M3H Group(2)
Application Note
12-bit Analog to Digital Converter
(ADC-A)

Outlines
This application note is a reference material for developing products using the 12-bit analog to digital converter (ADC) function of M3H Group (2).
This document helps the user check operation of the product and develop its program

Target sample program: ADC_UART_DMA
Table of Contents

Outlines ... 1
Table of Contents .. 2
1. Preface .. 3
2. Reference Document .. 4
3. Function to Use .. 4
4. Target Device .. 4
5. Operation confirmation condition .. 5
6. Evaluation Board Setting ... 6
7. Outline of 12-bit Analog to Digital Converter Function .. 7
8. Sample Program .. 8
 8.1. Initialization ... 8
 8.2. Sample program main operation ... 8
 8.3. Output Example of Sample Program ... 9
 8.3.1. Setting Example of Terminal Software ..9
 8.4. ADC Setting Change ... 10
 8.5. Operating Flow of Sample program .. 11
9. Precaution ... 21
10. Revision History ... 21
REstrictions on product use .. 22
1. Preface

This sample program is used to measure the thermistor output voltage using the ADC, convert the ADC result to a temperature value using the CPU, and display it on the terminal software. And the program also displays the digital value to which an analog voltage is converted by the ADC.

Structure diagram of Sample program
2. Reference Document

- Datasheet
 TMPM3H group (2) datasheet Rev2.0 (Japanese edition)
- Reference manual
 12-bit analog to digital converter (ADC-A) Rev2.0 (Japanese edition)
- Other reference document
 TMPM3H(2) Group Peripheral Driver User Manual (Doxygen)

3. Function to Use

<table>
<thead>
<tr>
<th>IP</th>
<th>channel</th>
<th>port</th>
<th>Function / operation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>ch0</td>
<td>PE0 (AINA04)</td>
<td>Continuous conversion</td>
</tr>
<tr>
<td></td>
<td>ch1</td>
<td>PD4 (AINA19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ch2</td>
<td>PD5 (AINA20)</td>
<td></td>
</tr>
<tr>
<td>Asynchronous serial</td>
<td>ch0</td>
<td>PA1 (UT0TXDA)</td>
<td>Asynchronous communication with PC</td>
</tr>
<tr>
<td>communication circuit</td>
<td></td>
<td>PA2 (UT0RXD)</td>
<td></td>
</tr>
<tr>
<td>DMAC</td>
<td>ch14</td>
<td>-</td>
<td>Continuous normal transfer</td>
</tr>
</tbody>
</table>

4. Target Device

The target devices of application note are as follows.

<table>
<thead>
<tr>
<th>TMPM3HQFDFG</th>
<th>TMPM3HQFZFG</th>
<th>TMPM3HQFYFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMPM3HPFDFG</td>
<td>TMPM3HPFZFG</td>
<td>TMPM3HPFYFG</td>
</tr>
<tr>
<td>TMPM3HNFDFFG</td>
<td>TMPM3HNFDFFG</td>
<td>TMPM3HNFDFFG</td>
</tr>
<tr>
<td>TMPM3HMFDFG</td>
<td>TMPM3HMFZFG</td>
<td>TMPM3HMFYFG</td>
</tr>
</tbody>
</table>

* This sample program operates on the evaluation board of TMPM3HQFDFG.
If other function than the TMPM3HQ one is checked, it is necessary that CMSIS Core related files (C startup file and I/O header file) should be changed properly.
The BSP related file is dedicated to the evaluation board (TMPM3HQ). If other function than the TMPM3HQ one is checked, the BSP related file should be changed properly.
5. Operation confirmation condition

- Used microcontroller: TMPM3HQFDFG
- Used board: TMPM3HQFDFG Evaluation Board (Product of Sensyst)
- Unified development environment: IAR Embedded Workbench for ARM 8.11.2.13606
- Unified development environment: μVision MDK Version 5.24.2.0
- Terminal software: Tera Term V4.96
- Sample program: V1100

For purchasing the board, refer to the following homepage. (http://www.chip1stop.com/)
6. Evaluation Board Setting

The following pin connections should be done on the evaluation board.

<table>
<thead>
<tr>
<th>CN12</th>
<th>Board function</th>
<th>Through hole No.</th>
<th>Through hole No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USB UART conversion</td>
<td>53 : PA1</td>
<td>54 : USB_TXD</td>
</tr>
<tr>
<td></td>
<td>USB UART conversion</td>
<td>55 : PA2</td>
<td>56 : USB_RXD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CN9</th>
<th>Board function</th>
<th>Through hole No.</th>
<th>Through hole No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thermistor</td>
<td>21 : AIN_NTC</td>
<td>22 : PE0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CN5</th>
<th>Board function</th>
<th>Through hole No.</th>
<th>Through hole No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variable resistance</td>
<td>57 : PORT_AIN1</td>
<td>58 : PD5</td>
</tr>
<tr>
<td></td>
<td>Variable resistance</td>
<td>59 : PORT_AIN0</td>
<td>60 : PD4</td>
</tr>
</tbody>
</table>
7. Outline of 12-bit Analog to Digital Converter Function

The ADC is triggered to start the conversion by the software start-up (Software trigger) or the trigger signal from PMD, a timer, and others. When you use ADC, please set an applicable clock enable bit to "1" (clock supply) in fsys supply stop register A or B ([CGFSYSENA], [CGFSYSENB]), fc supply stop registers ([CGFCEN]), and Clock Supply for ADC and TRACE register([CGSPCLKEN]). Please refer to “Clock Control and Operation Mode” of the reference manual for the clock enable bit.
8. Sample Program

The thermistor output voltage is measured using the ADC. The ADC result is converted to a temperature value by the CPU, and the value is displayed on the terminal software. The ADC converts the output voltage value of a variable resistor, and the result value is displayed on the terminal software.

8.1. Initialization

The following initialization is done after power is supplied. The initialization of each clock setting and the initialization of the watchdog timer setting.

8.2. Sample program main operation

After the initialization operation, shift to the main function and do the following initialization.
1. BSP (Board Support Package) initialization
2. Driver initialization
3. Application initialization

The timer setting, the UART setting, the DMA setting, the ADC setting, and the thermistor setting are done by executing the above operation. The AINA04, AINA19, and AINA20 pins are used as the AD input pins. The ADC result is converted to a temperature value by the CPU, and the value is displayed on the terminal software. The interval of the output to the terminal software is defined by timer_interval_handler. The output interval is set by the macro definition CFG_OUTPUT_INTERVAL, and the initial value is 5 seconds.
8.3. Output Example of Sample Program

Display temperature and voltage digital value.

Results are displayed at intervals of 5 seconds.

8.3.1. Setting Example of Terminal Software

The operation of the terminal software (Tera Term) has been checked with the following settings.
8.4. ADC Setting Change

The ADC is initialized depending on the evaluation board. The channel of the ADC can be changed by bps.c.

static const uint32_t thermistorsTbl[BSP_THERMISTORS_MAX][5] =
{
 {(uint32_t)GPIO_PORT_E, (uint32_t)GPIO_PORT_0, (uint32_t)(4), (uint32_t)(0), (uint32_t)(14) },
 {(uint32_t)GPIO_PORT_D, (uint32_t)GPIO_PORT_4, (uint32_t)(19), (uint32_t)(1), (uint32_t)(14) },
 {(uint32_t)GPIO_PORT_D, (uint32_t)GPIO_PORT_5, (uint32_t)(20), (uint32_t)(2), (uint32_t)(14) }
};

The above settings define Group of the ADC, PORT number, ADIN, AD channel, and the channel of DMAC. The used ADC can be changed by the update of the above settings. The third item sets the AD input channel. The fourth item sets the AD channel.
8.5. Operating Flow of Sample program

The operating flows of the sample program are shown in the following;
Creation and Initialization

- BSP initialization
- RAM initialization
- Driver initialization
- Application initialization

Driver initialization

- T32A Driver initialization
- DMA Driver initialization
- ADC Driver initialization
T32A Driver initialization

bsp_get_timer_ch(BSPTimer)

Channel number = bsp_get_timer_ch(-)

t32a_mode_init(Instance address)

timer_initialize (Timer instance address)

result = timer_initialize(-): Successful

result = t32a_mode_init(-): Successful

t32a_timer_init(Instance address)

result = t32a_timer_init(-): Successful
ADC Driver initialization

Assignment of ADC register address

`adc_init`

DMA Driver initialization

Assignment of DMA register address

`dma_init(DMA Instance address)`

Create DMA Driver setting value
- Work area
Application initialization

- Timer Application initialization
- UART Application initialization
- Thermistor (ADC channel) setting

Thermistor (ADC channel) setting

- bsp_get_thermistors_adin
 Acquisition of ADIN channel for Thermistor
- bsp_get_thermistors_ch
 Acquisition of ADC channel for Thermistor
- adc_channel_setting
Acquisition of Temperature

- adc_dma_start
 (Instance address, Storage address)
- dma_normal_int_startIt
 (Instance address, channel, Burst, config information)
- dma_sw_request
 (Instance address, channel)
- dma_sw_request()
- Conversion state =CONVERSION_SUCCESS done_handler()
- dma_irq_handler(DMA instance handle, target DMA channel)
- Transfer status =DMA_SUCCESS dma_done_handler()
- Acquisition of ADC channel for Thermistor
- bsp_get_thermistors_ch
- bsp_get_thermistors_degC
- ADC value → temperature conversion
- print(Display data of Temperature)
Thermistor (ADC channel) setting clear

Remote Control (Application)

adc_channel_clear
Driver end

ADC Driver end

T32A Driver end

DMA Driver end

dma_deinit(DMA Instance address)

Release of assignment of DMA register address

DMA (Driver)
ADC Driver end

- ADC (Driver)
- adc_deinit
- Release of assignment of ADC register address

T32A Driver end

- T32A (Driver)
- Release of assignment of Register address for 1-ms timer channel
9. Precaution

When using the sample program with CPU other than TMPM3HQ, please check operation sufficiently.

10. Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2018-05-14</td>
<td>-</td>
<td>First release</td>
</tr>
</tbody>
</table>
TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

2018-05-14 22 / 22 Rev 1.0

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as “TOSHIBA.” Hardware, software and systems described in this document are collectively referred to as “Product.”

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.