M3H Group(1)
Application Note
Serial Peripheral Interface
(TSPI-B)

Outlines
This application note is a reference material for developing products using the serial peripheral interface (TSPI) functions of M3H Group(1). This document helps the user check operation of the product and develop its program.

Target sample program: TSPI_FLASH
Table of Contents

Outlines ... 1
Table of Contents .. 2
1. Preface.. 3
2. Reference Document .. 4
3. Function to Use ... 4
4. Target Device .. 4
5. Operation confirmation condition .. 5
6. Evaluation Board Setting ... 6
7. Operation of Evaluation Board .. 6
8. Outline of Serial Peripheral Interface ... 7
 8.1. Clock Supply ... 7
9. Sample Program ... 8
 9.1. Initialization ... 8
 9.2. Sample program main operation ... 8
 9.3. Output Example of Sample Program ... 9
 9.3.1. Setting Example of Terminal Software ..10
 9.4. Operating Flow of Sample program ... 11
10. Precaution ... 16
11. Revision History .. 16
RESTRICTIONS ON PRODUCT USE .. 17
1. Preface

This sample program is used to check the operation of TSPI communication function. It writes data to SPI EEPROM and reads data from SPI EEPROM through USB-UART interface on the terminal software on the host PC.

Structure diagram of Sample program

Application Layer

- Board Support Package (bsp.c/.h)
 - Main (main.c)
 - UART (uart_io.c/.h)
 - Serial Flash (spi_flash.c/.h)

Driver Layer

- UART (txz_uart.c/txz_uart.h)
- CG (txz_cg.c/.h)
- TSPI (txz_tspi.c/txz_tspi.h)

H/W

- UART
- CG
- Serial Flash
2. Reference Document

- Datasheet
 TMPM3H group (1) datasheet Rev2.0 (Japanese edition)
- Reference manual
 Serial peripheral interface (TSPi-B) Rev2.1 (Japanese edition)
- Other reference document
 TMPM3H(1) Group Peripheral Driver User Manual (Doxygen)

3. Function to Use

<table>
<thead>
<tr>
<th>IP</th>
<th>channel</th>
<th>port</th>
<th>Function / operation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial peripheral</td>
<td>ch1</td>
<td>PP0 (TSP1CLK)</td>
<td>SPI mode</td>
</tr>
<tr>
<td>interface</td>
<td></td>
<td>PP1 (TSP1TXD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP2 (TSPIRXD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL6 (TSP1CS0)</td>
<td></td>
</tr>
<tr>
<td>Asynchronous</td>
<td>ch0</td>
<td>PA1 (UT0TXDA)</td>
<td>UART mode</td>
</tr>
<tr>
<td>communication</td>
<td></td>
<td>PA2 (UT0RXD)</td>
<td></td>
</tr>
</tbody>
</table>

4. Target Device

The target devices of application note are as follows.

<table>
<thead>
<tr>
<th>TMPM3H6FWFG</th>
<th>TMPM3H6FUFG</th>
<th>TMPM3H6FSFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMPM3H6FWDFG</td>
<td>TMPM3H6FUDFG</td>
<td>TMPM3H6FSDFG</td>
</tr>
<tr>
<td>TMPM3H5FWFG</td>
<td>TMPM3H5FUFG</td>
<td>TMPM3H5FSFG</td>
</tr>
<tr>
<td>TMPM3H5FWDFG</td>
<td>TMPM3H5FUDFG</td>
<td>TMPM3H5FSDFG</td>
</tr>
<tr>
<td>TMPM3H4FWUG</td>
<td>TMPM3H4FUUG</td>
<td>TMPM3H4FSUG</td>
</tr>
<tr>
<td>TMPM3H4FWFG</td>
<td>TMPM3H4FUFG</td>
<td>TMPM3H4FSFG</td>
</tr>
<tr>
<td>TMPM3H3FWUG</td>
<td>TMPM3H3FUUG</td>
<td>TMPM3H3FSUG</td>
</tr>
<tr>
<td>TMPM3H2FWDUG</td>
<td>TMPM3H2FUDUG</td>
<td>TMPM3H2FSDUG</td>
</tr>
<tr>
<td>TMPM3H2FWQG</td>
<td>TMPM3H2FUQG</td>
<td>TMPM3H2FSQG</td>
</tr>
<tr>
<td>TMPM3H1FWUG</td>
<td>TMPM3H1FUUG</td>
<td>TMPM3H1FSUG</td>
</tr>
<tr>
<td>TMPM3H1FPUG</td>
<td>TMPM3H0FSDUG</td>
<td>TMPM3H0FMDUG</td>
</tr>
</tbody>
</table>

* This sample program operates on the evaluation board of TMPM3H6FWFG.
If other function than the TMPM3H6 one is checked, it is necessary that CMSIS Core related files (C startup file and I/O header file) should be changed properly.
The BSP related file is dedicated to the evaluation board (TMPM3H6). If other function than the TMPM3H6 one is checked, the BSP related file should be changed properly.
5. Operation confirmation condition

Used microcontroller TMPM3H6FWFG
Used board TMPM3H6FWFG Evaluation Board (Product of Sensyst)
Unified development environment IAR Embedded Workbench for ARM 8.11.2.13606
Unified development environment μVision MDK Version 5.24.2.0
Terminal software Tera Term V4.96
Sample program V1100

For purchasing the board, refer to the following homepage. (http://www.chip1stop.com/)
6. Evaluation Board Setting

The following pin connections should be done on the evaluation board.

<table>
<thead>
<tr>
<th>CN5</th>
<th>Use</th>
<th>Through-hole No.</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UART (RXD)</td>
<td>9-10</td>
<td>Connection</td>
</tr>
<tr>
<td></td>
<td>UART (TXD)</td>
<td>11-12</td>
<td>Connection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CN9</th>
<th>Use</th>
<th>Through-hole No.</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TSPI (FSS)</td>
<td>43-44</td>
<td>Connection</td>
</tr>
<tr>
<td></td>
<td>TSPI (CLK)</td>
<td>45-46</td>
<td>Connection</td>
</tr>
<tr>
<td></td>
<td>TSPI (DO)</td>
<td>47-48</td>
<td>Connection</td>
</tr>
<tr>
<td></td>
<td>TSPI (DI)</td>
<td>49-50</td>
<td>Connection</td>
</tr>
</tbody>
</table>

7. Operation of Evaluation Board

Connect the PC with the USB_UART terminal of the evaluation board with a USB cable. After activating the terminal software (Tera Term), the PC performs communication setting. Push the reset button on the evaluation board.
8. Outline of Serial Peripheral Interface

TSPI (synchronous serial communication) can select SPI and SIO formats, and the clock can be selected between Clock master and Clock slave. So it has four modes to operate. 1 unit circuit operates as 1 channel transmission and reception circuit (TSPlxTXD, TSPlxRXD, TSPlxSCK, SPIxCS0/1/2/3, and TSPlxCSIN).

8.1. Clock Supply

When TSPI is used, the corresponding clock enable bits should be set to “1” (Clock supply) in fsys supply stop register A ([CGFSYSENA]), fsys supply stop register B ([CGFSYSENB]), and fc supply stop register ([CGFCEN]).

For the details, refer to “Clock Control and Operation Mode” in Reference manual.

When stopping supply of a clock, please check that TSPI has stopped ([TSPlxCRC]<TSPIE>=0 (TSPI control)).

Moreover, also when you change operational mode to STOP1/STOP2, please check that TSPI has stopped.
9. Sample Program

Enter the command (write or read) on the terminal software.
When the "write" command is executed, the input character is stored to I2C EEPROM. When the "read" command is executed, the data stored in I2C EEPROM is read and displays it in the terminal software.

9.1. Initialization

The following initialization is done after power is supplied.
The PORT setting is executed after the initialization of each clock setting, the watchdog timer setting and the clock setting.

9.2. Sample program main operation

After the initialization operation, shift to the main function and do the following initialization.
1: Initialization of BSP (Board Support Package)
2: Initialization of variables
3: Initialization of application
4: Initialization of board
5: Initialize the driver
6: Erase SPI FLASH
7: Main control of sample program

After the above processing, perform the following operations on PC terminal software (Tera Term).
"Command>" is displayed in Tera Term.
The “write” or “read” command should be input according to the following format.
"write" command: The input character is stored to SPI EEPROM (Address 0x0).
"read" command: SPI EEPROM (Address 0x0) is read and the read data is displayed through Tera Term.
Command format:

```
write_command
write_X               X: Any character
read_command
read
```

<table>
<thead>
<tr>
<th>Used memory</th>
<th>SPI EEPROM: M25P16-VMN6TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used port</td>
<td>FSS:PL6, CLK:PP0, DO:PP1, DI:PP2</td>
</tr>
</tbody>
</table>
9.3. Output Example of Sample Program

When the sample program operates, the command results are shown as follows.

![Command Output Example](image_url)
9.3.1. Setting Example of Terminal Software

The operation of the terminal software (Tera Term) has been checked with the following settings.

![Terminal Software Settings]

- **Port:** COM9
- **Baud rate:** 115200
- **Data:** 8 bit
- **Parity:** none
- **Stop:** 1 bit
- **Flow control:** none
- **Transmit delay:** 0 msec/char, 0 msec/line

![Terminal Setup]

- **Terminal size:** 80 X 24
- **Receive:** AUTO
- **Transmit:** CR+LF
- **Local echo**
- **Answerback:** VT100
- **Auto switch (VT<->TEK)**
9.4. Operating Flow of Sample program

The operating flows of the sample program are shown as follows.

![Diagram of Operating Flow]

- **Main**
- **Loop**
- **Creation and Initialization**
- **Command processing**
Creation and Initialization

- **BSP initialization**
- **RAM initialization**
- **Application initialization**
- **Driver initialization**

Status initialization

- **Serial Flash-Erase**
 - **Sector 0 erase**
 - **MEM_Write_Mode** (Instance handle, SPI_FLASH_WRITE_ENABLE)
 - `result = MEM_Write_Mode(-):Successful`
 - **MEM_SEC_ERASE** (Instance handle, Start address of Erase sector)
 - `result = MEM_SEC_ERASE(-):Successful`
 - **Loop**
 - **MEM_R_STATUS** (Instance handle, Storage destination of Reception data)
 - `result = MEM_R_STATUS(-):Successful`
 - **spi_flash**
 - **tspi**

RAM initialization

- **Application initialization**
- **Driver initialization**

Status initialization

- **Serial Flash-Erase**
 - **Sector 0 erase**
 - **MEM_Write_Mode** (Instance handle, SPI_FLASH_WRITE_ENABLE)
 - `result = MEM_Write_Mode(-):Successful`
 - **MEM_SEC_ERASE** (Instance handle, Start address of Erase sector)
 - `result = MEM_SEC_ERASE(-):Successful`
 - **Loop**
 - **MEM_R_STATUS** (Instance handle, Storage destination of Reception data)
 - `result = MEM_R_STATUS(-):Successful`
 - **spi_flash**
 - **tspi**

RAM initialization

- **Application initialization**
- **Driver initialization**

Status initialization

- **Serial Flash-Erase**
 - **Sector 0 erase**
 - **MEM_Write_Mode** (Instance handle, SPI_FLASH_WRITE_ENABLE)
 - `result = MEM_Write_Mode(-):Successful`
 - **MEM_SEC_ERASE** (Instance handle, Start address of Erase sector)
 - `result = MEM_SEC_ERASE(-):Successful`
 - **Loop**
 - **MEM_R_STATUS** (Instance handle, Storage destination of Reception data)
 - `result = MEM_R_STATUS(-):Successful`
 - **spi_flash**
 - **tspi**
Command processing

Input data == “write” ?

YES

ref
write

Input data == “read” ?

YES

ref
Read

Command error message display
MEM_Write_Mode
(Instance handle, SPI_FLASH_WRITE_ENABLE)

result = MEM_Write_Mode(): Successful

MEM_Write_Asynch
(Instance handle, Address, Storage destination of Write data, Data count)

result = MEM_Write_Asynch(): Successful

Terminal display
Write data is displayed.

result = tspi_master_write(): Successful

TPZ_SUCCESS

result = tspi_master_transfer(): Successful

[result = TXZ_SUCCESS]

transmit_handler
(ID number, result)

send.state == SEND_SUCCESS
loop

if result is TXZ_SUCCESS, SEND_SUCCESS is set in send.state

if result is not TXZ_SUCCESS, SEND_FAILURE is set in send.state
MEM_Read_BYTE_Asynch
(Instance handle, Address, Storage destination of Read data)

result = tspi_master_transfer(); Successful

result = tspi_master_read(); Successful

result = MEM_Read_BYTE_Asynch(); Reception data count

Terminal display
Read data is displayed.

Serial Flash Erase
Sector 0 erase

For information on erasing Serial Flash, see Creation and Initialization.
10. Precaution

When using the sample program with CPU other than TMPM3H6, please check operation sufficiently.

11. Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2018-03-09</td>
<td>-</td>
<td>First release</td>
</tr>
</tbody>
</table>
RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as “TOSHIBA.” Hardware, software and systems described in this document are collectively referred to as “Product.”

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.