Outlines

This application note is a reference material for developing products using the trimming circuit (TRM) function of M3H Group (1).
This document helps the user check operation of the product and develop its program.

Target sample program: TRMOSC
Table of Contents

Outlines ... 1
Table of Contents .. 2
1. Preface .. 3
2. Reference Document .. 4
3. Function to Use .. 4
4. Target Device .. 4
5. Conditions for Correct Operation .. 5
6. Evaluation Board Setting ... 6
7. Operation of Evaluation Board ... 6
8. Outline of Trimming Circuit Function .. 7
 8.1. Clock Supply .. 7
9. Sample Program ... 8
 9.1. Initialization ... 8
 9.2. Sample Program Main Operation .. 8
 9.3. Output Example of Sample Program ... 9
 9.3.1. Setting Example of Terminal Software ... 10
 9.4. Operating Flow of Sample Program ... 11
10. Precaution ... 13
11. Revision History .. 13
RESTRICTIONS ON PRODUCT USE ... 14
1. Preface

This sample program is used to check the operation of the trimming function. This sample program executes the calculation of the frequency error of the internal oscillator, and sets a corresponding adjustment value to the internal oscillation adjustment register.

Structure diagram of Sample program
2. Reference Document

- Datasheet
 TMPM3H group (1) datasheet Rev2.0 (Japanese edition)
- Reference manual
 Trimming circuit (TRM-A) Rev2.0 (Japanese edition)
- Other reference document
 TMPM3H(1) Group Peripheral Driver User Manual (Doxygen)

3. Function to Use

<table>
<thead>
<tr>
<th>IP</th>
<th>Channel</th>
<th>Port</th>
<th>Function / operation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous communication</td>
<td>ch0</td>
<td>PA1 (UT0TXDA) PA2 (UT0RXD)</td>
<td>UART mode</td>
</tr>
<tr>
<td>Trimming circuit</td>
<td>ch0</td>
<td>PA0 (T32A00OUTA)</td>
<td>Pulse wave output</td>
</tr>
<tr>
<td></td>
<td>ch4</td>
<td>-</td>
<td>Interval timer and Capture</td>
</tr>
<tr>
<td>32-bit timer event counter</td>
<td>ch2</td>
<td>PR1 (T32A02INA0)</td>
<td>External clock input</td>
</tr>
</tbody>
</table>

4. Target Device

The target devices of this application note are as follows.

<table>
<thead>
<tr>
<th>TMPM3H6FWFG</th>
<th>TMPM3H6FUFG</th>
<th>TMPM3H6FSFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMPM3H6FDWG</td>
<td>TMPM3H6FUDFG</td>
<td>TMPM3H6FSDFG</td>
</tr>
<tr>
<td>TMPM3H5FWFG</td>
<td>TMPM3H5FUFG</td>
<td>TMPM3H5FSFG</td>
</tr>
<tr>
<td>TMPM3H5FDWG</td>
<td>TMPM3H5FUDFG</td>
<td>TMPM3H5FSDFG</td>
</tr>
<tr>
<td>TMPM3H4FWUG</td>
<td>TMPM3H4FUUG</td>
<td>TMPM3H4FSUG</td>
</tr>
<tr>
<td>TMPM3H4FWFG</td>
<td>TMPM3H4FUFG</td>
<td>TMPM3H4FSFG</td>
</tr>
<tr>
<td>TMPM3H3FWUG</td>
<td>TMPM3H3FUUG</td>
<td>TMPM3H3FSUG</td>
</tr>
<tr>
<td>TMPM3H2FDUG</td>
<td>TMPM3H2FUDUG</td>
<td>TMPM3H2FSUG</td>
</tr>
<tr>
<td>TMPM3H2FWQG</td>
<td>TMPM3H2FUQG</td>
<td>TMPM3H2FSQG</td>
</tr>
<tr>
<td>TMPM3H1FWUG</td>
<td>TMPM3H1FUUG</td>
<td>TMPM3H1FSUG</td>
</tr>
<tr>
<td>TMPM3H1FPUG</td>
<td>TMPM3H0FSDUG</td>
<td>TMPM3H0FMDUG</td>
</tr>
</tbody>
</table>

* This sample program operates on the evaluation board of TMPM3H6FWFG.
 If other function than the TMPM3H6 one is checked, it is necessary that CMSIS Core related files (C startup file and I/O header file) should be changed properly.
 The BSP related file is dedicated to the evaluation board (TMPM3H6). If other function than the TMPM3H6 one is checked, the BSP related file should be changed properly.
5. Conditions for Correct Operation

- Used microcontroller: TMPM3H6FWFG
- Used board: TMPM3H6FWFG Evaluation Board (Product of Sensyst)
- Unified development environment: IAR Embedded Workbench for ARM 8.11.2.13606
- Unified development environment: μVision MDK Version 5.24.2.0
- Terminal software: Tera Term V4.96
- Sample program: V1100

For purchasing the board, refer to the following homepage. (http://www.chip1stop.com/)
6. Evaluation Board Setting

The following pin connections should be done on the evaluation board.

<table>
<thead>
<tr>
<th>CN5</th>
<th>Use</th>
<th>Through-hole No.</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART(RXD)</td>
<td>9-10</td>
<td></td>
<td>Connection</td>
</tr>
<tr>
<td>UART(TXD)</td>
<td>11-12</td>
<td></td>
<td>Connection</td>
</tr>
<tr>
<td>PORT(Output)</td>
<td>7</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

When an external clock is input, the following connector should be used.

<table>
<thead>
<tr>
<th>CN9</th>
<th>Use</th>
<th>Through-hole No.</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORT(Input)</td>
<td>16</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

7. Operation of Evaluation Board

The USB_UART pins on the evaluation board should be connected to the PC with a USB cable. The PC executes the communication setting after start-up of the terminal software (Tera Term). The reset button should be pushed down on the evaluation board.

After the completion of the trimming procedure, it should be checked that a 5-MHz pulse wave outputs on the PA0 port.
8. Outline of Trimming Circuit Function

The trimming circuit (TRM) can adjust the frequency for an internal oscillator. The lists of functions are as follows.

<table>
<thead>
<tr>
<th>Function Classification</th>
<th>Function</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency adjustment of</td>
<td>Target oscillator</td>
<td>Internal High Speed Oscillator 1 (IHOSC1)</td>
</tr>
<tr>
<td>the internal oscillator</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adjustment range</td>
<td>Coarse trimming -18.8 to +30.4 % (Average 0.8 % step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine trimming -0.8 to +0.7 % (0.1 % step)</td>
</tr>
<tr>
<td></td>
<td>Monitor function</td>
<td>The reading of the initial trimming level is possible</td>
</tr>
<tr>
<td></td>
<td>Protection function</td>
<td>Incorrect writing is prevented</td>
</tr>
</tbody>
</table>

8.1. Clock Supply

When you use TRM, please set an applicable clock enable bit to “1” (clock supply) in fsys supply stop register A ([CGFSYSENAA]), fsys supply stop register B ([CGFSYSENB]), and fc supply stop register ([CGFCEN]).

For the details, refer to “Clock control and operation mode” in Reference manual.
9. Sample Program

This sample program executes adjustment of the frequency of the internal oscillator using the trimming circuit (TRM) in TMPM3H6FWFG.
The low-speed clock (32.768 kHz) or an external clock are available as the reference clock.

The reference clock is selected by "TRMOSC_LOSC" in the macro “txz_sample_def.h”.
Low-speed clock (32.768 kHz): TRMOSC_LOSC should be enabled.
External clock: TRMOSC_LOSC should be disabled.

9.1. Initialization

The following initialization is done after power is supplied.
The PORT setting is executed after the initialization of each clock setting, the watchdog timer setting, and the clock setting.

9.2. Sample Program Main Operation

After the initialization, the “main” function is executed, and the following initialization is done.
1. BSP (Board Support Package) initialization
2. Initialization of the external low-speed oscillator
3. Trigger selector initialization
4. Application initialization
5. T32A initialization (Interval timer output setting)
6. T32A initialization (Capture setting)
7. Initialization of the trimming control register (for debugging)
8. Trimming procedure starts.

The adjustment procedure for the internal oscillator starts. The adjustment value is set to the register and the result of the procedure is issued. Then the infinite loop procedure executes.

The adjustment procedure completes when TRMOSC_DONE is issued to the terminal software. When Initial trimming value is issued to the terminal software, the adjustment procedure completes and the adjustment value is the same one at shipment.
9.3. Output Example of Sample Program

When the sample program operates, the command results are shown as follows;
9.3.1. Setting Example of Terminal Software

The operation of the terminal software (Tera Term) has been checked with the following settings.
9.4. Operating Flow of Sample Program

The operating flows of the sample program are shown in the following:

- **main**
 - Port initialization `initGpio()`
 - Clock supply to peripheral devices
 - T32A0 interval timer output setting `initT32A0()`
 - T32A2 capture setting `initT32A2()`
 - TRM initialization `initTRM()`
 - Software timer
    ```
    for(i=0; i<0x00400000; i++);
    ```
 - Loop count: 10
 - Adjustment procedure for the internal oscillator `IOSCadjustment()`
 - Adjustment is successful?
 - Y: Successful (TRMOSC_DONE) Coarse trimming value output Fine trimming value output
 - N: Run the adjustment?
 - Y: Run (TRMOSC_RUN) Coarse trimming value output Fine trimming value output
 - N: Failure (TRMOSC_ERROR)
 - No conditions

TRM register is initialized only by Power-on reset. Here, the register is set to the initial value by software procedure to check the pre-adjusted waveform on the debugger.

In order to check the waveform before adjustment, wait is inserted.
Internal oscillator adjustment procedure
IOSCAdjustment()

Waveform measurement
MeasureWave()

Error calculation
CalcDiff()

Error is present?
Y
N

Adjustment value calculation
CalcAdjVal()

Within the set range?
Y
N

Trimming value setting
SetTrmOsc()

Run the adjustment
(TRMOSC_RUN)

Adjustment is successful
(TRMOSC_DONE)

Failure (TRMOSC_ERROR)
10. Precaution

When using the sample program with CPU other than TMPM3H6, please check operation sufficiently.

11. Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2018-03-29</td>
<td>-</td>
<td>First release</td>
</tr>
</tbody>
</table>
RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as “TOSHIBA.” Hardware, software and systems described in this document are collectively referred to as “Product.”

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combusions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

2018-03-29 14 / 14 Rev 1.0