Outlines

This application note is a reference material for developing products using the clock control and the operation mode (CG) functions of M3H Group (2).
The mode transition is done by an external interrupt.
This document helps the user check operation of the product and develop its program

Target sample program: CGRST_EXINT
Table of Contents

Outlines ... 1
Table of Contents .. 2
1. Preface .. 3
2. Reference Document .. 4
3. Function to Use ... 4
4. Target Device .. 4
5. Operation confirmation condition .. 5
6. Evaluation Board Setting ... 6
7. Operation of Evaluation Board ... 7
8. Outline of clock control function .. 8
9. Sample Program ... 9
 9.1. Initialization .. 9
 9.2. Sample program main operation ... 9
 9.3. Operating Mode Switching ... 9
 9.4. Operating Flow of Sample Program ... 10
10. Precaution .. 22
11. Revision History .. 22
RESTRICTIONS ON PRODUCT USE ... 23
1. Preface

This sample program operates on the evaluation board. The operating mode can be changed from Normal mode to Low power mode by controlling Push SW on the evaluation board. The operation mode state can be checked with the LED.

The operation mode is changed to the Normal mode during the Low power mode by an external interrupt.

Structure diagram of Sample program
2. Reference Document

- Datasheet
 TMPM3H group (2) datasheet Rev2.0 (Japanese edition)
- Reference manual
 Clock Control and Operating Mode (CG-M3H(2)-D) Rev2.0 (Japanese edition)
- Other reference document
 TMPM3H(2) Group Peripheral Driver User Manual (Doxygen)

3. Function to Use

<table>
<thead>
<tr>
<th>IP</th>
<th>channel</th>
<th>port</th>
<th>Function / operation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock control</td>
<td>-</td>
<td>-</td>
<td>System clock control/Mode switching</td>
</tr>
<tr>
<td>Input and output port</td>
<td>-</td>
<td>PV0 : (Input Port) PV1 : (Input Port) PV2 : (Input Port)</td>
<td>Input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC2 : (INT02)</td>
<td>Interrupt</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PK4 : (Output Port) PK5 : (Output Port) PK6 : (Output Port) PK7 : (Output Port)</td>
<td>Output</td>
</tr>
</tbody>
</table>

4. Target Device

The target devices of application note are as follows.

<table>
<thead>
<tr>
<th>TMPM3HQFDFG</th>
<th>TMPM3HQFZFG</th>
<th>TMPM3HQFYFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMPM3HPFDFG</td>
<td>TMPM3HPFZFG</td>
<td>TMPM3HPFYFG</td>
</tr>
<tr>
<td>TMPM3HNFDGF</td>
<td>TMPM3HNFZFG</td>
<td>TMPM3HNFYFG</td>
</tr>
<tr>
<td>TMPM3HNFDFFG</td>
<td>TMPM3HNFDZFG</td>
<td>TMPM3HNFDFDFG</td>
</tr>
<tr>
<td>TMPM3HMFDGF</td>
<td>TMPM3HMFDZFG</td>
<td>TMPM3HMFDYFG</td>
</tr>
</tbody>
</table>

* This sample program operates on the evaluation board of TMPM3HQFDFG.
If other function than the TMPM3HQ one is checked, it is necessary that CMSIS Core related files (C startup file and I/O header file) should be changed properly.
The BSP related file is dedicated to the evaluation board (TMPM3HQ). If other function than the TMPM3HQ one is checked, the BSP related file should be changed properly.
5. Operation confirmation condition

<table>
<thead>
<tr>
<th>Used microcontroller</th>
<th>TMPM3HQFDFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used board</td>
<td>TMPM3HQFDFG Evaluation Board (Product of Sensyst)</td>
</tr>
<tr>
<td>Unified development environment</td>
<td>IAR Embedded Workbench for ARM 8.11.2.13606</td>
</tr>
<tr>
<td>Unified development environment</td>
<td>μVision MDK Version 5.24.2.0</td>
</tr>
<tr>
<td>Sample program</td>
<td>V1100</td>
</tr>
</tbody>
</table>

Evaluation board (TMPM3HQFDFG Evaluation Board) (Top view)

For purchasing the board, refer to the following homepage. (http://www.chip1stop.com/)
6. Evaluation Board Setting

The following pin connections should be done on the evaluation board.

<table>
<thead>
<tr>
<th>CN5</th>
<th>Board function</th>
<th>Through hole No.</th>
<th>Through hole No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED (D10)</td>
<td>33 : PORT_LED0</td>
<td>34 : PK4</td>
<td></td>
</tr>
<tr>
<td>LED (D9)</td>
<td>35 : PORT_LED1</td>
<td>36 : PK5</td>
<td></td>
</tr>
<tr>
<td>LED (D8)</td>
<td>37 : PORT_LED2</td>
<td>38 : PK6</td>
<td></td>
</tr>
<tr>
<td>LED (D7)</td>
<td>39 : PORT_LED3</td>
<td>40 : PK7</td>
<td></td>
</tr>
<tr>
<td>Push SW (S4)</td>
<td>49 : PORT_PSW0</td>
<td>50 : PV0</td>
<td></td>
</tr>
<tr>
<td>Push SW (S5)</td>
<td>51 : PORT_PSW1</td>
<td>52 : PV1</td>
<td></td>
</tr>
<tr>
<td>Push SW (S6)</td>
<td>53 : PORT_PSW2</td>
<td>54 : PV2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CN21</th>
<th>Board function</th>
<th>Through hole No.</th>
<th>Through hole No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push SW (S9)</td>
<td>15 : I07_STOP2_PC2</td>
<td>16 : PC2</td>
<td></td>
</tr>
</tbody>
</table>
7. Operation of Evaluation Board

The initial mode is the Normal mode. After the reset is deasserted, the controller operates in the Normal mode. The LED blinks on PK4. The mode can be changed to the Low power mode by the Push SW.

- IDLE: S4: PV0
- STOP1: S5: PV1
- STOP2: S6: PV2

The LED’s show the current operation mode.

The LED lighting status depends on an operating mode, shown as follows:

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>IDLE</th>
<th>STOP1</th>
<th>STOP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode</td>
<td>D10: PK4 (Blink)</td>
<td>D8: PK6 (Lighting)</td>
<td>D7: PK7 (Lighting)</td>
</tr>
<tr>
<td>Low power mode</td>
<td>D9: PK5 (Lighting)</td>
<td>D8: PK6 (Lighting)</td>
<td>D7: PK7 (Lighting)</td>
</tr>
</tbody>
</table>

LED blink frequency

- Normal mode: LED On for 1 second -> LED Off for 1 second, and it repeats.
- Low power mode: IDLE: Lighting, STOP1: Lighting, STOP2: Lighting

Returning to Normal mode by interrupt control

When Push SW S9: PC2 is pushed down, the operation mode is changed from the Low power mode to the Normal mode.

The change among the Low power modes is not supported.
8. Outline of clock control function

The operation mode consists of the Normal mode and the Low power modes. The power consumption can be saved by transition of the operation modes according to the application.

The clock control available are shown as follows:
- **System clock control**
 - As the source of the system clock, the internal high speed oscillation clock and the external high speed oscillation clock (connection of a crystal oscillator or a clock input) can be used.
- **Prescaler clock control**
 - Each peripheral function has a prescaler to divide the clock ϕT_0.

The clock function has the following operation modes.
- **Normal mode**
- **Low power mode** (3 modes)
 - IDLE/STOP1/STOP2

The operation mode can be changed by the Push switch in this sample program. And the operation mode is shown by the LED blinking pattern.
9. Sample Program
By pressing Push switch, it switches to low power mode (IDLE/STOP1/STOP2).
A corresponding LED turns on at the transition to the Low power mode.
When an external interrupt is detected, the operation mode returns to the Normal mode.

9.1. Initialization
The following initialization is done after power is supplied.
The PORT setting is done after the initialization of each clock setting and the clock setting.

9.2. Sample program main operation
This sample program executes the reset setting, the LED initialization, and the Push switch setting initialization.
In the main operation, initialize and set the timer, and set the LED and Push switch.

After each initialization completes, the sample program changes the operation mode according to the following procedure.
Operation in the Normal mode (LED: Blink on PK4)
Change to the Low power mode by the Push switch.
LED lighting (PK4 to PK7) shows the operation mode (4 modes).

The current operation mode in the sample program can be checked by using the LED’s.
When the operation mode is changed to the Low power mode by the Push switch, the following operation should be done.
When INT02 interrupt occurs, it returns to Normal mode.
The direct transition among the different Low power modes is not supported by this sample program. The transition to the Low power mode should be done via the Normal mode.

9.3. Operating Mode Switching
The mode switching can be done by setting the GND level selectively to the PORT pins (PV0 to PV2) in this sample program.
After power is supplied or the reset is deasserted, the microcontroller enters the Normal state.
The Normal mode returns after the interrupt (INT02) is generated by the Push switch 9.
9.4. Operating Flow of Sample Program

The operating flows of the sample program are shown in the following;
Normal mode

Normal: Start-up

- Normal: Driver initialization
- Normal: Application initialization
- Timer Application start-up

Normal mode procedure

- Loop [1, used SW count]
 - SW detection
- Loop [1, used LED count]
 - LED control
Normal: End

ref Timer Application stop

ref Normal: Application end

ref Normal: Driver end

BSP end

BPS end procedure, if necessary.
IDLE mode

Low power IDLE mode procedure

BSP initialization

ref IDLE start-up

WFI instruction

WFI is cleared by External interrupt.

ref IDLE end

BSP end

System initialization

BSP initialization

RAM initialization
Procedure: Normal start-up

BPS end procedure, if necessary.

Initialization procedure for the Normal mode, if necessary. Watchdog timer, PLL, and so on.
IDLE: Start-up

- **WDT disable**
- **IDLE mode setting**
- **PLL stop**
- **Internal high speed oscillator starts.**
- **External high speed oscillator stops.**
- **Internal high speed oscillator for OFD stops**
- **Stop of External high speed oscillator is checked.**
- **Wait for Stop of Internal high speed oscillator for OFD.**
- **IDLE: Driver initialization**
- **IDLE: Application initialization**
STOP1 mode

Low power STOP1 mode procedure

START

BSP initialization

STOP1 start-up

WFI instruction

WFI release with external interrupt

STOP1 end

BSP end

BSP initialization

System initialization

Initialization procedure for the Normal mode, if necessary. Watchdog timer, PLL, and so on.

RAM initialization

Procedure: Normal start-up

BSP initialization procedure for STOP1, if necessary.

BSP end procedure, if necessary.
STOP1: Start-up

- WDT disable
- Wait for Flash Ready
- Wait for Warm-up of High speed oscillator
- Warm-up setting of Internal high speed oscillator
- STOP1 mode setting
- PLL stop
- Internal high speed oscillator starts.
- External high speed oscillator stops.
- Internal high speed oscillator for OFD stops.
- Stop of External high speed oscillator is checked.
- Waiting for internal high-speed oscillator to stop for OFD
- STOP1: Driver initialization
- STOP1: Application initialization
STOP2 mode

Low power STOP2 mode procedure

- BSP initialization
- STOP2 start-up
- WFI instruction
- Reset with external interrupt
STOP2: Start-up

1. LED Application Initialization
2. WDT disable
3. Wait for Flash Ready
4. Port keeping setting
5. STOP2 mode setting
6. PLL stop
7. Internal high speed oscillator starts.
8. External high speed oscillator stops.
9. Internal high speed oscillator for OFD stops.
10. Stop of External high speed oscillator is checked.
11. Wait for Stop of Internal high speed oscillator for OFD
12. STOP2: Driver initialization
13. STOP2: Application initialization

LED port setting should be done before Port keeping setting.
External interrupt detection

- Interrupt factor (Rising edge detection)
- INT02_IRQHandler()
- opt
 - Interrupt factor flag clear
 - Status value inversion
- irq_extn(status value)

BSP (Application)
10. Precaution

When using the sample program with CPU other than TMPM3HQ, please check operation sufficiently.

11. Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2018-05-15</td>
<td>-</td>
<td>First release</td>
</tr>
</tbody>
</table>
RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as “TOSHIBA”.

Hardware, software and systems described in this document are collectively referred to as “Product”.

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NOT INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.