Outlines

This application note is a reference material for developing products using remote control signal processor (RMC) function of M3H Group(1).
This document helps the user check operation of the product and develop its program.

Target sample program: RMC_UART
Table of Contents

Outlines ... 1
Table of Contents .. 2
1. Preface .. 3
2. Reference Document .. 4
3. Function to Use .. 4
4. Target Device .. 4
5. Operation confirmation condition .. 5
6. Evaluation Board Setting ... 6
7. Operation of Evaluation Board .. 6
8. Outline of RMC function .. 7
 8.1. Reception of Remote Control Signal ... 7
9. Sample Program ... 8
 9.1. Initialization ... 8
 9.2. Sample program main operation ... 8
 9.3. Output Example of Sample Program .. 9
 9.3.1. Setting Example of Terminal Software .. 9
 9.4. Operating Flow of Sample Program ... 10
10. Precaution ... 19
11. Revision History ... 19
RESTRICTIONS ON PRODUCT USE .. 20
1. Preface

This sample program receives the remote control signal whose carrier wave is removed, using the remote control signal preprocessor (RMC). The received signal is displayed on the terminal software.

Structure diagram of Sample program

Application Layer

Driver Layer

H/W

Board Support Package (bsp.c/.h)

Remote Control (rcm.c/.h)

RMC (rcm.c/.h)

Exception

Interrupt
callback

Main (main.c)

Uart ID (bsp_uartio.c/.h)

Timer (bsp_timer.c/.h)
2. Reference Document

- Datasheet
 TMPM3H group (1) datasheet Rev2.0 (Japanese edition)
- Reference manual
 Remote Control Signal Preprocessor (RMC-A) Rev2.0 (Japanese edition)
- Other reference document
 TMPM3H(1) Group Peripheral Driver User Manual (Doxygen)

3. Function to Use

<table>
<thead>
<tr>
<th>IP</th>
<th>channel</th>
<th>port</th>
<th>Function / operation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Control Signal Preprocessor</td>
<td>-</td>
<td>PB1 (RXIN0)</td>
<td>Circuit to receive the remote control signal</td>
</tr>
<tr>
<td>Asynchronous serial communication circuit</td>
<td>ch0</td>
<td>PA1 (UT0TXDA) PA2 (UT0RXD)</td>
<td>Asynchronous communication with PC</td>
</tr>
</tbody>
</table>

4. Target Device

The target devices of application note are as follows.

TMPM3H6FWFG	TMPM3H6FUDFG	TMPM3H6FSDFG
TMPM3H6FWDFG	TMPM3H6FUDFG	TMPM3H6FSDFG
TMPM3H5FWFG	TMPM3H5FUDFG	TMPM3H5FSDFG
TMPM3H5FWDFG	TMPM3H5FUDFG	TMPM3H5FSDFG
TMPM3H4FWUG	TMPM3H4FUUG	TMPM3H4FUG
TMPM3H4FWUG	TMPM3H4FUUG	TMPM3H4FUG
TMPM3H3FWUG	TMPM3H3FUUG	TMPM3H3FUG
TMPM3H2FWUG	TMPM3H2FUUG	TMPM3H2FUG
TMPM3H1FWUG	TMPM3H1FUUG	TMPM3H1FUG
TMPM3H1FPUG	TMPM3H0FSDUG	TMPM3H0FMDUG

* This sample program operates on the evaluation board of TMPM3H6FWFG. If other function than the TMPM3H6 one is checked, it is necessary that CMSIS Core related files (C startup file and IO header file) should be changed properly.

The BSP related file is dedicated to the evaluation board (TMPM3H6). If other function than the TMPM3H6 one is checked, the BSP related file should be changed properly.
5. Operation confirmation condition

<table>
<thead>
<tr>
<th>Used microcontroller</th>
<th>TMPM3H6FWFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used board</td>
<td>TMPM3H6FWFG Evaluation Board (Product of Sensyst)</td>
</tr>
<tr>
<td>Unified development environment</td>
<td>IAR Embedded Workbench for ARM 8.11.2.13606</td>
</tr>
<tr>
<td>Terminal software</td>
<td>Tera Term V4.96</td>
</tr>
<tr>
<td>Sample program</td>
<td>V1100</td>
</tr>
</tbody>
</table>

Evaluation board (TMPM3H6FWFG Evaluation Board) (Top view)

For purchasing the board, refer to the following homepage. http://www.chip1stop.com/
6. Evaluation Board Setting

The following pin connections should be done on the evaluation board.

<table>
<thead>
<tr>
<th>CN5</th>
<th>Use</th>
<th>Through-hole No.</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART (RXD)</td>
<td>9-10</td>
<td></td>
<td>Connection</td>
</tr>
<tr>
<td>UART (TXD)</td>
<td>11-12</td>
<td></td>
<td>Connection</td>
</tr>
<tr>
<td>RMC input (IC16)</td>
<td>21-22</td>
<td></td>
<td>Connection</td>
</tr>
</tbody>
</table>

7. Operation of Evaluation Board

RMC: The remote control signal should be input to PB1.
The input signal is output to the terminal software (Tera Term).

The reception format is compatible with NEC format or AEHA (Association for Electric Home Appliances) format.
8. Outline of RMC function

Remote control signal preprocessor (hereafter referred to as RMC) receives a remote control signal of which carrier is removed. Please refer to a bottom for the list of functions.

<table>
<thead>
<tr>
<th>Function category</th>
<th>Function</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The reception</td>
<td>Sampling clock</td>
<td>A sampling clock can be selected from either low frequency clock (32.768kHz) or Timer output.</td>
</tr>
<tr>
<td>of the remote</td>
<td>Noise filter</td>
<td>Noise canceling time can be adjusted. (15 phases)</td>
</tr>
<tr>
<td>control signal</td>
<td>Leader detection</td>
<td>Detection is possible at the cycle of a reader, and a setup of Low width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> Without the leader in a state of the leader waiting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> Begin in leaders only for Low width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> Fixed phase method in a period.</td>
</tr>
<tr>
<td></td>
<td>Data reception</td>
<td>A maximum of 72 bits of reception are possible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> Two kinds of data bit 0/1 judgments allow.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) Judgment by the threshold setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Judgment by the falling edge interrupt.</td>
</tr>
<tr>
<td></td>
<td>Interrupt</td>
<td>Generating of each remote control interruption(INTRMCx) is controllable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> Leader detection interrupt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> Falling edge interrupt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> Maximum data bit cycle interrupt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> Low width detection interrupt.</td>
</tr>
</tbody>
</table>

8.1. Reception of Remote Control Signal

The sampling of remote control signal is performed by the low speed clock (fs: 32.768 kHz.) or timer output (TBxOUT).
As for the signal input by RXINx, a signal performed noise reduction of through a noise filter circuit is input into a reception control circuit.
9. Sample Program

The 16-bit custom code, the 8-bit data code, and the reversed 8-bit data code which are received by RMC are transferred to the terminal software through USB-UART interface. This sample program will receive in NEC format and AEHA (Association for Electric Home Appliances) format.

9.1. Initialization

The following initialization is done after power is supplied.
The GPIO setting is executed after the initialization of each clock setting, the watchdog timer setting and the clock setting.

9.2. Sample program main operation

The driver is initialized.
UART settings are done.
The remote controller settings are done. The low-speed clock is used in this sample program.
The main procedure is executed after every setting completes.
The remote control circuit starts to operate. It receives remote control signals and transfers the reception result to the terminal software.
In this sample program, the format of the reception result is as follows;
Custom Code (16 bits) + Data Code (16 bits)

<table>
<thead>
<tr>
<th>Remote control receiver</th>
<th>RPM7138-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port of TMPM3H6</td>
<td>PB1:RXIN</td>
</tr>
</tbody>
</table>
9.3. Output Example of Sample Program
The following example is that the result of the data reception from the remote controller is transferred to the terminal software.
Custom Code (Customer Code) and Data Code are displayed

![Image](https://via.placeholder.com/150)

9.3.1. Setting Example of Terminal Software
The operation of the terminal software (Tera Term) has been checked with the following settings.

![Image](https://via.placeholder.com/150)
9.4. Operating Flow of Sample Program

The operating flows of the sample program are shown as follows.

- **Main**
 - **Creation and Initialization**
 - **Start-up**
 - **Reception code output**
 - **Stop**
 - **End and Deletion**

[Diagram showing the operating flow with the mentioned steps]
Initialization

Creation and Initialization

- BSP initialization

RAM initialization

- Driver initialization

- Application initialization

Driver initialization

- T32A Driver initialization
T32A Driver initialization
Although initialization setting of 32-bit timer event counter of TMPM3H is done, it is not used in actual operation of this sample program.

```
bsp_get_timer_ch(BSPTimer)

Channel number = bsp_get_timer_ch(-)

t32a_mode_init(Instance address)

timer_initialize(Timer Instance address)

result = timer_initialize(-): success

t32a_timer_init(Instance address)

result = t32a_mode_init(-): success

result = t32a_timer_init(-): success
```
ref Timer Application Start-up

ref Remote Control Application Start-up

Application start-up

Remote Control Application start-up

remote_start (Remote Control Instance address)

rmc_rx_enable (RMC Instance address)

bsp_irq_rmc_enable()
Reception code output

Remote control (Application)

Remote control (Application)

UART IO (Application)

remote irq_handler (Remote control instance address)

rmc_get_status (RMC instance handle, status storage destination)

rmc_get_data (RMC instance handle, reception data storage destination)

remote irq_handler (-)

rmc_get_status (-)

rmc_get_data (-)

remote_irq_handler(-)

remote_get_list_data (Remote control instance address, Storage destination of Data information)

Data reception handler (-)

Data reception handler (User ID)

Procedure result=remote_get_list_data(-)

[Procedure result=success]

printf(Reception data)

Reception list update
- Storage count of the lists
- Read pointer

Data reception handler (User ID)

Data reception handler(-)

remote_irq_handler(-)

remote_irq_handler (Remote control instance address)

rmc_get_status (RMC instance handle, status storage destination)

rmc_get_data (RMC instance handle, reception data storage destination)

remote_irq_handler (Application)

Remote Control (Application)

UART IO (Application)

RMC (Application)
Application stop

Remote Control Application Stop

remote_stop (Remote control instance address)

remote_stop(-)

remote_stop

EXCEPTION disable
INTRMC_IRQn

rmc_rx_disable (RMC instance address)

bsp_irq_rmc_disable()
Remote control application end

Remote Control Application End

remote_finalize (Remote Control instance address)

ref
Remote Control Application Stop

rmc_deinit (RMC instance address)

Release of RMC register address assignment

driver_finalize(-)

Release of RMC register address assignment

Driver end

Driver End

ref
T32A Driver End
T32A Driver end

T32A Driver End

T32A (Driver)

Release of Register address assignment for 1-ms timer channel
10. Precaution

When using the sample program with CPU other than TMPM3H6, please check operation sufficiently.

11. Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2018-03-09</td>
<td>-</td>
<td>First release</td>
</tr>
</tbody>
</table>
RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for.
- Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

2018-03-09 20 / 20 Rev 1.0