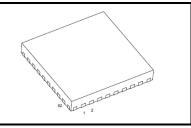
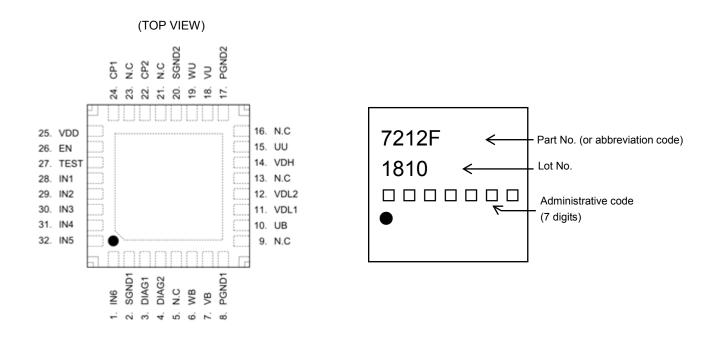
Toshiba Intelligent Power Device Silicon Monolithic Power MOS Integrated Circuit


TPD7212F

Power MOSFET Gate Driver for 3-Phase DC Motor

The TPD7212F is a power MOSFET gate driver for 3-phase full-bridge circuits for the charge pump method by the BiCD process. The inclusion of a charge pump circuit for drivers inside the IC makes it easy to configure a 3-phase full-bridge circuit.

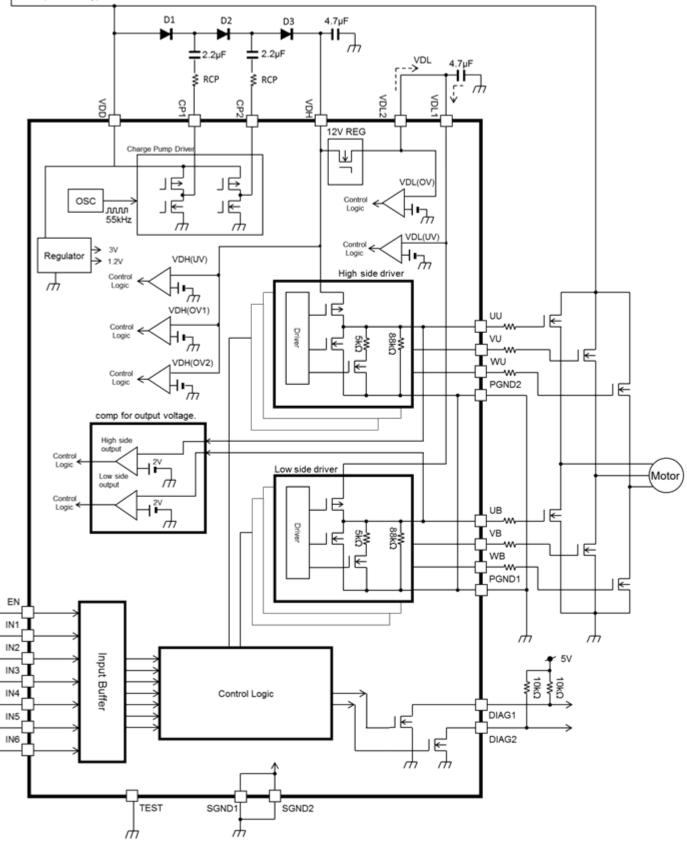
Features


- Power MOSFET gate driver for 3-phase DC motor.
- Built-in power supply for driver and diagnosis function of output voltage.
- Built-in charge pump circuit.
- Package is provided with a WQFN32 embossed-tape packing.

P-WQFN32-0505-0.50-002 Weight: 0.06g (typ.)

Pin Assignment

Marking


Note : The dotted line expresses exposure of the frame on the back. The exposed area of the back central part is electrically connected with the unindicated name corner pin. (Please insulate or short to GND.)

This product has a MOS structure and is sensitive to electrostatic discharge

Start of commercial production 2018-08

Block diagram / Application circuit

VBB(12V Battery)

Pin Description

Pin No.	Symbol	Pin Description				
1	IN6	Input pin: It controls for WB. Built in pull down resistor (100k Ω typ.).				
2	SGND1	Signal block GND pin.: shared internally with SGND2.				
3	DIAG1	Diagnosis detection pin. Nch open drain.				
4	DIAG2	iagnosis detetion pin. Nch open drain.				
5	N.C	No-Connect pin.				
6	WB	Drives the power MOSFET connected to the low side of the W phase.				
7	VB	Drives the power MOSFET connected to the low side of the V phase.				
8	PGND1	Power block GND pin.: shared internally with PGND2.				
9	N.C	No-Connect pin.				
10	UB	Drives the power MOSFET connected to the low side of the U phase.				
11	VDL1	Power supply pin for low side drive. please connnect to VDL2 pin outside.				
12	VDL2	Power supply pin for low side drive. please connnect to VDL1 pin outside.				
13	N.C	No-Connect pin.				
14	VDH	Output pin for charge pump.				
15	UU	Drives the power MOSFET connected to the high side of the U phase.				
16	N.C	No-Connect pin.				
17	PGND2	Power block GND pin.: shared internally with PGND1.				
18	VU	Prives the power MOSFET connected to the high side of the V phase.				
19	WU	ves the power MOSFET connected to the high side of the W phase.				
20	SGND2	Signal block GND pin.: shared internally with SGND1.				
21	N.C	No-Connect pin.				
22	CP2	Capacitor pin for charge pump				
23	N.C	No-Connect pin.				
24	CP1	Capacitor pin for charge pump				
25	VDD	Power supply pin				
26	EN	Inhibit pin (high active). Built in pull down resistor (400kΩtyp.).				
27	TEST	For internal test. Please connect to GND during normal operation.				
28	IN1	Input pin: It controls for UU. Built in pull down resistor (100k Ω typ.).				
29	IN2	Input pin: It controls for VU. Built in pull down resistor (100k Ω typ.).				
30	IN3	Input pin: It controls for WU. Built in pull down resistor (100k Ω typ.).				
31	IN4	Input pin: It controls for UB. Built in pull down resistor (100k Ω typ.).				
32	IN5	Input pin: It controls for VB. Built in pull down resistor (100k Ω typ.).				

Absolute Maximum Ratings (Ta = 25°C)

Chara	icteristics	Symbol	Rating	Unit	Note
Supply voltage	DC	V _{DD(DC)}	-0.3 to 25	V	
Supply voltage	pulse	V _{DD(Pulse)}	-0.3 to 40	V	t≤300ms
PGND voltage		V _{PGND}	-0.3 to 0.3	V	Standard in SGND
Output voltage	High side	V _{xU}	-0.3 to VDH+0.3	V	UU,VU,WU pin
	Low side	V _{xB}	-0.3 to VDL+0.3	V	UB,VB,WB pin
Output ourront	Source current	I _{xU}	-1.0	А	
Output current	Sink current	I _{xB}	+1.5	А	
Input voltage	IN1 to IN6	V _{IN}	-0.3 to 6	V	
Input voltage	EN	V _{EN}	-0.3 to 25	V	
Diagnosis output	voltage	V _{DIAG}	-0.3 to 6	V	
Diagnosis output current		I _{DIAG}	5	mA	
Power dissipation		P _D	3.6	W	Note2
Operating temper	ature	T _{opr}	-40 to 150	°C	
Junction temperat	ture	Tj	175	°C	
Storage temperate	ure	T _{stg}	-55 to 175	°C	

- Note1: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.
- Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

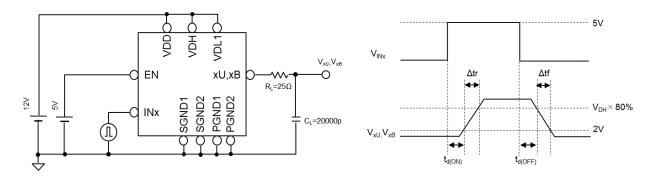
Characteristics	Symbol	Rating	Unit
Thermal resistance, channel to ambient	Rth (j−a)	41	°C/W

Note 2: JEDEC standard.

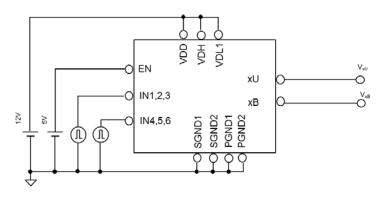
Glass epoxy board Material: FR-4(4 layer) Board size : 76.2mm×114.3mm×1.6mm Via : φ0.3mm(9 point)

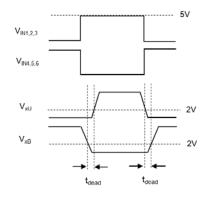
Electrical Characteristics (Unless otherwise specified Tj = -40 to 125° C, VDD = 5 to 18V)

Charac	teristics	Symbol	Test condition	Min	Тур.	Max	Unit
Operating supply vol	tage	V _{DD(opr)}	V _{DD(opr)} -		12	18	V
Supply current		I _{DD}	V_{EN} =H, V_{INx} =L, V_{DD} =4.5 to 18V Note2	-	3.9	8	mA
Input voltage(INI)	High level	V _{INHx}	-	2.0	-	-	V
Input voltage(IN)	Low level	V _{INLx}	-	-	-	1.0	V
Input voltage(EN)	High level	V_{ENHx}	-	2.0	-	-	V
input voitage(EN)	Low level	V _{ENLx}	-	-	-	1.0	V
Input current(IN)	High level	I _{INxH}	V _{INx} =5V	-	50	100	μA
input current(int)	Low level	I _{INxL}	V _{INx} =0V	-1	0	1	μA
Input current(EN)	High level	I _{ENH}	V _{EN} =5V	-	12	30	μA
input current(EN)	Low level	I _{ENL}	V _{EN} =0V	-1	0	1	μA
	High level	V _{OHxU1}	V _{DD} =4.5V,I _o =-1mA, Note2	V _{DD} +6	V _{DD} +7	-	V
		V_{OHxU2}	V _{DD} =7 to 18V,Io=-1mA, Note2	V _{DD} +10	V _{DD} +12	V _{DD} +16	V
		V_{OHxB1}	V _{DD} =4.5V,I _O =-1mA, Note2	7	10	-	V
Output voltage		V_{OHxB2}	V _{DD} =7 to 18V,I _O =-1mA, Note2	10	13	16	V
Output voltage	Low level	V _{OLxU1}	V _{DD} =4.5V,I _O =1mA	-	-	0.5	V
		V _{OLxU2}	V _{DD} =5 to 18V,I _O =1mA	-	-	0.5	V
		V_{OLxB1}	V _{DD} =4.5V,I _O =1mA	-	-	0.5	V
		V _{OLxB2}	V_{DD} =5 to 18V,I _O =1mA	-	-	0.5	V
Output detection voltage High level		V _{OM}	V_{DD} =5 to 18V, V_{PGND} = V_{SGND} =0V	2.0	2.5	3.5	V
Mask time for monitoring output detection voltage.		t _{mask}	V _{DD} =5 to 18V	1.0	3.0	5.0	μS
Output pull down	Normal mode	R _{pd1}	-	45	88	135	kΩ
resistance	Hiz mode	R _{pd2}	I _o =+0.5mA,V _{DD} =5 to 18V	3.5	5.0	6.5	kΩ
Driver on resistance	Source side DMOS	R _{DS(ON)HS}	I _o =-0.1A,V _{DD} =5 to 18V	-	1.3	3.0	Ω
	Sink side DMOS	R _{DS(ON)LS}	I _O =+0.1A,V _{DD} =5 to 18V	-	0.7	2.0	Ω

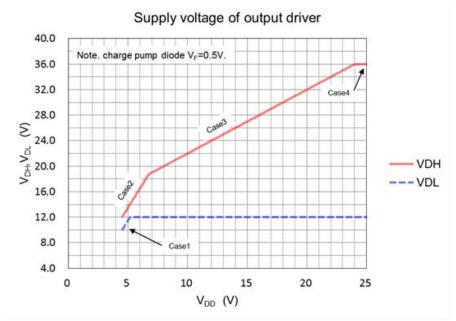

Charao	cteristics	Symbol	Test condition	Min	Тур.	Max	Unit
Diagnosis output voltage		V _{DIAG}	I _{DIAG} =0.5mA,V _{DD} =5 to 18V	-	-	0.5	v
Diagnosis output leakage current. High level		I _{DIAG}	V _{DIAG} =6V,V _{DD} =5 to 18V	-	-	10	μA
V _{DH} drop detection		$V_{\text{DH}(\text{UV})}$	V _{DD} =5 to 18V	V _{DD} +4	V _{DD} +4.5	V _{DD} +6	V
V _{DL} drop detection		V _{DL(UV)}	-	4	4.5	6	V
V _{DL} over voltage dete	ection	V _{DL(OV)}	-	-	18	-	V
	V _{OUT} =L→H	t _{d(ON)}	V _{DD} =V _{DH} =V _{DL} =12V	-	0.21	0.4	μS
Delay time	V _{OUT} =H→L	t _{d(OFF)}	R _L =25Ω,C _L =20000pF	-	0.21	0.4	μs
Slew Rate (rise)	•	dv/dt _(ON)	-	-	75	-	V/μs
Slew Rate (fall)		dv/dt _(OFF)	-	-	75	-	V/μs
Dreponetion delay	Same output	$\Delta t_{d(\text{OFF-ON})1}$	-	-0.2	-	0.2	μS
Propagation delay time	Top and bottom output	$\Delta t_{d(OFF-ON)2}$	-	-0.2	-	0.2	μS
Dead time		tdead	VDD=12V, Vth=2.0V	-	0.64	1	μs
Charge pump freque	ency	f _{osc}	V _{DD} =5 to 18V	30	55	80	kHz

Note 1 typical value if not specified is the 12V condition.


Note 2 D1.D2.D3=CRH01.R_{CP}=10\Omega, Charge pump capacitance=2.2 μF


Test circuit

Slew Rate


Dead time

Note: INx: IN1,IN2,IN3,IN4,IN5,IN6 xU: UU,VU,WU xB: UB,VB,WB

Supply voltage for driver circuit.

This graph shows the relationship between the supply voltages. V_{DH} shows the power supply voltage characteristics of the high-side driver. V_{DL} shows the power supply voltage of the low-side driver. In order to ensure that the MOSFET drive voltage is at a low power supply voltage, the IC supplies power to the V_{DL} via a regulator from the V_{DH} . Both the V_{DH} and V_{DL} will exhibit the following characteristics.

Case1) $V_{DH} = 3 \times (V_{DD}-V_F)$ $V_{DL} = VDH-2V$ Case2) $V_{DH} = 3 \times (V_{DD}-V_F)$ $V_{DL} = 12V$ Case3) $V_{DH} = V_{DD} + 12V$ $V_{DL} = 12V$ Case4) $V_{DH} = 36V$ $V_{DL} = 12V$

Note: The Overvoltage protection of the charge pump circuit operates under the following conditions.

Case1) $V_{DH} \ge V_{DD}$ + 12V(typ.) ,VDH(OV1) Case2) $V_{DH} \ge 36V(typ.)$,VDH(OV2)

Truth table

EN	IN1	IN4	Charge	Output voltage		DIAG1	DIAG2	Remarks
	(IN2,3)	(IN5,6)	pump	UU output	UB output	output	output	
			Boost	(VU,WU)	(VB,WB)			
			operation					
L	L	L	boost	L	L	Н	L	All output off in V_{EN} =L.
	Н	L		L	L	Н	L	
	L	Н		L	L	Н	L	
	Н	Н		L	L	Н	L	
н	L	L	boost	L	L	Н	L	I/O is normal in V _{EN} =H.
	Н	L		Н	L	Н	L	
	L	Н		L	Н	Н	L	
	Н	Н		L(self-return)	L(self-return)	L(self-return)	L	Top and bottom short circuit input mode

•Abnormal output pin.(VDD short, GND short)

During both "turn on" and "turn off" of the driver, the output voltage is monitored. Depending on the judgment threshold after a mask time of 2.5µs (typ.), a diagnosis is made and a separate output signal will trigger a switch off of all drivers in the event of an "abnormal output". The DMOS for $5k\Omega$ pull down will be turned out and the DIAG1=L will be latched. (Latch will be reset in the event where EN signal changes from L to H)

Diagnosis of the driver power supply voltage

<V_{DH} drop>

Judge $V_{DH} \leq V_{DD} + 5V(typ.)$ to be abnormal and output DIAG2=H.

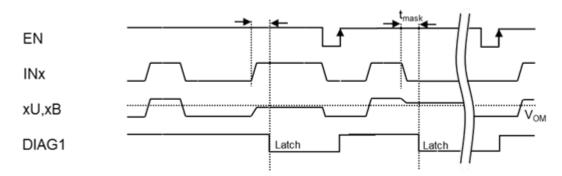
<V_{DL} drop>

Judge $V_{DL} \leq 5V(typ.)$ to be abnormal and output DIAG2=H.

<V_{DL} over voltage>

Judge $V_{DL} \ge 18V(typ.)$ to be abnormal and output low side (UB,VB,WB)=L , and output DIAG2=H.

Output DIAG2=H (abnormal) when V_{DH} or V_{DL} voltage are abnormal. Upon recover to the normal voltage, the DIAG2 output is automatically reset (DIAG2=L).

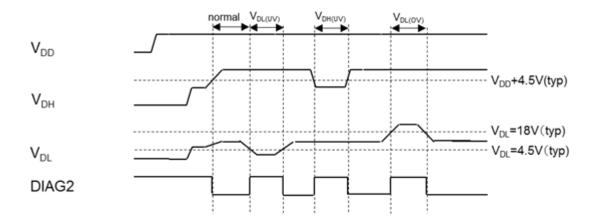

Note: Driver power supply (V_{DH} and V_{DL}) is boosted by the charge pump. Boost operation will start with V_{DD} > 4.5V. In order to prevent a malfunction, please enter the signal to IN1 to 6 after checking the DIAG2 = "L".

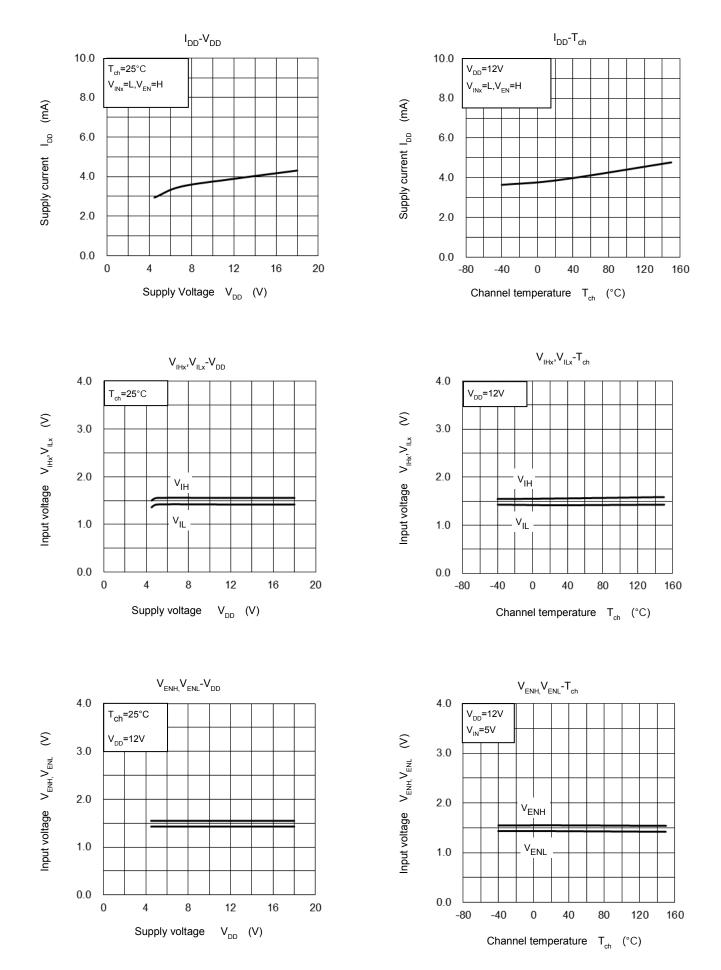
Timing chart

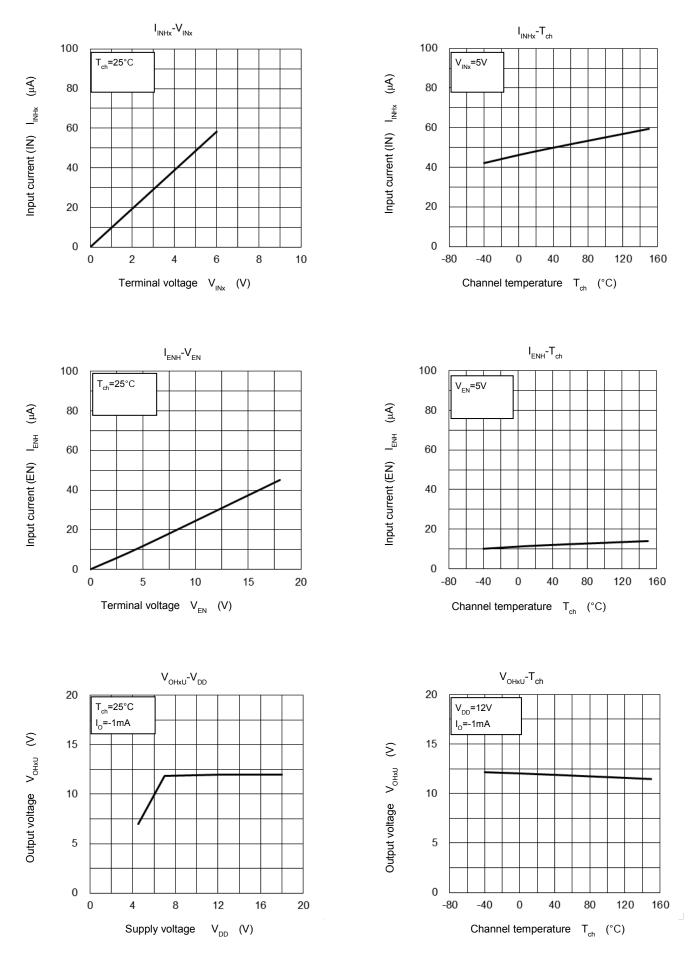

•Normal operation, Top and bottom short circuit input mode

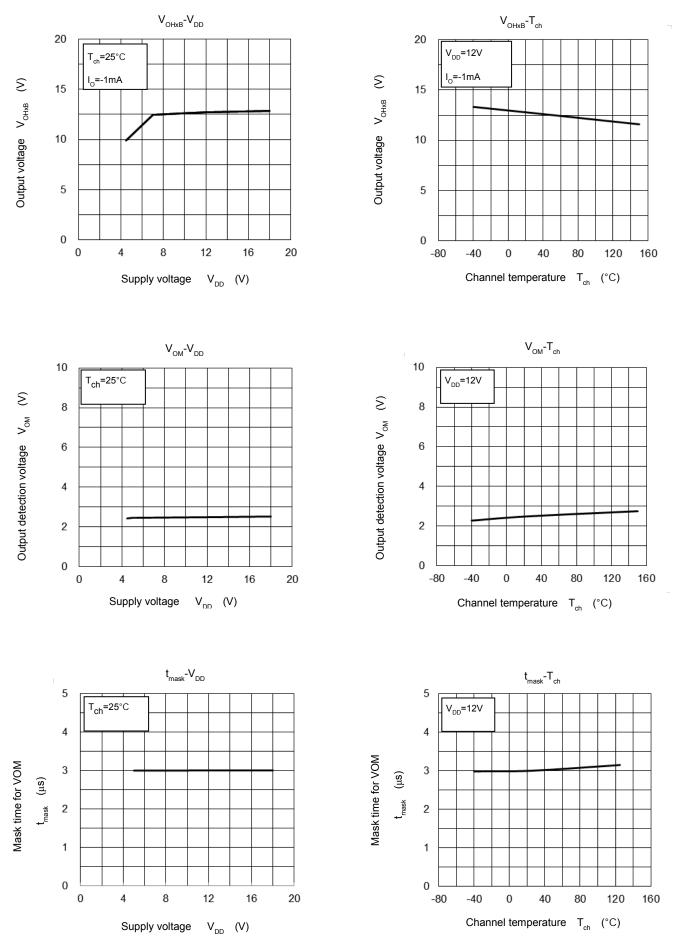
Detection and prevention of a simultaneous low-side and high-side input signal. The output will be L (NDMOS on-state) and DIAG1 will output an L (self-return upon absence of simultaneous signals)

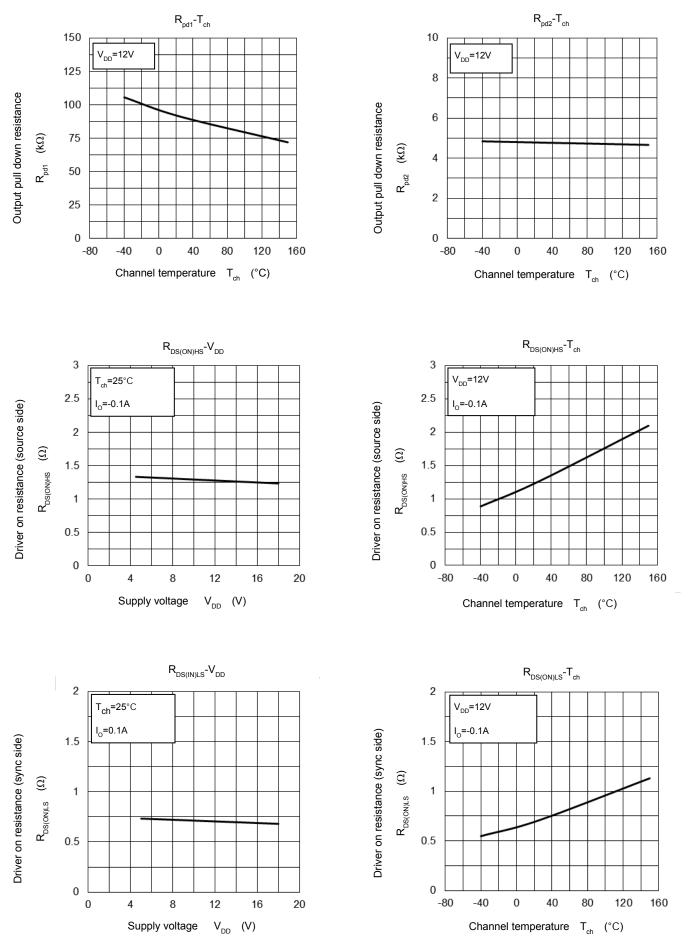
Abnormal of output pin.(VDD short, GND short)

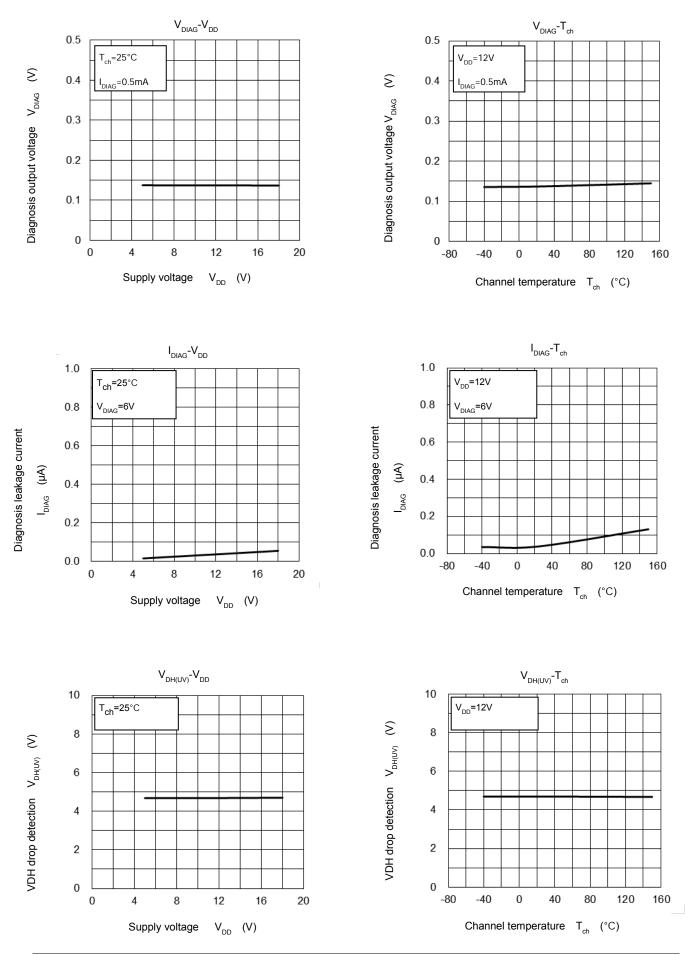

When a faulty output signal synchronizes with the input signal, the output is stopped after a mask time of 2.5μ s, and outputs the DIAG1. All driver outputs are L level (Pulled-down via the 5k Ω internal resistor). DIAG1 output is latched at the L level, and then reset at the positive (return) signal of EN.

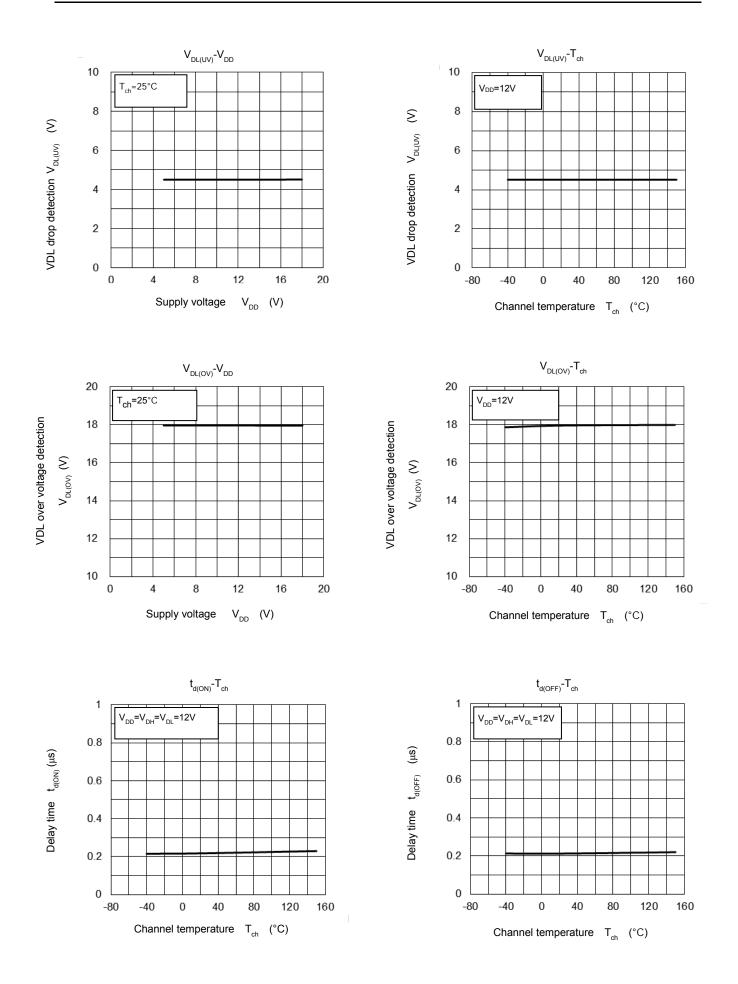

During a malfunction where an output signal is present during a stabilized input signal, the output is stopped immediately and DIAG1 is output. There is no mask time. All driver outputs are L level (Pulled-down via the $5k\Omega$ internal resistor). DIAG1 output is latched at the L level, and reset upon the positive (return) signal of EN.

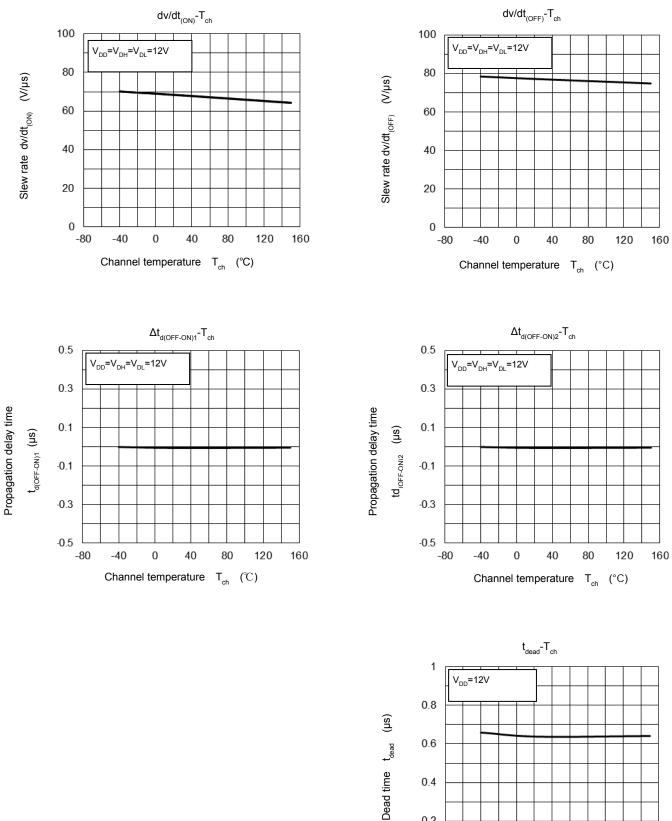

Note: INx: IN1,IN2,IN3,IN4,IN5,IN6 xU: UU,VU,WU xB: UB,VB,WB

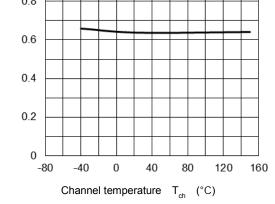

Diagnosis of the driver power supply voltage

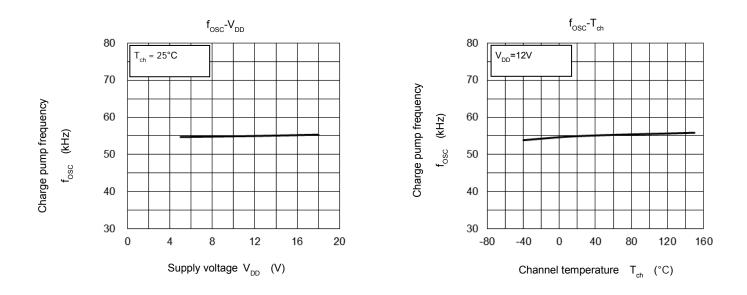


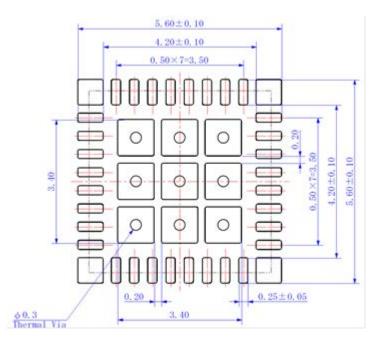

In an overvoltage condition of V_{DL} , UB, VB, WB will be the L state.

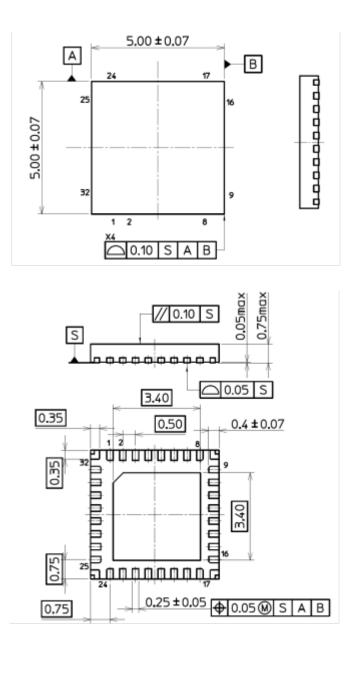











Reference land pattern

Note: Since the metal exposed area on the back of IC has a role of heat dissipation, please carry out a pattern design in consideration of a thermal design. Moreover, it recommends that an unindicated name corner pin prepares a pattern in consideration of mounting nature. Since the metal exposed area on the back of IC is electrically connected with the chi back, please insulate or ground.

Package Dimensions

unit : mm

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
 U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
 except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION