TBD62003A series, TBD62004A series

Usage considerations
Function of transistor array
There are various kinds of transistor arrays depending on their functions.

● Input active level
There are two types. The TBD62003A series and the TBD62004A series are high active type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>TBD62003A/TBD62004A series</th>
</tr>
</thead>
<tbody>
<tr>
<td>High active</td>
<td>Output is ON by inputting "H" level to input pin</td>
<td>○</td>
</tr>
<tr>
<td>Low active</td>
<td>Output is ON by inputting "L" level to input pin</td>
<td>–</td>
</tr>
</tbody>
</table>

● Output clamp diode
There are two types. The TBD62003A series and the TBD62004A series are built-in type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>TBD62003A/TBD62004A series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in</td>
<td>Best for the drive of the motor, the relay, and the solenoid. (Capable of driving the LED and the level shift circuit.)</td>
<td>○</td>
</tr>
<tr>
<td>Non Built-in</td>
<td>Best for the drive of the LED and the level shift circuit. (Incapable of driving the motor, the relay and the solenoid.)</td>
<td>–</td>
</tr>
</tbody>
</table>

● Output current system
There are two types. The TBD62003A series and the TBD62004A series are sink type. Connecting point of each load is different.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>TBD62003A/TBD62004A series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sink type</td>
<td>Output of current sink type (output pull)</td>
<td>○</td>
</tr>
<tr>
<td>Source type</td>
<td>Output of current source type (output push)</td>
<td>–</td>
</tr>
</tbody>
</table>

Example of application
Dynamic drive control is possible by combining transistor arrays of the sink type and the source type.
● Construction of output circuit
There are three types. The TBD62003A series and the TBD62004A series are DMOS FET type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>TBD62003A/ TBD62004A series</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMOS FET type</td>
<td>Features High current drive is possible Loss of low current range is low</td>
<td>○</td>
</tr>
<tr>
<td>Bipolar transistor</td>
<td>Features High current drive is possible</td>
<td>-</td>
</tr>
<tr>
<td>Darlington type</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Bipolar transistor</td>
<td>Features Loss of low current range is low</td>
<td>-</td>
</tr>
<tr>
<td>Single type</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Reference: Characteristics graph (Feature of each type)

Reference graph of output voltage-Output current

DMOS FET type (The TBD62003A/62004A series)
High current drive is possible
Loss of low current range is low

Darlington type
High current drive is possible

Single type
Loss of low current range is low
Basic circuit

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

* Control of output ON/OFF

Outputs of the TBD62003A series and the TBD62004A series are constructed by DMOS FET. ON/OFF of output is controlled according to the level of applied voltage to the input pin.

<table>
<thead>
<tr>
<th>Product</th>
<th>VIN(ON)</th>
<th>VIN(OFF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD62003A series</td>
<td>2.5V to 25V</td>
<td>0V to 0.6V</td>
</tr>
<tr>
<td>TBD62004A series</td>
<td>7.0V to 25V</td>
<td>0V to 1.0V</td>
</tr>
</tbody>
</table>

In case the voltage is inputted through the pull up resistance externally, confirm that it meets the condition of VIN (ON) on consideration of the voltage fall in the external resistance (Rup).

* Notes in usage

Following treatment for pins of unusage channels is recommended.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1, I2, I3, I4, I5, I6, and I7</td>
<td>Output is off in the open state because input pin has pull down processing. However, it is recommended to connect to GND to avoid malfunction by noise.</td>
</tr>
<tr>
<td>O1, O2, O3, O4, O5, O6, and O7</td>
<td>Open or GND connection is recommended.</td>
</tr>
<tr>
<td>COMMON</td>
<td>Open or connecting to power supply for load is recommended.</td>
</tr>
</tbody>
</table>
Example of application circuit

- Drive LED

In case of driving 7 LEDs

- Drive unipolar stepping motor

In case of driving one unipolar stepping motor

Use the CMOMON pin to prevent the generation of the counter electromotive force that exceeds the output rating.

GND connection is recommended.
Drive relay

In case of driving 7 relays

Use the CMOMON pin to prevent the generation of the counter electromotive force that exceeds the output rating.
Operation of inductive load
In case of inductive load of motor, relay, and so on, be sure to use the clamp diode in the IC.

● In case of unusing clamp diode

● In case of using clamp diode

● In case of using clamp diode + zener diode

Select the zener that meets the condition as follows; \(V_{DD} + V_z + V_f < \) output rating of 50V
Loss calculation of the IC

In using the IC, take enough margins to configure by referring to the PD-Ta graph after calculating the loss of the IC from below formula. In the conditioning range of the PD-Ta graph, operating the IC at 400mA (max) per 1ch is possible.

●Loss calculation

\[PD@W = I_{OUT}(A) \times I_{OUT}(A) \times RON(\Omega) \times ONDuty \times Ch + VIN(V) \times I_{IN}(A) \times ONDuty \times Ch \]

* RON: Please refer to an electrical characteristic of a data seat.
* ONDuty: Apply ON term/cycle
 However, when ON term is 25ms or more, apply 1 for ONDuty.
* Ch: number of driving channels.

●PD-Ta graph

Conditions: Absolute maximum rating of the junction temperature (Tj) is 150°C.

![PD-Ta Graph]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Thermal Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG type alone</td>
<td>Rth(j-a) = 85°C/W</td>
</tr>
<tr>
<td>When mounted on FWG type</td>
<td>Rth(j-a) = 200°C/W</td>
</tr>
<tr>
<td>When mounted on FNG type</td>
<td>Rth(j-a) = 160°C/W</td>
</tr>
<tr>
<td>(30 × 30 × 1.6 mm Cu 50%, single-side glass epoxy)</td>
<td></td>
</tr>
<tr>
<td>When mounted on FG type</td>
<td>Rth(j-a) = 100°C/W</td>
</tr>
<tr>
<td>(50 × 50 × 1.6 mm Cu 40%, single-side glass epoxy)</td>
<td></td>
</tr>
</tbody>
</table>
TBD62003A series, TBD62004A series

Reference data

Current per ch when number of operating ch=N

Board condition: 30 × 30 × 1.6 mm Cu 50%, single-side glass epoxy

*The data is for reference, not guaranteed.
TBD62003A series, TBD62004A series

*The data is for reference, not guaranteed.

IOUT-DUTY CYCLE

TBD62003APG/TBD62004APG alone

Tj=120°C, Ta=25°C, pulse width: 25ms or less

N=1
N=2
N=3
N=4
N=5
N=6
N=7

Current per ch when number of operating ch=N

IOUT-DUTY CYCLE

TBD62003APG/TBD62004APG alone

Tj=120°C, Ta=85°C, pulse width: 25ms or less

N=1
N=2
N=3
N=4
N=5
N=6
N=7

Current per ch when number of operating ch=N

VIN - IIN

TBD62003A
Ta=25°C, VOUT=2V

VIN - IIN

TBD62004A
Ta=25°C, VOUT=2V

VOUT - IOUT

TBD62003A
VIN=5V

VOUT - IOUT

TBD62004A
VIN=7V

IOUT (A)

DUTY CYCLE (%)
*The data is for reference, not guaranteed.

Characteristics of Clamp diode

VOUT = 100mA or more

VIN (OFF) operation range @IOUT=100μA or less
Land pattern dimension (Reference)

Unit: mm

TBD62003AFWG, TBD62004AFWG

- 3.9
- 0.55
- 1.35

TBD62003AFG, TBD62004AFG

- 3.95
- 0.55
- 1.5

TBD62003AFNG, TBD62004AFNG

- 4.15
- 0.4
- 1.45

Notes:

- All linear dimensions are given in millimeters unless otherwise specified.
- This drawing is based on JEITA EF-7501 Level3 and should be treated as a reference only. TOSHIBA is not responsible for any incorrect or incomplete drawings and information.
- You are solely responsible for all aspects of your own land pattern, including but not limited to soldering processes.
- The drawing shown may not accurately represent the actual shape or dimensions.
- Before creating and producing designs and using, customers must also refer to and comply with the latest versions of all relevant TOSHIBA information and the instructions for the application that Product will be used with or for.
Evaluation board

- Drawing

Evaluation board of the TBD62003APG and the TBD62004APG

Evaluation board of the TBD62003AFNG and the TBD62004AFNG

- Circuit

Connect load

In case of inductive load, connect to VOUT line.
Notes on Contents

1. Pin Connection Diagrams
 The pin connection diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

2. Basic Circuits
 The basic circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Test Circuits
 The test circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

4. Timing Charts
 Timing charts may be simplified or some parts of them may be omitted for explanatory purposes.

IC Usage Considerations

Notes on handling of ICs

[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings. Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result in injury by explosion or combustion.

[2] Do not insert devices in the wrong orientation or incorrectly. Make sure that the positive and negative terminals of power supplies are connected properly. Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result in injury by explosion or combustion. In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.

[3] Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.

[4] If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition. Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.

[5] Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator. If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

Points to remember on handling of ICs

Heat Radiation Design
 In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (T) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

Back-EMF
 When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.
RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

- Product shall not be sold for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only for guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.