETENA (Interrupt84)	0		
19	SETENA (Interrupt83)	0		
18	SETENA (Interrupt82)	0		
17	SETENA (Interrupt81)	0		
16	SETENA (Interrupt80)	0		
15	SETENA (Interrupt79)	0		
14	SETENA (Interrupt78)	0		
13	SETENA (Interrupt77)	0		0.0//::4-1
12	SETENA (Interrupt76)	0		[Write] 1: Enable interrupt
11	SETENA (Interrupt75)	0	R/W	
10	SETENA (Interrupt74)	0	r\/ VV	[Read]
9	SETENA (Interrupt73)	0		0: Interrupt is disabled 1: Interrupt is enabled
8	SETENA (Interrupt72)	0		1. Interrupt is enabled
7	SETENA (Interrupt71)	0		
6	SETENA (Interrupt70)	0		
5	SETENA (Interrupt69)	0		
4	SETENA (Interrupt68)	0		
3	SETENA (Interrupt67)	0		
2	SETENA (Interrupt66)	0		
1	SETENA (Interrupt65)	0		
0	SETENA (Interrupt64)	0		

(d) Interrupt Set-Enable Register 3

Bit	Bit symbol	After reset	Туре	Function
31:3	-	0	R	Read as "0".
2	SETENA (Interrupt98)	0		[Write] 1: Enable interrupt.
1	SETENA (Interrupt97)	0	R/W	[Read]
0	SETENA (Interrupt96)	0		0: Interrupt is disabled. 1: Interrupt is enabled.

5.6.5.2. Interrupt Clear-Enable Register

This register can be used to disable interrupts and check the enable/disable condition.

Writing "1" to a bit in this register disables the corresponding interrupt.

Writing "0" has no effect.

Reading the bits can see the enable/disable condition of the corresponding interrupts.

Bit	Bit symbol	After reset	Туре	Function
31	CLRENA (Interrupt31)	0		
30	CLRENA (Interrupt30)	0		[Write] 1: Disable Interrupt.
29	CLRENA (Interrupt29)	0	R/W	1. Disable interrupt.
28	CLRENA (Interrupt28)	0	K/W	[Read]
27	CLRENA (Interrupt27)	0		0: Interrupt is disabled. 1: Interrupt is enabled.
26	CLRENA (Interrupt26)	0		
25	-	0	R/W	Write as "0".
24	-	0	R/W	Write as "0".
23	-	0	R/W	Write as "0".
22	CLRENA (Interrupt22)	0		
21	CLRENA (Interrupt21)	0		
20	CLRENA (Interrupt20)	0		
19	CLRENA (Interrupt19)	0		[Write] 1: Disable Interrupt.
18	CLRENA (Interrupt18)	0	R/W	T: Disable Interrupt.
17	CLRENA (Interrupt17)	0	K/W	[Read] 0: Interrupt is disabled. 1: Interrupt is enabled.
16	CLRENA (Interrupt16)	0		
15	CLRENA (Interrupt15)	0		
14	CLRENA (Interrupt14)	0		
13	CLRENA (Interrupt13)	0		
12	-	0	R/W	Write as "0".
11	-	0	R/W	Write as "0".
10	CLRENA (Interrupt10)	0		
9	CLRENA (Interrupt9)	0		
8	CLRENA (Interrupt8)	0		
7	CLRENA (Interrupt7)	0		[Write]
6	CLRENA (Interrupt6)	0		1: Disable Interrupt.
5	CLRENA (Interrupt5)	0	R/W	[Read]
4	CLRENA (Interrupt4)	0		0: Interrupt is disabled.
3	CLRENA (Interrupt3)	0		1: Interrupt is enabled.
2	CLRENA (Interrupt2)	0		
1	CLRENA (Interrupt1)	0]	
0	CLRENA (Interrupt0)	0		

(a) Interrupt Clear-Enable Register 0

(b) Interrupt Clear-Enable Register 1

Bit	Bit symbol	After reset	Туре	Function
31	CLRENA (Interrupt63)	0		
30	CLRENA (Interrupt62)	0		
29	CLRENA (Interrupt61)	0		
28	CLRENA (Interrupt60)	0		
27	CLRENA (Interrupt59)	0		
26	CLRENA (Interrupt58)	0		
25	CLRENA (Interrupt57)	0		
24	CLRENA (Interrupt56)	0		
23	CLRENA (Interrupt55)	0		
22	CLRENA (Interrupt54)	0		
21	CLRENA (Interrupt53)	0		
20	CLRENA (Interrupt52)	0		
19	CLRENA (Interrupt51)	0		
18	CLRENA (Interrupt50)	0		
17	CLRENA (Interrupt49)	0		[Write]
16	CLRENA (Interrupt48)	0	R/W	1: Disable Interrupt. [Read]
15	CLRENA (Interrupt47)	0	FX/ V V	0: Interrupt is disabled.
14	CLRENA (Interrupt46)	0		1: Interrupt is enabled.
13	CLRENA (Interrupt45)	0		
12	CLRENA (Interrupt44)	0		
11	CLRENA (Interrupt43)	0		
10	CLRENA (Interrupt42)	0		
9	CLRENA (Interrupt41)	0		
8	CLRENA (Interrupt40)	0		
7	CLRENA (Interrupt39)	0		
6	CLRENA (Interrupt38)	0		
5	CLRENA (Interrupt37)	0		
4	CLRENA (Interrupt36)	0]	
3	CLRENA (Interrupt35)	0		
2	CLRENA (Interrupt34)	0		
1	CLRENA (Interrupt33)	0]	
0	CLRENA (Interrupt32)	0	<u> </u>	

(c) Interrupt Clear-Enable Register 2

Bit	Bit symbol	After reset	Туре	Function
31	CLRENA (Interrupt95)	0		
30	CLRENA (Interrupt94)	0		[Write]
29	CLRENA (Interrupt93)	0		1: Disable Interrupt.
28	CLRENA (Interrupt92)	0	R/W	[Read]
27	CLRENA (Interrupt91)	0		0: Interrupt is disabled.
26	CLRENA (Interrupt90)	0		1: Interrupt is enabled.
25	CLRENA (Interrupt89)	0		
24	-	0	R/W	Write as "0".
23	CLRENA (Interrupt87)	0	R/W	[Write] 1: Disable Interrupt. [Read] 0: Interrupt is disabled. 1: Interrupt is enabled.
22	-	0	R/W	Write as "0".
21	CLRENA (Interrupt85)	0		
20	CLRENA (Interrupt84)	0		
19	CLRENA (Interrupt83)	0		
18	CLRENA (Interrupt82)	0		
17	CLRENA (Interrupt81)	0		
16	CLRENA (Interrupt80)	0		
15	CLRENA (Interrupt79)	0		
14	CLRENA (Interrupt78)	0		
13	CLRENA (Interrupt77)	0		
12	CLRENA (Interrupt76)	0		[Write] 1: Disable Interrupt.
11	CLRENA (Interrupt75)	0	R/W	1. Disable interrupt.
10	CLRENA (Interrupt74)	0	r////	[Read] 0: Interrupt is disabled.
9	CLRENA (Interrupt73)	0		1: Interrupt is enabled.
8	CLRENA (Interrupt72)	0		
7	CLRENA (Interrupt71)	0		
6	CLRENA (Interrupt70)	0		
5	CLRENA (Interrupt69)	0		
4	CLRENA (Interrupt68)	0		
3	CLRENA (Interrupt67)	0		
2	CLRENA (Interrupt66)	0		
1	CLRENA (Interrupt65)	0]	
0	CLRENA (Interrupt64)	0		

(d) Interrupt Clear-Enable Register 3

Bit	Bit symbol	After reset	Туре	Function
31:3	-	0	R	Read as "0".
2	CLRENA (Interrupt98)	0		[Write] 1: Enable interrupt.
1	CLRENA (Interrupt97)	0	R/W	[Read]
0	CLRENA (Interrupt96)	0		0: Interrupt is disabled. 1: Interrupt is enabled.

5.6.5.3. Interrupt Set-Pending Register

This register can be used to pended interrupts and check the pending condition.

Writing "1" to a bit in this register pends the corresponding interrupt. However, writing "1" has no effect on an interrupt that is already pended or is disabled.

Writing "0" has no effect.

Reading the bit can be checked the pending condition of the corresponding interrupts.

Writing "1" to a corresponding bit in the Interrupt Clear-Pending Register clears the bit in this register.

Bit	Bit symbol	After reset	Туре	Function
31	SETPEND (Interrupt31)	Undefined		
30	SETPEND (Interrupt30)	Undefined		[Write] 1: Pend interrupt.
29	SETPEND (Interrupt29)	Undefined		1. Pena interrupt.
28	SETPEND (Interrupt28)	Undefined	R/W	[Read]
27	SETPEND (Interrupt27)	Undefined		0: Not pending 1: Pending
26	SETPEND (Interrupt26)	Undefined		
25	-	Undefined	R/W	Write as "0".
24	-	Undefined	R/W	Write as "0".
23	-	Undefined	R/W	Write as "0".
22	SETPEND (Interrupt22)	Undefined		
21	SETPEND (Interrupt21)	Undefined		
20	SETPEND (Interrupt20)	Undefined		
19	SETPEND (Interrupt19)	Undefined		[Write] 1: Pend interrupt.
18	SETPEND (Interrupt18)	Undefined	R/W	1. Fend interrupt.
17	SETPEND (Interrupt17)	Undefined		[Read] 0: Not pending
16	SETPEND (Interrupt16)	Undefined	-	1: Pending
15	SETPEND (Interrupt15)	Undefined		
14	SETPEND (Interrupt14)	Undefined		
13	SETPEND (Interrupt13)	Undefined		
12	-	Undefined	R/W	Write as "0".
11	-	Undefined	R/W	Write as "0".
10	SETPEND (Interrupt10)	Undefined		
9	SETPEND (Interrupt9)	Undefined		
8	SETPEND (Interrupt8)	Undefined		
7	SETPEND (Interrupt7)	Undefined		[Write]
6	SETPEND (Interrupt6)	Undefined		1: Pend interrupt.
5	SETPEND (Interrupt5)	Undefined	R/W	[Read]
4	SETPEND (Interrupt4)	Undefined		0: Not pending
3	SETPEND (Interrupt3)	Undefined		1: Pending
2	SETPEND (Interrupt2)	Undefined		
1	SETPEND (Interrupt1)	Undefined		
0	SETPEND (Interrupt0)	Undefined		

(a) Interrupt Set-Pending Register 0

(b) Interrupt Set-Pending Register 1

Bit	Bit symbol	After reset	Туре	Function
31	SETPEND (Interrupt63)	Undefined		
30	SETPEND (Interrupt62)	Undefined		
29	SETPEND (Interrupt61)	Undefined		
28	SETPEND (Interrupt60)	Undefined		
27	SETPEND (Interrupt59)	Undefined		
26	SETPEND (Interrupt58)	Undefined		
25	SETPEND (Interrupt57)	Undefined		
24	SETPEND (Interrupt56)	Undefined		
23	SETPEND (Interrupt55)	Undefined		
22	SETPEND (Interrupt54)	Undefined		
21	SETPEND (Interrupt53)	Undefined		
20	SETPEND (Interrupt52)	Undefined		
19	SETPEND (Interrupt51)	Undefined		
18	SETPEND (Interrupt50)	Undefined		
17	SETPEND (Interrupt49)	Undefined		[Write] 1: Pend interrupt.
16	SETPEND (Interrupt48)	Undefined	R/W	r. r end interrupt.
15	SETPEND (Interrupt47)	Undefined	r///	[Read] 0: Not pending
14	SETPEND (Interrupt46)	Undefined		1: Pending
13	SETPEND (Interrupt45)	Undefined		
12	SETPEND (Interrupt44)	Undefined		
11	SETPEND (Interrupt43)	Undefined		
10	SETPEND (Interrupt42)	Undefined		
9	SETPEND (Interrupt41)	Undefined		
8	SETPEND (Interrupt40)	Undefined		
7	SETPEND (Interrupt39)	Undefined		
6	SETPEND (Interrupt38)	Undefined		
5	SETPEND (Interrupt37)	Undefined		
4	SETPEND (Interrupt36)	Undefined]	
3	SETPEND (Interrupt35)	Undefined		
2	SETPEND (Interrupt34)	Undefined		
1	SETPEND (Interrupt33)	Undefined	1	
0	SETPEND (Interrupt32)	Undefined		

(c) Interrupt Set-Pending Register 2

Bit	Bit symbol	After reset	Туре	Function
31	SETPEND (Interrupt95)	Undefined		
30	SETPEND (Interrupt94)	Undefined		[Write]
29	SETPEND (Interrupt93)	Undefined		1: Pend interrupt.
28	SETPEND (Interrupt92)	Undefined	R/W	[Read]
27	SETPEND (Interrupt91)	Undefined		0: Not pending
26	SETPEND (Interrupt90)	Undefined		1: Pending
25	SETPEND (Interrupt89)	Undefined		
24	-	Undefined	R/W	Write as "0".
23	SETPEND (Interrupt87)	Undefined	R/W	[Write] 1: Pend interrupt. [Read] 0: Not pending 1: Pending
22	-	Undefined	R/W	Write as "0".
21	SETPEND (Interrupt85)	Undefined		
20	SETPEND (Interrupt84)	Undefined		
19	SETPEND (Interrupt83)	Undefined		
18	SETPEND (Interrupt82)	Undefined		
17	SETPEND (Interrupt81)	Undefined		
16	SETPEND (Interrupt80)	Undefined		
15	SETPEND (Interrupt79)	Undefined		
14	SETPEND (Interrupt78)	Undefined		
13	SETPEND (Interrupt77)	Undefined		
12	SETPEND (Interrupt76)	Undefined		[Write] 1: Pend interrupt.
11	SETPEND (Interrupt75)	Undefined	R/W	r. r end interrupt.
10	SETPEND (Interrupt74)	Undefined	r////	[Read]
9	SETPEND (Interrupt73)	Undefined		0: Not pending 1: Pending
8	SETPEND (Interrupt72)	Undefined		J J
7	SETPEND (Interrupt71)	Undefined]	
6	SETPEND (Interrupt70)	Undefined]	
5	SETPEND (Interrupt69)	Undefined		
4	SETPEND (Interrupt68)	Undefined		
3	SETPEND (Interrupt67)	Undefined		
2	SETPEND (Interrupt66)	Undefined		
1	SETPEND (Interrupt65)	Undefined		
0	SETPEND (Interrupt64)	Undefined		

(d) Interrupt Set-Pending Register 3

Bit	Bit symbol	After reset	Туре	Function
31:3	-	0	R	Read as "0".
2	SETPEND (Interrupt98)	Undefined		[Write] 1: Enable interrupt.
1	SETPEND (Interrupt97)	Undefined	R/W	[Read]
0	SETPEND (Interrupt96)	Undefined		0: Interrupt is disabled 1: Interrupt is enabled

5.6.5.4. Interrupt Clear-Pending Register

This register can be used to clear pending interrupts and check the pending condition.

Writing "1" to a bit in this register clears the pending condition of the corresponding interrupt. However, writing "1" has no effect on an interrupt that is already being serviced.

Writing "0" has no effect.

Reading the bit can be checked the pending condition of the corresponding interrupts.

Bit	Bit symbol	After reset	Туре	function
31	CLRPEND (Interrupt31)	Undefined		DAL 10 1
30	CLRPEND (Interrupt30)	Undefined		[Write] 1: Clear pending interrupt
29	CLRPEND (Interrupt29)	Undefined	R/W	
28	CLRPEND (Interrupt28)	Undefined	K/VV	[Read]
27	CLRPEND (Interrupt27)	Undefined		0: Not pending 1: Pending
26	CLRPEND (Interrupt26)	Undefined		1. Fending
25	-	Undefined	R/W	Write as "0".
24	-	Undefined	R/W	Write as "0".
23	-	Undefined	R/W	Write as "0".
22	CLRPEND (Interrupt22)	Undefined		
21	CLRPEND (Interrupt21)	Undefined		
20	CLRPEND (Interrupt20)	Undefined		DA/-:1
19	CLRPEND (Interrupt19)	Undefined		[Write] 1: Clear pending interrupt
18	CLRPEND (Interrupt18)	Undefined	R/W	[Read]
17	CLRPEND (Interrupt17)	Undefined	K/VV	
16	CLRPEND (Interrupt16)	Undefined		0: Not pending 1: Pending
15	CLRPEND (Interrupt15)	Undefined		1. Fending
14	CLRPEND (Interrupt14)	Undefined		
13	CLRPEND (Interrupt13)	Undefined		
12	-	Undefined	R/W	Write as "0".
11	-	Undefined	R/W	Write as "0".
10	CLRPEND (Interrupt10)	Undefined		
9	CLRPEND (Interrupt9)	Undefined		
8	CLRPEND (Interrupt8)	Undefined		
7	CLRPEND (Interrupt7)	Undefined		[Write]
6	CLRPEND (Interrupt6)	Undefined		1: Clear pending interrupt
5	CLRPEND (Interrupt5)	Undefined	R/W	[Read]
4	CLRPEND (Interrupt4)	Undefined		0: Not pending
3	CLRPEND (Interrupt3)	Undefined		1: Pending
2	CLRPEND (Interrupt2)	Undefined		
1	CLRPEND (Interrupt1)	Undefined		
0	CLRPEND (Interrupt0)	Undefined		

(a) Interrupt Clear-Pending Register 0

(b) Interrupt Clear-Pending Register 1

Bit	Bit symbol	After reset	Туре	Function
31	CLRPEND (Interrupt63)	Undefined		
30	CLRPEND (Interrupt62)	Undefined		
29	CLRPEND (Interrupt61)	Undefined		
28	CLRPEND (Interrupt60)	Undefined		
27	CLRPEND (Interrupt59)	Undefined		
26	CLRPEND (Interrupt58)	Undefined		
25	CLRPEND (Interrupt57)	Undefined		
24	CLRPEND (Interrupt56)	Undefined		
23	CLRPEND (Interrupt55)	Undefined		
22	CLRPEND (Interrupt54)	Undefined		
21	CLRPEND (Interrupt53)	Undefined		
20	CLRPEND (Interrupt52)	Undefined		
19	CLRPEND (Interrupt51)	Undefined		
18	CLRPEND (Interrupt50)	Undefined		
17	CLRPEND (Interrupt49)	Undefined		[Write] 1: Clear pending interrupt
16	CLRPEND (Interrupt48)	Undefined	R/W	
15	CLRPEND (Interrupt47)	Undefined	R/VV	[Read] 0: Not pending
14	CLRPEND (Interrupt46)	Undefined		1: Pending
13	CLRPEND (Interrupt45)	Undefined		C C
12	CLRPEND (Interrupt44)	Undefined		
11	CLRPEND (Interrupt43)	Undefined		
10	CLRPEND (Interrupt42)	Undefined		
9	CLRPEND (Interrupt41)	Undefined		
8	CLRPEND (Interrupt40)	Undefined		
7	CLRPEND (Interrupt39)	Undefined		
6	CLRPEND (Interrupt38)	Undefined		
5	CLRPEND (Interrupt37)	Undefined		
4	CLRPEND (Interrupt36)	Undefined		
3	CLRPEND (Interrupt35)	Undefined		
2	CLRPEND (Interrupt34)	Undefined		
1	CLRPEND (Interrupt33)	Undefined		
0	CLRPEND (Interrupt32)	Undefined		

(c) Interrupt Clear-Pending Register 2

Bit	Bit symbol	After reset	Туре	Function	
31	CLRPEND (Interrupt95)	Undefined			
30	CLRPEND (Interrupt94)	Undefined		[Write]	
29	CLRPEND (Interrupt93)	Undefined		1: Clear pending interrupt	
28	CLRPEND (Interrupt92)	Undefined	R/W	[Read]	
27	CLRPEND (Interrupt91)	Undefined		0: Not pending	
26	CLRPEND (Interrupt90)	Undefined		1: Pending	
25	CLRPEND (Interrupt89)	Undefined			
24	-	Undefined	R/W	Write as "0".	
23	CLRPEND (Interrupt87)	Undefined	R/W	[Write] 1: Clear pending interrupt. [Read] 0: Not pending 1: Pending	
22	-	Undefined	R/W	Write as "0".	
21	CLRPEND (Interrupt85)	Undefined			
20	CLRPEND (Interrupt84)	Undefined			
19	CLRPEND (Interrupt83)	Undefined			
18	CLRPEND (Interrupt82)	Undefined			
17	CLRPEND (Interrupt81)	Undefined			
16	CLRPEND (Interrupt80)	Undefined			
15	CLRPEND (Interrupt79)	Undefined			
14	CLRPEND (Interrupt78)	Undefined			
13	CLRPEND (Interrupt77)	Undefined			
12	CLRPEND (Interrupt76)	Undefined		[Write] 1: Clear pending interrupt	
11	CLRPEND (Interrupt75)	Undefined	R/W	1. Olear perioding interrupt	
10	CLRPEND (Interrupt74)	Undefined	FX/ V V	[Read]	
9	CLRPEND (Interrupt73)	Undefined		0: Not pending 1: Pending	
8	CLRPEND (Interrupt72)	Undefined		Ĭ	
7	CLRPEND (Interrupt71)	Undefined			
6	CLRPEND (Interrupt70)	Undefined			
5	CLRPEND (Interrupt69)	Undefined			
4	CLRPEND (Interrupt68)	Undefined			
3	CLRPEND (Interrupt67)	Undefined			
2	CLRPEND (Interrupt66)	Undefined			
1	CLRPEND (Interrupt65)	Undefined			
0	CLRPEND (Interrupt64)	Undefined			

(d) Interrupt Clear-Pending Register 3

Bit	Bit symbol	After reset	Туре	Function
31:3	-	0	R	Read as "0".
2	CLRPEND (Interrupt98)	Undefined		[Write] 1: Enable interrupt.
1	CLRPEND (Interrupt97)	Undefined	R/W	[Read]
0	CLRPEND (Interrupt96)	Undefined		0: Interrupt is disabled 1: Interrupt is enabled

5.6.6. Interrupt Priority Register

Each interrupt is provided with eight bits of an Interrupt Priority Register. The following shows the addresses of the Interrupt Priority Registers corresponding to interrupt numbers.

Address	31 24	23 16	15 8	7 0
0xE000E400	PRI_3	PRI_2	PRI_1	PRI_0
0xE000E404	PRI_7	PRI_6	PRI_5	PRI_4
0xE000E408	-	PRI_10	PRI_9	PRI_8
0xE000E40C	PRI_15	PRI_14	PRI_13	-
0xE000E410	PRI_19	PRI_18	PRI_17	PRI_16
0xE000E414	-	PRI_22	PRI_21	PRI_20
0xE000E418	PRI_27	PRI_26	-	-
0xE000E41C	PRI_31	PRI_30	PRI_29	PRI_28
0xE000E420	PRI_35	PRI_34	PRI_33	PRI_32
0xE000E424	PRI_39	PRI_38	PRI_37	PRI_36
0xE000E428	PRI_43	PRI_42	PRI_41	PRI_40
0xE000E42C	PRI_47	PRI_46	PRI_45	PRI_44
0xE000E430	PRI_51	PRI_50	PRI_49	PRI_48
0xE000E434	PRI_55	PRI_54	PRI_53	PRI_52
0xE000E438	PRI_59	PRI_58	PRI_57	PRI_56
0xE000E43C	PRI_63	PRI_62	PRI_61	PRI_60
0xE000E440	PRI_67	PRI_66	PRI_65	PRI_64
0xE000E444	PRI_71	PRI_70	PRI_69	PRI_68
0xE000E448	PRI_75	PRI_74	PRI_73	PRI_72
0xE000E44C	PRI_79	PRI_78	PRI_77	PRI_76
0xE000E450	PRI_83	PRI_82	PRI_81	PRI_80
0xE000E454	PRI_87	-	PRI_85	PRI_84
0xE000E458	PRI_91	PRI_90	PRI_89	-
0xE000E45C	PRI_95	PRI_94	PRI_93	PRI_92
0xE000E460	-	PRI_98	PRI_97	PRI_96

The number of bits to be used for assigning a priority varies with each product. This product uses four bits for assigning a priority.

The following shows the fields of the Interrupt Priority Registers for interrupt numbers 0 to 3.

Unused bits return "0" when read, and writing to unused bits has no effect.

Bit	Bit symbol	After reset	Туре	Function
31:28	PRI_3[3:0]	0000	R/W	Priority of interrupt number 3
27:24	-	0	R	Read as "0"
23:20	PRI_2[3:0]	0000	R/W	Priority of interrupt number 2
19:16	-	0	R	Read as "0"
15:12	PRI_1[3:0]	0000	R/W	Priority of interrupt number 1
11:8	-	0	R	Read as "0"
7:4	PRI_0[3:0]	0000	R/W	Priority of interrupt number 0
3:0	-	0	R	Read as "0"

5.6.7. Vector Table Offset Register

Bit	Bit symbol	After reset	Туре	Function
31:7	TBLOFF[24:0]	0x0000000	R/W	Offset value Set the offset value from the address of "0x00000000". The offset must be aligned based on the number of exceptions in the table. This means that the minimum alignment is 32 words that up to 16 interrupts are used. For more interrupts, the alignment must be adjusted by rounding up to the next power of two.
6:0	-	0	R	Read as "0".

5.6.8. Application Interrupt and Reset Control Register

Bit	Bit symbol	After reset	Туре	Function
31:16	VECTKEY/	Undefined	W	Register key Writing to this register requires 0x05FA in the <vectkey> field.</vectkey>
01.10	VECTKEYSTAT[15:0]	ondonnod	R	Register key Read as 0xFA05.
15	ENDIANESS	0	R/W	Endianness bit: (Note 1) 1: Big endian 0: Little endian
14:11	-	0	R	Read as "0".
10:8	PRIGROUP[2:0]	000	R/W	Interrupt priority grouping 000: seven bits of pre-emption priority, one bit of sub priority 001: six bits of pre-emption priority, two bits of sub priority 010: five bits of pre-emption priority, three bits of sub priority 011: four bits of pre-emption priority, four bits of sub priority 100: three bits of pre-emption priority, five bits of sub priority 101: two bits of pre-emption priority, six bits of sub priority 110: one bit of pre-emption priority, seven bits of sub priority 111: no pre-emption priority, eight bits of sub priority 111: no pre-emption priority, eight bits of sub priority The bit configuration to split the interrupt priority register <pri_n> into pre-emption priority and sub priority.</pri_n>
7:3	- 0		R	Read as "0".
2	SYSRESETREQ	0	R/W	System Reset Request 1: CPU outputs a SYSRESETREQ signal. (Note 2)
1	VECTCLRACTIVE	0	R/W	Clear active vector bit 1: clear all state information for active NMI, fault, and interrupts. 0: do not clear. This bit self-clears. It is the responsibility of the application to reinitialize the stack.
0	VECTRESET	0	R/W	System Reset 1: reset system. 0: do not reset system. Resets the internal circuits in CPU except debug components (FPB, DWT and ITM) by setting "1" and this bit is also zero cleared

Note 1: Little-endian is selected as the default for this product.

Note 2: When SYSRESETREQ is output, warm reset occurs. <SYSRESETREQ> is cleared by warm reset.

5.6.9. System Handler Priority Register

Each exception is provided with eight bits of a System Handler Priority Register. The following shows the addresses of the System Handler Priority Registers corresponding to each exception.

Address	31 24	23 16	15 8	7 0
0xE000ED18	PRI_7	PRI_6 (Usage Fault)	PRI_5 (Bus Fault)	PRI_4 (Memory Management)
0xE000ED1C	PRI_11 (SVCall)	PRI_10	PRI_9	PRI_8
0xE000ED20	PRI_15 (SysTick)	PRI_14 (PendSV)	PRI_13	PRI_12 (Debug Monitor)

The number of bits to be used for assigning a priority varies with each product. This product uses four bits for assigning a priority.

The following shows the fields of the System Handler Priority Registers for Usage Fault, Bus Fault, and Memory Management. Unused bits return "0" when read, and writing to unused bits has no effect.

Bit	Bit symbol	After reset	Туре	Function
31:28	PRI_7[3:0]	0000	R/W	Reserved
27:24	-	0	R	Read as "0".
23:20	PRI_6[3:0]	0000	R/W	Priority of Usage Fault
19:16	-	0	R	Read as "0".
15:12	PRI_5[3:0]	0000	R/W	Priority of Bus Fault
11:8	-	0	R	Read as "0".
7:4	PRI_4[3:0]	0000	R/W	Priority of Memory Management
3:0	-	0	R	Read as "0".

5.6.10. System Handler Control and State Register

Bit	Bit symbol	After reset	Туре	Function
31:19	-	0	R	Read as "0".
18	USGFAULTENA	0	R/W	Usage Fault 0: Disabled 1: Enabled
17	BUSFAULTENA	0	R/W	Bus Fault 0: Disabled 1: Enabled
16	MEMFAULTENA	0	R/W	Memory Management 0: Disabled 1: Enabled
15	SVCALLPENDED	0	R/W	SVCall 0: Not pended 1: Pended
14	BUSFAULTPENDED	0	R/W	Bus Fault 0: Not pended 1: Pended
13	MEMFAULTPENDED	0	R/W	Memory Management 0: Not pended 1: Pended
12	USGFAULTPENDED	0	R/W	Usage Fault 0: Not pended 1: Pended
11	SYSTICKACT	0	R/W	SysTick 0: Inactive 1: Active
10	PENDSVACT	0	R/W	PendSV 0: Inactive 1: Active
9	-	0	R	Read as "0".
8	MONITORACT	0	R/W	Debug Monitor 0: Inactive 1: Active
7	SVCALLACT	0	R/W	SVCall 0: Inactive 1: Active
6:4	-	0	R	Read as "0".
3	USGFAULTACT	0	R/W	Usage Fault 0: Inactive 1: Active
2	-	0	R	Read as "0".
1	BUSFAULTACT	0	R/W	Bus Fault 0: Inactive 1: Active
0	MEMFAULTACT	0	R/W	Memory Management 0: Inactive 1: Active

Note: Clearing or setting the active bits is required extreme caution because clearing and setting these bits does not modify stack contents.

6. List of Interrupt Sources for Each Product

6.1. TMPM4K4/TMPM4K2/TMPM4K1

			Interrupt			Interrupt	Interrupt
M4K4	M4K2	M4K1	number	Interrupt source	Interrupt request	control	monitor flag
 						register	register
~	✓	~	NINAL	INTLVD	LVD Interrupt	[IANIC00]	[IMNFLGNMI] <int000flg></int000flg>
Ý	v	~	NMI	INTWDT0	SIWDT Interrupt	[IBNIC00]	<i>[IMNFLGNMI]</i> <int016flg></int016flg>
~	~	~	0	INT00	External interrupt 00a	[IAIMC00]	<i>[IMNFLG1]</i> <int032flg></int032flg>
~	-	-	0	INTOO	External interrupt 00b	[IAIMC32]	<i>[IMNFLG2]</i> <int064flg></int064flg>
~	✓	~	1	INT01	External interrupt 01a	[IAIMC01]	<i>[IMNFLG1]</i> <int033flg></int033flg>
~	-	-	I		External interrupt 01b	[IAIMC33]	<i>[IMNFLG2]</i> <int065flg></int065flg>
~	~	~	2	INT02	External interrupt 02a	[IAIMC02]	<i>[IMNFLG1]</i> <int034flg></int034flg>
~	~	~	2	INTOZ	External interrupt 02b	[IAIMC34]	<i>[IMNFLG2]</i> <int066flg></int066flg>
~	~	~	2	INT03	External interrupt 03a	[IAIMC03]	<i>[IMNFLG1]</i> <int035flg></int035flg>
~	~	~	3	UN 1 UO	External interrupt 03b	[IAIMC35]	<i>[IMNFLG2]</i> <int067flg></int067flg>
~	~	~	4	INT04	External interrupt 04	[IBIMC033]	<i>[IMNFLG4]</i> <int129flg></int129flg>
\checkmark	~	\checkmark	5	INT05	External interrupt 05	[IBIMC034]	<i>[IMNFLG4]</i> <int130flg></int130flg>
\checkmark	~	\checkmark	6	INT06	External interrupt 06	[IBIMC035]	<i>[IMNFLG4]</i> <int131flg></int131flg>
~	✓	~	7	INT07	External interrupt 07a	[IBIMC036]	<i>[IMNFLG4]</i> <int132flg></int132flg>
~	-	-	1		External interrupt 07b	[IBIMC040]	<i>[IMNFLG4]</i> <int136flg></int136flg>
~	✓	~	8	INT08	External interrupt 08	[IBIMC037]	<i>[IMNFLG4]</i> <int133flg></int133flg>
~	~	-	9	INT09	External interrupt 09	[IBIMC038]	<i>[IMNFLG4]</i> <int134flg></int134flg>
~	-	-	10	INT10	External interrupt 10	[IBIMC039]	<i>[IMNFLG4]</i> <int135flg></int135flg>
-	-	-	11		Reserved		
-	-	-	12		Reserved		
~	\checkmark	\checkmark	13	INTEMG0	A-PMD ch0 EMG interrupt		
~	~	-	14	INTEMG1	A-PMD ch1 EMG interrupt		
~	✓	✓	15	INTOVV0	A-PMD ch0 OVV interrupt		
~	~	-	16	INTOVV1	A-PMD ch1 OVV interrupt		
✓	✓	√	17	INTPWM0	A-PMD ch0 PWM interrupt		
✓	✓	-	18	INTPWM1	A-PMD ch1 PWM interrupt		
✓	✓	✓	19	INTENC00	A-ENC32 ch0 Encoder input interrupt 0		
✓	✓	✓	20	INTENC01	A-ENC32 ch0 Encoder input interrupt 1		
✓	✓	✓	21	INTADAPDA	ADC unit A PMD trigger interrupt A		
✓	✓	✓	22	INTADAPDB	ADC unit A PMD trigger interrupt B		
-	-	-	23		Reserved		
-	-	-	24	Reserved			
-	-	-	25		Reserved		
✓	✓	√	26	INTADACP0	ADC unit A Monitor function 0 interrupt		
✓	✓	\checkmark	27	INTADACP1	ADC unit A Monitor function 1 interrupt		

M4K4	M4K2	M4K1	Interrupt number	Interrupt source	Interrupt request	Interrupt control register	Interrupt monitor flag register
~	~	~	28	INTADATRG	ADC unit A General-purpose trigger interrupt		
~	✓	~	29	INTADASGL	ADC unit A Single conversion interrupt		
✓	✓	~	30	INTADACNT	ADC unit A Continuous conversion interrupt		
~	~	~	31	INTSCORX	TSPI ch0 Receive interrupt UART ch0 Reception interrupt		
~	~	~	32	INTSCOTX	TSPI ch0 Transmit interrupt UART ch0 Transmission interrupt		
✓	~	~	33	INTSC0ERR	TSPI ch0 Error interrupt UART ch0 Error interrupt		
✓	-	-			TSPI ch1 Receive interrupt		
✓	✓	~	34	INTSC1RX	UART ch1 Reception interrupt		
~	-	-	0.5		TSPI ch1 Transmit interrupt		
✓	✓	~	35	INTSC1TX	UART ch1 Transmission interrupt		
✓	-	-	20		TSPI ch1 Error interrupt		
✓	✓	~	36	INTSC1ERR	UART ch1 Error interrupt		
~	~	~	37	INTSC2RX	TSPI ch2 Receive interrupt UART ch2 Reception interrupt		
~	~	~	38	INTSC2TX	TSPI ch2 Transmit interrupt		
1					UART ch2 Transmission interrupt TSPI ch2 Error interrupt		
~	~	~	39	INTSC2ERR	UART ch2 Error interrupt		
~	-	-	40	INTSC3RX	TSPI ch3 Receive interrupt UART ch3 Reception interrupt		
~	-	-	41	INTSC3TX	TSPI ch3 Transmit interrupt UART ch3 Transmission interrupt		
✓	-	-	42	INTSC3ERR	TSPI ch3 Error interrupt UART ch3 Error interrupt		
~	~	~	43	INTI2CONST	I2C ch0 interrupt / EI2C ch0 status interrupt		
~	~	~	44	INTI2C0ATX	I2C ch0 arbitration lost detection interrupt EI2C ch0 transmit buffer empty interrupt		
~	~	~	45	INTI2C0BRX	I2C ch0 bus free detection interrupt EI2C ch0 receive buffer full interrupt		
✓	✓	✓	46	INTI2C0NA	I2C ch0 I2C NACK detection interrupt		
~	~	~	47	INTT32A00AC	T32A ch0 timer A/C match, overflow, and underflow		
✓	✓	✓	48	INTT32A00ACCAP0	T32A ch0 timer A/C capture 0		
✓	✓	✓	49	INTT32A00ACCAP1	T32A ch0 timer A/C capture 1		
~	~	~	50	INTT32A00B	T32A ch0 timer B match, overflow, and underflow		
✓	✓	~	51	INTT32A00BCAP0	T32A ch0 timer B capture 0		
~	✓	~	52	INTT32A00BCAP1	T32A ch0 timer B capture 1		
~	~	~	53	INTT32A01AC	T32A ch1 timer A/C match, overflow, and underflow		
~	~	~	54	INTT32A01ACCAP0	T32A ch1 timer A/C capture 0		
~	~	~	55	INTT32A01ACCAP1	T32A ch1 timer A/C capture 1		
~	~	~	56	INTT32A01B	T32A ch1 timer B match, overflow, and underflow		
~	~	~	57	INTT32A01BCAP0	T32A ch1 timer B capture 0		
~	✓	~	58	INTT32A01BCAP1	T32A ch1 timer B capture 1		
~	~	~	59	INTT32A02AC	T32A ch2 timer A/C match, overflow, and underflow		
~	✓	~	60	INTT32A02ACCAP0	T32A ch2 timer A/C capture 0		
~	~	~	61	INTT32A02ACCAP1	T32A ch2 timer A/C capture 1		
~	~	~	62	INTT32A02B	T32A ch2 timer B match, overflow, and underflow		
\checkmark	✓	✓	63	INTT32A02BCAP0	T32A ch2 timer B capture 0		

M4K4	M4K2	M4K1	Interrupt number	Interrupt source	Interrupt request	Interrupt control register	Interrupt monitor flag register
✓	~	~	64	INTT32A02BCAP1	T32A ch2 timer B capture 1		
✓	~	~	65	INTT32A03AC	T32A ch3 timer A/C match, overflow, and underflow		
\checkmark	✓	✓	66	INTT32A03ACCAP0	T32A ch3 timer A/C capture 0		
\checkmark	✓	~	67	INTT32A03ACCAP1	T32A ch3 timer A/C capture 1		
\checkmark	~	~	68	INTT32A03B	T32A ch3 timer B match, overflow, and underflow		
\checkmark	✓	~	69	INTT32A03BCAP0	T32A ch3 timer B capture 0		
\checkmark	✓	~	70	INTT32A03BCAP1	T32A ch3 timer B capture 1		
\checkmark	~	~	71	INTT32A04AC	T32A ch4 timer A/C match, overflow, and underflow		
✓	~	~	72	INTT32A04ACCAP0	T32A ch4 timer A/C capture 0		
\checkmark	✓	✓	73	INTT32A04ACCAP1	T32A ch4 timer A/C capture 1		
\checkmark	~	~	74	INTT32A04B	T32A ch4 timer B match, overflow, and underflow		
\checkmark	✓	✓	75	INTT32A04BCAP0	T32A ch4 timer B capture 0		
\checkmark	✓	✓	76	INTT32A04BCAP1	T32A ch4 timer B capture 1		
✓	~	~	77	INTT32A05AC	T32A ch5 timer A/C match, overflow, and underflow		
✓	~	~	78	INTT32A05ACCAP0	T32A ch5 timer A/C capture 0		
\checkmark	✓	✓	79	INTT32A05ACCAP1	T32A ch5 timer A/C capture 1		
\checkmark	~	~	80	INTT32A05B	T32A ch5 timer B match, overflow, and underflow		
✓	✓	✓	81	INTT32A05BCAP0	T32A ch5 timer B capture 0		
✓	✓	~	82	INTT32A05BCAP1	T32A ch5 timer B capture 1		
\checkmark	✓	✓	83	INTPARI	RAMP RAM Parity interrupt		
✓	-	-				[IBIMC002], [IBIMC003], [IBIMC006], [IBIMC014], [IBIMC015]	[IMNFLG3] <int098flg>, <int099flg>, <int102flg>, <int110flg>, <int111flg></int111flg></int110flg></int102flg></int099flg></int098flg>
~	V	¥	84	INTDMAATC	DMAC unit A transmission end interrupt (ch0 to 31)	[IBIMC000], [IBIMC001], [IBIMC004], [IBIMC005], [IBIMC007] to [IBIMC013], [IBIMC016] to	[IMNFLG3] <int096flg>, <int097flg>, <int100flg>, <int101flg>, <int103flg> to <int109flg> <int109flg> to</int109flg></int109flg></int103flg></int101flg></int100flg></int097flg></int096flg>
✓	✓	~	85	INTDMAAERR	DMAC unit A transmission error interrupt	[IBIMC031] [IBIMC032]	<int127flg> [IMNFLG4]</int127flg>
•					•		<int128flg></int128flg>
-	-	- ✓	86 87	INTFLCRDY	Reserved Code FLASH Ready interrupt		
•	•	-	88		Reserved		
- ✓	- ~	- -	89	INTENC10	A-ENC32 ch1 Encoder input interrupt 0		
• ✓	▼ ✓	▼ ✓	90	INTENCIO	A-ENC32 ch1 Encoder input interrupt 0 A-ENC32 ch1 Encoder input interrupt 1		
• ✓	▼ ✓	✓ ✓	90 91	INTADBPDA	ADC unit B PMD trigger interrupt A		
• ✓	▼ ✓	▼ ✓	91	INTADBPDA	ADC unit B PMD trigger interrupt B		
• •	• •	• •	92		ADC unit B Monitor function 0 interrupt		
• •	• •	• •	93 94	INTADBCP0	ADC unit B Monitor function 1 interrupt		
• √	▼ ✓	▼ ✓	94 95	INTADBCPT	ADC unit B General-purpose trigger		
					interrupt		
\checkmark	\checkmark	\checkmark	96	INTADBSGL	ADC unit B Single conversion interrupt		

M4K	4 M4K2	M4K1	Interrupt number	Interrupt source	Interrupt request	Interrupt control register	Interrupt monitor flag register
~	~	~	97		ADC unit B Continuous conversion interrupt		
~	✓	~	98	INTADCCMP	AD Conversion result comparison interrupt		

Note: ✓: Available, -: N/A

7. Revision History

Revision	Date	Description
1.0	2024-07-22	- First release

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please
 use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without
 limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF
 NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

Toshiba Electronic Devices & Storage Corporation

https://toshiba.semicon-storage.com/