

32-bit RISC Microcontroller Reference manual

32-bit Timer Event Counter (T32A-C)

Revision 1.2

2024-11

Toshiba Electronic Devices & Storage Corporation

Contents

Preface	6
Related Documents	6
Conventions	7
Terms and Abbreviations	9
1. Outline	10
2. Configuration	12
2.1. 16-bit Timer	12
2.2. 32-bit Timer	14
3. Function and Operation	16
3.1. Clock Supply	16
3.2. Prescaler	16
3.3. Counters (16-bit Counter A/16-bit Counter B/32-bit Counter C)	17
3.3.1. Count Clock	
3.3.2. Starting Operation	17
3.3.3. Stopping Operation	18
3.3.4. Count Operation	20
3.3.5. Event Count Operation	21
3.3.6. Pulse Counting	21
3.3.7. Reloading Counter	25
3.4. Synchronous Operation	26
3.5. Comparator	27
3.6. Timer Register ([T32AxRGA0/B0/C0], [T32AxRGA1/B1/C1])	27
3.7. Capture Control	28
3.8. Output Programmable Rectangular Wave (PPG) (T32AxOUTA/T32AxOUTB/T32AxOUTC)	29
3.9. Interrupts	30
3.9.1. Timer Interrupt	30
3.9.2. Capture Interrupt	31
3.9.3. Interrupt on Every Count	31
3.10. DMA Request	32
4. Registers	33
4.1. List of Registers	33
4.2. Details of the Common Register	36
4.2.1. [T32AxMOD] (Mode Register)	36
4.3. Details of Timer A Register	37
4.3.1. [T32AxRUNA] (Run Register A)	37
4.3.2. [T32AxCRA] (Counter Control Register A)	38
4.3.3. [T32AxOUTCRA0] (Output Control Register A0)	
4.3.4. [T32AxOUTCRA1] (Output Control Register A1)	
4.3.5. [T32AxRGA0] (Timer Register A0)	
4.3.6. [T32AxRGA1] (Timer Register A1)	
4.3.7. [T32AxTMRA] (Counter Capture Register A)	41

TOSHIBA

4.3.8. [T32AxRELDA] (Counter Reload Register A)	41
4.3.9. [T32AxCAPCRA] (Capture Control Register A)	42
4.3.10. [T32AxCAPA0] (Capture Register A0)	42
4.3.11. [T32AxCAPA1] (Capture Register A1)	42
4.3.12. [T32AxIMA] (Interrupt Mask Register A)	43
4.3.13. [T32AxSTA] (Status Register A)	44
4.3.14. [T32AxDMAA] (DMA Request Enable Register A)	44
4.3.15. [T32AxCPA0] (Compare Register A0)	45
4.3.16. [T32AxCPA1] (Compare Register A1)	45
4.4. Details of Timer B Register	45
4.4.1. [T32AxRUNB] (Run Register B)	45
4.4.2. [T32AxCRB] (Counter Control Register B)	46
4.4.3. [T32AxOUTCRB0] (Output Control Register B0)	47
4.4.4. [T32AxOUTCRB1] (Output Control Register B1)	47
4.4.5. [T32AxRGB0] (Timer Register B0)	48
4.4.6. [T32AxRGB1] (Timer Register B1)	48
4.4.7. [T32AxTMRB] (Counter Capture Register B)	48
4.4.8. [T32AxRELDB] (Counter Reload Register B)	48
4.4.9. [T32AxCAPCRB] (Capture Control Register B)	49
4.4.10. [T32AxCAPB0] (Capture Register B0)	49
4.4.11. [T32AxCAPB1] (Capture Register B1)	49
4.4.12. [T32AxIMB] (Interrupt Mask Register B)	50
4.4.13. [T32AxSTB] (Status Register B)	51
4.4.14. [T32AxDMAB] (DMA Request Enable Register B)	51
4.4.15. [T32AxCPB0] (Compare Register B0)	52
4.4.16. [T32AxCPB1] (Compare Register B1)	52
4.5. Details of Timer C Register	53
4.5.1. [T32AxRUNC] (Run Register C)	53
4.5.2. [T32AxCRC] (Counter Control Register C)	54
4.5.3. [T32AxOUTCRC0] (Output Control Register C0)	55
4.5.4. [T32AxOUTCRC1] (Output Control Register C1)	55
4.5.5. [T32AxRGC0] (Timer Register C0)	56
4.5.6. [T32AxRGC1] (Timer Register C1)	56
4.5.7. [T32AxTMRC] (Counter Capture Register C)	56
4.5.8. [T32AxRELDC] (Counter Reload Register C)	56
4.5.9. [T32AxCAPCRC] (Capture Control Register C)	57
4.5.10. [T32AxCAPC0] (Capture Register C0)	57
4.5.11. [T32AxCAPC1] (Capture Register C1)	57
4.5.12. [T32AxIMC] (Interrupt Mask Register C)	58
4.5.13. [T32AxSTC] (Status Register C)	59
4.5.14. [T32AxDMAC] (DMA Request Enable Register C)	60
4.5.15. [T32AxPLSCR] (Pulse Counter control Register C)	60
4.5.16. [T32AxCPC0] (Compare Register C0)	61
4.5.17. [T32AxCPC1] (Compare Register C1)	61

32-bit Timer Event Counter

TOSHIBA

5.	Use Cases	62
	5.1. Interval Timer	62
	5.2. Event Counter	64
	5.3. Programmable Rectangular Wave Output (PPG)	65
	5.4. Programmable Rectangular Wave Output (PPG) by External Trigger	67
	5.5. PPG Outputs by Synchronous Operation	68
	5.6. Control Stepping Motor by PPG Outputs	70
	5.7. Frequency Measurement Using Capture Function	72
	5.8. Pulse Width Measurement Using Capture Function	74
	5.9. Time Difference Measurement Using Capture Function	75
6.	Revision History	76
	RESTRICTIONS ON PRODUCT USE	77

List of figures

Figure 2.1	Block Diagram of Timer A and Timer B in 16-bit Timer	12
Figure 2.2	Block Diagram of Timer C in 32-bit Timer	
Figure 3.1	State Transition	22
Figure 3.2	Positive Phase (Counter Operation when <pdir> = 0)</pdir>	24
Figure 3.3	Negative Phase (Counter Operation when <pdir> = 1)</pdir>	24
Figure 3.4	Synchronous Operation	
Figure 3.5	Example of Output of Programmable Rectangular Wave Using 16-bit Timer A	29
Figure 5.1	Interval Timer (Count Up)	
Figure 5.2	Interval Timer (Count Down)	63
Figure 5.3	Event Counter	
Figure 5.4	Example of PPG Output (Low Active)	66
Figure 5.5	PPG Output (Example of Period A, B)	66
Figure 5.6	Example of PPG Output by External Trigger	67
Figure 5.7	PPG Outputs by Synchronous Operation (Low Active)	
Figure 5.8	PPG Outputs by Synchronous Operation (Example of Control of Stepping Motor)	
Figure 5.9	Frequency Measurement Using Capture Function	
Figure 5.10		
Figure 5.1	1 Time Difference Measurement Using Capture Function	/ 5
	List of tables	
Table 2.1	16-bit Timer Connection Specification	13
Table 2.2	32-bit Timer Connection Specification	
Table 3.1	Note of Timer Register Setting when Outputting PPG	20
Table 3.2	2-phase Pulse Count Mode	22
Table 3.3	Transition	23
Table 3.4	List of Timer Interrupt Factors	
Table 3.5	Relationship Table between Capture Interrupt and Capture Register	
Table 3.6	DMA Request List	
Table 4.1	Noise Elimination <nf></nf>	
Table 6.1	Revision History	76

Preface

Related Documents

Document name
Datasheet
Exception
Clock Control and Operation Mode
Product Information

Conventions

• Numeric formats follow the rules as shown below:

Hexadecimal: 0xABC

Decimal: 123 or 0d123 - Only when it needs to be explicitly shown that they are decimal

numbers.

Binary: 0b111 - It is possible to omit the "0b" when the number of bits can be

distinctly understood from a sentence.

• " N" is added to the end of signal names to indicate low active signals.

- It is called "assert" that a signal moves to its active level, "deassert" to its inactive level.
- When two or more signal names are referred, they are described like as [m:n].

Example: S[3:0] shows four signal names S3, S2, S1 and S0 together.

• The characters surrounded by [] defines the register.

Example: [ABCD]

• "N" substitutes suffix number of two or more same kind of registers, fields, and bit names.

Example: [XYZ1], [XYZ2], $[XYZ3] \rightarrow [XYZn]$

- "x" substitutes suffix number or character of units and channels in the register list.
- In case of unit, "x" means A, B, and C, ...

Example: [ADACR0], [ADBCR0], $[ADCCR0] \rightarrow [ADxCR0]$

• In case of channel, "x" means 0, 1, and 2, ...

Example: [T32A0RUNA], [T32A1RUNA], $[T32A2RUNA] \rightarrow [T32AxRUNA]$

• The bit range of a register is written like as [m: n].

Example: Bit[3: 0] expresses the range of bit 3 to 0.

• The configuration value of a register is expressed by either the hexadecimal number or the binary number. Example: $[ABCD] < EFG > 0 \times 01$ (hexadecimal), [XYZn] < VW > 1 (binary)

• Word and byte represent the following bit length.

Byte: 8 bits
Half word: 16 bits
Word: 32 bits
Double word: 64 bits

• Properties of each bit in a register are expressed as follows:

R: Read only W: Write only

R/W: Read and write are possible.

- Unless otherwise specified, register access supports only word access.
- The register defined as "Reserved" must not be rewritten. Moreover, do not use the read value.
- The value read from the bit having default value of "-" is unknown.
- When a register containing both of writable bits and read-only bits is written, read-only bits should be written with their default value, In the cases that default is "-", follow the definition of each register.
- Reserved bits of the write-only register should be written with their default value. In the cases that default is "-", follow the definition of each register.
- Do not use read-modified-write processing to the register of a definition which is different by writing and read out.

All other company names, product names, and service names mentioned herein may be trademarks of their respective companies.

8 / 77 2024-11-29 Rev. 1.2

Terms and Abbreviations

Some of abbreviations used in this document are as follows:

DMA Direct Memory Access

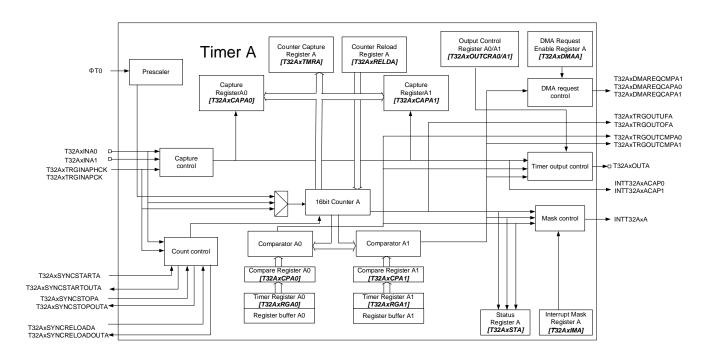
PPG Programmable Pulse Generator T32A 32-bit Timer Event Counter

1. Outline

T32A can work as a 16-bit timer (timer A, timer B) of 2ch or a 32-bit timer (timer C) of 1ch by 1UNIT circuit unit.

Function classification		Function		Functional description or range	
	Time control	Interval timer		This function generates interrupt to CPU at every set interval time.	
	Measurement control	Event counter		Up counting or down counting or up/down counting can be selected as count operation. And when the count value matches the timer register, you can generate timer interrupt.	
			Frequency measurement	Captures count value on rising edge and falling edge of input pulse. You can calculate frequency from difference of captured data.	
16-bit timer		Capture	Pulse width measurement	Captures count value on rising edge and falling edge of input pulse. You can calculate Pulse Width from difference of captured data.	
Timer A			Time difference measurement	Captures count value on rising edge or falling edge of input pulse. You can calculate Time difference from difference of captured data.	
	Rectangular wave output	PPG		Can output rectangular wave of arbitrary frequency and arbitrary duty.	
	Synchronous operation	Counter start		Timer counter starts the count in synch with the start of master timer counter.	
		Counter stop		Timer counter stops the count in synch with the stop of master timer counter.	
		Counter reload		Timer counter is reloaded in synch with the of master timer counter.	
	Time control	Interval timer		This function generates interrupt to CPU at every set interval time.	
	Measurement control	Event counter		Up counting or down counting or up/down counting can be selected as count operation. And when the count value matches the timer register, you can generate timer interrupt.	
			Frequency measurement	Captures count value on rising edge and falling edge of input pulse. You can calculate frequency from difference of captured data.	
16-bit timer		Capture	Pulse width measurement	Captures count value on rising edge and falling edge of input pulse. You can calculate Pulse Width from difference of captured data.	
Timer B			Time difference measurement	Captures count value on rising edge or falling edge of input pulse. You can calculate Time difference from difference of captured data.	
	Rectangular wave output	PPG		Can output rectangular wave of arbitrary frequency and arbitrary duty.	
		Counter start		Timer counter starts the count in synch with the start of master timer counter.	
	Synchronous operation	Counter stop		Timer counter stops the count in synch with the stop of master timer counter.	
		Counter reload		Timer counter is reloaded in synch with the of master timer counter.	

Function classification		Function		Functional description or range	
	Time control	Interval timer		This function generates interrupt to CPU at every set interval time.	
		Event c	ounter	Up counting or down counting or up/down counting can be selected as count operation. And when the count value matches the timer register, you can generate timer interrupt.	
		Pulse count	1-phase pulse count	Counts the variation in the inputs of T32AxINC0 or T32AxINC1. The counter increment or decrement is selected according to the setting.	
	Measurement	Pulse count	2-phase pulse count	Increment or decrement of counter according to the variation in the combination of inputs T32AxINC0 and T32AxINC1.	
32-bit timer	control	2-bit imer		Frequency measurement	Captures count value on rising edge and falling edge of input pulse. You can calculate frequency from difference of captured data.
Timer C			Capture	Pulse width measurement	Captures count value on rising edge and falling edge of input pulse. You can calculate Pulse Width from difference of captured data.
			Time difference measurement	Captures count value on rising edge or falling edge of input pulse. You can calculate Time difference from difference of captured data.	
	Rectangular wave output	PP	G	Can output rectangular wave of arbitrary frequency and arbitrary duty.	
		Counte	er start	Timer counter starts the count in synch with the start of master timer counter.	
	Synchronous operation	Counte	er stop	Timer counter stops the count in synch with the stop of master timer counter.	
		Counter reload		Timer counter is reloaded in synch with the of master timer counter.	



2. Configuration

T32A consists of two 16-bit timers, which operate as Timer A and Timer B respectively. Timer A and Timer B are connected, then they operate as 32-bit timer C.

2.1. 16-bit Timer

In 16-bit timer, the T32A is configured with the independent 16-bit Timer A and Timer B.

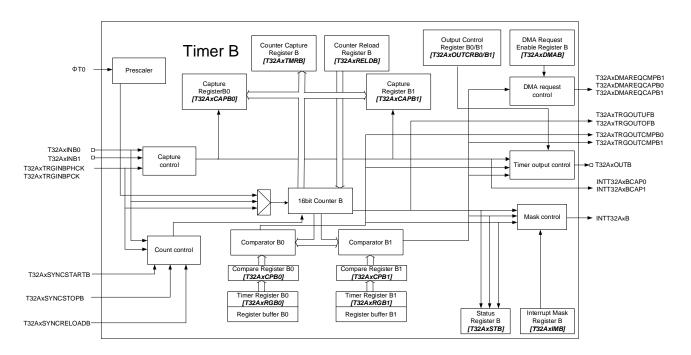


Figure 2.1 Block Diagram of Timer A and Timer B in 16-bit Timer

Table 2.1 16-bit Timer Connection Specification

No.	Symbol	Signal name	I/O	Related reference manual
1	ФТ0	Prescaler clock	Input	Clock Control and Operation Mode
2	T32AxINA0	Timer A external trigger input 0	Input	Datasheet
3	T32AxINA1	Timer A external trigger input 1	Input	Datasheet
4	T32AxTRGINAPHCK	Timer A trigger from other timer	Input	Product Information
5	T32AxTRGINAPCK	Timer A internal trigger input	Input	Product Information
6	T32AxSYNCSTARTA	Timer A synchronous start at trigger input	Input	Product Information
7	T32AxSYNCSTARTOUTA	Timer A trigger output for synchronous start	Output	Product Information
8	T32AxSYNCSTOPA	Timer A synchronous stop at trigger input	Input	Product Information
9	T32AxSYNCSTOPOUTA	Timer A trigger output for synchronous stop	Output	Product Information
10	T32AxSYNCRELOADA	Timer A synchronous reload at trigger input	Input	Product Information
11	T32AxSYNCRELOADOUTA	Timer A trigger output for synchronous reload	Output	Product Information
12	T32AxDMAREQCMPA1	DMA request at match A1 register	Output	Product Information
13	T32AxDMAREQCAPA0	DMA request at capture A0 register	Output	Product Information
14	T32AxDMAREQCAPA1	DMA request at capture A1 register	Output	Product Information
15	T32AxTRGOUTUFA	Timer A underflow trigger	Output	Product Information
16	T32AxTRGOUTOFA	Timer A overflow trigger	Output	Product Information
17	T32AxTRGOUTCMPA0	Timer register A0 match trigger	Output	Product Information
18	T32AxTRGOUTCMPA1	Timer register A1 match trigger	Output	Product Information
19	T32AxOUTA	Timer A output	Output	Datasheet/ Product Information
20	INTT32AxACAP0	Timer A capture register 0 interrupt	Output	Exception
21	INTT32AxACAP1	Timer A capture register 1 interrupt	Output	Exception
22	INTT32AxA	Timer A match, overflow and underflow interrupt	Output	Exception
23	T32AxINB0	Timer B external trigger input 0	Input	Datasheet
24	T32AxINB1	Timer B external trigger input 1	Input	Datasheet
25	T32AxTRGINBPHCK	Timer B trigger from other timer	Input	Product Information
26	T32AxTRGINBPCK	Timer B internal trigger input	Input	Product Information
27	T32AxSYNCSTARTB	Timer B synchronous start at trigger input	Input	Product Information
28	T32AxSYNCSTOPB	Timer B synchronous stop at trigger input	Input	Product Information
29	T32AxSYNCRELOADB	Timer B synchronous reload at trigger input	Input	Product Information
30	T32AxDMAREQCMPB1	DMA request at match B1 register	Output	Product Information
31	T32AxDMAREQCAPB0	DMA request at capture B0 register	Output	Product Information
32	T32AxDMAREQCAPB1	DMA request at capture B1 register	Output	Product Information
33	T32AxTRGOUTUFB	Timer B underflow trigger	Output	Product Information
34	T32AxTRGOUTOFB	Timer B overflow trigger	Output	Product Information
35	T32AxTRGOUTCMPB0	Timer register B0 match trigger	Output	Product Information
36	T32AxTRGOUTCMPB1	Timer register B1 match trigger	Output	Product Information
37	T32AxOUTB	Timer B output	Output	Datasheet/ Product Information
38	INTT32AxBCAP0	Timer B capture register 0 interrupt	Output	Exception
39	INTT32AxBCAP1	Timer B capture register 1 interrupt	Output	Exception
40	INTT32AxB	Timer B match, overflow and underflow interrupt	Output	Exception

2.2. 32-bit Timer

In 32-bit timer, the T32A is configured with the 32-bit Timer C.

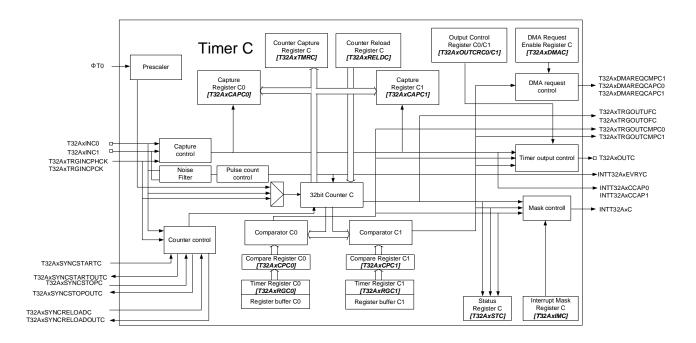


Figure 2.2 Block Diagram of Timer C in 32-bit Timer

Table 2.2 32-bit Timer Connection Specification

No.	Symbol	Signal name	I/O	Related reference manual
1	ФТ0	Prescaler clock	Input	Clock Control and Operation Mode
2	T32AxINC0	Timer C external trigger input 0	Input	Datasheet
3	T32AxINC1	Timer C external trigger input 1	Input	Datasheet
4	T32AxTRGINCPHCK	Timer C trigger from other timer	Input	Product Information
5	T32AxTRGINCPCK	Timer C internal trigger input	Input	Product Information
6	T32AxSYNCSTARTC	Timer C synchronous start at trigger input	Input	Product Information
7	T32AxSYNCSTARTOUTC	Timer C trigger output for synchronous start	Output	Product Information
8	T32AxSYNCSTOPC	Timer C synchronous stop at trigger input	Input	Product Information
9	T32AxSYNCSTOPOUTC	Timer C trigger output for synchronous stop	Output	Product Information
10	T32AxSYNCRELOADC	Timer C synchronous reload at trigger input	Input	Product Information
11	T32AxSYNCRELOADOUTC	Timer C trigger output for synchronous reload	Output	Product Information
12	T32AxDMAREQCMPC1	DMA request at match C1 register	Output	Product Information
13	T32AxDMAREQCAPC0	DMA request at capture C0 register	Output	Product Information
14	T32AxDMAREQCAPC1	DMA request at capture C1 register	Output	Product Information
15	T32AxTRGOUTUFC	Timer C underflow trigger	Output	Product Information
16	T32AxTRGOUTOFC	Timer C overflow trigger	Output	Product Information
17	T32AxTRGOUTCMPC0	Timer register C0 match trigger	Output	Product Information
18	T32AxTRGOUTCMPC1	Timer register C1 match trigger	Output	Product Information
19	T32AxOUTC	Timer C output	Output	Datasheet/ Product Information
20	INTT32AxCCAP0	Timer C capture register 0 interrupt	Output	Exception
21	INTT32AxCCAP1	Timer C capture register 1 interrupt	Output	Exception
22	INTT32AxC	Timer C match, overflow and underflow interrupt	Output	Exception
23	INTT32AxEVRYC	Every count interrupt	Output	Exception

3. Function and Operation

T32A is composed two 16-bit timer that can be used Timer A and Timer B. Also it can use Timer C that is connected Timer A and Timer B as 32-bit timer. When the Timer C is used, Timer A and Timer B cannot be used. The 16-bit timer and the 32-bit timer mode setting are specified as follows:

Operation mode
[T32AxMOD] <mode32></mode32>

3.1. Clock Supply

When T32A is used, the corresponding clock enable bits should be set to "1" (Clock supply) in fsys supply stop register A (*[CGFSYSENA]* and *[CGFSYSMENA]*), fsys supply stop register B (*[CGFSYSENB]* and *[CGFSYSMENB]*), fsys supply stop register C(*[CGFSYSMENC]*), and fc supply stop register (*[CGFCEN]*).

The corresponding registers and the bit locations depend on a product. Some products do not have all registers. For the details, refer to "Clock Control and Operation Mode" of reference manual.

3.2. Prescaler

The prescaler divides the prescaler clock (Φ T0) to generate the source clock for the counter.

In 16-bit timer, the division ratio can be selected for Timer A and Timer B respectively. In 32-bit timer, the division ratio can be selected with Timer C. The division ratio is specified as follows:

Prescaler division ratio selection bits		
Timer A	[T32AxCRA] <prscla></prscla>	
Timer B	[T32AxCRB] <prsclb></prsclb>	
Timer C	[T32AxCRC] <prsclc></prsclc>	

For the setting of Φ T0, refer to reference manual "Clock Control and Operation Mode".

3.3. Counters (16-bit Counter A/16-bit Counter B/32-bit Counter C)

In 16-bit timer, the Timer A/Timer B operates as 16-bit counters respectively. In 32-bit timer, the Timer C operates as a 32-bit counter.

3.3.1. Count Clock

As the count clock of Timer A, Timer B, or Timer C, it can be selected from a prescaler output, an output of other timer, an external trigger (T32AxINA0/T32AxINB0/T32AxINC0), or an internal trigger. The count clock can be selected from the bits in the table below.

	Count clock selection bits
Timer A	[T32AxCRA] <clka></clka>
Timer B	[T32AxCRB] <clkb></clkb>
Timer C (Note)	[T32AxCRC] <clkc></clkc>

Note: When pulse count operation in 32-bit timer is selected ([T32AxCRC] < UPDNC> = 11), the setting above is ignored.

3.3.2. Starting Operation

When "1" is set to the timer operation control bit of each timer, the value in the Counter Reload Register is reloaded (initial reloading). When the start conditions are established, the timer operation starts.

Counter reload register	
Timer A	[T32AxRELDA]
Timer B	[T32AxRELDB]
Timer C	[T32AxRELDC]

Timer operation control	
Timer A	[T32AxRUNA] <runa></runa>
Timer B	[T32AxRUNB] <runb></runb>
Timer C	[T32AxRUNC] <runc></runc>

When "1" is set to Timer operation control bits, make sure that the timer is stopping. About timer stopping, please refer to "3.3.3 Stopping Operation".

The counter operation is started by a register setting using program, internal triggers, external triggers, output from other timer, or channel synchronous with other channels.

When the pulse counting in 32-bit timer is used, an external trigger cannot be used as the factor to start the counter.

The factor of starting the counter is specified with the counter start condition setting bits.

Counter start condition setting bits	
Timer A	[T32AxCRA] <starta></starta>
Timer B	[T32AxCRB] <startb></startb>
Timer C	[T32AxCRC] <startc></startc>

To start the T32A by program, set "000" to the counter start condition setting bits.

Below describe factors of count operation start.

(1) Timer operation start by program

When "1" is set to "starts the operation by program" in table below, the counter starts operation.

Starts operation by program	
Timer A	[T32AxRUNA] <sftstaa></sftstaa>
Timer B	[T32AxRUNB] <sftstab></sftstab>
Timer C	[T32AxRUNC] <sftstac></sftstac>

(2) Internal trigger

The counter starts operation by an internal trigger from other peripheral function. The internal trigger is selected outside of the T32A. Do not select the same internal trigger to start and stop the counter.

(3) External trigger

The counter starts operation on the rising/falling edge of an external signal (T32AxINA0, T32AxINB0, or T32AxINC0). Do not select the same edge for starting the counter and stopping the counter.

(4) Timer output from other timer

The counter starts operation on the rising/falling edge of the output signal from other timer. Do not select the same edge for starting the counter and stopping the counter.

(5) Synchronous start

The counter can start synchronously with start of other timer. Synchronous start setting should be specified to the slave timer. For more information, refer to "3.4 synchronous operation".

3.3.3. Stopping Operation

To check whether the counter is operating or stopping of each timer, use the operation flag of timer.

Operation flag of timer	
Timer A	[T32AxRUNA] <runflga></runflga>
Timer B	[T32AxRUNB] <runflgb></runflgb>
Timer C	[T32AxRUNC] <runflgc></runflgc>

The counter operation is stopped by register setting using program, internal triggers, external triggers, outputs from others timers, channel synchronous with other channels, or compare match between the counter and Timer Register 1.

Timer register 1	
Timer A	[T32AxRGA1]
Timer B	[T32AxRGB1]
Timer C	[T32AxRGC1]

When the pulse counting in timer C is used ([T32AxCRC]<UPDNC> = 11), an external trigger cannot be used as the factor to stop the counter.

The factor of stopping the counter is specified with the counter stop condition setting bits.

Counter stop condition setting bits	
Timer A	[T32AxCRA] <stopa></stopa>
Timer B	[T32AxCRB] <stopb></stopb>
Timer C	[T32AxCRC] <stopc></stopc>

To stop the T32A by program, set "000" to the counter stop condition setting bits. Below describe factors of count operation start/stop

(1) Timer operation stop by program

When "1" is set to "Stop the operation by program" in table below, the counter stops operation.

Stop operation by program	
Timer A	[T32AxRUNA] <sftstpa></sftstpa>
Timer B	[T32AxRUNB] <sftstpb></sftstpb>
Timer C	[T32AxRUNC] <sftstpc></sftstpc>

(2) Internal trigger

The counter stops operation by an internal trigger from other peripheral function. The internal trigger is selected outside of the T32A. Do not select the same internal trigger to start and stop the counter.

(3) External trigger

The counter stops operation on the rising/falling edge of an external signal (T32AxINA0, T32AxINB0, or T32AxINC0). Do not select the same edge for starting the counter and stopping the counter.

(4) Signal output from other timer

The counter stops operation on the rising/falling edge of the signal output from the other timer. Do not select the same edge for starting the counter and stopping the counter.

(5) Synchronous start

The counter can stop synchronously with start of other timer. Synchronous stop setting should be specified to the slave timer. For more information, see "3.4 synchronous operation".

(6) Compare match between the counter and Timer Register 1

The counter stops when a compare match between the counter and Timer Register 1 is detected.

Timer register 1	
Timer A	[T32AxRGA1]
Timer B	[T32AxRGB1]
Timer C	[T32AxRGC1]

3.3.4. Count Operation

Up counting or down counting or up/down counting can be selected as the counter operation.

Counter operation select	
Timer A	[T32AxCRA] <updna></updna>
Timer B	[T32AxCRB] <updnb></updnb>
Timer C	[T32AxCRC] <updnc></updnc>

When up/down counting is specified, after counter starts, if the reload condition is established, the counter is reloaded. The counter repeats up or down counting until the stop condition is established. For reload condition, refer to "3.3.7 Reloading Counter"

When up/down counting is specified, the count starts up and counts until the counter matches with Timer Register 1. After the match, the counter operation changes to down counting until the counter value reaches "0". Then the counter operation changes to up counting. The counter repeats this operation until the stop condition is established.

Timer register 1	
Timer A	[T32AxRGA1]
Timer B	[T32AxRGB1]
Timer C	[T32AxRGC1]

To check whether the counter is operating or stopping, use the operation flag of timer.

Operation flag of timer	
Timer A	[T32AxRUNA] <runflga></runflga>
Timer B	[T32AxRUNB] <runflgb></runflgb>
Timer C	[T32AxRUNC] <runflgc></runflgc>

In the counting operation at PPG output, ensure that the relationship in the following table holds for Timer Register 0 ([T32AxRGA0]/[T32AxRGB0] /[T32AxRGC0]), Timer Register 1 ([T32AxRGA1]/[T32AxRGB1]/[T32AxRGC1]), and Counter Reload Register ([T32AxRELDA]/[T32AxRELDB]/[T32AxRELDC])

Table 3.1 Note of Timer Register Setting when Outputting PPG

Count operation	Setting condition
Up counting	Setting range of [T32AxRGx1]: [T32AxRGx1] ≥ [T32AxRELDx] +2 Setting range of [T32AxRGx0]: [T32AxRELDx] ≤ [T32AxRGx0] ≤ [T32AxRGx1] Setting of output control register: set or clear
Down counting	Setting range of [T32AxRGx1]: [T32AxRGx1] ≤ [T32AxRELDx] – 2 Setting range of [T32AxRGx0]: [T32AxRELDx] ≥ [T32AxRGx0] ≥ [T32AxRGx1] Setting of output control register: set or clear
Up/down counting	Setting range of [T32AxRGx1]: [T32AxRGx1] ≥ 2 AND [T32xRGx1] = [T32xRELDx] Setting range of [T32AxRGx0]: 0 < [T32AxRGx0] < [T32AxRGx1] Setting of output control register: reverse Set to [T32AxRGx1] before set to [T32AxRGx0].

3.3.5. Event Count Operation

The event count operates in Timer A, Timer B and Timer C respectively.

Specifying external trigger, internal trigger and signal output from other timer as count clock, it can be event counter.

Select up counting as the counter operation. Count up by external trigger (On the rising edge or on the falling edge), signal output from the other timer (On the rising edge or on the falling edge) or internal trigger. You can read following register as count of events.

Counter capture register	
Timer A	[T32AxTMRA]
Timer B	[T32AxTMRB]
Timer C	[T32AxTMRC]

3.3.6. Pulse Counting

Pulse counting operates in Timer C.

When "11" is set to the counter operation bit, the T32A enters pulse count mode.

Counter operation	
Timer C	[T32AxCRC] <updnc></updnc>

After above setting, select 2-phase pulse count mode or 1-phase pulse count mode with as follows:

	Pulse counter mode
Timer C	[T32AxPLSCR] <pmode></pmode>

In 1-phase pulse count mode, the counter is incremented or decremented by the change of input of T32AxINC0 or T32AxINC1.

In 2-phase pulse count mode, the counter is incremented or decremented by the combination of the inputs of T32AxINC0 and T32AxINC1.

When the counter overflows, the counter becomes "0x00000000"; when the counter underflow, the counter becomes "0xFFFFFFFF". In both cases, the counter continues counting and timer interrupt occurs.

Timer interrupt occurs by compare match timer register C. For detail about timer interrupt, refer to "3.9.1 Timer Interrupt".

A noise filter can be inserted to T32AxINC0/T32AxINC1 with the noise elimination time for T32AxINC0 /T32AxINC1 bit as follows:

Noise elimination time for T32AxINC0/T32AxINC1		
Timer C		[T32AxPLSCR] <nf></nf>

(1) 1-phase pulse count mode

This mode counts up or counts down according to the level of input pulse to T32AxINC0 or T32AxINC1. Counter conditions in the up count and down count can be selected with count condition select bit.

Count condition specified		
Up counting	[T32AxPLSCR] <pup></pup>	
Down counting	[T32AxPLSCR] <pdn></pdn>	

Do not set the same value to <PUP> and <PDN>.

(2) 2-phase pulse count mode

In this mode the counter counts up or down according to the change of the signal level input to T32AxINC0/T32AxINC1. By the combination of input signal levels, there are the following four states. These four states show the signals input to T32AxINC0 / T32AxINC1 in hexadecimal notation.

 T32AxINC1
 T32AxINC0
 STATE

 0
 0
 0

 0
 1
 1

 1
 0
 2

 1
 1
 3

Table 3.2 2-phase Pulse Count Mode

The figure below shows the state transition from/to up counting to/from down counting.

Direction of 2-phase pulse counter		
Timer C	[T32AxPLSCR] <pdir></pdir>	

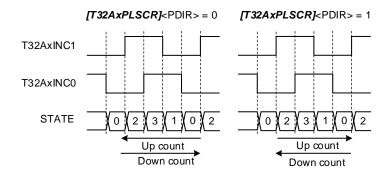


Figure 3.1 State Transition

When [T32AxPLSCR] <PDIR>=0 and the rising edge of T32AxINC0 changes before T32AxINC1, counter is up counting. When the rising edge of T32AxINC0 changes later than T32AxINC1 counter is down counting. When [T32AxPLSCR] <PDIR> = 1 and the rising edge of T32AxINC1 changes before T32AxINC0, counter is down counting. When the rising edge of T32AxINC1 change later than T32AxINC0 counter is up counting.

The state transitions of $0 \to 3$, $3 \to 0$, $1 \to 2$, and $2 \to 1$, in which the counter is not changed, are state errors. These are the interrupt factors (INTT32AxC).

Table 3.3 Transition

	Up counting		Down counting	
	Before transition	After transition	Before transition	After transition
	0	1	0	2
Positive phase	1	3	2	3
<pdir>=0</pdir>	3	2	3	1
	2	0	1	0
	0	2	0	1
Negative phase <pdir>=1</pdir>	2	3	1	3
	3	1	3	2
	1	0	2	0

(a) Positive phase (Counter operation when $\langle PDIR \rangle = 0$)

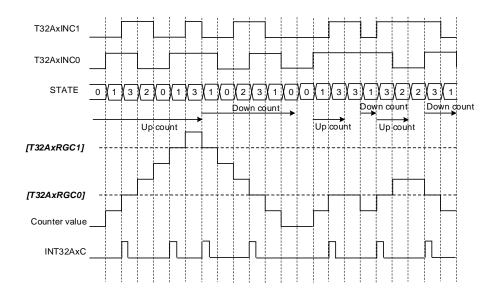


Figure 3.2 Positive Phase (Counter Operation when <PDIR> = 0)

(b) Negative phase (Counter operation when <PDIR> = 1)

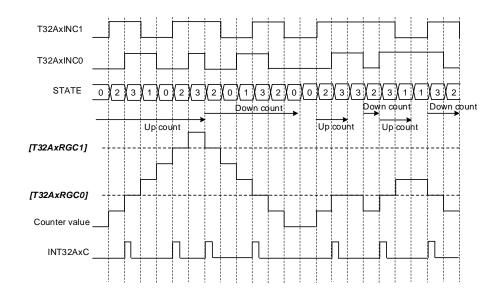


Figure 3.3 Negative Phase (Counter Operation when <PDIR> = 1)

24 / 77

3.3.7. Reloading Counter

You can re-setup the counter value at an arbitrary timing. The counter is reloaded by an internal trigger, external trigger, signal output from other timer, channel synchronous, compare match between the counter and Timer Register 1.

The reload condition can be set by the counter reload condition bit in the table below.

Counter reload condition	
Timer A	[T32AxCRA] <relda></relda>
Timer B	[T32AxCRB] < RELDB>
Timer C	[T32AxCRC] < RELDC >

The reload value can be set by the Counter Reload Register in the table below.

Counter reload register	
Timer A	[T32AxRELDA]
Timer B	[T32AxRELDB]
Timer C	[T32AxRELDC]

When the reload value is set to "0", the counter is cleared. This can be used as counter clearing function. The timer and Timer Register 1 are shown in the table below.

Timer register 1		
Timer A	[T32AxRGA1]	
Timer B	[T32AxRGB1]	
Timer C (Note)	[T32AxRGC1]	

Note: When the pulse count operation in Timer C is used, an external trigger cannot be used as the factor to reload the counter.

Counter reload condition is as following.

(1) compare match between the counter and Timer Register 1

The counter is reloaded when a compare match between the counter and Timer Register 1.

(2) External trigger

The counter is reloaded or cleared on the rising/falling edge of an external signal (T32AxINA0/T32AxINB0/T32AxINC0).

(3) Other timer outputs

The counter is reloaded or cleared on the rising/falling edge of a signal output from other timer.

(4) Internal trigger

The counter is reloaded by an internal trigger from other peripheral functions. An internal trigger is specified outside of the T32A.

(5) Channel synchronization

The counter can be synchronized with other timer's reloading. Synchronous start setting should be specified to the slave timer.

(6) No reloading

Set the counter as free-running without reloading.

Connection example in 32-bit mode

3.4. Synchronous Operation

Connection example in 16-bit mode

Multiple timers can synchronously be started, reloaded, and stopped. Timer A or Timer C as a master timer and multiple slaves can synchronously operate. For the channel connection of Synchronous Operation, refer to "Product Information" of reference manual.

Timer A Master ch0 Timer B Slave ch0 Timer B Slave ch5 Timer C Master ch0 Timer C Slave ch1

Timer B Slave ch4

Figure 3.4 Synchronous Operation

3.5. Comparator

The compares the value of the counter and the Compare Register. When a match is detected, a compare match signal is output. This compare match signal is a factor of interrupt requests or the factor to reverse the timer output. The compare match signal is also output as an internal trigger to other channels of the T32A or other peripheral functions.

Compare register 1	
Timer A	[T32AxCPA1]
Timer B	[T32AxCPB1]
Timer C	[T32AxCPC1]

Compare register 0		
Timer A	[T32AxCPA0]	
Timer B	[T32AxCPB0]	
Timer C	[T32AxCPC0]	

3.6. Timer Register ([T32AxRGA0/B0/C0], [T32AxRGA1/B1/C1])

The Timer Registers are used to set the compare value for the counter. Two registers are provided for Timer A, Timer B, and Timer C each.

The Timer Registers are configured in double-buffering and are paired with the register buffers respectively. Double buffering is initially disabled.

When double buffering is disabled, the Timer Register operates as a single buffer. The value to compare is written to Timer Register 0/1directly for the counter.

When double buffering is enabled, if the counter matches with Timer Register 1, the value to compare is transferred from register buffer to Timer Register 1. And Timer Register 0 is updated at same time.

Using double buffering, you can update the value to compare regardless of update timing of the Timer Register.

Timer register 1	
Timer A	[T32AxRGA1]
Timer B	[T32AxRGB1]
Timer C	[T32AxRGC1]

Timer register 0		
Timer A	[T32AxRGA0]	
Timer B	[T32AxRGB0]	
Timer C	[T32AxRGC0]	

Double buffering is enabled/disabled with double-buffering control bits in table below.

Double-buffering control bit		
Timer A	[T32AxCRA] <wbfa></wbfa>	
Timer B [T32AxCRB] <wbfb></wbfb>		
Timer C [T32AxCRC] <wbfc></wbfc>		

Note While the counter is stopping, even if double buffering is enabled, data is written to the Timer Register directly. This operation is single buffering.

Rev. 1.2

3.7. Capture Control

The counter value can be captured at any timing. There are 2 ways as below.

(1) Using external triggers, signal output from the other timer, or internal triggers

A counter value is captured to Capture Register 0 and Capture Register 1 in the table below at the change of the level of an external trigger or signal output from other timer; or occurrence of an internal trigger.

Capture register 0	
Timer A	[T32AxCAPA0]
Timer B	[T32AxCAPB0]
Timer C	[T32AxCAPC0]

Capture register 1		
Timer A	[T32AxCAPA1]	
Timer B	[T32AxCAPB1]	
Timer C	[T32AxCAPC1]	

The capture timing can be controlled by selecting capture timing bit shown in the tables below.

A capture timing can be selected from the following 7 timings: on the rising/falling edge of T32AxINA0/T32AxINB0/T32AxINC0, on the rising/falling edge of T32AxINA1/T32AxINB1/T32xAINC1, on the rising/falling edge of an signal output from other timer, or the occurrence of internal trigger.

Capture timing sets bits of capture register 0		
Timer A		[T32AxCAPCRA] <capma0></capma0>
Timer B		[T32AxCAPCRB] <capmb0></capmb0>
Timer C		[T32AxCAPCRC] <capmc0></capmc0>

Capture timing sets bits of capture register 1		
Timer A	[T32AxCAPCRA] <capma1></capma1>	
Timer B	[T32AxCAPCRB] <capmb1></capmb1>	
Timer C	[T32AxCAPCRC] <capmc1></capmc1>	

(2) Reading the counter

When the Counter Capture Register in table below is read during the counter operation, current counter value can be captured and read. When the counter is stopping, the last captured value is maintained.

Counter capture register		
Timer A	[T32AxTMRA]	
Timer B	[T32AxTMRB]	
Timer C	[T32AxTMRC]	

3.8. Output Programmable Rectangular Wave (PPG) (T32AxOUTA/T32AxOUTB/T32AxOUTC)

It can output rectangular wave of any frequency and any duty ratio. It can be set low active or high active as output pulse. It can output programmable rectangular wave at timer output terminal A/B/C when the counter and timer register match or when the counter is captured in capture register.

When a PPG output is used, specify the corresponding port setting in advance.

A "Low" signal is output at the initial state.

If multiple factors for setting, clearing, and reversing occur at the same time, a PPG output is not changed. However, if all of the following conditions are established, the change caused by timer register 0 is priority.

- When a match by timer register 0 and other conditions are established at the same time.
- When control setting by a match by timer register 0 is set or cleared.
- When timer register 0 and reload register have the same value.

(1) Initial Output control

A PPG output can be set, cleared, or reversed with output control bit of Output Control Register 0 in table below. Writing data to this bit is always enabled. Even if the timer is stopping, the data is written to this bit.

Control of T32AxOUTA/T32AxOUTB/T32AxOUTC		
Timer A	[T32AxOUTCRA0] < OCRA>	
Timer B	[T32AxOUTCRB0] <ocrb></ocrb>	
Timer C	[T32AxOUTCRC0] <ocrc></ocrc>	

(2) PPG output when compare match

A PPG output can be set, cleared, or reversed when the counter matches with Timer Register. It is selectable with compare control bit on Output Control Register 1 in table below.

Control of T32AxOUTA/T32AxOUTB/T32AxOUTC by comparator			
Timer	Output control	Output control factor	Control register/symbol
Timor A	Timer A T32AxOUTA	Counter match with [T32AxRGA0]	[T32AxOUTCRA1] <ocrcmpa0></ocrcmpa0>
Timer A		Counter match with [T32AxRGA1]	[T32AxOUTCRA1] <ocrcmpa1></ocrcmpa1>
Timer B	Time on D. Too AssOLITE	Counter match with [T32AxRGB0]	[T32AxOUTCRB1] <ocrcmpb0></ocrcmpb0>
Timer B T32AxOUTB	Counter match with [T32AxRGB1]	[T32AxOUTCRB1] <ocrcmpb1></ocrcmpb1>	
Timer C T32AxOUTC	Counter match with [T32AxRGC0]	[T32AxOUTCRC1] <ocrcmpc0></ocrcmpc0>	
	Counter match with [T32AxRGC1]	[T32AxOUTCRC1] <ocrcmpc1></ocrcmpc1>	

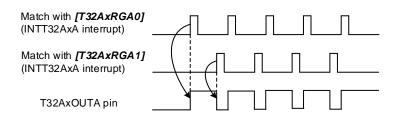


Figure 3.5 Example of Output of Programmable Rectangular Wave Using 16-bit Timer A

(3) Capturing

A PPG output can be set, cleared, or reversed with when counter is captured in [T32AxCAPA0]/[T32AxCAPA1], [T32AxCAPB0]/[T32AxCAPB1] and [T32AxCAPC0]/[T32AxCAPC1]. It is selectable with capture control bit on Output Control Register 1 in table below.

Control of T32AxOUTA/T32AxOUTB/T32AxOUTC by capture register			
Timer	Output control	Output control factor	Control register/symbol
Time or A TODAYOUTA	Capture to [T32AxCAPA0]	[T32AxOUTCRA1] <ocrcapa0></ocrcapa0>	
Timer A	Timer A T32AxOUTA	Capture to [T32AxCAPA1]	[T32AxOUTCRA1] <ocrcapa1></ocrcapa1>
Timer B	Time and D. Tooks Old TD.	Capture to [T32AxCAPB0]	[T32AxOUTCRB1] <ocrcapb0></ocrcapb0>
Timer B T32AxOUTB	Capture to [T32AxCAPB1]	[T32AxOUTCRB1] <ocrcapb1></ocrcapb1>	
Timer C T32AxOUTC	TOONSOLITO	Capture to [T32AxCAPC0]	[T32AxOUTCRC1] <ocrcapc0></ocrcapc0>
	Capture to [T32AxCAPC1]	[T32AxOUTCRC1] <ocrcapc1></ocrcapc1>	

3.9. Interrupts

The following three types of interrupt requests are output.

- Timer interrupt INTT32AxA, INTT32AxB, INTT32AxC
- Capture interrupt INTT32AxACAP0/1, INTT32AxBCAP0/1, INTT32AxCCAP0/1
- Interrupt on every count INTT32AxEVRYC

3.9.1. Timer Interrupt

Timer interrupts are INTT32AxA, INTT32AxB, and INTT32AxC. Timer interrupt is generated by factors in table below.

Table 3.4 List of Timer Interrupt Factors

Timer	Interrupt name	Interrupt factor
		Counter match with [T32AxRGA0], [T32AxRGA1]
Timer A	INTT32AxA	Counter overflow
		Counter underflow
Timer B	INTT32AxB	Counter match with [T32AxRGB0], [T32AxRGB1]
		Counter overflow
		Counter underflow
		Counter match with [T32AxRGC0], [T32AxRGC1]
Timer C	INTT32AxC	Counter overflow
		Counter underflow

When Timer C is used in 2-phase pulse count, if the counter does not count up or count down, a state transition error (INTT32AxC) is output.

Each factor can be masked with Interrupt Mask Register in table below.

Interrupt mask register		
Timer A [T32AxIMA]		
Timer B	[T32AxIMB]	
Timer C	[T32AxIMC]	

Even if the mask register is enabled, the occurrence of the factor is set in Status Register in table below. To clear the state, write "1" to the corresponding bit.

Status register		
Timer A	[T32AxSTA]	
Timer B	[T32AxSTB]	
Timer C	[T32AxSTC]	

3.9.2. Capture Interrupt

Capture interrupts are output when the counter value is captured to the capture register.

Capture interrupt and Capture Register are shown in the table below.

Table 3.5 Relationship Table between Capture Interrupt and Capture Register

Relationship between of capture interrupt and capture register				
Timer	Interrupt name Capture register			
Timer A	INTT32AxACAP0	[T32AxCAPA0]		
Timer A	INTT32AxACAP1	[T32AxCAPA1]		
Timer B	INTT32AxBCAP0	[T32AxCAPB0]		
Timer b	INTT32AxBCAP1	[T32AxCAPB1]		
Timer C	INTT32AxCCAP0	[T32AxCAPC0]		
Tiller C	INTT32AxCCAP1	[T32AxCAPC1]		

3.9.3. Interrupt on Every Count

An interrupt on every count (INTT32AxEVRYC) only occurs in pulse count mode ([T32AxCRC]<UPDNC> =11) with 32-bit mode. This interrupt is output on every up/down counting.

3.10. DMA Request

A DMA request is issued to the DMA controller when the counter matches the Timer Register 1 or the capture. When a DMA transfer is performed, enable the corresponding bit of the [T32AxDMAA] / [T32AxDMAB] / [T32AxDMAC] register.

DMA request enable register			
Timer A [T32AxDMAA]			
Timer B [T32AxDMAB]			
Timer C [T32AxDMAC]			

Table 3.6 DMA Request List

Timer	DMA request	DMA request factor	Register
	T32AxDMAREQCMPA1	Detect match between timer register A1([T32AxRGA1]) and counter	[T32AxDMAA] <dmaena2></dmaena2>
Timer A	T32AxDMAREQCAPA0	Capture to capture register A0 ([<i>T32AxCAPA0]</i>)	[T32AxDMAA] <dmaena0></dmaena0>
	T32AxDMAREQCAPA1	Capture to capture register A1 ([T32AxCAPA1])	[T32AxDMAA] <dmaena1></dmaena1>
	T32AxDMAREQCMPB1	Detect match between timer register B1([T32AxRGB1]) and counter	[T32AxDMAB] <dmaenb2></dmaenb2>
Timer B	T32AxDMAREQCAPB0	Capture to capture register B0 ([T32AxCAPB0])	[T32AxDMAB] <dmaenb0></dmaenb0>
	T32AxDMAREQCAPB1	Capture to capture register B1 ([T32AxCAPB1])	[T32AxDMAB] < DMAENB1>
Timer C	T32AxDMAREQCMPC1	Detect match between timer register C1 ([T32AxRGC1]) and counter	[T32AxDMAC] < DMAENC2>
	T32AxDMAREQCAPC0	Capture to capture register C0 ([T32AxCAPC0])	[T32AxDMAC] < DMAENC0>
	T32AxDMAREQCAPC1	Capture to capture register C1 ([T32AxCAPC1])	[T32AxDMAC] < DMAENC1>

4. Registers

4.1. List of Registers

This section describes the control registers and their addresses.

There are common registers, Timer A registers, Timer B registers, and Timer C registers. Common registers are used in regardless of the mode. Timer A registers and Timer B registers are used in 16-bit timer. Timer C registers are used in 32-bit timer.

(1) Base address

Function		Channel/unit	Base address		
			TYPE1	TYPE2	TYPE3
		ch0	0x400BA000	0x400C1000	0x40061000
		ch1	0x400BA100	0x400C1400	0x40061400
		ch2	0x400BA200	0x400C1800	0x40061800
		ch3	0x400BA300	0x400C1C00	0x40061C00
		ch4	0x400BA400	0x400C2000	0x40062000
		ch5	0x400BA500	0x400C2400	0x40062400
		ch6	0x400BA600	0x400C2800	0x40062800
32-bit timer event counter	T32A	ch7	0x400BA700	0x400C2C00	0x40062C00
32-bit timer event counter		ch8	0x400BA800	0x400C3000	0x40063000
		ch9	0x400BA900	0x400C3400	0x40063400
		ch10	0x400BAA00	0x400C3800	0x40063800
		ch11	0x400BAB00	0x400C3C00	0x40063C00
		ch12	0x400BAC00	0x400C4000	0x40064000
		ch13	-	0x400C4400	0x40064400
		ch14	-	0x400C4800	-
		ch15	-	0x400C4C00	-

Note: The base address is different by products. Please refer to "Product Information" of the reference manual for the details.

(2) Common register

Register name	Address(Base+)	
Mode Register	[T32AxMOD]	0x0000

(3) Timer A register (16-bit timer)

Register name	Address(Base+)	
RUN Register A	[T32AxRUNA]	0x0040
Counter Control Register A	[T32AxCRA]	0x0044
Capture Control Register A	[T32AxCAPCRA]	0x0048
Output Control Register A0	[T32AxOUTCRA0]	0x004C
Output Control Register A1	[T32AxOUTCRA1]	0x0050
Status Register A	[T32AxSTA]	0x0054
Interrupt Mask Register A	[T32AxIMA]	0x0058
Counter Capture Register A	[T32AxTMRA]	0x005C
Counter Reload Register A	[T32AxRELDA]	0x0060
Timer Register A0	[T32AxRGA0]	0x0064
Timer Register A1	[T32AxRGA1]	0x0068
Capture Register A0	[T32AxCAPA0]	0x006C
Capture Register A1	[T32AxCAPA1]	0x0070
DMA Request Enable Register A	[T32AxDMAA]	0x0074
Compare Register A0 (Note)	[T32AxCPA0]	0x0078
Compare Register A1 (Note)	[T32AxCPA1]	0x007C

Note: When the base address is TYPE1, this register cannot be accessed. For base address, refer to "Product Information" of reference manual.

(4) Timer B register (16-bit timer)

Register name	Address(Base+)	
RUN Register B	[T32AxRUNB]	0x0080
Counter Control Register B	[T32AxCRB]	0x0084
Capture Control Register B	[T32AxCAPCRB]	0x0088
Output Control Register B0	[T32AxOUTCRB0]	0x008C
Output Control Register B1	[T32AxOUTCRB1]	0x0090
Status Register B	[T32AxSTB]	0x0094
Interrupt Mask Register B	[T32AxIMB]	0x0098
Counter Capture Register B	[T32AxTMRB]	0x009C
Counter Reload Register B	[T32AxRELDB]	0x00A0
Timer Register B0	[T32AxRGB0]	0x00A4
Timer Register B1	[T32AxRGB1]	0x00A8
Capture Register B0	[T32AxCAPB0]	0x00AC
Capture Register B1	[T32AxCAPB1]	0x00B0
DMA Request Enable Register B	[T32AxDMAB]	0x00B4
Compare Register B0 (Note)	[T32AxCPB0]	0x00B8
Compare Register B1 (Note)	[T32AxCPB1]	0x00BC

Note: When the base address is TYPE1, this register cannot be accessed. For base address type, refer to "Product Information" of reference manual.

(5) Timer C register (32-bit timer)

Register name	Address(Base+)	
RUN Register C	[T32AxRUNC]	0x00C0
Counter Control Register C	[T32AxCRC]	0x00C4
Capture Control Register C	[T32AxCAPCRC]	0x00C8
Output Control Register C0	[T32AxOUTCRC0]	0x00CC
Output Control Register C1	[T32AxOUTCRC1]	0x00D0
Status Register C	[T32AxSTC]	0x00D4
Interrupt Mask Register C	[T32AxIMC]	0x00D8
Counter Capture Register C	[T32AxTMRC]	0x00DC
Counter Reload Register C	[T32AxRELDC]	0x00E0
Timer Register C0	[T32AxRGC0]	0x00E4
Timer Register C1	[T32AxRGC1]	0x00E8
Capture Register C0	[T32AxCAPC0]	0x00EC
Capture Register C1	[T32AxCAPC1]	0x00F0
DMA Request Enable Register C	[T32AxDMAC]	0x00F4
Pulse Count Control Register	[T32AxPLSCR]	0x00F8
Compare Register C0 (Note)	[T32AxCPC0]	0x00FC
Compare Register C1 (Note)	[T32AxCPC1]	0x0100

Note: When the base address is TYPE1, this register cannot be accessed. For base address, refer to "Product Information" of reference manual.

4.2. Details of the Common Register

4.2.1. [T32AxMOD] (Mode Register)

	· · ·		_	
Bit	Bit symbol	After reset	Type	Function
31:2	-	0	R	Read as "0".
1	HALT	0	R/W	Sets the operation in HALT mode when debugging. 0: Operation 1: Stop Sets the counter operation when the T32A enters HALT mode while debugging.
0	MODE32	0	R/W	Sets the operation mode. 0: 16-bit mode 1: 32-bit mode When this bit is set to "0", T32A operates at 16-bit mode that is enable timer A/ timer B and disable Timer C. When this bit is set to "1", T32A operates at 32-bit mode that is enable timer C and disable Timer A/Timer B. When the operation mode is changed, all registers of Timer A, timer B, and timer C are initialized except [T32AxMOD]. When attempting to change the operation mode, check whether the timer is stopping using [T32AxRUNA] < RUNFLGA> and [T32AxRUNB] < RUNFLGB> (16-bit mode), or [T32AxRUNC] < RUNFLGC> (32-bit mode).

Note: When [T32AxRUNA]<RUNA> = 0, [T32AxRUNB]<RUNB> = 0 and [T32AxRUNC]<RUNC> =0, set the [T32AxMOD] register.

4.3. Details of Timer A Register

4.3.1. [T32AxRUNA] (Run Register A)

			Í_	
Bit	Bit symbol	After reset	Туре	Function
31:5	-	0	R	Read as "0".
4	RUNFLGA	0	R	Indicates the operation flag of Timer A. 0: Stop 1: Operation
3	-	0	R	Read as "0".
2	SFTSTPA	0	W	Stops the operation by program. 0: - 1: Stops the counter operation. When this bit is set to "1" during the counter operation, the counter stops. Writing "0" has no meaning. Read as "0".
1	SFTSTAA	0	W	Starts the operation by program. 0: - 1: Starts the counter operation. When <runa> is set to "1", if <sftstaa> is set to "1", the counter starts operation. Writing "0" has no meaning. Read as "0".</sftstaa></runa>
0	RUNA	0	R/W	Controls the operation of Timer A. 0: Disabled 1: Enabled When <runa> is set to "1", Timer A enters the state where it waits for a startup factor. If a startup factor occurs, counting starts. Before <runa> is set to "1", check whether <runflga> is "0".</runflga></runa></runa>

4.3.2. [T32AxCRA] (Counter Control Register A)

Bit	Bit symbol	After reset	Туре	Function
31	-	0	R	Read as "0".
30:28	PRSCLA[2:0]	000	R/W	Selects the prescaler division ratio. 000: 1/1 001: 1/2 010: 1/8 011: 1/32 100: 1/128 101: 1/256 110: 1/512 111: 1/1024
27	-	0	R	Read as "0".
26:24	CLKA[2:0]	000	R/W	Selects the count clock. 000: Prescaler output 001: Internal trigger (Note1) 010: On the rising edge of an output from other timer (T32AxTRGINAPHCK) (Note1) 011: On the falling edge of an output from other timer (T32AxTRGINAPHCK) (Note1) 100: On the rising edge of the external trigger (T32AxINA0). 101: On the falling edge of the external trigger (T32AxINA0). 110-111: Reserved
23:21	-	0	R	Read as "0".
20	WBFA	0	R/W	Controls double-buffering. 0: Disabled 1: Enabled
19:18	-	0	R	Read as "0".
17:16	UPDNA[1:0]	00	R/W	Selects the counter operation. 00: Up counting 01: Down counting 10: Up/down counting 11: Reserved In case of Up/down counting, the counter starts counting up after the operation starts. Then, when the counter value matches Timer Register A1, the counter changes its operation to the down count operation. Subsequently, when the counter value becomes "0x0000", the counter changes its operation to the up count operation. This operation is repeated.
15:11	-	0	R	Read as "0".
10:8	RELDA[2:0]	000	R/W	Counter reload condition 000: None (free running) 001: Internal trigger (Note1) 010: On the rising edge of the external trigger (T32AxINA0). 011: On the falling edge of the external trigger (T32AxINA0). 100: On the rising edge of an output from other timer (T32AxTRGINAPHCK) (Note1) 101: On the falling edge of an output from other timer (T32AxTRGINAPHCK) (Note1) 110: Synchronous operation (slave channel) 111: A match between the counter and Timer Register A1
7	-	0	R	Read as "0".

6:4	STOPA[2:0]	000	R/W	Sets the counter stop condition. 000: No trigger is used. 001: Internal trigger (Note1) 010: On the rising edge of the external trigger (T32AxINA0). 011: On the falling edge of the external trigger (T32AxINA0). 100: On the rising edge of an output from other timer (T32AxTRGINAPHCK) (Note1) 101: On the falling edge of an output from other timer (T32AxTRGINAPHCK) (Note1) 110: Synchronous operation (slave channel) 111: A match between the counter and Timer Register A1
3	-	0	R	Read as "0".
2:0	STARTA[2:0]	000	R/W	Sets the counter start condition. 000: No trigger is used. 001: Internal trigger (Note1) 010: On the rising edge of the external trigger (T32AxINA0). 011: On the falling edge of the external trigger (T32AxINA0). 100: On the rising edge of an output from other timer (T32AxTRGINAPHCK) (Note1) 101: On the falling edge of an output from other timer (T32AxTRGINAPHCK) (Note1) 110: Synchronous operation (slave channel) 111: Reserved

Note1: For details, refer to "Product Information" of reference manual.

Note2: Do not make any changes of [T32AxCRA] register while the [T32AxRUNA]<RUNA> = 1.

4.3.3. [T32AxOUTCRA0] (Output Control Register A0)

Bit	Bit symbol	After reset	Туре	Function
31:2	-	0	R	Read as "0".
1:0	OCRA[1:0]	00	W	Controls T32AxOUTA. 00: No change. 01: Set ("High") 10: Clear ("Low") 11: Reversed Read as "00".

4.3.4. [T32AxOUTCRA1] (Output Control Register A1)

Bit	Bit symbol	After reset	Туре	Function
31:8	-	0	R	Read as "0".
7:6	OCRCAPA1[1:0]	00	R/W	Controls T32AxOUTA by Capture Register A1 Controls T32AxOUTA when the counter value is captured in [T32AxCAPA1]. 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed
5:4	OCRCAPA0[1:0]	00	R/W	Controls T32AxOUTA by Capture Register A0 Controls T32AxOUTA when the counter value is captured in <i>[T32AxCAPA0]</i> . 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed
3:2	OCRCMPA1[1:0]	00	R/W	Controls T32AxOUTA by comparator A1 Controls T32AxOUTA when the counter value matches with [T32AxRGA1]. 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed
1:0	OCRCMPA0[1:0]	00	R/W	Controls T32AxOUTA by comparator A0 Controls T32AxOUTA when the counter value matches with [T32AxRGA0]. 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed

Note: Do not make any changes of [T32AxOUTCRA1] register while the [T32AxRUNA]<RUNA> = 1.

4.3.5. [T32AxRGA0] (Timer Register A0)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	RGA0[15:0]	0x0000	R/W	Sets the value for comparing with the counter.

Note: About value of counter when PPG is output, refer to "Table 3.1 Note of Timer Register Setting when Outputting PPG".

4.3.6. [T32AxRGA1] (Timer Register A1)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	RGA1[15:0]	0x0000	R/W	Sets the value for comparing with the counter.

Note: About value of counter when PPG is output, refer to "Table 3.1 Note of Timer Register Setting when Outputting PPG".

4.3.7. [T32AxTMRA] (Counter Capture Register A)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	TMRA[15:0]	0x0000	R	When this register is read during the counter operation, the current value of counter will be captured. And this counter value can be read. When the counter is stopping, the last captured value can be read.

4.3.8. [T32AxRELDA] (Counter Reload Register A)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	RELDA[15:0]	0x0000	R/W	Sets the value to be reloaded to the counter.

Note: About value of counter when PPG is output, refer to "Table 3.1 Note of Timer Register Setting when Outputting PPG".

4.3.9. [T32AxCAPCRA] (Capture Control Register A)

Bit	Bit symbol	After reset	Туре	Function
31:7	-	0	R	Read as "0".
6:4	CAPMA1[2:0]	000	R/W	Sets the capture timing of [T32AxCAPA1]. 000: Disabled 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the T32AxINA0 input pin 011: On the falling edge of the T32AxINA0 input pin. 100: On the rising edge of the T32AxINA1 input pin. 101: On the falling edge of the T32AxINA1 input pin. 110: On the rising edge of an output from other timer (T32AxTRGINAPHCK) (Note1) 111: On the falling edge of an output from other timer (T32AxTRGINAPHCK) (Note1)
3	-	0	R	Read as "0".
2:0	CAPMA0[2:0]	000	R/W	Sets the capture timing of [T32AxCAPA0]. 000: Disabled 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the T32AxINA0 input pin 011: On the falling edge of the T32AxINA0 input pin. 100: On the rising edge of the T32AxINA1 input pin. 101: On the falling edge of the T32AxINA1 input pin. 110: On the rising edge of an output from other timer (T32AxTRGINAPHCK) (Note1) 111: On the falling edge of an output from other timer (T32AxTRGINAPHCK) (Note1)

Note1: For details, refer to "Product Information" of reference manual.

Note2: Do not make any changes of [T32AxCAPCRA] register while the [T32AxRUNA]<RUNA> = 1.

4.3.10. [T32AxCAPA0] (Capture Register A0)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	CAPA0[15:0]	0x0000	R	Captures the value in the counter.

4.3.11. [T32AxCAPA1] (Capture Register A1)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	CAPA1[15:0]	0x0000	R	Captures the value in the counter.

4.3.12. [T32AxIMA] (Interrupt Mask Register A)

Bit	Bit symbol	After reset	Туре	Function
31:4	-	0	R	Read as "0".
3	IMUFA	0	R/W	Controls to mask the underflow interrupt request. 0: An interrupt request is not masked. 1: Masks the interrupt request. Controls whether the underflow interrupt request is masked.
2	IMOFA	0	R/W	Controls to mask the overflow interrupt request. 0: An interrupt request is not masked. 1: Masks the interrupt request. Controls whether the overflow interrupt request is masked.
1	IMA1	0	R/W	Control to mask the match detection interrupt request ([T32AxRGA1]). 0: An interrupt request is not masked. 1: Masks the interrupt request. Controls whether the match detection interrupt request is masked when the counter matches [T32AxRGA1].
0	IMAO	0	R/W	Control to mask the match detection interrupt request ([T32AxRGA0]). 0: An interrupt request is not masked. 1: Masks the interrupt request. Controls whether the match detection interrupt request is masked when the counter matches [T32AxRGA0].

Note1: Even when the interrupt mask register ([T32AxIMA]) is enabled, a status flag of the counter is set to the [T32AxSTA].

Note2: Do not make any changes of [T32AxIMA] register while the [T32AxRUNA]<RUNA> = 1.

4.3.13. [T32AxSTA] (Status Register A)

Bit	Bit symbol	After reset	Туре	Function
31:4	-	0	R	Read as "0".
3	3 INTUFA	0	R	Indicates an underflow flag. 0: No underflow occurred. 1: An underflow occurred. When the counter underflows, this bit is set to "1".
			W	0: Don't care. 1: Cleared to "0".
2	2 INTOFA 0	0	R	Indicates an overflow flag. 0: No overflow occurred. 1: An overflow occurred. When the counter overflows, this bit is set to "1".
			W	0: Don't care. 1: Cleared to "0".
1	1 INTA1 0	R	Indicates a match flag. 0: No match is detected. 1: A match between the counter and [T32AxRGA1]. When a match between the counter value and the Timer Register A1 ([T32AxRGA1]) is detected, this bit is set to "1".	
		W	0: Don't care. 1: Cleared to "0".	
0	INTA0	0	R	Indicates a match flag. 0: No match is detected. 1: A match between the counter and [T32AxRGA0] When a match between the counter value and the Timer Register A0 ([T32AxRGA0]) is detected, this bit is set to "1".
			W	0: Don't care. 1: Cleared to "0".

Note1: Even when the Interrupt Mask Register ([T32AxIMA]) is enabled, a status flag is set to the [T32AxSTA] register.

Note2: Only the interrupt request that is not masked with [T32AxIMA] is output to the CPU.

Note3: When setting flag by internal signal and clearing flag by program occur at the same time, clearing flag has priority.

4.3.14. [T32AxDMAA] (DMA Request Enable Register A)

Bit	Bit symbol	After reset	Туре	Function
31:3	-	0	R	Read as "0".
2	DMAENA2	0	R/W	Selects a DMA request occurrence condition: A match between the counter and the Timer Register A1 ([T32AxRGA1]) 0: Disabled 1: Enabled
1	DMAENA1	0	R/W	Selects a DMA request occurrence condition: Input capture 1 ([T32AxCAPA1]) 0: Disabled 1: Enabled
0	DMAENA0	0	R/W	Selects a DMA request occurrence condition: Input capture 0 ([T32AxCAPA0]) 0: Disabled 1: Enabled

Note: Do not make any changes of [T32AxDMAA] register while the [T32AxRUNA] < RUNA > = 1.

4.3.15. *[T32AxCPA0]* (Compare Register A0)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	CRGA0[15:0]	0x0000	R	Read the value for comparing with the counter.

Note: When the base address is TYPE1, this register cannot be accessed. For base address, refer to "Product Information" of reference manual.

4.3.16. [T32AxCPA1] (Compare Register A1)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	CRGA1[15:0]	0x0000	R	Read the value for comparing with the counter.

Note: When the base address is TYPE1, this register cannot be accessed. For base address, refer to "Product Information" of reference manual.

4.4. Details of Timer B Register

4.4.1. [T32AxRUNB] (Run Register B)

Bit	Bit symbol	After reset	Туре	Function
31:5	-	0	R	Read as "0".
4	RUNFLGB	0	R	Indicates an operation flag of Timer B. 0: Stop 1: Operation
3	-	0	R	Read as "0".
2	SFTSTPB	0	W	Stops the counter operation by program. 0: - 1: Stops the counter operation. When this bit is set to "1" during the counter operation, the counter operation stops. Writing "0" has no meaning. Read as "0".
1	SFTSTAB	0	W	Starts the counter operation by program. 0: - 1: Starts the counter operation. When <runb> is set to "1", if <sftstab> is set to "1", the counter starts operation. Writing "0" has no meaning. Read as "0".</sftstab></runb>
0	RUNB	0	R/W	Controls the operation of Timer B. 0: Disabled 1: Enabled When <runb> is set to "1", Timer B enters the state where it waits for a startup factor. If a startup factor occurs, counting starts. Before <runb> is set to "1", check whether <runflgb> is "0".</runflgb></runb></runb>

4.4.2. [T32AxCRB] (Counter Control Register B)

Bit	Bit symbol	After reset	Туре	Function
31	-	0	R	Read as "0".
30:28	PRSCLB[2:0]	000	R/W	Selects the prescaler division ratio. 000: 1/1 001: 1/2 010: 1/8 011: 1/32 100: 1/128 101: 1/256 110: 1/512 111: 1/1024
27	-	0	R	Read as "0".
26:24	CLKB[2:0]	000	R/W	Selects the count clock. 000: Prescaler output 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of an output from other timer (T32AxTRGINBPHCK) (Note1) 011: On the falling edge of an output from other timer (T32AxTRGINBPHCK) (Note1) 100: On the rising edge of the external trigger (T32AxINB0). 101: On the falling edge of the external trigger (T32AxINB0). 110-111: Reserved
23:21	-	0	R	Read as "0".
20	WBFB	0	R/W	Controls double-buffering. 0: Disabled 1: Enabled
19:18	-	0	R	Read as "0".
17:16	UPDNB[1:0]	00	R/W	Selects the counter operation. 00: Up counting 01: Down counting 10: Up/down counting 11: Reserved In case of Up/down counting, the counter starts counting up after the operation starts. Then, when the counter value matches Timer Register B1, the counter changes its operation to the down count operation. Subsequently, when the counter value becomes "0x0000", the counter changes its operation to the up count operation. This operation is repeated.
15:11	-	0	R	Read as "0".
10:8	RELDB[2:0]	000	R/W	Counter reload condition 000: None (free running) 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the external trigger (T32AxINB0). 011: On the falling edge of the external trigger (T32AxINB0). 100: On the rising edge of an output from other timer (T32AxTRGINBPHCK) (Note1) 101: On the falling edge of an output from other timer (T32AxTRGINBPHCK) (Note1) 110: Synchronous operation (slave channel) 111: A match between the counter and Timer Register B1
7	-	0	R	Read as "0".

6:4	STOPB[2:0]	000	R/W	Sets the counter stop condition. 000: No trigger is used. 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the external trigger (T32AxINB0). 011: On the falling edge of the external trigger (T32AxINB0). 100: On the rising edge of an output from other timer (T32AxTRGINBPHCK) (Note1) 101: On the falling edge of an output from other timer (T32AxTRGINBPHCK) (Note1) 110: Synchronous operation (slave channel) 111: A match between the counter and Timer Register B1
3	-	0	R	Read as "0".
2:0	STARTB[2:0]	000	R/W	Sets the counter start condition. 000: No trigger is used. 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the external trigger (T32AxINB0). 011: On the falling edge of the external trigger (T32AxINB0). 100: On the rising edge of an output from other timer (T32AxTRGINBPHCK) (Note1) 101: On the falling edge of an output from other timer (T32AxTRGINBPHCK) (Note1) 110: Synchronous operation (slave channel) 111: Reserved

Note1: For details, refer to "Product Information" of reference manual.

Note2: Do not make any changes of [T32AxCRB] register while the [T32AxRUNB]<RUNB> = 1.

4.4.3. [T32AxOUTCRB0] (Output Control Register B0)

Bit	Bit symbol	After reset	Туре	Function
31:2	-	0	R	Read as "0".
1:0	OCRB[1:0]	00	W	Controls T32AxOUTB. 00: No change. 01: Set ("High") 10: Clear ("Low") 11: Reversed Read as "00".

4.4.4. [T32AxOUTCRB1] (Output Control Register B1)

	, ,							
Bit	Bit symbol	After reset	Туре	Function				
31:8	-	0	R	Read as "0".				
7:6	OCRCAPB1[1:0]	00	R/W	Controls T32AxOUTB by Capture Register B1 Controls T32AxOUTB when the counter value is captured in [T32AxCAPB1]. 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed				
5:4	OCRCAPB0[1:0]	00	R/W	Controls T32AxOUTB by Capture Register B0 Controls T32AxOUTB when the counter value is captured in <i>[T32AxCAPB0]</i> . 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed				

3:2	OCRCMPB1[1:0]	00	R/W	Controls T32AxOUTB by comparator B1 Controls T32AxOUTB when the counter value matches with [T32AxRGB1]. 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed
1:0	OCRCMPB0[1:0]	00	R/W	Controls T32AxOUTB by comparator B0 Controls T32AxOUTB when the counter value matches with [T32AxRGB0]. 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed

Note: Do not make any changes of [T32AxOUTCRB1] register while the [T32AxRUNB]<RUNB> = 1.

4.4.5. [T32AxRGB0] (Timer Register B0)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	RGB0[15:0]	0x0000	R/W	Sets the value for comparing with the counter.

Note: About value of counter when PPG is output, refer to "Table 3.1 Note of Timer Register Setting when Outputting PPG".

4.4.6. [T32AxRGB1] (Timer Register B1)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	RGB1[15:0]	0x0000	R/W	Sets the value for comparing with the counter.

Note: About value of counter when PPG is output, refer to "Table 3.1 Note of Timer Register Setting when Outputting PPG".

4.4.7. [T32AxTMRB] (Counter Capture Register B)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	TMRB[15:0]	0x0000	R	When this register is read during the counter operation, the current value of counter will be captured. And this counter value can be read. When the counter is stopping, the last captured value can be read.

4.4.8. [T32AxRELDB] (Counter Reload Register B)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	RELDB[15:0]	0x0000	R/W	Sets the value to be reloaded to the counter.

Note: About value of counter when PPG is output, refer to "Table 3.1 Note of Timer Register Setting when Outputting PPG".

4.4.9. [T32AxCAPCRB] (Capture Control Register B)

Bit	Bit symbol	After reset	Туре	Function
31:7	-	0	R	Read as "0".
6:4	CAPMB1[2:0]	000	R/W	Sets the capture timing of [T32AxCAPB1]. 000: Disabled 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the T32AxINB0 input pin 011: On the falling edge of the T32AxINB0 input pin. 100: On the rising edge of the T32AxINB1 input pin. 101: On the falling edge of the T32AxINB1 input pin. 110: On the falling edge of an output from other timer (T32AxTRGINBPHCK) (Note1) 111: On the falling edge of an output from other timer (T32AxTRGINBPHCK) (Note1)
3	-	0	R	Read as "0".
2:0	CAPMB0[2:0]	000	R/W	Sets the capture timing of [T32AxCAPB0]. 000: Disabled 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the T32AxINB0 input pin 011: On the falling edge of the T32AxINB0 input pin. 100: On the rising edge of the T32AxINB1 input pin. 101: On the falling edge of the T32AxINB1 input pin. 110: On the rising edge of an output from other timer (T32AxTRGINBPHCK) (Note1) 111: On the falling edge of an output from other timer (T32AxTRGINBPHCK) (Note1)

Note1: For details, refer to "Product Information" of reference manual.

Note2: Do not make any changes of [T32AxCAPCRB] register while the [T32AxRUNB]<RUNB> = 1.

4.4.10. [T32AxCAPB0] (Capture Register B0)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	CAPB0[15:0]	0x0000	R	Captures the value in the counter.

4.4.11. [T32AxCAPB1] (Capture Register B1)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	CAPB1[15:0]	0x0000	R	Captures the value in the counter.

4.4.12. [T32AxIMB] (Interrupt Mask Register B)

Bit	Bit symbol	After reset	Туре	Function
31:4	-	0	R	Read as "0".
3	IMUFB	0	R/W	Controls to mask the underflow interrupt request. 0: An interrupt request is not masked. 1: Masks the interrupt request. Controls whether the underflow interrupt request is masked.
2	IMOFB	0	R/W	Controls to mask the overflow interrupt request. 0: An interrupt request is not masked. 1: Masks the interrupt request. Controls whether the overflow interrupt request is masked.
1	IMB1	0	R/W	Control to mask the match detection interrupt request ([T32AxRGB1]). 0: An interrupt request is not masked. 1: Masks the interrupt request. Controls whether the match detection interrupt request is masked when the counter matches [T32AxRGB1].
0	IMB0	0	R/W	Control to mask the match detection interrupt request ([T32AxRGB0]). 0: An interrupt request is not masked. 1: Masks the interrupt request. Controls whether the match detection interrupt request is masked when the counter matches [T32AxRGB0].

Note1: Even when the interrupt mask register ([T32AxIMB]) is enabled, a status flag of the counter is set to the [T32AxSTB].

Note2: Do not make any changes of [T32AxIMB] register while the [T32AxRUNB]<RUNB> = 1.

4.4.13. [T32AxSTB] (Status Register B)

Bit	Bit symbol	After reset	Туре	Function
31:4	-	0	R	Read as "0".
3	3 INTUFB	0	R	Indicates an underflow flag. 0: No underflow occurred. 1: An underflow occurred. When the counter underflows, this bit is set to "1".
			W	0: Don't care. 1: Cleared to "0".
2	2 INTOFB 0	0	R	Indicates an overflow flag. 0: No overflow occurred. 1: An overflow occurred. When the counter overflows, this bit is set to "1".
			W	0: Don't care. 1: Cleared to "0".
1	1 INTB1 0	0	R	Indicates a match flag. 0: No match is detected. 1: A match between the counter and [T32AxRGB1] is detected. When a match between the counter value and the Timer Register B1 ([T32AxRGB1]) is detected, this bit is set to "1".
			W	0: Don't care. 1: Cleared to "0".
0	INTB0	0	R	Indicates a match flag. 0: No match is detected. 1: A match between the counter and [T32AxRGB0] is detected. When a match between the counter value and the Timer Register B0 ([T32AxRGB0]) is detected, this bit is set to "1".
			W	0: Don't care. 1: Cleared to "0".

Note1: Even when the Interrupt Mask Register [T32AxIMB] is enabled, a status flag is set to the [T32AxSTB] register.

Note2: Only the interrupt request that is not masked with [T32AxIMB] is output to the CPU.

Note3: When setting flag by internal signal and clearing flag by program occur at the same time, clearing flag has priority.

4.4.14. [T32AxDMAB] (DMA Request Enable Register B)

Bit	Bit symbol	After reset	Туре	Function
31:3	-	0	R	Read as "0".
2	DMAENB2	0	R/W	Selects a DMA request occurrence condition: A match between the counter and the Timer Register B1 (<i>[T32AxRGB1]</i>) 0: Disabled 1: Enabled
1	DMAENB1	0	R/W	Selects a DMA request occurrence condition: Input capture 1 ([T32AxCAPB1]) 0: Disabled 1: Enabled
0	DMAENB0	0	R/W	Selects a DMA request occurrence condition: Input capture 0 ([T32AxCAPB0]) 0: Disabled 1: Enabled

Note: Do not make any changes of [T32AxDMAB] register while the [T32AxRUNB] < RUNB > = 1.

4.4.15. [T32AxCPB0] (Compare Register B0)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	CRGB0[15:0]	0x0000	R	Read the value for comparing with the counter.

Note: When the base address is TYPE1, this register cannot be accessed. For base address, refer to "Product Information" of reference manual.

4.4.16. [T32AxCPB1] (Compare Register B1)

Bit	Bit symbol	After reset	Туре	Function
31:16	-	0	R	Read as "0".
15:0	CRGB1[15:0]	0x0000	R	Read the value for comparing with the counter.

Note: When the base address is TYPE1, this register cannot be accessed. For base address, refer to "Product Information" of reference manual.

4.5. Details of Timer C Register

4.5.1. [T32AxRUNC] (Run Register C)

Bit	Bit symbol	After reset	Туре	Function
31:5	-	0	R	Read as "0".
4	RUNFLGC	0	R	Indicates an operation flag of Timer C. 0: Stop 1: Operation
3	-	0	R	Read as "0".
2	SFTSTPC	0	W	Stops the operation by program. 0: - 1: Stops the counter operation. When this bit is set to "1" during the counter operation, the counter stops. Writing "0" has no meaning. Read as "0".
1	SFTSTAC	0	W	Starts the operation by program. 0: - 1: Starts the counter operation. When <runc> is set to "1", if <sftstac> is set to "1", the counter starts operation. Writing "0" has no meaning. Read as "0".</sftstac></runc>
0	RUNC	0	R/W	Controls the operation of Timer C. 0: Disabled 1: Enabled When <runc> is set to "1", Timer A enters the state where it waits for a startup factor. If a startup factor occurs, counting starts. Before <runc> is set to "1", check whether <runflgc> is "0".</runflgc></runc></runc>

4.5.2. [T32AxCRC] (Counter Control Register C)

Bit	Bit symbol	After reset	Туре	Function
31	-	0	R	Read as "0".
30:28	PRSCLC[2:0]	000	R/W	Selects the prescaler division ratio. 000: 1/1 001: 1/2 010: 1/8 011: 1/32 100: 1/128 101: 1/256 110: 1/512 111: 1/1024
27	-	0	R	Read as "0".
26:24	CLKC[2:0]	000	R/W	Selects the count clock. 000: Prescaler output 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of an output from other timer (T32AxTRGINCPHCK) (Note1) 011: On the falling edge of an output from other timer (T32AxTRGINCPHCK) (Note1) 100: On the rising edge of the external trigger (T32AxINC0). 101: On the falling edge of the external trigger (T32AxINC0). 110-111: Reserved
23:21	-	0	R	Read as "0".
20	WBFC	0	R/W	Controls double-buffering. 0: Disabled 1: Enabled
19:18	-	0	R	Read as "0".
17:16	UPDNC[1:0]	00	R/W	Selects the counter operation. 00: Up counting 01: Down counting 10: Up/down counting 11: Pulse counting For details, refer to the pulse count control register ([T32AxPLSCR]). In case of Up/down counting, the counter starts counting up after the operation starts. Then, when the counter value matches Timer Register C1, the counter changes its operation to the down count operation. Subsequently, when the counter value becomes "0x0000", the counter changes its operation to the up count operation. This operation is repeated.
15:11	-	0	R	Read as "0".
10:8	RELDC[2:0]	000	R/W	Counter reload condition 000: None (free running) 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the external trigger (T32AxINC0). 011: On the falling edge of the external trigger (T32AxINC0). 100: On the rising edge of an output from other timer (T32AxTRGINCPHCK) (Note1) 101: On the falling edge of an output from other timer (T32AxTRGINCPHCK) (Note1) 110: Synchronous operation (slave channel) 111: A match between the counter and Timer Register C1
7	-	0	R	Read as "0".

6:4	STOPC[2:0]	000	R/W	Sets the counter stop condition. 000: No trigger is used. 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the external trigger (T32AxINC0). 011: On the falling edge of the external trigger (T32AxINC0). 100: On the rising edge of an output from other timer (T32AxTRGINCPHCK) (Note1) 101: On the falling edge of an output from other timer (T32AxTRGINCPHCK) (Note1) 110: Synchronous operation (slave channel) 111: A match between the counter and Timer Register C1
3	-	0	R	Read as "0".
2:0	STARTC[2:0]	000	R/W	Sets the counter start condition. 000: No trigger is used. 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the external trigger (T32AxINC0). 011: On the falling edge of the external trigger (T32AxINC0). 100: On the rising edge of an output from other timer (T32AxTRGINCPHCK) (Note1) 101: On the falling edge of an output from other timer (T32AxTRGINCPHCK) (Note1) 110: Synchronous operation (slave channel) 111: Reserved

Note1: For details, refer to "Product Information" of reference manual.

Note2: Do not make any changes of [T32AxCRC] register while the [T32AxRUNC]<RUNC> = 1.

4.5.3. [T32AxOUTCRC0] (Output Control Register C0)

Bit	Bit symbol	After reset	Туре	Function
31:2	-	0	R	Read as "0".
1:0	OCRC[1:0]	00	W	Controls T32AxOUTC. 00: No change. 01: Set ("High") 10: Clear ("Low") 11: Reversed Read as "00".

4.5.4. [T32AxOUTCRC1] (Output Control Register C1)

Bit	Bit symbol	After reset	Туре	Function
31:8	-	0	R	Read as "0".
7:6	OCRCAPC1[1:0]	00	R/W	Controls T32AxOUTC by Capture Register C1 Controls T32AxOUTC when the counter value is captured in <i>[T32AxCAPC1]</i> . 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed
5:4	OCRCAPC0[1:0]	00	R/W	Controls T32AxOUTC by Capture Register C0 Controls T32AxOUTC when the counter value is captured in [T32AxCAPC0]. 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed

3:2	OCRCMPC1[1:0]	00	R/W	Controls T32AxOUTC by comparator C1 Controls T32AxOUTC when the counter value matches with [T32AxRGC1]. 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed
1:0	OCRCMPC0[1:0]	00	R/W	Controls T32AxOUTC by comparator C0 Controls T32AxOUTC when the counter value matches with [T32AxRGC0]. 00: Invalid 01: Set ("High") 10: Clear ("Low") 11: Reversed

Note: Do not make any changes of [T32AxOUTCRC1] register while the [T32AxRUNC]<RUNC> = 1.

4.5.5. [T32AxRGC0] (Timer Register C0)

Bit	Bit symbol	After reset	Туре	Function
31:0	RGC0[31:0]	0x00000000	R/W	Sets the value for comparing with the counter.

Note: About value of counter when PPG is output, refer to "Table 3.1 Note of Timer Register Setting when Outputting PPG".

4.5.6. [T32AxRGC1] (Timer Register C1)

Bit	Bit symbol	After reset	Туре	Function
31:0	RGC1[31:0]	0x00000000	R/W	Sets the value for comparing with the counter.

Note: About value of counter when PPG is output, refer to "Table 3.1 Note of Timer Register Setting when Outputting PPG".

4.5.7. [T32AxTMRC] (Counter Capture Register C)

Bit	Bit symbol	After reset	Туре	Function
31:0	TMRC[31:0]	0x00000000	R	When this register is read during the counter operation, the current value of counter will be captured. And this counter value can be read. When the counter is stopping, the last captured value can be read.

4.5.8. [T32AxRELDC] (Counter Reload Register C)

Bit	Bit symbol	After reset	Туре	Function
31:0	RELDC[31:0]	0x00000000	R/W	Sets the value to be reloaded to the counter.

Note: About value of counter when PPG is output, refer to "Table 3.1 Note of Timer Register Setting when Outputting PPG".

56 / 77 2024-11-29

4.5.9. [T32AxCAPCRC] (Capture Control Register C)

Bit	Bit symbol	After reset	Туре	Function
31:7	-	0	R	Read as "0".
6:4	CAPMC1[2:0]	000	R/W	Sets the capture timing of [T32AxCAPC1]. 000: Disabled 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the T32AxINC0 input pin 011: On the falling edge of the T32AxINC0 input pin. 100: On the rising edge of the T32AxINC1 input pin. 101: On the falling edge of the T32AxINC1 input pin. 110: On the rising edge of an output from other timer (T32AxTRGINCPHCK) (Note1) 111: On the falling edge of an output from other timer (T32AxTRGINCPHCK) (Note1)
3	-	0	R	Read as "0".
2:0	CAPMC0[2:0]	000	R/W	Sets the capture timing of [T32AxCAPC0]. 000: Disabled 001: Internal trigger (T32AxTRGINAPCK) (Note1) 010: On the rising edge of the T32AxINC0 input pin 011: On the falling edge of the T32AxINC1 input pin. 100: On the rising edge of the T32AxINC1 input pin. 101: On the falling edge of the T32AxINC1 input pin. 110: On the rising edge of an output from other timer (T32AxTRGINCPHCK) (Note1) 111: On the falling edge of an output from other timer (T32AxTRGINCPHCK) (Note1)

Note1: For details, refer to "Product Information" of reference manual.

Note2: Do not make any changes of [T32AxCAPCRC] register while the [T32AxRUNC]<RUNC> = 1.

4.5.10. [T32AxCAPC0] (Capture Register C0)

Bit	Bit symbol	After reset	Туре	Function
31:0	CAPC0[31:0]	0x00000000	R	Captures the value in the counter.

4.5.11. [T32AxCAPC1] (Capture Register C1)

Bit	Bit symbol	After reset	Туре	Function
31:0	CAPC1[31:0]	0x00000000	R	Captures the value in the counter.

4.5.12. [T32AxIMC] (Interrupt Mask Register C)

Bit	Bit symbol	After reset	Туре	Function
31:5	-	0	R	Read as "0".
4	IMSTERR	0	R/W	Controls to mask the status transition error interrupt request (only in 2-phase pulse count mode) 0: An interrupt request is not masked. 1: Masks the interrupt request. Control whether the status transition error interrupt request is
				masked in 2-phase pulse count mode.
3	IMUFC	0	R/W	Controls to mask the underflow interrupt request. 0: An interrupt request is not masked. 1: Masks the interrupt request.
				Controls whether the underflow interrupt request is masked.
2	IMOFC	0	R/W	Controls to mask the overflow interrupt request. 0: An interrupt request is not masked. 1: Masks the interrupt request.
				Controls whether the overflow interrupt request is masked.
1	IMC1	0	R/W	Control to mask the match detection interrupt request ([T32AxRGC1]). 0: An interrupt request is not masked. 1: Masks the interrupt request. Controls whether the match detection interrupt request is masked
				when the counter matches [T32AxRGC1].
0	IMCo	0	R/W	Control to mask the match detection interrupt request ([T32AxRGC0]). 0: An interrupt request is not masked. 1: Masks the interrupt request. Controls whether the match detection interrupt request is masked when the counter matches [T32AxRGC0].

Note1: Even when the interrupt mask register ([T32AxIMC]) is enabled, a status flag of the counter is set to the [T32AxSTC].

Note2: Do not make any changes of [T32AxIMC] register while the [T32AxRUNC]<RUNC> = 1.

4.5.13. [T32AxSTC] (Status Register C)

Bit	Bit symbol	After reset	Туре	Function
31:5	-	0	R	Read as "0".
4	4 INTSTERR	0	R	Indicates the status transition error interrupt request (only in 2-phase pulse count mode) 0: No status transition error occurred. 1: A status transition error occurred. When a status transition error occurs in 2-phase pulse count mode, this bit is set to "1".
			W	0: Don't care. 1: Cleared to "0".
3	INTUFC	0	R	Indicates an underflow flag. 0: No underflow occurred. 1: An underflow occurred. When the counter underflows, this bit is set to "1".
		W	0: Don't care. 1: Cleared to "0".	
	WEST		R	Indicates an overflow flag. 0: No overflow occurred. 1: An overflow occurred.
2	INTOFC	0		When the counter overflows, this bit is set to "1".
			W	0: Don't care. 1: Cleared to "0".
1	INTC1	0	R	Indicates a match flag. 0: No match is detected. 1: A match between the counter and [T32AxRGC1] is detected. When a match between the counter value and the Timer Register
		W	W	C1 ([T32AxRGC1]) is detected, this bit is set to "1". 0: Don't care. 1: Cleared to "0".
0	INTC0	0	R	Indicates a match flag. 0: No match is detected. 1: A match between the counter and [T32AxRGC0] is detected. When a match between the counter value and the Timer Register C0 ([T32AxRGC0]) is detected, this bit is set to "1".
			W	0: Don't care. 1: Cleared to "0".

Note1: Even when the Interrupt Mask Register [T32AxIMC] is enabled, a status flag is set to the [T32AxSTC] register.

Note2: Only the interrupt request that is not masked with [T32AxIMC] is output to the CPU.

Note3: When setting flag by internal signal and clearing flag by program occur at the same time, clearing flag has priority.

4.5.14. [T32AxDMAC] (DMA Request Enable Register C)

Bit	Bit symbol	After reset	Туре	Function
31:3	-	0	R	Read as "0".
2	DMAENC2	0	R/W	Selects a DMA request occurrence condition: A match between the counter and the Timer Register C1 (<i>[T32AxRGC1]</i>) 0: Disabled 1: Enabled
1	DMAENC1	0	R/W	Selects a DMA request occurrence condition: Input capture 1 ([T32AxCAPC1]) 0: Disabled 1: Enabled
0	DMAENC0	0	R/W	Selects a DMA request occurrence condition: Input capture 0 ([T32AxCAPC0]) 0: Disabled 1: Enabled

Note: Do not make any changes of [T32AxDMAC] register while the [T32AxRUNC]<RUNC> = 1.

4.5.15. [T32AxPLSCR] (Pulse Counter control Register C)

Bit	Bit symbol	After reset	Туре	Function
31:15	-	0	R	Read as "0".
14:12	PDN[2:0]	000	R/W	Count down condition in 1-phase pulse counter mode. 000: No count down. 001: No count down. 010: On the rising edge of T32AxINC0. 011: On the falling edge of T32AxINC0. 100: On the rising edge of T32AxINC1. 101: On the falling edge of T32AxINC1. 110: On the rising/falling edge of T32AxINC0. 111: On the rising/falling edge of T32AxINC1.
11	-	0	R	Read as "0".
10:8	PUP[2:0]	000	R/W	Count up condition in 1-phase pulse count mode. 000: No count up. 001: No count up. 010: On the rising edge of T32AxINC0 011: On the falling edge of T32AxINC0 100: On the rising edge of T32AxINC1 101: On the falling edge of T32AxINC1 110: On the rising edge/falling edge of T32AxINC0 111: On the rising edge/falling edge of T32AxINC1
7:6	-	0	R	Read as "0".
5:4	NF[1:0]	00	R/W	Selects the noise elimination time for T32AxINC0/T32AxINC1 For detail, refer to "Table 4.1 Noise Elimination <nf>". 00: None 01: Eliminates a signal less than 2/ΦT0 as noise. 10: Eliminates a signal less than 4/ΦT0 as noise. 11: Eliminates a signal less than 8/ΦT0 as noise.</nf>
3:2	-	0	R	Read as "0".
1	PDIR	0	R/W	Selects the direction of the 2-phase pulse counter. 0: Positive direction 1: Negative direction
0	PMODE	0	R/W	Selects the pulse counter mode. 0: 2-phase pulse counter mode 1: 1-phase pulse counter mode

For details of noise elimination <NF>, see below:

Table 4.1 Noise Elimination <NF>

<nf></nf>	Level at which noise is surely eliminated.	Level at which signal is surely recognized	Level at which noise is surely eliminated (time) [CGSYSCR] <prckst[3:0]> = 0000 fc=40MHz</prckst[3:0]>
01	Less than 2/ΦT0	3/ФТ0 or more	50ns
10	Less than 4/ΦT0	5/ФТ0 or more	100ns
11	Less than 8/ΦT0	9/ФТ0 or more	200ns

4.5.16. [T32AxCPC0] (Compare Register C0)

Bit	Bit symbol	After reset	Туре	Function
31:0	CRGC0[31:0]	0x00000000	R	Read the value for comparing with the counter.

Note: When the base address is TYPE1, this register cannot be accessed. For base address, refer to "Product Information" of reference manual.

4.5.17. [T32AxCPC1] (Compare Register C1)

Bit	Bit symbol	After reset	Туре	Function
31:0	CRGC1[31:0]	0x00000000	R	Read the value for comparing with the counter.

Note: When the base address is TYPE1, this register cannot be accessed. For base address, refer to "Product Information" of reference manual.

5. Use Cases

5.1. Interval Timer

T32A can generate interrupt to CPU periodically. The following is the definition of the period.

	Period
Up counting	[T32AxRGA1] – [T32AxRELDA]
Down counting	[T32AxRELDA] – [T32AxRGA1]

The following case is an example when periodical interrupts are generated by counting up Timer A. Set the Reload Register [T32AxRELDA] to "0x0000" and set the interval time to the Timer Register [T32AxRGA1], and set the counter reloaded condition. The reload condition is a compare match between the counter and [T32AxRGA1]. After the operation is started, an INTT32Ax interrupt is generated after the interval time has elapsed. The value of Reload Register is reloaded to the counter and continues counting up.

Any clock

Up counting

Any timing

Counter Control Register A ([T32AxCRA])
Clock selection <CLKA[2:0]>
Count Operation <UPDNA[1:0]>
Start operation <STARTA[2:0]>

Start operation <STARTA[2:0]> Stop operation <STOPA[2:0]> Reload condition <RELDA[2:0]>

Any timing
A match with **[T32AxRGA1]**

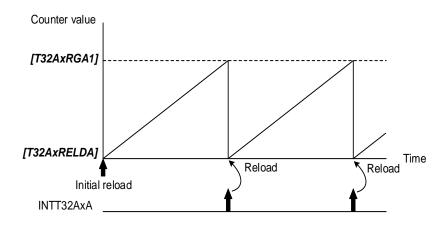


Figure 5.1 Interval Timer (Count Up)

The following case is an example when periodical interrupts are generated by counting down Timer A. Set the interval time to the Reload Register [T32AxRELDA], and set "0x0000" to the Timer Register [T32AxRGA1], and set the reload condition. The reload condition is a compare match between the counter and [T32AxRGA1]. After the operation is started, the counter counts down from the reloaded value to "0x0000". When the counter value reaches "0x0000", an INTT32AxA interrupt is generated. The counter is reloaded and continues counting down.

Any clock

Any timing

Down counting

Counter Control Register A ([T32AxCRA])

Clock selection <CLKA[2:0]>
Count operation <UPDNA[1:0]>
Start operation <STARTA[2:0]>
Stop operation <STOPA[2:0]>
Reload Condition <RELDA[2:0]>

Any timing
A match with [T32AxRGA1]

62 / 77 2024-11-29 Rev. 1.2

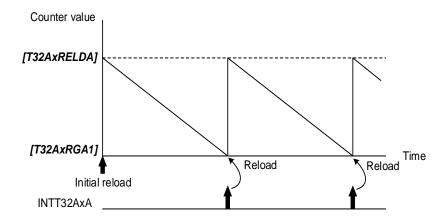


Figure 5.2 Interval Timer (Count Down)

5.2. Event Counter

An external trigger, internal trigger, or timer output from other timer can be selected as the event counter. As the count operation, up counting should be selected. The counter counts up on the rising edge/falling edge of the external trigger, on the rising edge/falling edge of the output from other timer, or at the occurrence of the internal trigger. The number of occurrences of the events can be read from [T32AxTMRA] as the count value.

Counter Control Register A ([T32AxCRA])

Clock selection <CLKA[2:0]>

Count operation <UPDNA[1:0]>

Start operation <STARTA[2:0]>

Stop operation <STOPA[2:0]>

Reload condition <RELDA[2:0]>

External triggers / Internal triggers/ outputs from other timer.

Up counting

Any timing

Any timing

Any condition

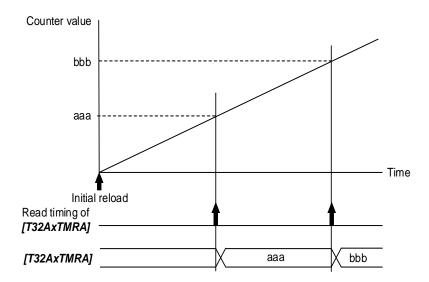


Figure 5.3 Event Counter

5.3. Programmable Rectangular Wave Output (PPG)

The T32A can output rectangular wave at any frequency and any duty ratio.

The following is the definition of the period and duty ratio.

	Period	Duty ratio
Up counting	[T32AxRGA1] – [T32AxRELDA]	[T32AxRGA0] – [T32AxRELDA]

An output from Timer A (T32AxOUTA) is initially a "Low" signal. The level of the signal can be changed by [T32AxOUTCRA0]<OCRA>.

A timer output can be set, cleared, or reversed when Timer A counter matches the Timer Register ([T32AxRGA0], [T32AxRGA1]). Any rectangular wave can be output from the T32AxOUTA pin.

When double buffering is enabled, a value in the register buffer A0/A1 is transferred to [T32AxRGA0/A1] when the counter matches [T32AxRGA1]. This can change the frequency and duty ratio without regard to the update timing of the timer register.

Counter Control Register A ([T32AxCRA])

Clock selection <CLKA[2:0]>
Count operation <UPDNA[1:0]>
Up counting
Start operation <STARTA[2:0]>
Any timing
Stop operation <STOPA[2:0]>
Any timing

Reload condition <RELDA[2:0]> A match with the Timer Register A1 ([TX32ARGA1])

(Reloaded "0x0000")

Controls double-buffering <WBFA> Enable

This figure shows a waveform when the Output Control Register is specified as below:

Output Control Register A0 ([T32AxOUTCRA0])

Operation of T32AxOUTA <OCRA[1:0]> No change

Output Control Register A1([T32AxOUTCRA1])

Operation when the counter matches [T32AREGA0].

<OCRCMPA0[1:0]> Set ("High")

Operation when the counter matches [T32AREGA1].

<OCRCMPA1[1:0]> Clear ("Low")

65 / 77 2024-11-29

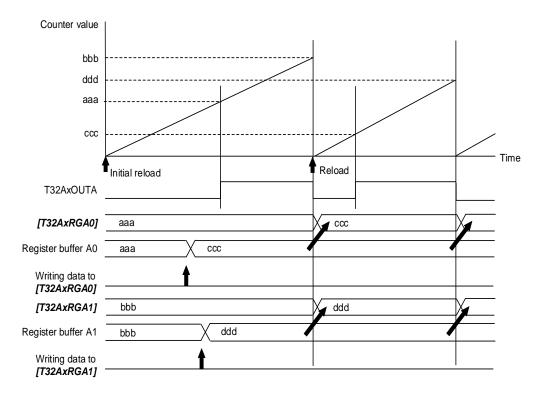


Figure 5.4 Example of PPG Output (Low Active)

While a duty ratio is changes at constant period, when T32AxOUTA is controlled, if a duty ratio unexpectedly exceeds the setting value or "0", the following operation will be led.

When a duty ratio is equal to a period (period A), the conditions of set and clear of the timer output are established at the same time. If multiple factors are established, T32AxOUTA is not changed.

When the "Low period" = 0 (period B), the clear and set conditions are established at the same time. But T32AxOUTA is set with priority since [T32AxRGA0] is the same value as the reload value.

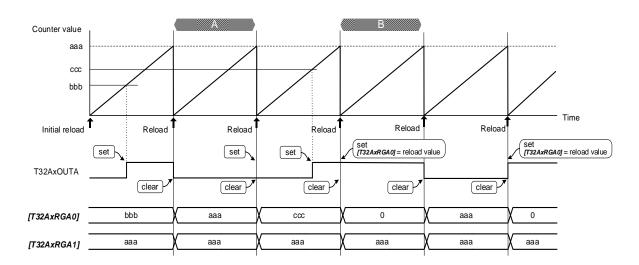


Figure 5.5 PPG Output (Example of Period A, B)

5.4. Programmable Rectangular Wave Output (PPG) by External Trigger

By starting a count with an external trigger, PPG with short delay time, which is too short to be handled by program can be output.

Counter Control Register A ([T32AxCRA])
Clock selection <CLKA[2:0]>
Count operation <UPDNA[1:0]>
Start operation <STARTA[2:0]>
Stop operation <STOPA[2:0]>
Reload Condition <RELDA[2:0]>
Any clock
Up counting
On the rising edge of the external trigger
Any timing
A match with the Timer Register A1([T32AxRGA1])
(Reloaded "0x0000")

The figure shows a waveform when the Output Control Register is specified as below:

Output Control Register A0 ([T32AxOUTCRA0])
Operation of T32AxOUTA <OCRA[1:0]>
Output Control Register A0 ([T32AxOUTCRA1])
Operation when the counter matches [T32AxRGA0].
<OCRCMPA0[1:0]>
Operation when the counter matches [T32AxRGA1].
<OCRCMPA1[1:0]>
Clear ("Low")

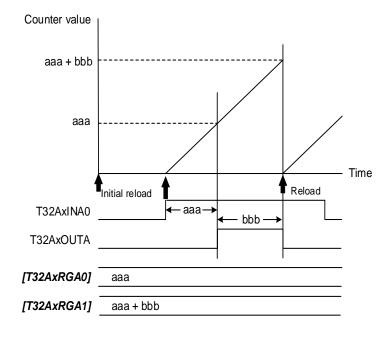


Figure 5.6 Example of PPG Output by External Trigger

A delay time "aaa" from the external trigger is specified to **[T32AxRGA0]**. The added value "aaa" + "bbb" of a delay time "aaa" and a one-shot pulse width "bbb" is specified to **[T32AxRGA1]**.

At this time, if an external trigger pulse is input to T32AxINA0, the counter starts on the rising edge of the external trigger. When the counter value is incremented to "aaa", the counter value matches with [T32AxRGA0]. This allows T32AxOUTA to be "High" level. When the counter counts up until the value is "aaa" + "bbb", the counter value matches with [T32AxRGA1]. This clears T32AxOUTA and allows T32AxOUTA to be "Low" level.

5.5. PPG Outputs by Synchronous Operation

PPG can output programmable rectangular signals that are different duty ratio at the same frequency, by combining multiple timers. In this case, Timer A is used as the master, and Timer B is used as the slave. The following is the definition of the period and duty ratio.

	Period	Duty ratio (Timer A output)	Duty ratio (Timer B output)
Up counting	[T32AxRGA1] – [T32AxRELDA]	[T32AxRGA0] – [T32AxRELDA]	[T32AxRGB0] – [T32AxRELDB] +[T32AxRGA1] – [T32AxRGB1]

Set Timer A to output a programmable rectangular wave. When the counter of timer A reaches "aaa", it matches with [T32AxRGA0] and then the level of T32AxOUTA are reversed. When the counter reaches "bbb", it matches with [T32AxRGA1] and then counter value is reloaded and counter is continue counting up.

Set the conditions of start, stop, and reload of Timer B to synchronous operation. Set the value to output a desired rectangular wave to the Timer Register B0/B1 [T32AxRGB0/T32AxRGB1]. (set "ccc" to [T32AxRGB0], and set "ddd" to [T32AxRGB1]) Set the reload value to the same value as the reload value of Timer A.

Counter Control Register A ([T32AxCRA])

Clock selection <CLKA[2:0]>
Count operation <UPDNA[1:0]>
Up counting
Start operation <STARTA[2:0]>
Any timing
Stop operation <STOPA[2:0]>
Any timing

Reload condition <RELDA[2:0]> A match with [T32AxRGA1] ("0x0000" is reloaded.)

Timer Register A0/A1

Timer Register A0 (*[T32AxRGA0]*) "aaa" "bbb" "bb"

Output Control Register A1 ([T32AxOUTCRA1])

Operation when the counter matches [T32AxRGA0].

<OCRCMPA0[1:0]> Set ("High")

Operation when the counter matches [T32AxRGA1].

<OCRCMPA1[1:0]> Clear ("Low")

Counter Control Register B ([T32AxCRB])

Clock selection <CLKB[2:0]> Same as Timer A
Count operation <UPDNB[1:0]> Up counting

Start operation <STARTB[2:0]> Synchronous operation Stop operation <STOPB[2:0]> Synchronous operation Synchronous operation Synchronous operation

Timer Register B0/B1

Timer Register B0 ([T32AxRGB0]) "ccc"
Timer Register B1 ([T32AxRGB1]) "ddd"

Output Control Register B1 ([T32AxOUTCRB1])

Operation when the counter matches [T32AxRGB0].

<OCRCMPB0[1:0]> Set ("High")
Operation when the counter matches [T32AxRGB1].

<OCRCMPB1[1:0]> Clear ("Low")

68 / 77 2024-11-29

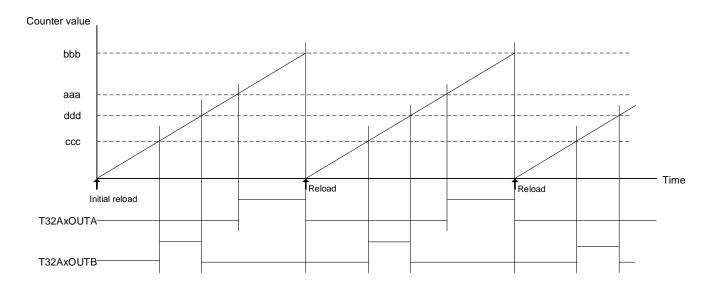


Figure 5.7 PPG Outputs by Synchronous Operation (Low Active)

5.6. Control Stepping Motor by PPG Outputs

PPG outputs control a stepping motor using the combination of two timers. In this example, PPG outputs are used in 32-bit timer. It uses internal trigger for timer stop condition. The internal trigger cannot be used depending on the product. Refer to "Product Information" of reference manual.

One timer (channel 1) is used to output a rectangular wave; the another timer (channel 0) is used to control the timer (channel 1). The counter value of channel 0 indicates the specific position information.

Channel 0 uses the rectangular output from channel 1 as the count clock. It counts on the falling edge of the signal from channel 1. After the reload value (bbb) and the compare match value (aaa) are set, perform the soft start.

Start the operation of channel 1 at the arbitrary conditions. Connect an internal trigger of channel 1 to the match detection circuit of channel 0 to stop the channel 1 at this condition.

When a rectangular wave of channel 1 is output, channel 0 starts down counting from the reloaded value until the counter is "aaa" to output an interrupt. Channel 1 detects a compare match as an internal trigger and stops operation. Since a rectangular wave is stopped outputting, channel 0 stops operation as well.

Change the setting of ch0 to count up and set the value (ccc) used for a compare match.

When channel 1 restarts to output a rectangular wave, channel 0 starts up counting until the counter is "ccc" to output an interrupt.

Counter Control Register C ([T32AxCRC]) (channel 0)

Clock selection <CLKC[2:0]> On the falling edge of an output from other timer

(T32AxTRGINCPHCK)

(rectangular wave output of channel 1)

Count operation<UPDNC[1:0]> Down counting

(switching to up counting during the count operation)

Start operation <STARTC[2:0]> No trigger is used

Stop operation <STOPC[2:0]> Any timing

Reload Condition <RELDC[2:0]> None (free-running)

RUN Register C ([T32AxRUNC]) (channel 0)

Start operation <SFTSTAC> Start the counter operation by the program.

Counter Control Register C ([T32AxCRC]) (channel 1)

Clock selection <CLKC[2:0]> Any clock

Count Operation <UPDNC[1:0]> Any count operation

Start operation <STARTC[2:0]> Any timing Stop operation <STOPC[2:0]> Internal trigger

(a match detection of channel 0)

Reload Condition <RELDC[2:0]> Any condition

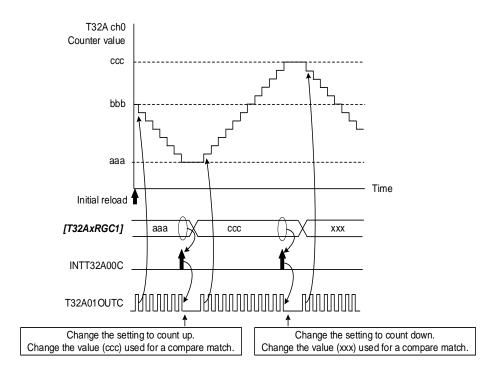


Figure 5.8 PPG Outputs by Synchronous Operation (Example of Control of Stepping Motor)

5.7. Frequency Measurement Using Capture Function

The following case is an example when a clock frequency input from an external source is measured.

In this case, Timer B is used as an interval timer; Timer A is used for outputting a programmable rectangular wave.

Use the external trigger (T32AxINB0) as the count clock for Timer B. Timer B counts up as a free-running counter.

Specify Timer A to generate the pulses (T32AxOUTA) for measurement time. Connect Timer A to an output from other timer at Timer B (T32AxTRGINBPHCK).

Specify the Capture Control Register [T32AxCAPCRB] of Timer B to capture the counter value to [T32AxCAPB0] on the rising edge of an output from other timer and to capture the counter value to [T32AxCAPB1] on the falling edge of an output from other timer.

When the counter of Timer A matches with [T32AxRGA0], T32AxOUTA rises. The counter value of Timer B is captured to [T32AxCAPB0]. When the counter of Timer A matches with [T32AxRGA1], T32AxOUTA falls. The counter value of Timer B is captured to [T32AxCAPB1].

A frequency is determined by dividing ([T32AxCAPB1]-[T32AxCAPB0]) by the pulse width of T32AxOUTA.

Counter Control Register A ([T32AxCRB])

Clock selection <CLKB[2:0]> External trigger
Count operation <UPDNB[1:0]> Up counting
Start operation <STARTB[2:0]> Any timing
Stop operation <STOPB[2:0]> Any timing

Reload condition <RELDB[2:0]> Any condition (free-running)

Capture Control Register B ([T32AxCAPCRB])

Capture timing of *[T32AxCAPB0]* < CAPMB0[2:0]> On the rising edge of an output from other

timer<T32AxTRGINBPHCK>

Capture timing of [T32AxCAPB1] < CAPMB1[2:0]> On the falling edge of an output from other

timer<T32AxTRGINBPHCK>

Counter Control Register A ([T32AxCRA])

Clock selection <CLKA[2:0]>
Count operation <UPDNA[1:0]>
Up counting
Start operation <STARTA[2:0]>
Any clock
Up counting
Any timing
Any timing

Reload condition <RELDA[2:0]> A match with Timer Register A1 (Reloaded "0x0000")

Timer Register A0/A1

Timer Register A0 ([T32AxRGA0]) Set the value to generate the pulse for the measurement time.

Timer Register A1 ([T32AxRGA1])

Output Control Register A1 ([T32AxOUTCRA1])

Operation of T32AxOUTA <OCRA[1:0]> No change

Operation when the counter matches with [T32AxRGA0].

<OCRCMPA0[1:0]> Set ("High")

Operation when the counter matches with [T32AxRGA1].

<OCRCMPA1[1:0]> Clear ("Low")

72 / 77 2024-11-29

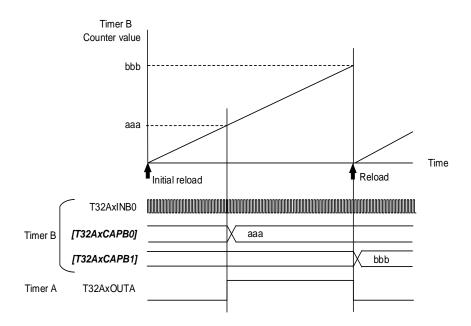


Figure 5.9 Frequency Measurement Using Capture Function

5.8. Pulse Width Measurement Using Capture Function

The following case is an example to measure the "High" level pulse width of input from an external source.

With [T32AxCAPCRA], the counter value is captured to [T32AxCAPA0] on the rising edge of the T32AxINA0 pin and to [T32AxCAPA1] on the falling edge of the T32AxINA0.

When a rising signal of the external pulse is input to the T32AxINA0 pin, the counter value is captured to [T32AxCAPA0]. When a falling signal of external pulse is input to T32AxINA0, the counter value is captured to [T32AxCAPA1].

The "High" level width of the external pulse can be determined the difference between [T32AxCAPA1] and [T32AxCAPA0]; then, multiplying the difference by the clock cycle of the prescaler output.

Counter Control Register A (*[T32AxCRA]*)

Clock selection <CLKA[2:0]>

Count Operation <UPDNA[1:0]>

Prescaler output

Up counting

Count Operation <UPDNA[1:0]>
Start operation <STARTA[2:0]>
Any timing
Stop operation <STOPA[2:0]>
Reload condition <RELDA[2:0]>
Any condition

Capture Control Register A ([T32AxCAPCRA])

Capture timing of [T32AxCAPA0]. <CAPMA0[2:0]> Capture timing of [T32AxCAPA1]. <CAPMA1[2:0]>

On the rising edge of T32AxINA0

On the falling edge of T32AxINA0

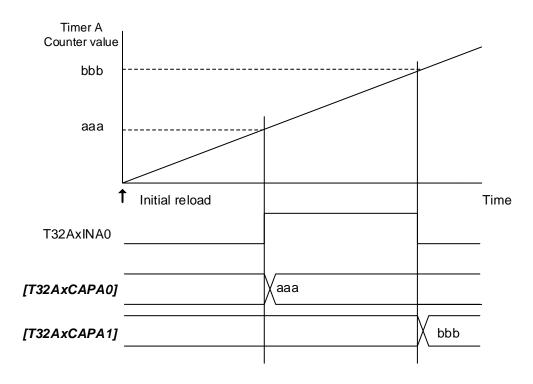


Figure 5.10 Pulse Width Measurement Using Capture Function

5.9. Time Difference Measurement Using Capture Function

The following case is an example to measure the time difference between the pulses input from an external source.

With [T32AxCAPCRA], capture the counter value to [T32AxCAPA0] on the rising edge of the T32AxINA0 pin and to [T32AxCAPA1] on the falling edge of T32AxINA1 pin.

A time difference is determined by subtracting [T32AxCAPA0] from [T32AxCAPA1]; then multiplying the calculated value by the clock cycle of the prescaler output.

Counter Control Register A ([T32AxCRA])
Clock selection <CLKA[2:0]>
Prescaler output

Count operation of IRDNA[1:0]>
Up counting

Count operation <UPDNA[1:0]>
Start operation <STARTA[2:0]>
Any timing
Stop operation <STOPA[2:0]>
Reload condition <RELDA[2:0]>
Any condition

Capture Control Register A ([T32AxCAPCRA])

Capture timing of [T32AxCAPA0].

<CAPMA0[2:0]> On the rising edge of T32AxINA0

Capture timing of [T32AxCAPA1].

<CAPMA1[2:0]> On the rising edge of T32AxINA1

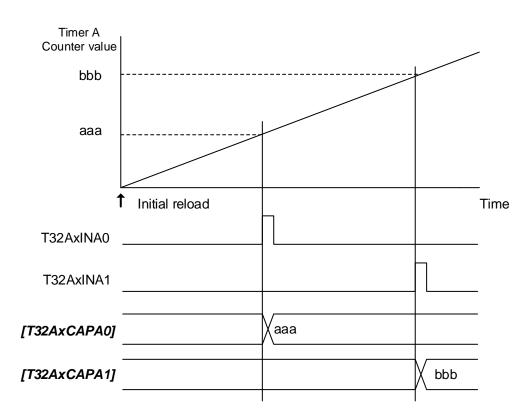


Figure 5.11 Time Difference Measurement Using Capture Function

6. Revision History

Table 6.1 Revision History

Revision	Date	Description
1.0	2020-12-24	First release
1.1	2022-06-30	- 4.1. List of Registers Added note to Timer A register. Added note to Timer B register. Changed note of Timer C register 4.3.15. [T32AxCPA0] (Compare Register A0) Added note 4.3.16. [T32AxCPA1] (Compare Register A1) Added note 4.4.15. [T32AxCPB0] (Compare Register B0) Added note 4.4.16. [T32AxCPB1] (Compare Register B1) Added note 4.5.16. [T32AxCPC0] (Compare Register C0) Added note 4.5.17. [T32AxCPC1] (Compare Register C1) Added note.
1.2	2024-11-29	Added Timer Appearance updated 2.1. 16-bit Timer Changed table 2.1 2.2. 32-bit Timer Changed table 2.2 3.8. Output Programmable Rectangular Wave (PPG) (T32AxOUTA/T32AxOUTB/T32AxOUTC) Changed description 4.1. List of Registers Changed note of (3) Timer A register Changed table and note of (4) Timer B register Changed note of (5) Timer C register - 4.3.15. [T32AxCPA0] (Compare Register A0) Changed note - 4.3.16. [T32AxCPA1] (Compare Register A1) Changed note - 4.4.15. [T32AxCPB0] (Compare Register B0) Changed note - 4.4.16. [T32AxCPB1] (Compare Register B1) Changed note - 4.5.16. [T32AxCPC0] (Compare Register C0) Changed note - 4.5.17. [T32AxCPC1] (Compare Register C1) Changed note - 5.3. Programmable Rectangular Wave Output (PPG) Changed description Changed figure 5.5

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's
 written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY
 HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF
 HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for
 specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities,
 equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships
 and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and
 escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR
 PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR
 PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER,
 INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING
 WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2)
 DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR
 INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
 ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please
 use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without
 limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF
 NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

Toshiba Electronic Devices & Storage Corporation

https://toshiba.semicon-storage.com/