Outlines

This application note is a reference material for developing products using the RAM Parity (RAMP-A) function of M3H Group (2).
This document helps the user check operation of the product and develop its program.

Target sample program: RAMParity
Table of Contents

Outlines ... 1
Table of Contents .. 2
1. Preface .. 3
2. Reference Document .. 4
3. Function to Use .. 4
4. Target Device ... 4
5. Operation confirmation condition .. 5
6. Evaluation Board Setting ... 6
7. Operation of Evaluation Board ... 6
8. Outline of RAM Parity Function ... 7
9. Sample Program ... 8
 9.1. Initialization ... 8
 9.2. Sample program main operation ... 8
 9.3. Output Example of Sample Program ... 9
 9.3.1. Setting Example of Terminal Software .. 9
 9.4. Operating Flow of Sample Program .. 10
10. Precaution .. 16
11. Revision History ... 16
RESTRICTIONS ON PRODUCT USE .. 17
1. Preface

This sample program is used to check the operation of the RAM parity function. The character string input from the terminal software is stored with the parity added to the RAM with the write command. The read command checks the parity which is stored in the RAM.

Structure diagram of Sample program
2. Reference Document

- Datasheet
 TMPM3H group (2) datasheet Rev2.0 (Japanese edition)
- Reference manual
 RAM PARITY (RAMP-A) Rev1.0 (Japanese edition)
- Other reference document
 TMPM3H(2) Group Peripheral Driver User Manual (Doxygen)

3. Function to Use

<table>
<thead>
<tr>
<th>IP</th>
<th>channel</th>
<th>port</th>
<th>Function / operation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous serial</td>
<td>ch0</td>
<td>PA1 (UT0TXDA)</td>
<td>Asynchronous communication with PC</td>
</tr>
<tr>
<td>communication circuit</td>
<td></td>
<td>PA2 (UT0RXD)</td>
<td></td>
</tr>
</tbody>
</table>

4. Target Device

The target devices of application note are as follows.

<table>
<thead>
<tr>
<th>TMPM3HQFDFG</th>
<th>TMPM3HQFZFG</th>
<th>TMPM3HQFYFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMPM3HPFDFG</td>
<td>TMPM3HPFZFG</td>
<td>TMPM3HPFYFG</td>
</tr>
<tr>
<td>TMPM3HNFDFG</td>
<td>TMPM3HNFZFG</td>
<td>TMPM3HNFYFG</td>
</tr>
<tr>
<td>TMPM3HNFDDFG</td>
<td>TMPM3HNFZDFG</td>
<td>TMPM3HNFYDFG</td>
</tr>
<tr>
<td>TMPM3HMFDGF</td>
<td>TMPM3HMFZFG</td>
<td>TMPM3HMFYFG</td>
</tr>
</tbody>
</table>

* This sample program operates on the evaluation board of TMPM3HQFDFG. If other function than the TMPM3HQ one is checked, it is necessary that CMSIS Core related files (C startup file and I/O header file) should be changed properly. The BSP related file is dedicated to the evaluation board (TMPM3HQ). If other function than the TMPM3HQ one is checked, the BSP related file should be changed properly.
5. Operation confirmation condition

- **Used microcontroller**: TMPM3HQFDFG
- **Used board**: TMPM3HQFDFG Evaluation Board (Product of Sensyst)
- **Unified development environment**: IAR Embedded Workbench for ARM 8.11.2.13606
- **Unified development environment**: μVision MDK Version 5.24.2.0
- **Terminal software**: Tera Term V4.96
- **Sample program**: V1100

For purchasing the board, refer to the following homepage. (http://www.chip1stop.com/)
6. Evaluation Board Setting

The following pin connections should be done on the evaluation board.

<table>
<thead>
<tr>
<th>CN12</th>
<th>Through hole No.</th>
<th>Through hole No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB UART conversion</td>
<td>53 : PA1</td>
<td>54 : USB_TXD</td>
</tr>
<tr>
<td>USB UART conversion</td>
<td>55 : PA2</td>
<td>56 : USB_RXD</td>
</tr>
</tbody>
</table>

7. Operation of Evaluation Board

The USB_UART connector on the evaluation board should be connected to a PC with a USB cable. The terminal software (Tera Term) is started up on the PC, and the communication setting should be done. The reset button should be pushed down on the evaluation board. The communication starts according to the command input. For the details of the command operation, refer to “Sample program main operation”.
8. Outline of RAM Parity Function

RAM parity function generates parity data when write to RAM. And read RAM data with parity and do parity check (judgment) the parity. At that time, detected parity error, then generates RAM parity interrupt request (INTPARI).
9. Sample Program

The RAM parity data is added to the character string which is input by a write command on the Tera Term. The data and its parity data are stored to the RAM. A read command reads data in the RAM and its parity is checked. The result is displayed on the Tera Term. The maximum length of the character string is 10 characters.

9.1. Initialization

The following initialization is done after power is supplied. The port settings are done after the initialization of each clock setting, the watchdog timer setting, and the clock setting.

9.2. Sample program main operation

After the initialization, the "main" function is executed, and the following initialization is done.
1. BSP (Board Support Package) initialization
2. Application initialization
3. RAM clear and RAM parity setting
4. “main” control of the sample program

After the above procedure, the following operation should be done on the terminal software (Tera Term) on the PC.
"command >” is displayed on the Tera Term. Commands should be input according to the following command format.
When the write command is input, the written data after “write data >” is displayed on the Tera Term. And the data and its parity value are stored to the RAM.
When the read command is input, the data in the RAM is displayed after the parity check on the Tera Term. The data is displayed after "read data >". Then “command >” is displayed again.
The read command should be done after the write command is executed.

Command format:
write command
write X X: Arbitrary characters
read command
read
9.3. Output Example of Sample Program

When the sample program operates, the command results are shown as follows;

```
command > write abc
write data > abc
command > read
read data > abc
command >
```

9.3.1. Setting Example of Terminal Software

The operation of the terminal software (Tera Term) has been checked with the following settings.
9.4. Operating Flow of Sample Program

The operating flows of the sample program are shown in the following:
Creation and Initialization

BSP initialization

Application initialization

RAM initialization

RAM Parity setting

Status initialization
Application initialization

- UART Application initialization
- TSPI transmission channel initialization
- TSPI reception channel initialization

RAM Parity setting

- REG_RPAREN_enablet(Register base address, Transmission data)
"getchar" is retargeted to "getc", and the characters are input one by one.

Reception data is picked up.

[Reception information = Reception data is present.]

loop

[Reception result != Failure]

break
Command procedure

Input data == "write" ?

YES

Data is written to RAM area.

NO

Input data == "read" ?

Command error message display

ref RAM Parity check
RAM Parity setting

REG_RPARFGx_get(Register base address, RAM area)

Status value == 0?

Write data display

NO

Error procedure

Status value: REG_RPARFGx_get(-)
10. Precaution

When using the sample program with CPU other than TMPM3HQ, please check operation sufficiently.

11. Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2018-05-18</td>
<td>-</td>
<td>First release</td>
</tr>
</tbody>
</table>
RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA".

Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.