TBD62308A series

Usage considerations
Function of transistor array

There are various kinds of transistor arrays depending on their functions.

Input active level

There are two types. The TBD62308A series are low active type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>TBD62308A</th>
</tr>
</thead>
<tbody>
<tr>
<td>High active</td>
<td>Output is ON by inputting “H” level to input pin.</td>
<td>Available</td>
</tr>
<tr>
<td>Low active</td>
<td>Output is ON by inputting “L” level to input pin.</td>
<td></td>
</tr>
</tbody>
</table>

Output clamp diode

There are two types. The TBD62308A series are built-in type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>TBD62308A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in</td>
<td>Best for the drive of the motor, the relay, and the solenoid. (Capable of driving the LED and the level shift circuit.)</td>
<td>Available</td>
</tr>
<tr>
<td>Non Built-in</td>
<td>Best for the drive of the LED and the level shift circuit. (Incapable of driving the motor, the relay and the solenoid.)</td>
<td></td>
</tr>
</tbody>
</table>

Output current system

There are two types. The TBD62308A series are sink type. Connecting point of each load is different.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>TBD62308A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sink type</td>
<td>Output of current sink type (output pull)</td>
<td>Available</td>
</tr>
<tr>
<td>Source type</td>
<td>Output of current source type (output push)</td>
<td></td>
</tr>
</tbody>
</table>

Application example

Dynamic drive control is possible by combining transistor arrays of the sink type and the source type.
Construction of output circuit

There are three types. The TBD62308A series are DMOS FET type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>TBD62308A</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMOS FET type</td>
<td> Features High current drive is possible. Loss of low current range is low.</td>
<td>Available</td>
</tr>
<tr>
<td>Bipolar transistor</td>
<td> Features High current drive is possible.</td>
<td>–</td>
</tr>
<tr>
<td>Darlington type</td>
<td> Features High current drive is possible.</td>
<td>–</td>
</tr>
<tr>
<td>Bipolar transistor</td>
<td> Features Loss of low current range is low.</td>
<td>–</td>
</tr>
<tr>
<td>Single type</td>
<td> Features Loss of low current range is low.</td>
<td>–</td>
</tr>
</tbody>
</table>

Reference: Characteristics graph

Reference graph of **Output voltage-Output current**

![Graph](image6)

- **DMOS FET type (The TBD62308A series)**
 - High current drive is possible.
 - Loss of low current range is low.
- **Darlington type**
 - High current drive is possible.
- **Single type**
 - Loss of low current range is low.
Basic circuit

* Constant number of internal resistance: $R_1 = 0.5\,\text{k}\Omega$ (typ.), $R_2 = 40\,\text{k}\Omega$ (typ.), $R_3 = 40\,\text{k}\Omega$ (typ.), and $R_4 = 560\,\text{k}\Omega$ (typ.).
* The accuracy of the internal resistance are $\pm 30\%$ (reference value).
* The clamp circuit controls the upper limit of V_a. The upper limit of the V_a is about 4V.

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

Control of output ON/OFF

Outputs of the TBD62308A series are constructed by DMOS FET. ON/OFF of output is controlled according to the level of applied voltage to the input pin.

<table>
<thead>
<tr>
<th>Product</th>
<th>$V_{IN(ON)}$</th>
<th>$V_{IN(OFF)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD62308A series</td>
<td>0V to VCC-3.5</td>
<td>VCC-0.4 to 25V</td>
</tr>
</tbody>
</table>

In case the voltage is inputted through the pull up resistance externally, confirm that it meets the condition of $V_{IN(OFF)}$ on consideration of the voltage fall in the external resistance (R_{up}).

Treatment of terminal for unusage channel

Following treatment for pins of unusage channels is recommended.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1, I2, I3, I4</td>
<td>Output is off in the open state because input pin has pull up processing. However, it is recommended to connect to VCC to avoid malfunction by noise.</td>
</tr>
<tr>
<td>O1, O2, O3, O4</td>
<td>Open or GND connection is recommended.</td>
</tr>
<tr>
<td>COMMON</td>
<td>Open or connection to power supply for load is recommended.</td>
</tr>
<tr>
<td>NC</td>
<td>Open is recommended.</td>
</tr>
</tbody>
</table>
Application circuit example

Drive of uni-polar stepping motor (TBD62308APG)
Driving inductive load

In case of driving inductive load such as motor and relay, make sure to use clamp diode of the internal IC.

When clamp diode is not used.

When clamp diode is used.

When clamp diode and zener diode are used.

Please select the zener whose voltage specification is as follows; \(V_{DD} + V_{Z} + V_f < \) output rating (50V)
Waveform in driving uni-polar stepping motor

When clamp diode is used.

O1 terminal voltage (20V/DIV)

O1 terminal current (200mA/DIV)

Current decreases gradually in switching ON to OFF.

During current path 2, the energy, which is charged in the motor windings connected to O1 terminal, is discharged.

Test circuit

- Current path 1
- Current path 2

Controller

Clamp diode

- $V_{DD}=12V$
- $+100\mu F$
- $V_{CC}=5V$
- $1\mu F$
When clamp diode and zener diode are used.

O1 terminal voltage (20V/DIV)

- VDD+Vf of Clamp diode+Vz of Zener diode

O1 terminal current (200mA/DIV)

- Current decreases gradually in switching ON to OFF.

During current path 2, the energy, which is charged in the motor windings connected to O1 terminal, is discharged.

During current path 3, the energy, which is charged in the motor windings connected to O2 terminal, is discharged.

Test circuit

- **Current path 1**
- **Current path 2**
- **Current path 3**

Zener diode

- CMZ18 (Vz=18V (typ.))

Controller

- VDD=12V
- +100μF
- VCC=5V
- 1μF
Loss calculation of the IC

In using the IC, take enough margins to configure by referring to the PD-Ta graph after calculating the loss of the IC from below formula. In the condition of a PD-Ta graph, the drive of a maximum current of 1250 mA per 1ch is possible.

Loss calculation

\[PD(W) = I_{OUT}(A) \times I_{OUT}(A) \times RON(\Omega) \times ONDuty \times Ch + VIN(V) \times IIN(A) \times Ch + VCC(V) \times ICC(A) \times Ch \]

*RON : Please refer to an electrical characteristic of a data sheet.
*ONDuty : Apply ON term/cycle
 However, when ON term is 25ms or more, apply 1 for ONDuty.
*Ch : Number of driving channels

PD-Ta graph

Conditions: Absolute maximum rating of the junction temperature (Tj) is 150°C.

Thermal resistance (for reference)

PG type : Rth (j-a) = 85 °C/W (alone)
PG type : Rth(j-a) = 46 °C/W (When mounted on single-side glass epoxy, 50 x 50 x 1.6 mm Cu 50%)
FG/FAG type : Rth (j-a) = 139 °C/W (alone)
FG/FAG type : Rth(j-a) = 89 °C/W (When mounted on single-side glass epoxy, 60 x 30 x 1.6 mm Cu 30%)
Reference data

Reference data

IOUT-DUTY CYCLE
Mounted on the board of TBD62308AFG/FAG

Tj=120°C, Ta=25°C, Pulse width: 25ms or less
VCC=5V, VIN=0V

<table>
<thead>
<tr>
<th>N</th>
<th>Current per ch when number of operating ch=N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Board condition: 60 × 30 × 1.6 mm Cu 30% single-side glass epoxy

IOUT-DUTY CYCLE
Mounted on the board of TBD62308APG

Tj=120°C, Ta=25°C, Pulse width: 25ms or less
VCC=5V, VIN=0V

| N=1 | Current per ch when number of operating ch=N |
| N=2 |
| N=3 |
| N=4 |

Board condition: 50 × 50 × 1.6 mm Cu 50% single-side glass epoxy

The data is for reference, not guaranteed.

VIN - IIN

TBD62308A
Ta=25°C, VCC=5V

<table>
<thead>
<tr>
<th>VIN (V)</th>
<th>IIN (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>15</td>
<td>2.0</td>
</tr>
</tbody>
</table>

VOUT - IOUT

TBD62308A
VIN=0V, VCC=5V

<table>
<thead>
<tr>
<th>VOUT (V)</th>
<th>IOUT (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>0.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Board condition: 60 × 30 × 1.6 mm Cu 30% single-side glass epoxy

Current per ch when number of operating ch=N
Characteristics of clamp diode

VIN (OFF)
Operation range @IOUT=100μA or less

VIN (ON)
Operation range @IOUT=100μA or more

The data is for reference, not guaranteed.
Land pattern dimension (reference)

Unit: mm

Notes:
• All linear dimensions are given in millimeters unless otherwise specified.
• This drawing is based on JEITA ET-7501 Level3 and should be treated as a reference only. TOSHIBA is not responsible for any incorrect or incomplete drawings and information.
• You are solely responsible for all aspects of your own land pattern, including but not limited to soldering processes.
• The drawing shown may not accurately represent the actual shape or dimensions.
• Before creating and producing designs and using, customers must also refer to and comply with the latest versions of all relevant TOSHIBA information and the instructions for the application that the Product will be used with or for.
Evaluation board

Drawing

Evaluation board of the TBD62308AFAG

Evaluation board of the TBD62308APG

Evaluation board of the TBD62308AFG

Circuit diagram (TBD62308APG)

Connect load.

In case of inductive load, connect to VOUT line.

In case of inductive load, connect to VOUT line.
Notes on Contents

1. Pin Connection Diagrams
 The pin connection diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

2. Basic Circuits
 The basic circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Test Circuits
 The test circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

4. Timing Charts
 Timing charts may be simplified or some parts of them may be omitted for explanatory purposes.

IC Usage Considerations

Notes on handling of ICs

[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
 Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result in injury by explosion or combustion.

 Make sure that the positive and negative terminals of power supplies are connected properly.
 Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result in injury by explosion or combustion.
 In addition, do not use any device that is applied current in the wrong orientation or incorrectly even just one time.

[3] Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of overcurrent and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.

[4] If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition.
 Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.

[5] Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator.
 If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

Points to remember on handling of ICs

Heat Radiation Design
 In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (Tj) at any time and condition.
 These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

Back-EMF
 When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sync capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.
RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software, and systems (collectively "Product") without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software, and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.