Outlines

This application note is a reference material for developing products using the voltage detection circuit (LVD) function of M3H Group(1).
This document helps the user check operation of the product and develop its program

Target sample program: LVD-DEMO
Table of Contents

Outlines ... 1
Table of Contents .. 2
1. Preface .. 3
2. Reference Document .. 4
3. Function to Use .. 4
4. Target Device ... 4
5. Operation confirmation condition .. 5
6. Evaluation Board Setting ... 6
7. Operation of Evaluation Board ... 6
8. Outline of LVD Function .. 6
9. Sample Program ... 7
 9.1. Initialization ... 7
 9.2. Sample program main operation ... 7
 9.3. LVD Setting Change ... 7
 9.4. Operating Flow of Sample Program .. 8
10. Precaution ... 14
11. Revision History .. 14
RESTRICTIONS ON PRODUCT USE .. 15
1. Preface

This sample program is used to check the operation of the LVD function. The result of the voltage detection is shown by the lighting or the blink of the LED's when the power is supplied.

Structure diagram of Sample program

![Structure diagram of Sample program](image-url)
2. Reference Document

- Datasheet
 TMPM3H group (1) datasheet Rev2.0 (Japanese edition)
- Reference manual
 Voltage detection circuit (LVD-A) Rev1.2 (Japanese edition)
- Other reference document
 TMPM3H(1) Group Peripheral Driver User Manual (Doxygen)

3. Function to Use

<table>
<thead>
<tr>
<th>IP channel</th>
<th>port</th>
<th>Function / operation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage detection</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>32-bit timer event counter</td>
<td>Timer A ch0</td>
<td>-</td>
</tr>
</tbody>
</table>

4. Target Device

The target devices of application note are as follows.

TMPM3H6FWFG	TMPM3H6FUFG	TMPM3H6FSFG
TMPM3H6FWDFG	TMPM3H6FUDFG	TMPM3H6FSDFG
TMPM3H5FWFG	TMPM3H5FUFG	TMPM3H5FSFG
TMPM3H5FWDFG	TMPM3H5FUDFG	TMPM3H5FSDFG
TMPM3H4FWUUG	TMPM3H4FUUG	TMPM3H4FSUG
TMPM3H3FWUUG	TMPM3H3FUUG	TMPM3H3FSUG
TMPM3H2 FWUUG	TMPM3H2FUDUG	TMPM3H2FSDUUG
TMPM3H1FWUUG	TMPM3H1FUUG	TMPM3H1FSUG
TMPM3H1FPUG	TMPM3H0FSDUG	TMPM3H0FMDUUG

* This sample program operates on the evaluation board of TMPM3H6FWFG. If other function than the TMPM3H6 one is checked, it is necessary that CMSIS Core related files (C startup file and IO header file) should be changed properly.

The BSP related file is dedicated to the evaluation board (TMPM3H6). If other function than the TMPM3H6 one is checked, the BSP related file should be changed properly.
5. Operation confirmation condition

- Used microcontroller: TMPM3H6FWFG
- Used board: TMPM3H6FWFG Evaluation Board (Product of Sensyst)
- Unified development environment: IAR Embedded Workbench for ARM 8.11.2.13606
- Unified development environment: μVision MDK Version 5.24.2.0
- Sample program: V1100

Evaluation board (TMPM3H6FWFG Evaluation Board) (Top view)

For purchasing the board, refer to the following homepage. (http://www.chip1stop.com/)
6. Evaluation Board Setting

The following pin connections should be done on the evaluation board.

<table>
<thead>
<tr>
<th>CN5 Use</th>
<th>Through-hole No.</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED (D10)</td>
<td>27-28</td>
<td>Connection</td>
</tr>
<tr>
<td>LED (D9)</td>
<td>29-30</td>
<td>Connection</td>
</tr>
</tbody>
</table>

CN18: External power should be supplied to No2 pin.

7. Operation of Evaluation Board

The LVD detection result is shown by the LED lighting or blink.
CN18 JP should be removed. The external power should be supplied to Pin 2 (the central pin).
The power voltage is lower than the set LVD value: LED (D10) blinks.
The power voltage is higher than the set LVD value: LED (D9) lights.
DVDD5 voltage status can be checked by the LED lighting or blink.

8. Outline of LVD Function

The voltage detection circuit (LVD) generates an interrupt request or an internal reset signal when it detects a lower voltage than the preset value or a higher voltage than the other preset one.
A voltage detection circuit supervises the voltage of DVDD5.
The reference voltage which occurred in the reference voltage generating circuit is compared with the output of the detection voltage made from DVDD5. Detection voltage can be chosen.
According to a comparison result, interrupt/reset selection output control circuit outputs reset or interrupt.
9. Sample Program

An external power should be supplied to the DVCC pin on the board. The LED lighting or blink shows the result of the comparison of the output of the voltage detection circuit with the preset voltage.

9.1. Initialization

The following initialization is done after power is supplied. The initialization of each clock setting and the watchdog timer setting is done.

9.2. Sample program main operation

The setting of 1-ms interrupt timer is done. The setting of the LED control is done. The LVD setting is done. In this sample program, the detection voltage and the release voltage have been set to 4.0V and 4.05V, respectively.

The voltage detection status of the LVD should be checked. The power voltage should be compared with the detection and the release voltages. When the detected power voltage is higher than the set LVD value, LED (D9) lights. Check the voltage detection status of the LVD at 1-ms intervals and continue lighting if the result is the same.

When the detected power voltage is lower than the set LVD value, LED (D10) blinks. The voltage detection status of the LVD should be checked, and the blink continues when the result is the same.

9.3. LVD Setting Change

When the value of the comparison voltage in the LVD is changed in the sample program, the following should be done. The setting of init_LVD in lvd.c should be changed properly. Example: TSB_LVD->CR |= (uint8_t)LVD_VOLTAGE_44; The detection result of the threshold voltage of 4.4V can be changed.
9.4. Operating Flow of Sample Program

The operating flows of the sample program are shown as follows.
Start-up

- Driver initialization
- Application initialization
- LVD setting
- LED control
Driver initialization

ref T32A Driver initialization

BSP (Application)

bsp_get_timer_ch(BSPTimer)

Channel number = bsp_get_timer_ch(-)

t32a_mode_init(Instance address)

result = t32a_mode_init(-):Successful

timer_initialize (Timer instance address)

result = timer_initialize(-):Successful

T32A (Driver)

Acquisition of Timer channel for 1-ms timer

result = t32a_timer_init (Instance address)

result = t32a_timer_init(-):Successful
Application initialization

ref Timer Application initialization

loop

[1, Count of used LED's]

ref LED Application initialization

LED Application initialization

LED Initial setting creation

led_initialize (LED instance address)

led_initialize(-)

gpio_write_bit
(GPIO instance address, Group, Number, DATA, LED initial setting value)
init_LVD()

TSB_LVD->CR &= (uint8_t)LVD_DISABLE; /* LVD Disable */
TSB_LVD->CR |= (uint8_t)LVD_VOLTAGE_40; /* 4.0V */
TSB_LVD->CR |= (uint8_t)LVD_SEL_RESET; /* RESET */
TSB_LVD->CR &= (uint8_t)LVD_OUT_DISABLE; /* Output Disable */

start_LVD()

TSB_LVD->CR |= (uint8_t)LVD_ENABLE; /* LVD Enable */
LED control

Acquisition of LVD status value

LVD status value

8 continuously acquired status values are the same.

Main Processing

The acquired status value is not the same as the previous one.

Count reset

LVD status value = LVD_UPPER

LED0:
init.blink.func=TXZ_DISABLE;
Lights-off
LED1:
Lighting

LED0:
init.blink.func=TXZ_DISABLE;
Lights-off
LED1:
init.blink.func = TXZ_ENABLE;
Lighting

Count reset

Lvd (Application)

led (Application)
10. Precaution

When using the sample program with CPU other than TMPM3H6, please check operation sufficiently.

11. Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2018-03-05</td>
<td>-</td>
<td>First release</td>
</tr>
</tbody>
</table>
RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as “TOSHIBA.” Hardware, software and systems described in this document are collectively referred to as “Product.”

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.