VECTOR ENGINE (VE)
Toshiba original motor control technology

In motor control technology, vector control which requires complicated high-speed calculation and high-level software developments is a new trend. A new Toshiba original vector engine accomplishes easy and low-cost vector control. The vector engine is a coprocessor exclusive for motor control. The vector engine executes the typical calculation including transformation from a three-phase motor current to a two-phase, and transformation/counter transformation of the rotational coordinates. These functions reduce a CPU utilization of the software while user-specified position estimation and speed control, which varies depending on the system configuration and control method, are executed by software.

The task of the vector engine can be selected up to 16 types. With combining the vector engine to users’ system, a high level of flexibility in motor control can be achieved.

FEATURES
- Coprocessor exclusive for motor control
- Reduction of the CPU overhead. Since the motor process time is reduced, a commanding share of the CPU held by the software is decreased by 72% when two motors are operating.
- Another process can be handled.
- High-speed PWM carrier frequency can be used.
- Supporting various scheduling

ADVANTAGES
- As a coprocessor the vector engine has Toshiba original scheduling function. It select tasks and their combinations.
- Many tasks are prepared for various types of calculation
- The impact of the difference between development environments can be reduced. Compile options are not susceptible.

PRODUCT LINEUP

<table>
<thead>
<tr>
<th>Part Number</th>
<th>ROM Size (KB)</th>
<th>RAM Size (KB)</th>
<th>PMD Size (ch)</th>
<th>Package</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMPM370F0YFG</td>
<td>526</td>
<td>10</td>
<td>2</td>
<td>LQFP100 (14 x 14 mm)</td>
<td>Built-in various analog circuit system cost can be reduced.</td>
</tr>
<tr>
<td>TMPM370F0YDFG</td>
<td>256</td>
<td>10</td>
<td>2</td>
<td>LQFP100 (14 x 14 mm)</td>
<td>Small scale pin package</td>
</tr>
<tr>
<td>TMPM372F0UG</td>
<td>128</td>
<td>6</td>
<td>1</td>
<td>LQFP40/4/10 x 10 mm</td>
<td>Built-in I²C</td>
</tr>
<tr>
<td>TMPM373F0UDG</td>
<td>128</td>
<td>6</td>
<td>1</td>
<td>LQFP40/4/10 x 10 mm</td>
<td></td>
</tr>
<tr>
<td>TMPM374F0UG</td>
<td>128</td>
<td>6</td>
<td>1</td>
<td>LQFP40/4/10 x 10 mm</td>
<td></td>
</tr>
<tr>
<td>TMPM375F0DMG</td>
<td>64</td>
<td>4</td>
<td>1</td>
<td>SSOP30/6 (5.7 x 7 mm)</td>
<td></td>
</tr>
<tr>
<td>TMPM375F0DFG</td>
<td>512</td>
<td>32</td>
<td>2</td>
<td>LQFP100 (14 x 14 mm)</td>
<td></td>
</tr>
<tr>
<td>TMPM375F0DFG</td>
<td>512</td>
<td>32</td>
<td>2</td>
<td>LQFP100 (14 x 14 mm)</td>
<td></td>
</tr>
<tr>
<td>TMPM375F0SG</td>
<td>64</td>
<td>4</td>
<td>1</td>
<td>VQFN32 (5 x 5 mm)</td>
<td>Pre-driver for 3 phase sine wave drive</td>
</tr>
</tbody>
</table>

APPLICATIONS
- Washing machines
- Air conditioners
- Refrigerators
- Pumps
- Industrial motors
- Other rotating devices

BENEFITS
- Since the resources of the CPU can be devoted to PFC*, sensor processing, or communication systems, system performance can be improved.
- With a high speed PWM frequency, quiet and low-vibration operation can be possible.
- Combining with users’ software, various operation can be allowed.
- Short development terms can be achieved.
- PFC - Power Factor Correction

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates (collectively "TOSHIBA") reserve the right to make changes to the information contained in this document, the specifications, the data sheets and application notes for Product and the precedences and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook", and the instructions for the application with which the Product will be used without any notice. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to: (i) determining the appropriateness of the use of the Product in such design or applications; (ii) evaluating and determining the applicability of any information contained in this document, or in any other referenced documents, and (iii) validating all operating parameters for such design or applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). For specific applications as expressly stated in this document, Unintended Use includes, without limitation, use of the software and/or hardware in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions in explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

ARM* CORE-Based MICROCONTROLLERS

PMD - Programmable motor drive

* PMD: Programmable motor driver
Typical calculation in vector control is handled by the vector engine. Therefore, a CPU utilization of the software can be decreased. This reduction improves users’ system performance because the CPU devotes the resources to PFC, sensor processing, or communication systems. In addition, if two motors are controlled, the vector engine remarkably reduces the CPU processing time. When two motors are vector-controlled by software, clock speed of the CPU must be increased for the processing. At this time, a consumption current will increase; therefore the user need to consider the power supply, power dissipation, and EMC. If the vector engine is used together with the CPU, calculation for two channels is performed in parallel. The efficiency of calculation processing for two motors can be improved without a high-speed clock for the CPU.

Note: The above data is not guaranteed value but reference data.

Position estimation and speed control, which vary depending on the system configuration and control method, are left to software processing. The vector engine handles the typical calculation including transformation from a three-phase motor current to a two-phase, or transformation/counter transformation of the rotational coordinates. The tasks of the vector engine are configured as a schedule. The combination of the tasks is up to 16 types. These various types of scheduling provide a high level of flexibility in motor control and the vector engine can support many types of motor operation.

ADVANTAGE : REMARKABLY SHORTENED MOTOR CONTROL PROCESSING TIME

ADVANTAGE : FLEXIBLE SCHEDULING BY THE COPROCESSOR VECTOR ENGINE

Good news for Software developers. Reduction of Developers’ load

Since the typical calculation is handled by the vector engine, software programs can be reduced. Therefore, the amount of the program to be compiled can be reduced. It means that the impact of the compiler performance or optimization options can be reduced.