

TC78B043FNG/FTG

使用上の注意点

概要

TC78B043FTG/FNG は、3 相ブラシレスモーター用正弦波 PWM 駆動コントローラーです。TC78B043FTG は WQFN20 パッケージ製品になります。TC78B043FNG は HTSSOP28 パッケージ製品になります。

また、NVM (Nonvolatile Memory: 不揮発性メモリー) を内蔵しているため、SPI 通信により NVM に書き込みを行い、モーターの特性や使用方法に合わせて各種設定が可能です。

また、TC78B043FNG に内蔵されている NVM には、一般的なモーターに適した初期設定が書き込まれているため、SPI 通信を使用せずともモーターの動作が可能です。さらに、FGC 端子、LATYPE 端子、LAOFS端子、LA端子の4端子が設けられており、端子の電圧設定によるモーター進角制御などの一部のパラメーター調整も可能です。

TC78B043FTG は、FGC 端子、LATYPE 端子、LAOFS 端子、LA 端子の 4 端子を設けておらず、モーター制御の初期設定が NVM に書き込まれていません。そのため、モーター制御を行う際には、SPI 通信を用いて NVM に設定を書き込む必要があります。

製品名	TC78B043FTG	TC78B043FNG
パッケージ	P-WQFN20-0303-0.50-002	P-HTSSOP28-0510-0.65-001
NVM(Nonvolatile Memory)の初期値の設定	モーターが回転するために SPI 通信で設定が必要	モーター特性次第で回転が可能な設定 (モーターが回転しない時などはモーター特性に合わせて SPI 通信で再設定可能)
TC78B043FNG 用の回転制御調整用の端子	無し	5pin: FGC 6pin: LATYPE 8pin: LAOFS 9pin: LA

表 1.1 TC78B043FTG と TC78B043FNG との違い

東芝デバイス&ストレージ株式会社

目次

概要	1
目次	2
1. 応用回路例	6
2. E-PAD(パッケージ裏面のフレーム露出部分)	6
3. 電源電圧	7
3.1. 絶対最大定格(Ta = 25 ℃)	7
3.2. 動作範囲	7
4. VREG 端子	7
5. 駆動波形の設定	8
5.1. 起動回転時の駆動波形の設定	10
5.2. 通常回転時の駆動波形の設定	10
5.3. 正弦波生成リセット方式の設定	11
5.4. 加速の設定	12
5.5. 減速の設定	12
5.6. 停止シーケンスの設定	12
5.7. 空転時から復帰回転した場合の初期出力 Duty の設定	12
5.8. 進角の設定	12
5.9. 駆動波形参考例	13
5.9.1. 正弦波駆動 60°リセット SPD=128,LA=0,10,20,30	13
5.9.2. 正弦波駆動 60°リセット SPD=256,LA=0,10,20,30	14
5.9.3. 正弦波駆動 60°リセット SPD=384,LA=0,10,20,30	15
5.9.4. 正弦波駆動 60°リセット SPD=512,LA=0,10,20,30	16
5.9.5. 矩形波駆動 150°通電 SPD=128,LA=0,10,20,30	17
5.9.6. 矩形波駆動 150°通電 SPD=256,LA=0,10,20,30	18
5.9.7. 矩形波駆動 150°通電 SPD=384,LA=0,10,20,30	19
5.9.8. 矩形波駆動 150°通電 SPD=512,LA=0,10,20,30	20
5.9.9. 矩形波駆動 120°通電(リフレッシュ動作無し) SPD=128,LA=0,10,20,30	21
5.9.10. 矩形波駆動 120°通電(リフレッシュ動作無し) SPD=256,LA=0,10,20,30	22
5.9.11. 矩形波駆動 120°通電(リフレッシュ動作無し) SPD=384,LA=0,10,20,30	
5.9.12. 矩形波駆動 120°通電(リフレッシュ動作無し) SPD=512,LA=0,10,20,30	
5.9.13. 矩形波駆動 120°通電(リフレッシュ動作有) SPD=128,256,384,512,LA=0	
5.9.14. 起動回転時(SPD=0 から 256) 正弦波駆動、矩形波駆動 120°通電 強制転流からの切り 数の設定=2Hz SS duty change limit = UP duty change limit = 4/8, 10/8	
5.9.15. 回転停止時(SPD=256 から 0) 正弦波駆動 停止シーケンス有効、無効	
6. ホール信号の設定	
6.1. ホール信号入力	

6.1.1. ホール素子入力	30
6.1.2. ホール IC 入力	31
7. 端子設定	32
7.1. シリアルインターフェース(SPI)通信の設定	32
7.2. RES 端子(SPI:SCK)	32
7.3. VSP 端子(SPI:SDI)	33
7.3.1. リフレッシュ動作	33
7.3.2. VSP 端子高電圧入力動作モードの ON/OFF	34
7.4. FG 端子(SPI:SDO)	35
7.5. DIR 端子	37
7.6. FGC, LATYPE, LAOFS, LA 端子 (TC78B043FNG 向けのパラメーター設定端子、 端子無し)	
7.7. 出力端子(UH,VH,WH,UL,VL,WL)の設定	38
7.8. IDC 端子	39
8. 異常検出機能	39
8.1. 高回転時の制限機能の設定	39
9. 発振周波数の設定	39
10. レジスター、NVM (Nonvolatile Memory:不揮発性メモリー)設定	39
記載載内容の留意点	40
使用上のご注意およびお願い事項	40
使用上の注意事項	40
使用上の留意点	41
製品取り扱い上のお願い	42

図目次

図 1.1 TC78B043FNG 応用回路例		6
図 2.1 E-PAD		6
図 5.1 正弦波駆動 60°リセット	図 5.2 正弦波駆動 60°リセット	13
図 5.3 正弦波駆動 60°リセット	図 5.4 正弦波駆動 60°リセット	13
図 5.5 正弦波駆動 60°リセット	図 5.6 正弦波駆動 60°リセット	14
図 5.7 正弦波駆動 60°リセット	図 5.8 正弦波駆動 60°リセット	14
図 5.9 正弦波駆動 60°リセット	図 5.10 正弦波駆動 60°リセット	15
図 5.11 正弦波駆動 60°リセット	図 5.12 正弦波駆動 60°リセット	15
図 5.13 正弦波駆動 60°リセット	図 5.14 正弦波駆動 60°リセット	16
図 5.15 正弦波駆動 60°リセット	図 5.16 正弦波駆動 60°リセット	16
図 5.17 矩形波駆動 150°通電	図 5.18 矩形波駆動 150°通電	17
図 5.19 矩形波駆動 150°通電	図 5.20 矩形波駆動 150°通電	17
図 5.21 矩形波駆動 150°通電	図 5.22 矩形波駆動 150°通電	18
図 5.23 矩形波駆動 150°通電	図 5.24 矩形波駆動 150°通電	18
図 5.25 矩形波駆動 150°通電	図 5.26 矩形波駆動 150°通電	19
図 5.27 矩形波駆動 150°通電	図 5.28 矩形波駆動 150°通電	19
図 5.29 矩形波駆動 150°通電	図 5.30 矩形波駆動 150°通電	20
図 5.31 矩形波駆動 150°通電	図 5.32 矩形波駆動 150°通電	20
図 5.33 矩形波駆動 120°通電	図 5.34 矩形波駆動 120°通電	21
図 5.35 矩形波駆動 120°通電	図 5.36 矩形波駆動 120°通電	21
図 5.37 矩形波駆動 120°通電	図 5.38 矩形波駆動 120°通電	22
図 5.39 矩形波駆動 120°通電	図 5.40 矩形波駆動 120°通電	22
図 5.41 矩形波駆動 120°通電	図 5.42 矩形波駆動 120°通電	23
図 5.43 矩形波駆動 120°通電	図 5.44 矩形波駆動 120°通電	23
図 5.45 矩形波駆動 120°通電	図 5.46 矩形波駆動 120°通電	24
図 5.47 矩形波駆動 120°通電	図 5.48 矩形波駆動 120°通電	24
図 5.49 矩形波駆動 120°通電	図 5.50 矩形波駆動 120°通電	25
図 5.51 矩形波駆動 120°通電	図 5.52 矩形波駆動 120°通電	25
図 5.53 起動回転時、正弦波駆動	図 5.54 起動回転時、正弦波駆動	26
図 5.55 起動回転時、矩形波駆動 120°通	電 図 5.56 起動回転時、矩形波駆動	」120°通電 26
図 5.57 停止シーケンス有効	図 5.58 停止シーケンス無効	27
図 6.1 正ホール信号入力		28
図 6.2 逆ホール信号入力		29
図 6.3 ホール素子入力例		30
図 6.4 ホール IC 入力 例(ホール IC 出力	プッシュブルの場合)	31

4

© 2025

図 6.5 ホール IC 入力例 (ホール IC 出力オープンドレイン/オープンコレクタ	一の場合)31
図 7.1 FG 端子の回転パルス信号のタイミングチャート	36
表目次	
表 1.1 TC78B043FTG と TC78B043FNG との違い	1
表 3.1 VCC 端子のコンデンサー	7
表 3.2 絶対最大定格 (特に規定しない限り、Ta = 25°C)	7
表 3.3 動作範囲 (特に指定しない限り Ta= -40~115°C)	7
表 4.1 VREG 端子コンデンサー	7
表 5.1 駆動波形の設定	9
表 5.2 強制転流からの切り替わり回転周波数の設定	10
表 5.3 正弦波リセット方式の切り替わり回転変動数の設定	10
表 5.4 正弦波駆動の平均化回数の設定	10
表 5.5 正弦波生成リセット方式の特徴	11
表 7.1 SPI 通信の設定	32
表 7.2 RES 端子の極性の設定	32
表 7.3 レジスター異常検出入力の ON/OFF 設定	32
表 7.4 速度指令の設定	33
表 7.5 VSP 端子高電圧入力動作モードの設定	34
表 7.6 VSP 端子高電圧入力動作モードの有無の設定	34
表 7.7 FG 端子のシリアル通信中の出力信号機能選択	35
表 7.8 FG 端子の出力構造の選択	35
表 7.9 FG 端子の機能設定	36
表 7.10 DIR 端子の機能設定	37
表 7.11 回転方向入力のレジスター設定	38
表 7.12 ショートブレーキ入力のレジスター設定	38
表 7.13 DIR 端子の異常検出入力のレジスター設定	38

1. 応用回路例

本製品はコントローラーですので、モーターを駆動するためにゲートドライバーと FET(IGBT)やゲートドライバーと FET(IGBT)が 1 つのパッケージになっている $IPD(Intelligent\ Power\ Device)$ などと組み合わせて使用します。

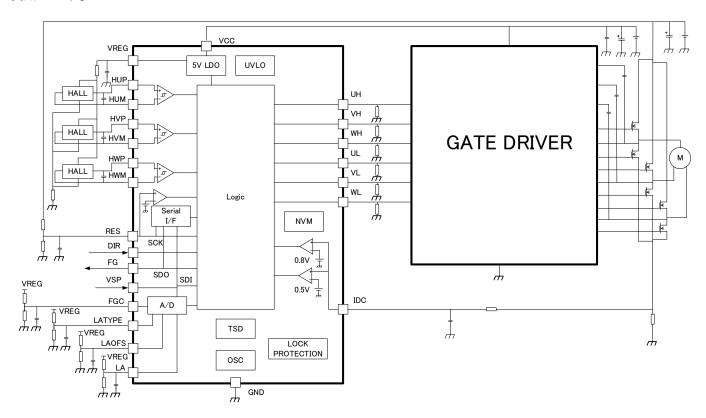
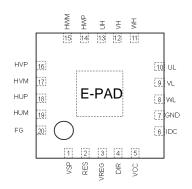



図 1.1 TC78B043FNG 応用回路例

注: ブロック図内の機能ブロック/回路/定数などは、機能を説明するため、一部省略・簡略化している場合があります。

2. E-PAD (パッケージ裏面のフレーム露出部分)

パッケージの裏面の E-PAD は内部の IC チップと接続されていますので、GND に接続してください。

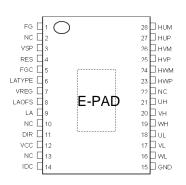


図 2.1 E-PAD

3. 電源電圧

VCC 端子のノイズや電圧変動が少なくするように必要に応じて VCC と GND 間にセラミックコンデンサー や電解コンデンサーをできるだけ IC の近くに接続してください。特にセラミックコンデンサーは IC 近傍に 接続することで高周波数の電源変動やノイズを抑えることに効果的です。

十分に安定的な電圧が得られる場合はセラミックコンデンサーのみ単体でも可能ですが、十分に評価した上 でご使用ください。

項目	推奨使用範囲	単位
電解コンデンサー	1~47	μF
セラミックコンデンサー	0.001~2.2	μF

表 3.1 VCC 端子のコンデンサー

3.1. 絶対最大定格(Ta = 25 ° C)

表 3.2 絶対最大定格 (特に規定しない限り、Ta = 25°C)

項目	記号	定格	単位	該当端子/備考
電源電圧	MVCC	25	V	VCC

絶対最大定格は瞬時たりとも超えてはならない規格です。

絶対最大定格を超えると IC の破壊や劣化や損傷の原因となり、IC 以外にも破壊や損傷や劣化を与える 恐れがあります。いかなる動作条件でも必ず絶対最大定格を超えないように設計を行ってください。ご使 用に際しては、記載された動作範囲内でご使用ください。

3.2. 動作範囲

表 3.3 動作範囲 (特に指定しない限り Ta=-40~115°C)

項目	記号	最小	標準	最大	単位	備考
	VCCopr1	6	15	23	V	VCC
電源電圧	VCCopr2	10.8	15	23	V	VCC NVM 書き込み時 VCC 電源電圧範囲

4. VREG 端子

VREG 端子のノイズや電圧変動が少なくするように必要に応じて VREG と GND 間にセラミックコンデン サーをできるだけ IC の近くに接続してください。

表 4.1 VREG 端子コンデンサー

項目	推奨使用範囲	単位
セラミックコンデンサー	0.1~1	μF

5. 駆動波形の設定

本ICの起動回転は、正弦波駆動 (180°通電)の強制転流からの起動と矩形波駆動 (120°通電) からの起動を選択できます。

正弦波駆動の場合、起動回転時、正弦波駆動の強制転流 1 Hz から切り替わり回転周波数の設定値を超えると 駆動波形は通常回転時の正弦波駆動に移行します。切り替わり回転周波数以下の進角値は 0°であり、回転数 が設定値を超えて通常回転に移行した際に、進角機能で設定された進角値に移行します。

矩形波駆動の起動は、ホール信号が f=1 Hz の回転数を超えると、通常回転時の駆動波形に移行します。 1 Hz 以下の回転数の進角値は 0 であり、1 Hz を超えて通常回転に移行した際に、進角機能で設定された進角値に移行します。

通常回転時に関して、正弦波駆動と矩形波駆動が選択できます。

通常回転時の正弦波駆動は、正弦波を生成するためのホール信号のリセットする方式が 60°リセット、360°リセット、180°リセット、60°/120°リセットから選択でき、まず 60°リセット方式から始まり回転数の変動が設定値以内になった場合に選択した方式へ移行します。

回転数の変動が設定値以上になった場合や 1 Hz を下回った場合は、60°リセット方式に戻ります。

また、通常回転時の正弦波駆動に関しては平均化回数を設定することでホール信号入力の時間は幅を設定したその回数で平均化されますので、回転数の変動を抑えることができます。

矩形波駆動は、120°通電と150°通電が選択でき、120°通電では進角制御が有効と無効を選択できます。

表 5.1 駆動波形の設定

レジスター設定 2[15:12] PWM_MODE [3:0]	逆ホール信号入力時 (注意)	起動回転時	通常回転時 (正ホール信号入力 時) (注意)	正弦波生成 リセット方式
0000	矩形波駆動 120 °通電		正弦波駆動	60°リセット
0001	(進角=0°/リフレ	強制転流:	(進角値は進角設	60 °⇔360 °リセット
0010	ッシュ動作有)	正弦波駆動:60 °リセッ ト	定)	60 °⇔180 °リセット
0011		(進角=0°)		60 °⇔60 °/120 °リセッ ト
0100				60°リセット
0101				60 °⇔360 °リセット
0110				60 °⇔180 °リセット
0111				60 °⇔60 °/120 °リセッ ト
1000			上 矩形波駆動 150 °通電	-
			(進角値は進角設定/ リフレッシュ動作無)	
1001		矩形波駆動 120 °通電 (進角=0 °/リフレッシ	矩形波駆動 120 °通電	-
		ュ動作有)	(進角値は進角設定/	
			リフレッシュ動作無)	
1010			矩形波駆動 120 °通電	-
1011			(進角制御不可、進角	-
1100			=0 °/	-
1101			リフレッシュ動作有)	-
1110				-
1111				-

注:回転方向を正回転に設定し、正しい順番でホール信号が入力された場合を正ホール信号入力と定義しており、設定に応じた通常回転の駆動になります。一方、逆風などのため、逆の順番でホール信号が入力された場合を逆ホール信号入力と定義しており、この場合は矩形波駆動 120°通電になります。また回転方向を逆回転に設定した場合、逆の順番でホール信号が入力さると通常回転の駆動になり、正の順番でホール信号が入力されると矩形波駆動 120°通電になります。

リフレッシュ動作とは一定周期(キャリアー周期)で下側通電信号を ON します。ON duty は約8%です。

表 5.2 強制転流からの切り替わり回転周波数の設定

レジスター設定 6[1:0] START_FREQ [1:0]	強制転流からの切り替わり回転周波数 [Hz]
00	2
01	4
10	5
11	8

表 5.3 正弦波リセット方式の切り替わり回転変動数の設定

レジスター設定 6[3:2] SIN_SW_RATIO[1:0]	正弦波リセット方式の切り替わり回転変動数 [%]
00	6.25
01	12.5
10	25
11	37.5

表 5.4 正弦波駆動の平均化回数の設定

レジスター設定 6[5:4] AVE_SEL[1:0]	平均化回数 [回]
00	2
01	4
10	8
11	無効

5.1. 起動回転時の駆動波形の設定

強制転流正弦波駆動は正弦波駆動により起動時の振動や騒音が改善する可能性があります。 モーターの特性や負荷次第で強制転流正弦波駆動ではモーターの回転できなく起動できないような場合は矩 形波駆動 120°通電の設定で起動できる可能性がありますので、十分に評価した上で設定ください。

5.2. 通常回転時の駆動波形の設定

正弦波駆動は矩形波駆動に比べて振動や騒音が改善する可能性があります。

モーターの特性や負荷次第では正弦波駆動より矩形波駆動 150°通電や 120°通電の方がモーターの回転がス ムーズに回転できる可能性がありますので、十分に評価した上で設定ください。

5.3. 正弦波生成リセット方式の設定

正弦波生成リセット方式は 60°リセット、180°リセット、360°リセット、60°/120°リセット方式があり、モーターの特性次第でモーターの回転の歪や振動や騒音が改善する可能性がありますので、十分に評価した上で設定ください。

表 5.5 正弦波生成リセット方式の特徴

正弦波生成リセット方式	特徴
60°リセット	60°リセット方式は標準的な各3相のホール信号を使用した制御方法になります。加速、減速に対して追従してモーターが回転できます。ホール素子の PCB 取り付け位置のズレなどによるホール信号が各3相で均一では無い場合、モーター回転の歪になり、振動や騒音になる可能性があります。
60 °⇔360 °リセット	360°リセット方式は U 相ホール信号の立下りエッジを使用した制御方法になります。ホール素子の PCB 取り付け位置ズレなどが各3 相にあり、モーターの回転の歪や振動や騒音に影響がある時に、 U 相立下りエッジのみで制御するこの制御方式で改善効果がある可能性があります。しかし、60°リセットに比べて、加速、減速の追従性は下がるため、モーターの脱調などの可能性が高くなります。
60 °⇔180 °リセット	180°リセット方式は U 相ホール信号の立ち上りと立下りエッジを使用した制御方法になります。ホール素子の PCB 取り付け位置ズレなどが各 3 相にあり、モーターの回転の歪や振動や騒音に影響がある時に、U 相のみで制御するこの制御方式で改善効果がある可能性があります。しかし、60°リセットに比べて、加速、減速の追従性は下がるため、モーターの脱調などの可能性が高くなりますが、360°リセットより追従性は高くなります。
60 °⇔60 °/120 °リセット	360°リセット方式は U 相と V 相ホール信号を使用した制御方法になります。ホール素子の PCB 取り付け位置ズレなどが W 相にあり、モーターの回転の歪や振動や騒音がある時に U 相と V 相で制御するこの制御方式で改善効果がある可能性があります。しかし、60°リセットに比べて、加速、減速の追従性は下がるため、モーターの脱調などの可能性が高くなります。

5.4. 加速の設定

起動時の加速の設定は SS duty change limit の設定比率で出力 Duty を増加させることで徐々にモーターを 加速して回転することができ、定常時の加速の設定は UP duty change limit の設定比率で出力 Duty を増加さ せることで徐々にモーターを加速して回転することができます。

加速の設定により起動や加速の急激なモーター回転の増加やモーター出力電流の増加を抑え、電流制限機能 が動作しないような状態で制御ができますので、モーターの振動や騒音が改善する可能性があります。 しかし、加速の設定により徐々にモーターが加速することで起動や加速の回転速度は下がりますので、十分 に評価した上で設定ください。

5.5. 減速の設定

減速の設定は DWN duty change limit 設定比率で出力 Duty は減少させることで徐々にモーターを減速する

しかし、モーター特性や減速設定次第では通電の出力 Duty の方がモーター回転状態の誘起電圧より低くな り、モーター出力電流(ブレーキ電流)が大きく流れる可能性がありますので、出力段 FET などが絶対最大 定格出力電流を超えないように十分に評価した上で設定ください。また、モーター出力電流(ブレーキ電 流)が電源側に回生することで、電源電圧が昇圧する可能性がありますので、出力段 FET などが絶対最大定 格電圧を超えないように十分に評価した上で設定ください。

5.6. 停止シーケンスの設定

停止シーケンスは出力 OFF 時の停止音無く、減速の設定比率による出力 Duty を減少させることで徐々にモ ーターを減速して停止することができます。

しかし、モーター特性や減速設定次第では通電の出力 Duty の方がモーター回転状態の誘起電圧より低くな り、モーター出力電流(ブレーキ電流)が大きく流れる可能性がありますので、出力段 FET などが絶対最大 定格出力電流を超えないように十分に評価した上でご使用ください。また、モーター出力電流(ブレーキ電 流) が電源側に回生することで、電源電圧が昇圧する可能性がありますので、出力段 FET などが絶対最大定 格電圧を超えないように十分に評価した上で設定ください。

5.7. 空転時から復帰回転した場合の初期出力 Duty の設定

モーターが空転から復帰回転する際、設定した基準周波数を元に初期出力 Duty を決めて回転し始めます。 その後、速度指令入力値の加減速設定に従って、出力 Duty が増減していきます。

従いまして、基準周波数とモーターの最大回転数をできるだけ一致するように設定します。基準周波数とモ ーターの最大回転数が合っていない場合は、モーターが空転からの復帰回転した瞬間にモーターの回転や出 力電流が変動する要因となりますので、十分に評価した上で設定ください。

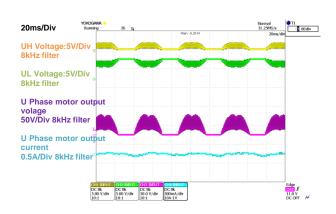
5.8. 進角の設定

進角は通電の位相をモーター誘起電圧の位相と合わせるための機能になり、位相が一致することで効率が上 がります。また、振動や騒音が改善する可能性があります。

モーター特性や負荷や回転数次第でモーター誘起電圧の位相は変化しますので、その位相が一致するように 進角値(通電の位相)を調整します。進角値を調整することで位相が一致した場合は回転数に対してモータ 一出力電流値が低くなりますので、十分に評価した上で進角値を設定ください。

また、進角設定の速度指令値(SPD:内部速度指令値)は、VSP端子の速度指令の設定と連動しています。 たとえば、VSP 端子アナログ電圧入力 A モードの設定にした場合、2.1V から 5.4V の間で出力 ON duty は 512 分解能で変化し、進角設定の SPD も 512 分解能で設定に合わせて変化します。つまり、出力 ON Duty と進角 SPD 設定は(5.4V-2.1V)/512 分解能で連動して変化します。

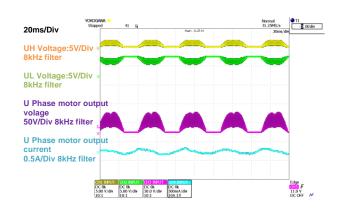
5.9. 駆動波形参考例


条件

モーター電源電圧=140V

正弦波リセット方式の切り替わり回転変動数の設定=37.5%

正弦波駆動の平均化回数の設定=2回


5.9.1. 正弦波駆動 60°リセット SPD=128,LA=0,10,20,30

●T1 - - 00div 20ms/Div UH Voltage:5V/D 8kHz filter UL Voltage:5V/Div 8kHz filter U Phase motor output volage 50V/Div 8kHz filter U Phase motor output current 0.5A/Div 8kHz filte DC 8k DC 8k DC 8k DC 8k 5.00 V/div 50.00 V/div 50.00 V/div 100:1 1 11.0 V DC OFF #

図 5.1 正弦波駆動 60°リセット SPD=128,LA=0(進角=0°)

図 5.2 正弦波駆動 60°リセット SPD=128,LA=10(進角=4.7°)

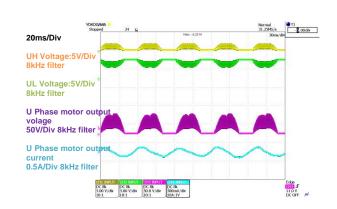


図 5.3 正弦波駆動 60°リセット SPD=128,LA=20(進角=9.4°)

図 5.4 正弦波駆動 60°リセット SPD=128,LA=30(進角=14.1°)

5.9.2. 正弦波駆動 60°リセット SPD=256,LA=0,10,20,30

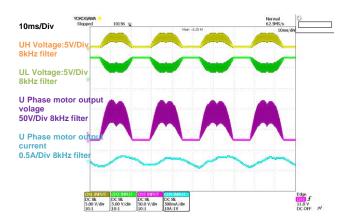


図 5.5 正弦波駆動 60°リセット SPD=256,LA=0(進角=0°)

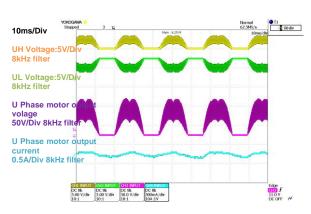


図 5.6 正弦波駆動 60°リセット SPD=256,LA=10(進角=4.7°)

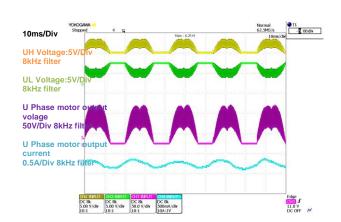


図 5.7 正弦波駆動 60°リセット SPD=256,LA=20(進角=9.4°)

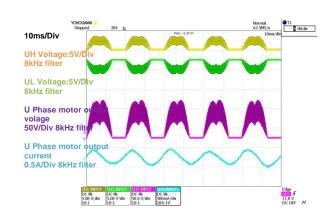


図 5.8 正弦波駆動 60°リセット SPD=256,LA=30(進角=14.1°)

5.9.3. 正弦波駆動 60°リセット SPD=384,LA=0,10,20,30

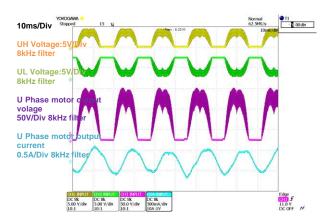


図 5.9 正弦波駆動 60°リセット SPD=384,LA=0(進角=0°)

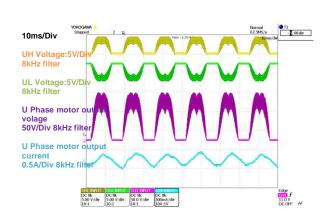


図 5.10 正弦波駆動 60°リセット SPD=384,LA=10(進角=4.7°)

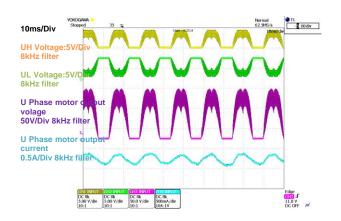


図 5.11 正弦波駆動 60°リセット SPD=384,LA=20(進角=9.4°)

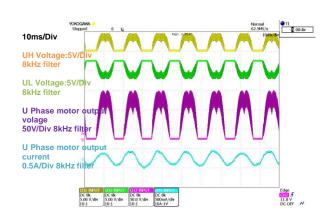


図 5.12 正弦波駆動 60°リセット SPD=384,LA=30(進角=14.1°)

5.9.4. 正弦波駆動 60°リセット SPD=512,LA=0,10,20,30

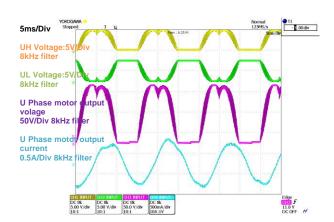


図 5.13 正弦波駆動 60°リセット SPD=512,LA=0(進角=0°)

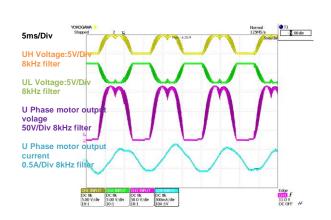


図 5.14 正弦波駆動 60°リセット SPD=512,LA=10(進角=4.7°)

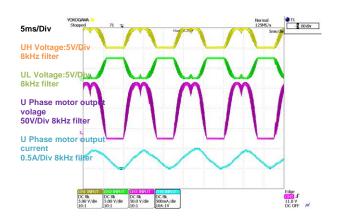


図 5.15 正弦波駆動 60°リセット SPD=512,LA=20(進角=9.4°)

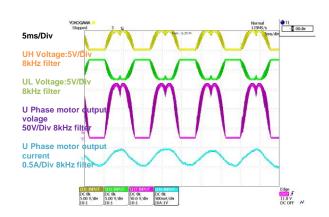


図 5.16 正弦波駆動 60°リセット SPD=512,LA=30(進角=14.1°)

5.9.5. 矩形波駆動 150°通電 SPD=128,LA=0,10,20,30

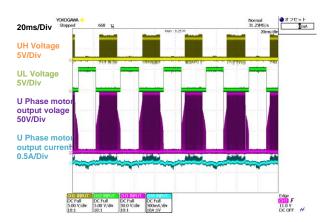


図 5.17 矩形波駆動 150°通電 SPD=128,LA=0(進角=0°)

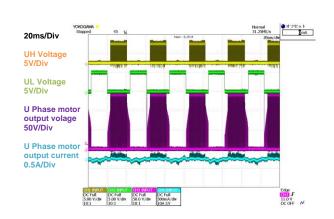


図 5.18 矩形波駆動 150°通電 SPD=128,LA=10(進角=4.7°)

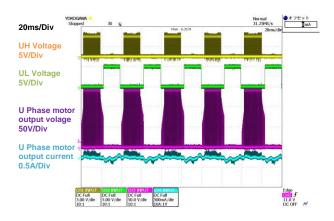


図 5.19 矩形波駆動 150°通電 SPD=128,LA=20(進角=9.4°)

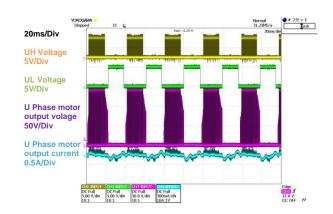


図 5.20 矩形波駆動 150°通電 SPD=128,LA=30(進角=14.1°)

5.9.6. 矩形波駆動 150°通電 SPD=256,LA=0,10,20,30

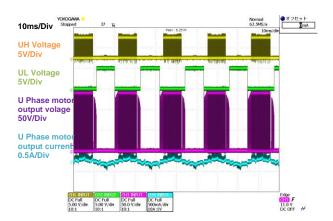


図 5.21 矩形波駆動 150°通電 SPD=256,LA=0(進角=0°)

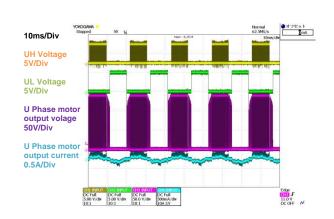


図 5.22 矩形波駆動 150°通電 SPD=256,LA=10(進角=4.7°)

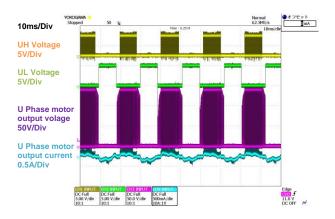


図 5.23 矩形波駆動 150°通電 SPD=256,LA=20(進角=9.4°)

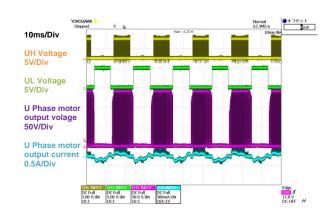


図 5.24 矩形波駆動 150°通電 SPD=256,LA=30(進角=14.1°)

5.9.7. 矩形波駆動 150°通電 SPD=384,LA=0,10,20,30

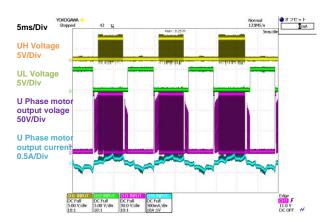


図 5.25 矩形波駆動 150°通電 SPD=384,LA=0(進角=0°)

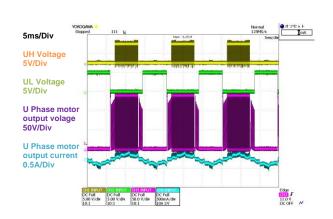


図 5.26 矩形波駆動 150°通電 SPD=384,LA=10(進角=4.7°)

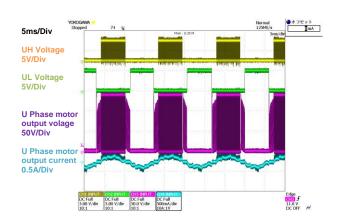


図 5.27 矩形波駆動 150°通電 SPD=384,LA=20(進角=9.4°)

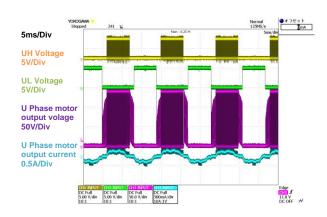


図 5.28 矩形波駆動 150°通電 SPD=384,LA=30(進角=14.1°)

5.9.8. 矩形波駆動 150°通電 SPD=512,LA=0,10,20,30

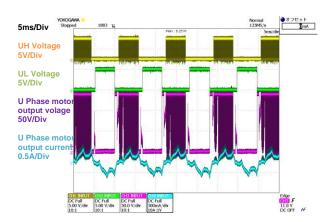


図 5.29 矩形波駆動 150°通電 SPD=512,LA=0(進角=0°)

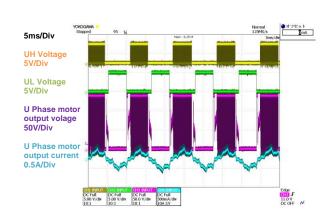


図 5.30 矩形波駆動 150°通電 SPD=512,LA=10(進角=4.7°)

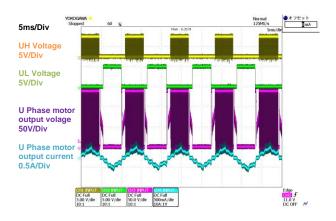


図 5.31 矩形波駆動 150°通電 SPD=512,LA=20(進角=9.4°)

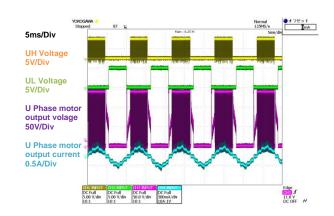


図 5.32 矩形波駆動 150°通電 SPD=512,LA=30(進角=14.1°)

5.9.9. 矩形波駆動 120°通電(リフレッシュ動作無し) SPD=128,LA=0,10,20,30

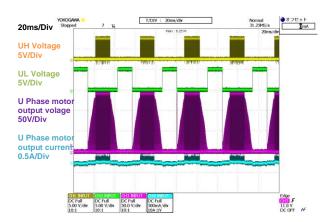


図 5.33 矩形波駆動 120°通電 SPD=128,LA=0(進角=0°)

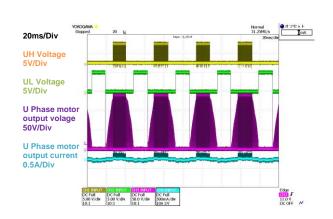


図 5.34 矩形波駆動 120°通電 SPD=128,LA=10(進角=4.7°)

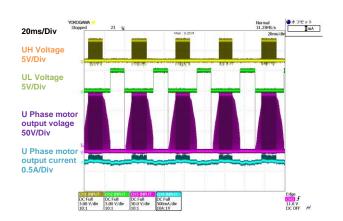


図 5.35 矩形波駆動 120°通電 SPD=128,LA=20(進角=9.4°)

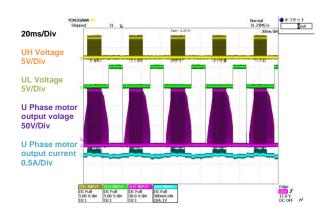


図 5.36 矩形波駆動 120°通電 SPD=128,LA=30(進角=14.1°)

5.9.10. 矩形波駆動 120°通電(リフレッシュ動作無し) SPD=256,LA=0,10,20,30

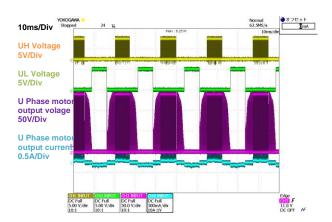


図 5.37 矩形波駆動 120°通電 SPD=256,LA=0(進角=0°)

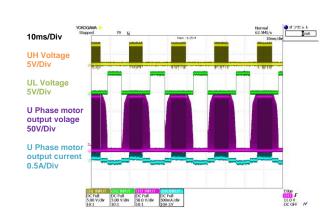


図 5.38 矩形波駆動 120°通電 SPD=256,LA=10(進角=4.7°)

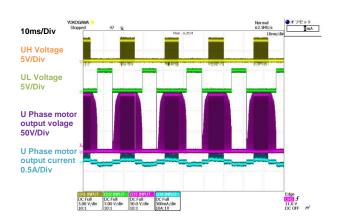


図 5.39 矩形波駆動 120°通電 SPD=256,LA=20(進角=9.4°)

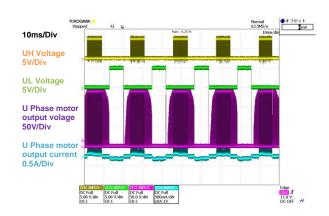


図 5.40 矩形波駆動 120°通電 SPD=256,LA=30(進角=14.1°)

5.9.11. 矩形波駆動 120°通電(リフレッシュ動作無し) SPD=384,LA=0,10,20,30

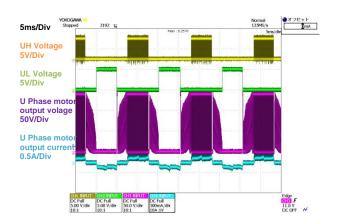


図 5.41 矩形波駆動 120°通電 SPD=384,LA=0(進角=0°)

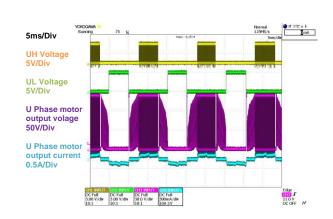


図 5.42 矩形波駆動 120°通電 SPD=384,LA=10(進角=4.7°)

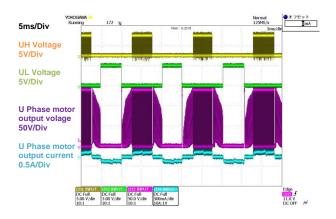


図 5.43 矩形波駆動 120°通電 SPD=384,LA=20(進角=9.4°)

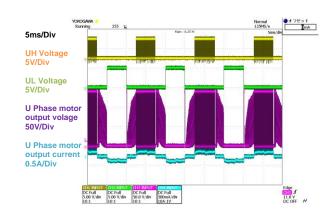


図 5.44 矩形波駆動 120°通電 SPD=384,LA=30(進角=14.1°)

5.9.12. 矩形波駆動 120°通電(リフレッシュ動作無し) SPD=512,LA=0,10,20,30

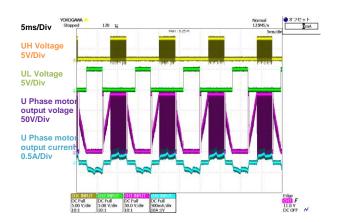


図 5.45 矩形波駆動 120°通電 SPD=512,LA=0(進角=0°)

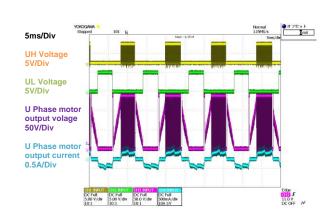


図 5.46 矩形波駆動 120°通電 SPD=512,LA=10(進角=4.7°)

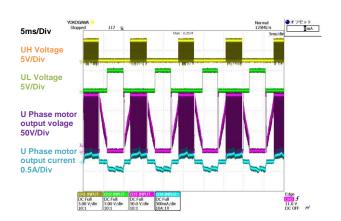


図 5.47 矩形波駆動 120°通電 SPD=512,LA=20(進角=9.4°)

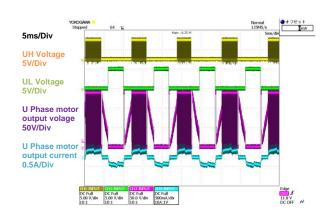


図 5.48 矩形波駆動 120°通電 SPD=512,LA=30(進角=14.1°)

5.9.13. 矩形波駆動 120°通電(リフレッシュ動作有) SPD=128,256,384,512,LA=0

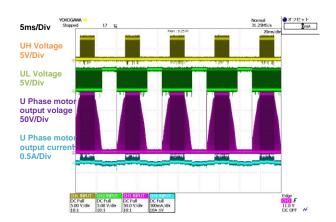


図 5.49 矩形波駆動 120°通電 SPD=128,リフレッシュ動作有

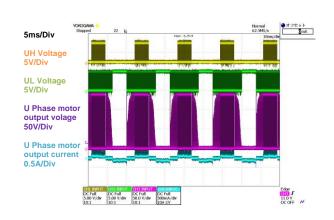


図 5.50 矩形波駆動 120°通電 SPD=256, リフレッシュ動作有

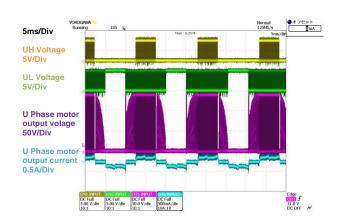
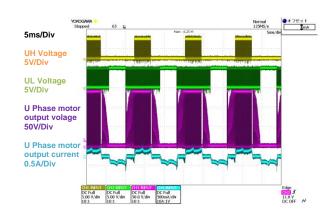
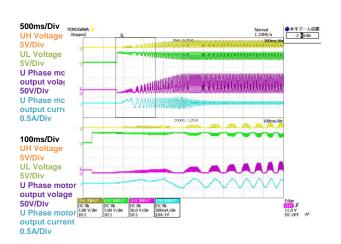


図 5.51 矩形波駆動 120°通電 SPD=384, リフレッシュ動作有




図 5.52 矩形波駆動 120°通電 SPD=512, リフレッシュ動作有

5.9.14. 起動回転時(SPD=0 から 256)

正弦波駆動、矩形波駆動 120°通電 強制転流からの切り替わり回転周波数の設定=2Hz SS duty change limit = UP duty change limit = 4/8, 10/8

注:オシロスコープのフィルター機能により正弦波駆動の2相変調波形を分かりやすく表示しています。

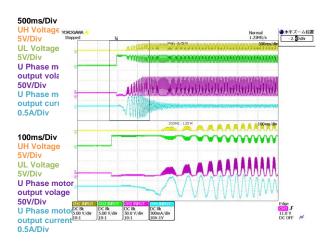
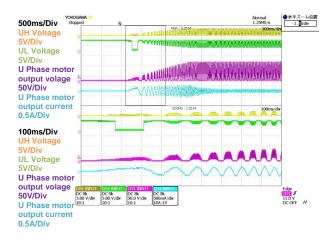



図 5.53 起動回転時、正弦波駆動

図 5.54 起動回転時、正弦波駆動

SS duty change limit = UP duty change limit = 4/8 SS duty change limit = UP duty change limit = 10/8

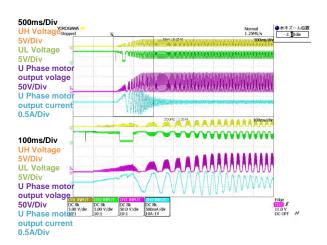


図 5.55 起動回転時、矩形波駆動 120°通電 図 5.56 起動回転時、矩形波駆動 120°通電

SS duty change limit = UP duty change limit = 4/8 SS duty change limit = UP duty change limit = 10/8

5.9.15. 回転停止時(SPD=256 から 0)

正弦波駆動

停止シーケンス有効、無効

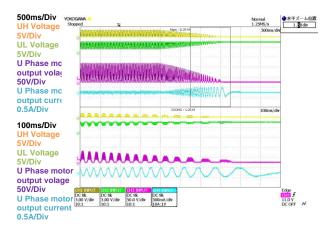


図 5.57 停止シーケンス有効 DWN duty change limit = 4/8

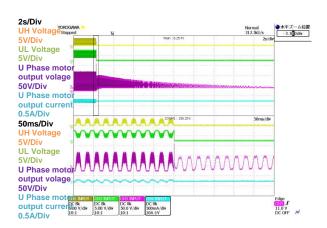


図 5.58 停止シーケンス無効 DWN duty change limit = 4/8

6. ホール信号の設定

6.1. ホール信号入力

モーターが回転するためには、本 IC にホール信号で通電を切り替わる信号を入力する必要があります。モーターを正弦波で正回転させる場合はモーターの逆起電圧(Back-EMF)に対して、ホール信号が図 6.1 のようなタイミングで入力するようにホール素子を配置してください。図 6.2 のようなタイミングでホール信号を入力した場合、モーターが逆回転もしくは矩形波で回転しますので、ホール信号の入力の接続を見直してください。

注:回転方向を正回転に設定し、正しい順番でホール信号が入力された場合を正ホール信号入力と定義しており、設定に応じた通常回転の駆動になります。一方、逆風などのため、逆の順番でホール信号が入力された場合を逆ホール信号入力と定義しており、この場合は矩形波駆動 120 °通電になります。また回転方向を逆回転に設定した場合、逆の順番でホール信号が入力さると通常回転の駆動になり、正の順番でホール信号が入力されると矩形波駆動 120 °通電になります。

たとえば、モーターを正弦波駆動の動作設定にして、実際は矩形波駆動で動作しているような場合は、モーターの回転方向とホール信号の入力順番が合っていない可能性があります。

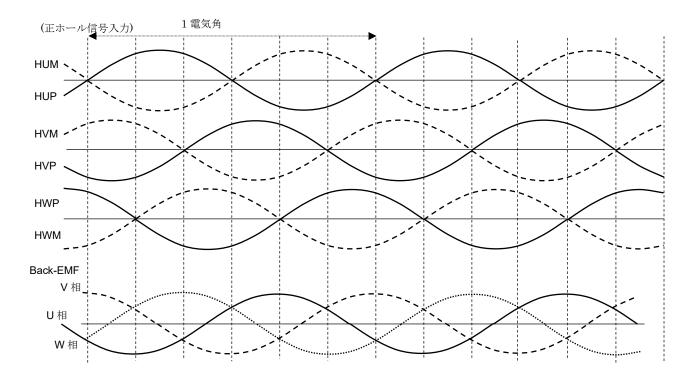


図 6.1 正ホール信号入力

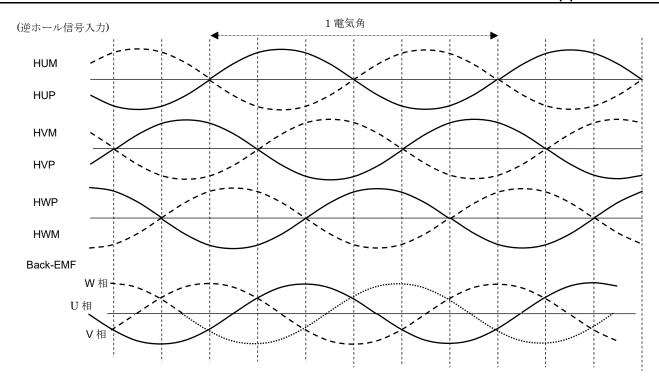
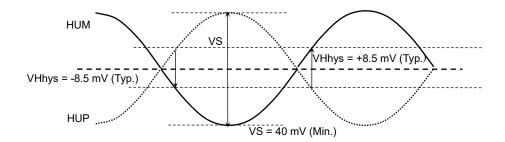



図 6.2 逆ホール信号入力

6.1.1. ホール素子入力

ホール素子でホール信号を入力する場合、本 IC の同相電圧範囲は、 $VW = 0.2 \sim 3.5 \text{ V}$ となります。また、入力ヒステリシスは、VHhys = 8.5 mV (標準) であり、Vs = 40 mV 以上です。R1a、Ra2 の抵抗値を調整してその範囲内になるように設定してください。また、ホール信号入力端子は、インピーダンスが高く、ノイズの影響を受けやすいため、ノイズで誤動作しないようにノイズ除去用のコンデンサー C1a,C2a,Ca3 を $100 \text{ pF} \sim 1 \text{ \mu} \text{ F}$ 程度で接続してください。

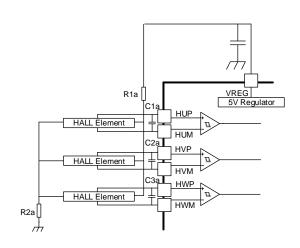


図 6.3 ホール素子入力例

6.1.2. ホール IC 入力

ホール IC でホール信号を入力する場合、ホール入力端子の片側をホール IC 信号の振幅の約半分の電圧に固定にして、もう片側のホール入力端子にホール IC 信号を入力するように接続してください。 図 6.4 のように R4b、R5b で片側のホール入力端子を VREG/2 電圧に設定して、もう片側のホール入力端子にホール IC 信号振幅 $0V\sim5V$ (VREG 端子電圧)を入力します。また、ホール信号入力端子は、インピーダンスが高く、ノイズの影響を受けやすいため、ノイズで誤動作しないようにノイズ除去用ローパスフィルター接続してください。ローパスフィルターは R1b、R2b、R3b: $1k\Omega\sim100k\Omega$ 、C1b、C2b、C3b: $100pF\sim1\mu$ F の範囲の設定でノイズを除去できるように調整ください。

また、ホール IC の出力構造がプッシュプルの場合は、図 6.4 のようになりますが、ホール IC の出力構造がオープンドレイン/オープンコレクターの場合は、図 6.5 のように R6c、R7c、R8c のように VREG 端子にプルアップ接続してください。

また、ホール入力信号のタイミングの位相が反転しているような場合は、VREG/2電圧をHUM, HVM, HWM 端子では無く、HUP, HVP, HWP 端子に接続し、ホール信号入力をHUP, HVP, HWP 端子では無く、HUM, HVM, HWM 端子に接続し入れ替えて使用することで位相の反転を正常な位相に戻して使用することも可能になります。

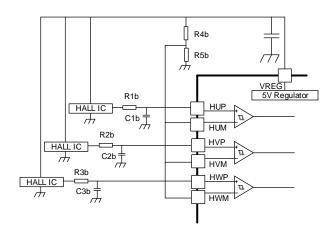


図 6.4 ホール IC 入力 例(ホール IC 出力プッシュブルの場合)

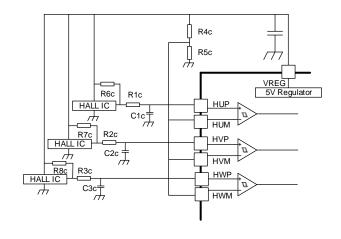


図 6.5 ホール IC 入力例 (ホール IC 出力オープンドレイン/オープンコレクターの場合)

7. 端子設定

7.1. シリアルインターフェース (SPI) 通信の設定

SPI 通信の SCK、SDI、SDO は、RES 端子、VSP 端子、FG 端子と兼用になっていますので、SPI 通信で 設定をする際は各端子と接続してご設定ください。

表 7.1 SPI 通信の設定

端子名	SPI 通信
RES 端子	SCK
VSP 端子	SDI
FG 端子	SDO

7.2. RES 端子(SPI:SCK)

入力信号レベルが、RES = High で通電信号出力を Low にします。RES = Low 設定後キャリアー周波数ご とに解除され、再始動します。また、入力の極性を変えることができます。[RS-0224] また、停止状態で速度指令を入力した場合、リフレッシュ動作 1.5 ms した後に駆動信号を出力するように再

始動します。 一方、回転状態のとき、速度指令を入力した場合は、駆動信号を出力するように再始動します。 リセット入力中も内部カウンターは動作しており、FG 信号は出力され続けます。

他に RES 端子にモーター電源電圧を抵抗分圧で減衰させて入力することでモーター電源電圧の監視にも利用 できます。

RES 端子はシリアルインターフェース通信の SCK の役割もあります。 レジスターの設定により、異常検出入力を ON/OFF することができます。

表 7.2 RES 端子の極性の設定

レジスター設定 10[5] RES_INV	RES 端子入力設定	異常状態 すべて通電信号出力=Low	通常動作	
0	RES 端子(正入力)	High	Low (OPEN)	
1	RES 端子(反転入力)	Low (OPEN)	High	

表 7.3 レジスター異常検出入力の ON/OFF 設定

レジスター設定 10[4] RES_ON	状態
0	通常動作
1	異常状態
'	すべて通電信号出力=Low

7.3. VSP 端子(SPI:SDI)

速度指令の設定は下記の設定から選択できます。 他に VSP 端子はシリアル通信の SDI の役割もあります

表 7.4 速度指令の設定

レジスター設定 6[15:13] TRQ_SEL[2:0]	速度指令の設定
000	VSP 端子アナログ電圧入力 A モード
001	VSP 端子アナログ電圧入力 B モード
010	VSP 端子アナログ電圧入力 速度カーブモード
011	VSP 端子 PWM Duty 入力 High アクティブ 速度カーブモード
100	VSP 端子 PWM Duty 入力 Low アクティブ 速度カーブモード
101	SPI 通信入力 速度カーブモード
110	-
111	-

7.3.1. リフレッシュ動作

リフレッシュ動作とは ON duty:約8%の一定周期(キャリアー周期)で下側通電信号を ON します。 出力段の通電開始前にリフレッシュ動作を入れることにより、出力段のハイサイド側の FET (IGBT) ゲートに電圧を供給し、通電開始時からモーター動作できるようにします。

7.3.2. VSP 端子高電圧入力動作モードの ON/OFF

VSP 端子の入力電圧: 7.75 V < VSP ≦10 V 時にした場合、

VSP 端子高電圧入力動作モードになり、レジスターでモーター出荷用テストモードと通電出力 Low を選択で (VSP の動作入力電圧範囲以外の 10 V 以上にした場合は VSP 端子高電圧入力動作モードになりま す。)

モーター出荷用テストモードは、正弦波駆動は進角ゼロで動作し、出力 ON duty は最大値を維持します。正 弦波生成方法の設定を他のリセット方式にした場合でも正弦波 60° リセットになります。

また、レジスターでも VSP 端子高電圧入力動作モードの有効/無効を選択することができます。 無効の場合、速度指令の最大値を維持します。進角や正弦波生成方法の設定は変化せずに維持します。

VSP 端子電圧が高くなった時にどのような動作にするかご検討した上で設定ください。

レジスター設定 VSP 端子高電圧入力動作モード 11[5] SHIP_CHG モーター出荷用テストモード 0 ・正弦波 60°リセット ・進角ゼロ · 出力 ON Duty 最大値 通電出力全 Low (モーター出力 OFF) 1

表 7.5 VSP 端子高電圧入力動作モードの設定

表 7.6 VSP 端子高電圧入力動作モードの有無の設定

レジスター設定 11[6] SHIP_MASK	VSP 端子高電圧入力動作モード
0	有効
1	無効

7.4. FG 端子(SPI:SDO)

下記のように FG 端子の出力信号を選択できます。

また、FG 端子の出力構造を選択できます。

他に FG 端子はシリアル通信の SDO の役割もありますが、レジスター設定によりシリアル通信中においても FG 機能の信号を出力するように選択することもできます。

注:

- ・FG機能に関し、3pprと1pprの設定を除き、1Hz以下の回転では回転パルス信号は出力されません。
- ・FG 端子をオープンドレイン出力で設定し、VREG 端子を使用しないで外部の別電源でプルアップ抵抗を 接続して使用した場合、外部の別電源から FG 端子を経由して本 IC の電源に電圧が供給される可能性が あります。FG 端子の仕様範囲内ならば、FG 端子から電圧が供給されても本 IC は異常な制御になりませ んが、ご注意ください。

表 7.7 FG 端子のシリアル通信中の出力信号機能選択

レジスター設定 1[15] SR_FG	FG 端子の出力信号			
0	SDO 機能			
1	FG 機能			

表 7.8 FG 端子の出力構造の選択

レジスター設定 11[4] FG_OD	FG 端子出力構造の選択		
0	プッシュプル出力		
1	オープンドレイン出力		

表 7.9 FG 端子の機能設定

レジスター設定	極数	2	4	6	8	10	12	14	16
10[3:0]	極対数	1	2	3	4	5	6	7	8
FG_SEL	ppr		パルス数/1 回転						
0000	3.00	3.00	6.00	9.00	12.00	15.00	18.00	21.00	24.00
0001	2.40	2.40	4.80	7.20	9.60	12.00	14.40	16.80	19.20
0010	2.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
0011	1.71	1.71	3.43	5.14	6.86	8.57	10.29	12.00	13.71
0100	1.50	1.50	3.00	4.50	6.00	7.50	9.00	10.50	12.00
0101	1.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
0110	0.80	0.80	1.60	2.40	3.20	4.00	4.80	5.60	6.40
0111	0.67	0.67	1.33	2.00	2.67	3.33	4.00	4.67	5.33
1000	0.57	0.57	1.14	1.71	2.29	2.86	3.43	4.00	4.57
1001	0.50	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00
1010		異常検出信号							
1011									
1100									
1101									
1110									
1111									

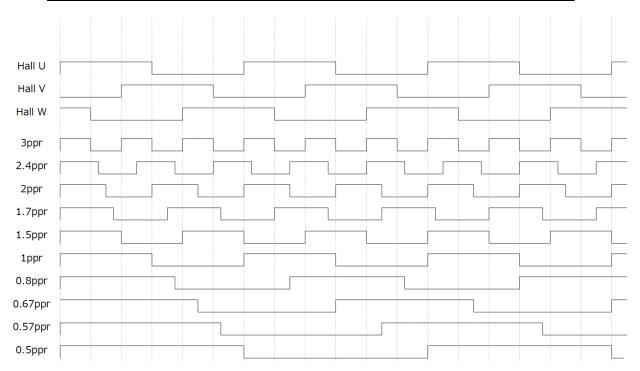


図 7.1 FG 端子の回転パルス信号のタイミングチャート

7.5. DIR 端子

レジスターを設定することで DIR 端子は下記のような機能の端子に切り替えることができます。 回転方向入力では正回転と逆回転を切り替えることができます。

ショートブレーキ入力ではショートブレーキに切り替えることができます。

異常検出入力では RES 端子と同様に異常状態と通常動作を切り替えることができます。

(ただし、異常状態を解除するタイミングは RES 端子のようにキャリアー周波数のタイミングではな く、即座に通常動作に切り替わります)。

また、回転方向入力やショートブレーキ入力や異常検出入力はレジスター設定から切り替えることもでき ます。

注:

- ・DIR 端子を動作入力電圧範囲外の 6.5 V 以上の設定にした場合、テストモードに切り替わりますので、 設定しないようにしてください。
- ・ショートブレーキ状態の間、SPD=0やリフレッシュ動作よりショートブレーキ状態が優先されます。

表 7.10 DIR 端子の機能設定

レジスター設定					
12[2:1] DIR_SEL [1:0]	12[0] DIR_INV	DIR 端子の入力動作の設定	DIR 端子の入力電圧	動作状態	
	0	回転方向正入力	HIGH LOW/OPEN	逆回転 正回転	
00	1	回転方向反転入力	HIGH LOW/OPEN	正回転 逆回転	
	0	ショートブレーキ正入力	HIGH LOW/OPEN	ショートブレーキ 通常動作	
01 1 5		ショートブレーキ反転入力	HIGH LOW/OPEN	通常動作ショートブレーキ	
	0	異常検出正入力	HIGH	異常状態:モーター出力 OFF (通電出力=全 Low)	
10			LOW/OPEN	通常動作	
	1	異常検出反転入力	HIGH LOW/OPEN	通常動作 異常状態:モーター出力 OFF (通電出力=全 Low)	
11	0	レジスター設定		注	
11	1	レンヘダー設定	-	Æ	

注: DIR 端子の入力動作の設定にされていない回転方向入力やショートブレーキ入力の機能はレジスター の設定になります。異常検出入力に関してはレジスターの設定か RES 端子の異常検出入力により異 常状態に切り替えることができます。

表 7.11 回転方向入力のレジスター設定

レジスター 12[4] DIR	回転方向
0	正回転
1	逆回転

表 7.12 ショートブレーキ入力のレジスター設定

レジスター 12[3] BRK_ON	ショートブレーキ
0	通常動作
1	ショートブレーキ

表 7.13 DIR 端子の異常検出入力のレジスター設定

レジスター 12[5] RES	異常検出入力
0	通常動作
1	異常状態

7.6. FGC, LATYPE, LAOFS, LA 端子 (TC78B043FNG 向けのパラメーター設定端子、TC78B043FTG は端子無し)

TC78B043FNG の NVM には初期設定としてすでに特定のモーターでは回転できるような制御の書き込みが されており、LA 端子、FGC 端子、LATYPE 端子、LAOFS 端子の 4 端子から各レジスター設定の調整をする ことで SPI 通信の設定をしなくても初期設定の状態からモーターを回転させることができます。また、初期 設定ではモーターが回転できないような場合などでレジスター設定を再調整したい場合は SPI 通信から再設 定することもできます。

注:TC78B043FTG(WQFN20)の場合、LA 端子、FGC 端子、LATYPE 端子、LAOFS 端子の 4 端子の レジスター設定は無効にしております。有効にした場合、設定値が不定になるため、有効に設定しな いでください。

各端子設定は、応用回路例のように抵抗分圧で設定し、ノイズで端子電圧が変動しないようにコンデンサー を接続して対策することも可能です。

7.7. 出力端子(UH,VH,WH,UL,VL,WL)の設定

出力端子は応用回路例のように本 IC が電源 OFF 時にゲートドライバーがノイズで誤動作しないようにプル ダウン抵抗を接続することも可能です。

7.8. IDC 端子

IDC 端子が 0.5 (標準) 超えた場合の電流制限機能と 0.8V (標準) を超えた場合の過電流検出の機能があり ます。

出力電流の検出抵抗値を 0.2 Ω に設定した場合、 電流制限機能は 0.5V/0.2Ω =2.5A で動作します。 過電流検出は $0.8 \text{ V}/0.2 \Omega = 4A$ で動作します。

従いまして、電流制限機能と過電流検出の両方機能を有効にした場合、過電流検出の前に電流制限機能が動 作することで、IDC 端子電圧が 0.8V まで到達されなく、過電流検出は動作しませんが、出力短絡等の場合は 瞬間的に IDC 端子電圧が 0.8V に到達しますので、過電流検出が動作しモーター出力を OFF にします。

また、IDC 端子は入力に $200 k\Omega$ 、5 pF のローパスフィルターを内蔵しています。ノイズの影響を受ける場 合は、外付け抵抗とコンデンサーのローパスフィルターの追加の接続で対策することも可能です。

8. 異常検出機能

雷流制限機能、過電流検出、過熱検出、異常検出入力機能、位置検出信号異常機能、高回転時の制限機能、 モーターロック保護機能が内蔵されています。

レジスターの設定により FG 端子から異常検出した信号を出力することを選択できます。

また、出力信号の極性を選択することができます。

他に異常検出の出力信号は異常検出動作後、ラッチモード、自動復帰モードによらずに異常状態が解除される まで異常状態を出力し続けます。

8.1. 高回転時の制限機能の設定

モーターが無負荷時等で回転数が上がり過ぎる場合は設定することで回転数に制限をかけることが可能にな ります。制限機能には進角 0°とモーター出力 OFF があり、進角 0°にした場合、高回転検出後、進角は **1Step** 毎に 0 °まで下がるように制御されることで、回転数が下がるようになります。機能の効果はモーター 特性や負荷特性などに依存しますので、十分に評価した上で設定ください。

9. 発振周波数の設定

PWM 周波数やデッドタイム等の周波数や時間と選択できますが、元の発振周波数を変えるため、その発振 周波数を元に制御されているすべての周波数や時間も変わりますので、十分に評価した上で設定ください。

10. レジスター、NVM (Nonvolatile Memory: 不揮発性メモリー)設定

製品出荷時の NVM の初期値は TC78B043FTG (WQFN20) と TC78B043FNG (HTSSOP28) で異なります。 TC78B043FNG に内蔵されている NVM には、一般的なモーターに適した初期設定が書き込まれているため、 SPI 通信を使用せずともモーターの動作が可能です。さらに、FGC 端子、LATYPE 端子、LAOFS 端子、LA 端 子の4端子が設けられており、端子の電圧設定によるモーター進角制御などの一部のパラメーター調整も可 能です。

TC78B043FTG は、FGC 端子、LATYPE 端子、LAOFS 端子、LA 端子の 4 端子を設けておらず、モーター制 御の初期設定が NVM に書き込まれていません。そのため、モーター制御を行う際には、SPI 通信を用いて NVM に設定を書き込む必要があります。

NVM の初期値の設定はデータシートをご確認ください。初期値から変更したい機能がある場合は SPI 通信を 用いて NVM へ再書き込みすることも可能です。

記載載内容の留意点

1. ブロック図

ブロック図内の機能ブロック/回路/定数などは、機能を説明するため、一部省略・簡略化している場合があります。

等価回路

等価回路は、回路を説明するため、一部省略・簡略化している場合があります。

3. タイミングチャート

タイミングチャートは機能・動作を説明するため、単純化している場合があります。

4. 応用回路例

応用回路例は、参考例であり、量産設計に際しては、十分な評価を行ってください。 また、工業所有権の使用の許諾を行うものではありません。

使用上のご注意およびお願い事項

使用上の注意事項

- 絶対最大定格は複数の定格の、どの1つの値も瞬時たりとも超えてはならない規格です。 複数の定格のいずれに対しても超えることができません。 絶対最大定格を超えると破壊、損傷および劣化の原因となり、破裂・燃焼による傷害を負うことがあります。
- デバイスの逆差し、差し違い、または電源のプラスとマイナスの逆接続はしないでください。電流や消費電力が絶 対最大定格を超え、破壊、損傷および劣化の原因になるだけでなく、破裂・燃焼により傷害を負うことがありま す。なお、逆差しおよび差し違いのままで通電したデバイスは使用しないでください。
- 過電流の発生や IC の故障の場合に大電流が流れ続けないように、適切な電源ヒューズを使用してください。IC は 絶対最大定格を超えた使い方、誤った配線、および配線や負荷から誘起される異常パルスノイズなどが原因で破 壊することがあり、この結果、IC に大電流が流れ続けることで、発煙・発火に至ることがあります。破壊におけ る大電流の流出入を想定し、影響を最小限にするため、ヒューズの容量や溶断時間、挿入回路位置などの適切な設 定が必要となります。
- モーターの駆動など、コイルのような誘導性負荷がある場合、ON 時の突入電流や OFF 時の逆起電力による負極 性の電流に起因するデバイスの誤動作あるいは破壊を防止するための保護回路を接続してください。IC が破壊し た場合、傷害を負ったり発煙・発火に至ることがあります。

保護機能が内蔵されている IC には、安定した電源を使用してください。電源が不安定な場合、保護機能が動作し ないで、IC が破壊することがあります。IC の破壊により、傷害を負ったり発煙・発火に至ることがあります。

使用上の留意点

(1) 過電流検出回路

過電流制限回路 (通常: カレントリミッター回路) はどのような場合でも IC を保護するわけではありません。動 作後は、速やかに過電流状態を解除するようお願いします。

絶対最大定格を超えた場合など、ご使用方法や状況により、過電流制限回路が正常に動作しなかったり、動作する 前に IC が破壊したりすることがあります。また、動作後、長時間過電流が流れ続けた場合、ご使用方法や状況に よっては、ICが発熱などにより破壊することがあります。

(2)熱遮断回路

熱遮断回路 (通常: サーマルシャットダウン回路) は、どのような場合でも IC を保護するわけではありません。 動作後は、速やかに発熱状態を解除するようお願いします。

絶対最大定格を超えて使用した場合など、ご使用法や状況により、熱遮断回路が正常に動作しなかったり、動作す る前に IC が破壊したりすることがあります。

放熱設計

パワーアンプ、レギュレーター、ドライバーなどの、大電流が流出入する IC の使用に際しては、適切な放熱を行 い、規定接合温度 (Tj) 以下になるように設計してください。これらの IC は通常使用時においても、自己発熱を します。IC 放熱設計が不十分な場合、IC の寿命の低下・特性劣化・破壊が発生することがあります。また、IC の 発熱に伴い、周辺に使用されている部品への影響も考慮して設計してください。

(4) 逆起電力

モーターを逆転やストップ、急減速を行った場合に、モーターの逆起電力の影響でモーターから電源へ電流が流 れ込みますので、電源の Sink 能力が小さい場合、IC の電源端子、出力端子が定格以上に上昇する恐れがあります。 逆起電力により電源端子、出力端子が定格電圧を超えないように設計してください。

製品取り扱い上のお願い

株式会社東芝およびその子会社ならびに関係会社を以下「当社」といいます。 本資料に掲載されているハードウエア、ソフトウエアおよびシステムを以下「本製品」といいます。

- ◆ 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本 資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- 当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウエア・ソフトウエア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下"特定用途"という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器(ヘルスケア除く)、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、発電関連機器などが含まれますが、本資料に個別に記載する用途は除きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口まで、または当社 Web サイトのお問い合わせフォームからお問い合わせください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- ◆ 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいは その他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国 輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品の RoHS 適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本製品のご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。

東芝デバイス&ストレージ株式会社

https://toshiba.semicon-storage.com/jp/

@ 2025