CMOS Logic IC VCX/LCX (Low Voltage) Series Outline

Outline:

CMOS Logic ICs VCX/VCXH/LCX Series achieves twice the high speed operation of the 5V high speed products (AC, VHC) at a low voltage of 3.3 V. (LCX 120 MHz, VCX 380MHz) The minimum voltage of the operating range is as low as 1.65 V for VCX and 1.2 V for LCX.

This document provides an overview of the product, part numbering method, maximum ratings, electrical characteristics, and measurement methods.

Table of Contents

Outline:	1
1. General	6
1.1. General	6
1.2. Features	7
1.2.1. High-Speed/Low-Voltage Operation	7
1.2.2. Low Noise	8
1.2.3. Interface Capability	10
1.2.4. Output Current	11
2. Method of Designating CMOS Logic IC	12
2.1. Part Naming Conventions	12
3. Explanation of Rating and Standards	13
3.1. Absolute Maximum Ratings	13
3.1.1. VCX Series	13
3.1.2. VCXH Series	14
3.1.3. LCX Series	14
3.2. Operating Ranges	15
3.2.1. VCX Series	15
3.2.2. VCXH Series	16
3.2.3. LCX Series	16
3.3. DC Characteristics	17
3.3.1. VCX Series	17
3.3.1.1. (Ta = -40 to 85°C, 2.7 V < V _{CC} \leq 3.6 V)	17
3.3.1.2. (Ta = -40 to 85°C, 2.3 V \leq V _{cc} \leq 2.7 V)	18
3.3.1.3. (Ta = -40 to 85°C, 1.65 V \leq V _{CC} < 2.3 V)	18
3.3.1.4. (Ta = -40 to 85°C, 1.4 V \leq V _{CC} < 1.65 V)	
3.3.1.5. (Ta = -40 to 85°C, 1.2 V \leq V _{CC} < 1.4 V)	
3.3.2. VCXH Series	
3.3.2.1. (Ta = -40 to 85°C, 2.7 V < V _{CC} \leq 3.6 V)	
3.3.2.2. (Ta = -40 to 85°C, 2.3 V \leq V _{cc} \leq 2.7 V)	
3.3.2.3. (Ta = -40 to 85°C, 1.8 V \leq V _{CC} < 2.3 V)	
3.3.3. LCX series	
4. Explanation of Symbols Used in Data sheets	
4.1. How to Read Truth Table	
4.2. AC Characteristics	
4.2.1. I/O Switching Waveforms of VCX Series	
4.2.2. I/O Switching Waveforms of LCX Series	
4.3. Standardized Test Procedure for Power Dissipation Capacitance	
4.4. Noise Characteristics and Measurement Circuit	
5. Other Electrical Characteristics	31

5.1. Power Dissipation	
5.2. Bus-Hold Input Current Characteristics	
5.3. Output Current Characteristics	
5.4. AC Electrical Characteristics	
5.4.1. Capacitive Loading Effects	35
5.4.2. Output Skew Characteristics	37
6. Glossary of CMOS Logic IC Terms	
6.1. Absolute Maximum Ratings	
6.2. Operating Ranges	
6.3. Electrical Characteristics	
6.4. Built-in Function	
7 Related LINK	
RESTRICTIONS ON PRODUCT USE	49

List of Figur	res
Figure 1.1	Supply Voltage Range and Propagation Delay Time of Each Series6
Figure 1.2	Propagation Delay Time vs. Load Capacitance7
Figure 1.3	Comparison of Simultaneous Switching Noise (1/2)8
Figure 1.4	Comparison of Simultaneous Switching Noise (2/2)9
Figure 1.5	Input Equivalent Circuit for Each Series10
Figure 1.6	Output Equivalent Circuit for Each Series10
Figure 2.1	Part Naming Conventions12
Figure 4.1	Measuring Circuit of Output (VCX Series)24
Figure 4.2	Measuring Circuit of Output (LCX Series)24
Figure 4.3	I/O Switching Waveforms of VCX Series25
Figure 4.4	I/O Switching Waveforms of LCX Series26
Figure 4.5	Quiet Output Dynamic V_{OLP} and V_{OLV} Measurement Circuit
Figure 5.1	Standard Bus-Hold Input Current Characteristics for VCXH1624532
Figure 5.2	Output Current Characteristics for VCX Series (Typ.)
Figure 5.3	Output Current Characteristics for VCXHR Series (Typ.)
Figure 5.4	Output Current Characteristics for LCX Series
Figure 5.5	VCX Series
Figure 5.6	VCXHR Series
Figure 5.7	LCX Series
Figure 5.8	Output Skew Characteristics
List of Tables	5
Table 1.1	Voltage Applicable to I/O Terminals11
Table 1.2	Definition of Parameters11

Table 1.2	Definition of Parameters
Table 1.3	Output Current Per Series11
Table 2.1	Series Definition
Table 3.1	Absolute Maximum Ratings (VCX Series)13
Table 3.2	Absolute Maximum Ratings (VCXH Series)14
Table 3.3	Absolute Maximum Ratings (LCX Series)14
Table 3.4	Operating Ranges (VCX Series)15

Table 3.5 Operating Ranges (VCXH Series) 16
Table 3.6 Operating Ranges (LCX Series) 16
Table 3.7 DC Characteristics (VCX Series, Ta = -40 to 85°C, 2.7 V < V _{CC} \leq 3.6 V)17
Table 3.8 DC Characteristics (VCX Series, Ta = -40 to 85°C, 2.3 V \leq V _{CC} \leq 2.7 V)18
Table 3.9 DC Characteristics (VCX Series, Ta = -40 to 85°C, 1.65 V \leq V _{CC} < 2.3 V) 18
Table 3.10 DC Characteristics (VCX Series, Ta = -40 to 85°C, 1.4 V \leq V _{CC} < 1.65 V)19
Table 3.11 DC Characteristics (VCX Series, Ta = -40 to 85°C, 1.2 V \leq V _{CC} < 1.4 V) 19
Table 3.12 DC Characteristics (VCXH Series, Ta = -40 to 85°C, 2.7 V < V _{CC} \leq 3.6 V) 20
Table 3.13 DC Characteristics (VCXH Series, Ta = -40 to 85°C, 2.3 V \leq V _{CC} \leq 2.7 V)21
Table 3.14 DC Characteristics (VCXH Series, Ta = -40 to 85°C, 1.8 V \leq V _{CC} < 2.3 V) 21
Table 3.15 DC Characteristics (LCX Series) (Ta = -40 to 85°C)
Table 4.1 Definition of Symbols Used in Truth Table 23
Table 4.2 CPD Measuring Condition 28
Table 4.3 CPD Measuring Condition (48 pin) 29
Table 4.4 Explanation of Noise Parameters
Table 5.1 Guaranteed Bus-Hold Input Current Value for VCXH16245 (µA)
Table 5.2 Guaranteed Value of Output Voltage for VCX/LCX Series 33

1. General

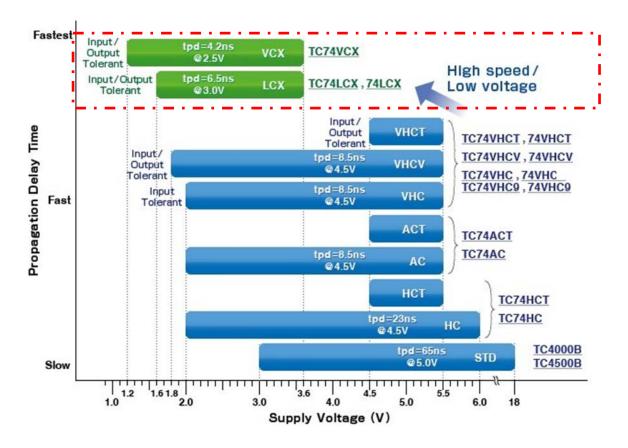
1.1. General

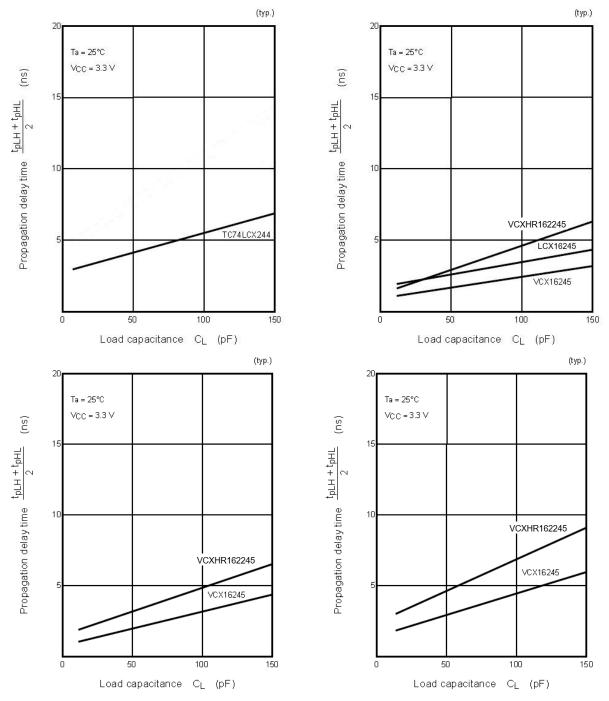
This document describes the VCX/LCX series of C^2MOS^{TM} Logic ICs.

The VCX/LCX series is indicated by the red frame in Figure 1.1.

This series achieves high-speed operation exceeding the speed of conventional 5 V logic (AC/VHC series) at V_{CC} = 3.3 V. The LCX series guarantees operation from 1.8 V. The VCX series guarantees operation from 1.2 V.

The package lineup is wide, from SOP package to ultra-compact US package.



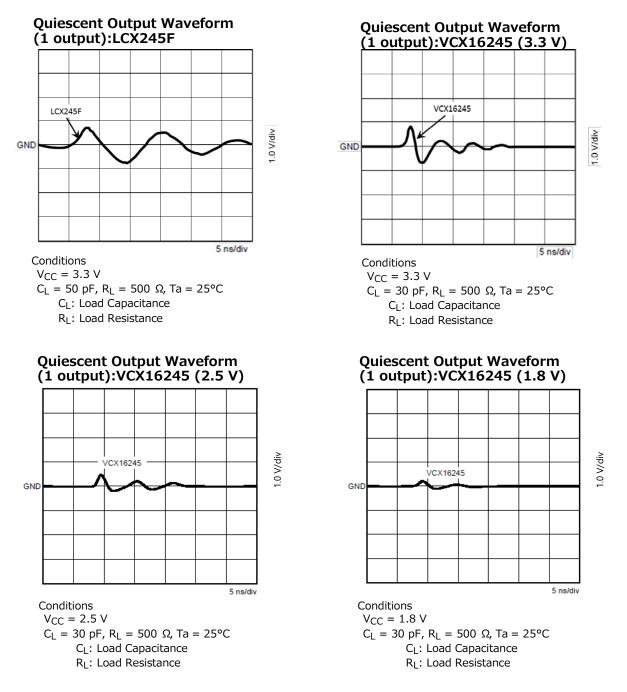

Figure 1.1 Supply Voltage Range and Propagation Delay Time of Each Series

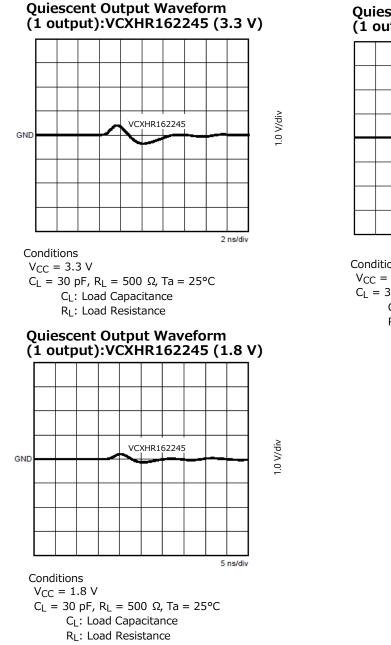
1.2. Features

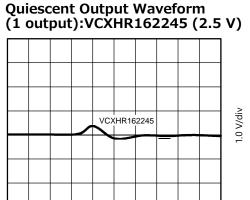
1.2.1. High-Speed/Low-Voltage Operation

Switching speed of the LCX series offers outstanding performance at low voltages (such as V_{CC} = 3.3 V) compared with 5 V high-speed logic series such as the AC/VHC series. Switching speed of the VCX series at 3.3 V is about twice faster than that of the LCX series. And even at 1.8 V, it exceeds the performance of the conventional 5 V high-speed logic. This is due to the use of dedicated CMOS process technology.

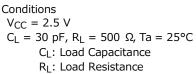
In addition, the VCX/LCX series devices offer high-speed operation, even under heavy load capacitance, due to their lower output impedance. (Please refer to Figure 1.2.)




1.2.2. Low Noise


The VCX/LCX series are equipped with a slew rate control (SRC) circuit that controls the output transition time in order to reduce the noise generated at the output transition. This circuit reduces noise, such as simultaneous switching noise generated by the inductance of the power supply and GND lines, and noise generated by reflections on the transmission line.

Figures 1.3 and 1.4 show typical simultaneous switching noise generated in the 8- and 16-bit devices. The noise is generated on a single inactive output when switching occurs simultaneously on the other seven outputs (on an 8-bit device) or on the other 15 outputs (on a 16-bit device).



2 ns/div

1.2.3. Interface Capability

The VCX/LCX series adopts an input protection circuit with no diode from input terminal to power supply side. The circuit realizes an input tolerant function and power-down protection, and ensures the voltage of input terminal up to 5.5 V (3.6 V in the case of the VCX series) even if the power supply voltage is lower than 5.5 V (3.6 V in the case of the VCX series).

In addition, the VCX/LCX series adopts an output circuit with no parasitic diode from output terminal to power supply side. The circuit realizes an output tolerant function and power-down protection, and ensures the voltage of output terminal up to 5.5 V (3.6 V in the case of the VCX series) even if the output terminal high-impedance state or the power supply voltage is not applied.

This I/O power-down protection system makes it possible to use VHC series devices on "dual supply systems" or "power management circuits".

Note: The TC74VCXH (bus-hold devices) does not adopt input power-down protection.

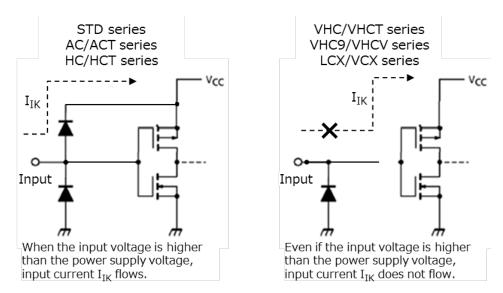


Figure 1.5 Input Equivalent Circuit for Each Series

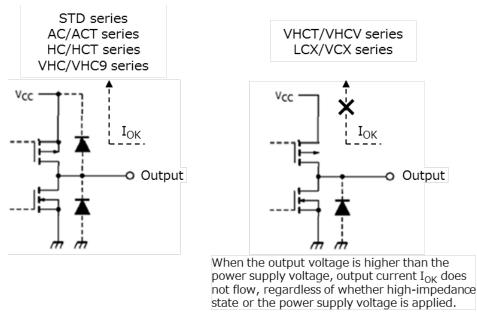


Figure 1.6 Output Equivalent Circuit for Each Series

	VCX	VCXH/VCXHR	LCX
Input Voltage Range			
(Operation)	0 to 3.6 V	0 to Vcc	0 to 5.5 V
(Power Down)	0 to 3.6 V	0 to Vcc	0 to 5.5 V
Output Voltage Range			
(Output Enable)	0 to Vcc	0 to Vcc	0 to Vcc
(Output Disable)	0 to 3.6 V	0 to 3.6 V	0 to 5.5 V
(Power Down)	0 to 3.6 V	0 to 3.6 V	0 to 5.5 V

Table 1.1Voltage Applicable to I/O Terminals

Table 1.2 Definition of Parameters

Parameter	Definition	
Input tolerant function	A function designed to prevent a current from flowing from an input to the power supply when the input voltage is higher than the power supply voltage or when $V_{CC} = 0 V$.	
Output tolerant function	A function designed to prevent a current from flowing from an output to the power supply when the output is in the high-impedance state or when $V_{CC} = 0 V$.	
Power-down protection	A function designed to prevent a current from flowing to the power supply terminal even if a voltage is applied to the input and output terminals when $V_{CC} = 0 V$.	

1.2.4. Output Current

Each of the VCX/LCX series has a different output current. Please refer to Table 1.3.

Table 1.3	Output Current Per Series	
-----------	----------------------------------	--

	VCX/VCXH	VCXHR	LCX
Output Current ($V_{CC} = 3.0$ to 3.6 V)	±24 mA	±12 mA	±24 mA
$(V_{CC} = 2.7 \text{ to } 3.0 \text{ V})$	-	-	±12 mA
$(V_{CC} = 2.3 \text{ to } 2.7 \text{ V})$	±18 mA	±8 mA	-
$(V_{CC} = 1.8 V)$	±6 mA	±4 mA	-
$(V_{CC} = 1.65 \text{ to } 1.95 \text{ V})$	±6 mA (Note 1)	-	-
$(V_{CC} = 1.4 \text{ to } 1.6 \text{ V})$	±2 mA (Note 1)	-	-

Note 1: Applicable to certain products.

2. Method of Designating CMOS Logic IC

2.1. Part Naming Conventions

тс	(2)	(3)	((4))		
TC74	(1)	(2)	(3)	((4))
74	(1)	(2)	(3)	((4))

Figure 2.1 Part Naming Conventions

(1) Series, (2) Function, (3) Package, (4) Packing Method

(Example) TC74VCX08FT(EL)

(1) VCX Series, (2) 08 Function, (3) Plastic TSSOP Package, (4) Embossed tape and reel

(1) Series Definition

Table 2.1 shows each series and the input level.

Series	Definition
Blank	STD series
HC	CMOS level input of HC series
НСТ	TTL level input of HC series
AC	CMOS level input of AC series
ACT	TTL level input of AC series
VHC	CMOS level input of VHC series
VHCT	TTL level input of VHC series
VHC9	Schmitt circuit-type input of VHC series
VHCV	Schmitt circuit-type input of VHC series Capable of handling twice as much output current as other products in VHC series.
LCX	TTL level input of LCX series
VCX	TTL level input of VCX series

Table 2.1 Series Definition

(2) Function

The function number is represented by 2 to 8 alphanumeric characters.

Function numbers are common for all series.

(3) Package Type

Package classification is common for all series.

P•••	Dual in-line package (DIP)	14/16/20 pin
F···	200-mil small-outline package (SOP)	14/16/20 pin
D····	150-mil small-outline package (SOIC)	14/16/20 pin
FT···	Thin shrink small-outline package (TSSOP)	14/16/20/48 pin
FK···	300-mil small-outline package (US)	14/16/20 pin

(4) Packing Method

Please refer to the Toshiba web page. (URL: https://toshiba.semicon-storage.com/ap-en/top.html)

3. Explanation of Rating and Standards

The tables below show common ratings and electrical characteristics for the VCX/LCX series. When the ratings and electrical characteristics are different from those of individual data sheets, the latter take precedence.

For the meanings of the parameters, please refer to the glossary at end of this document.

In VHC series, products with bus-hold function are expressed as VCXH series. And products with bus-hold function and series resistor are expressed as VCXHR series.

3.1. Absolute Maximum Ratings

In general, absolute maximum rating values should not be exceeded, in order to guarantee the life and reliability of integrated circuit products.

Absolute maximum ratings should not be exceeded, even for a moment.

When a device is used in excess of any absolute maximum rating, it may not recover, and in many cases, permanent damage will occur.

Table 3.1 shows the common absolute maximum ratings for the VCX/LCX series.

Table 3.1 Absolute Maximum Ratings (VCX Series)								
Characteristics	Symbol	Rating	Unit					
Power supply voltage	Vcc	-0.5 to 4.6	V					
DC input voltage	Vin	-0.5 to 4.6	V					
DC output voltage	Vout	-0.5 to 4.6 (Note 1)	V					
DC oulput voltage	V001	-0.5 to VCC + 0.5 (Note 2)						
Input diode current	Ік	-50	mA					
Output diode current	Іок	±50 (Note 3)	mA					
DC output current	Ιουτ	±50	mA					
Power dissipation	PD	400	mW					
DC VCC/ground current	ICC/IGND	±100	mA					
Storage temperature	T _{stg}	-65 to 150	°C					

3.1.1. VCX Series

Table 3.1 Absolute Maximum Ratings (VCX Series)

Note 1: Off-state

Note 2: High or Low state. I_{OUT} absolute maximum rating must be observed.

Note 3: V_{OUT} < GND, V_{OUT} > V_{CC}

3.1.2. VCXH Series

 Table 3.2
 Absolute Maximum Ratings (VCXH Series)

Characteris	tics	Symbol	Rating	Unit
Power supply voltage)	Vcc	-0.5 to 4.6	V
DC input voltage	(DIR, OE)	Vin	-0.5 to 4.6	V
DC Input voltage	(An, Bn)	VIIN	-0.5 to VCC + 0.5 (Note 1)	v
DC output voltage	(An, Bn)	Vout	-0.5 to VCC + 0.5 (Note 2)	V
Input diode current		liк	±50	mA
Output diode current		loк	±50 (Note 3)	mA
Output current		Ιουτ	±50	mA
Power dissipation		PD	400	mW
DC VCC/ground current per supply pin		ICC/IGND	±100	mA
Storage temperature		Tstg	-65 to 150	°C

Note 1: Off state

Note 2: High or Low state. I_{OUT} absolute maximum rating must be observed.

Note 3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

3.1.3. LCX Series

 Table 3.3 Absolute Maximum Ratings (LCX Series)

Characteristics	Symbol	Rating	Unit				
Power supply voltage	Vcc	-0.5 to 7.0	V				
DC input voltage	Vin	-0.5 to 7.0	V				
DC output voltage	Vout	-0.5 to 7.0 (Note 1)	V				
De output voltage	V001	-0.5 to VCC \pm 0.5 (Note 2)	v				
Input diode current	liк	-50	mA				
Output diode current	IOK	±50 (Note 3)	mA				
DC output current	Ιουτ	±50	mA				
Power dissipation	PD	180	mW				
DC VCC/ground current	ICC/IGND	±100	mA				
Storage temperature	Tstg	-65 to 150	°C				

Note 1: Output in OFF state

Note 2: High or Low state. I_{OUT} absolute maximum rating must be observed.

Note 3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

3.2. Operating Ranges

These are the conditions under which the operation of the VCX/LCX series devices are guaranteed. When any of these values is exceeded, operation is not guaranteed, even if the value is still within the absolute maximum rating in Tables 3.1 to 3.3.

Unused input terminals must be tied to either $V_{\text{CC}}\xspace$ or GND.

Tables 3.4 to 3.6 show the common operating ranges for the VCX/LCX series.

3.2.1. VCX Series

Characteristics	Symbol	Rating	Unit			
Supply voltage	Vcc	1.2 to 3.6	V			
Input voltage	Vin	-0.3 to 3.6	V			
	Vour	0 to 3.6 (Note 1)	v			
Output voltage	Vout	0 to VCC (Note 2)	v			
		±24 (Note 3)				
Output ourront	IOH/IOL	±18 (Note 4)				
Output current	IOH/IOL	±6 (Note 5)	mA			
		±2 (Note 6)	1			
Operating temperature	Topr	-40 to 85	°C			
Input rise and fall time	dt/dv	0 to 10 (Note 7)	ns/V			

Table 3.4	Operating F	Ranges	(VCX Series)
-----------	-------------	--------	--------------

Note 1: Off-state

Note 2: High or low state

Note 3: $V_{CC} = 3.0$ to 3.6 V

Note 4: V_{CC} = 2.3 to 2.7 V

Note 5: $V_{CC} = 1.65$ to 1.95 V

Note 6: $V_{CC} = 1.4$ to 1.6 V

Note 7: V_{IN} = 0.8 to 2.0 V, V_{CC} = 3.0 V

3.2.2. VCXH Series

Floating or unused control inputs must be held high or low.

Characteri	stics	Symbol	Rating	Unit
Power supply volta	200	Vcc	1.8 to 3.6	V
Fower supply volta	aye	VCC	1.2 to 3.6 (Note 1)	v
	(DIR, OE)	Vin	-0.3 to 3.6	V
Input voltage	(An, Bn)	VIIN	0 to VCC (Note 2)	v
Output voltage	(An, Bn)	Vout	0 to VCC (Note 3)	V
			±24 (Note 4)	
Output current		IOH/IOL	±18 (Note 5)	mA
			±6 (Note 6)	
Operating tempera	ature	ture T _{opr} -40 to 85		°C
Input rise and fall time		dt/dv	0 to 10 (Note 7)	ns/V

Table 3.5 Operating Ranges (VCXH Series)

Note 1: Data retention only

Note 2: OFF state

Note 3: High or low state

Note 4: $V_{CC} = 3.0$ to 3.6 V

- Note 5: $V_{CC} = 2.3$ to 2.7 V
- Note 6: $V_{CC} = 1.8 V$

Note 7: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

3.2.3. LCX Series

Table 3.6 Operating Ranges (LCX Series)

Characteristics	Symbol	Rating	Unit	
Power supply veltage	Vcc	1.65 to 3.6	V	
Power supply voltage	VCC	1.5 to 3.6 (Note 1)	v	
Input voltage	VIN	0 to 5.5	V	
	Vout	0 to 5.5 (Note 2)	V	
Output voltage	V001	0 to VCC (Note 3)	v	
	IOH/IOL	±24 (Note 4)		
Output current	IOH/IOL	±12 (Note 5)	— mA	
Operating temperature	Topr	-40 to 85 (Note 6) -40 to 125 (Note 6)	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 7)	ns/V	

Note 1: Data retention only

- Note 2: Output in OFF state
- Note 3: High or low state
- Note 4: $V_{CC} = 3.0$ to 3.6 V
- Note 5: $V_{CC} = 2.7$ to 3.0 V
- Note 6: Different by products
- Note 7: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

3.3. DC Characteristics

Tables 3.7 to 3.15 show DC characteristics for the VCX/LCX series.

3.3.1. VCX Series

3.3.1.1. (Ta = -40 to 85°C, 2.7 V < Vcc \leq 3.6 V)

Table 3.7 DC Characteristics (VCX Series, Ta = -40 to 85°C, 2.7 V < Vcc \leq 3.6 V)

Characteristics		Symbol	Test Condition Vcc (V)		Vcc (V)	Min	Max	Unit
	High level	VIH	-	-	2.7 to 3.6	2.0	-	
Input voltage	Low level	VIL	-	-	2.7 to 3.6	-	0.8	V
				IOH = -100 μA	2.7 to 3.6	VCC - 0.2	-	
		Vou	VIN = VIH or VII	IOH = -12 mA	2.7	2.2	-	
	High level	Vон	VIN = VIH OF VIL	IOH = -18 mA	3.0	2.4	-	
				IOH = -24 mA	3.0	2.2	-	v
Output voltage	Low level	Vol	VIN = VIH or VIL	IOL = 100 μA	2.7 to 3.6	-	0.2	
				IOL = 12 mA	2.7	-	0.4	
				IOL = 18 mA	3.0	-	0.4	
				IOL = 24 mA	3.0	-	0.55	
Input leakage cu	irrent	lin	VIN = 0 to 3.6 V		2.7 to 3.6	-	±5.0	μA
3-state output of current	f-state	loz	VIN = VIH or VIL VOUT = 0 to 3.6 V		2.7 to 3.6	-	±10.0	μA
Power off leakag	ge current	IOFF	VIN, VOUT = 0 to 3	3.6 V	0	-	10.0	μA
		ICC	VIN = VCC or GNE)	2.7 to 3.6	-	20.0	
Quiescent supply current			VCC ≦ (VIN, VOU	(VIN, VOUT) ≦ 3.6 V		-	±20.0	μA
		ΔICC	VIH = VCC - 0.6 V	(per input)	2.7 to 3.6	-	750	

3.3.1.2. (Ta = -40 to 85°C, 2.3 V \leq Vcc \leq 2.7 V)

Table 3.8	DC Characteristics (VCX Series, Ta = -40 to 85° C, 2.3 V \leq V _{CC} \leq 2.7 V)
-----------	--

B			<u> </u>			/		
Characteristics		Symbol	Test Condition		Vcc (V)	Min	Max	Unit
	High level	VIH		-	2.3 to 2.7	1.6	-	
Input voltage	Low level	VIL		-	2.3 to 2.7	-	0.7	V
				ΙΟΗ = -100 μΑ	2.3 to 2.7	Vcc - 0.2	-	
		Vou	VIN = VIH or VIL	IOH = -6 mA	2.3	2.0	-	
	High level	Vон		IOH = -12 mA	2.3	1.8	-	
Output voltage				IOH = -18 mA	2.3	1.7	-	V
	Low level	Vol	VIN = VIH or VIL	IOL = 100 μA	2.3 to 2.7	-	0.2	-
				IOL = 12 mA	2.3	-	0.4	
				IOL = 18 mA	2.3	-	0.6	
Input leakage cu	irrent	lin	VIN = 0 to 3.6 V	VIN = 0 to 3.6 V		-	±5.0	μA
3-state output off-state current		loz	VIN = VIH or VIL VOUT = 0 to 3.6 V		2.3 to 2.7	-	±10.0	μA
Power off leakag	ge current	IOFF	VIN, VOUT = 0 to	3.6 V	0	-	10.0	μA
	vourropt	lee	VIN = VCC or GN	ID	2.3 to 2.7	-	20.0	
Quiescent supply		ICC	VCC ≦ (VIN, VC	OUT) ≦ 3.6 V	2.3 to 2.7	-	±20.0	μΑ

3.3.1.3. (Ta = -40 to 85°C, 1.65 V \leq Vcc < 2.3 V)

Table 3.9 DC Characteristics (VCX Series, Ta = -40 to 85° C, 1.65 V \leq Vcc < 2.3 V)

Characteristics Symbol Test Condition		Vcc (V)	Min	Max	Unit			
	High level	VIH		-	1.65 to 2.3	$0.65 \times VCC$	-	.,
Input voltage	Low level	VIL		-	1.65 to 2.3	-	$0.2 \times VCC$	V
		Vou		IOH = -100 μA	1.65 to 2.3	Vcc - 0.2	-	
	High level	Voh	VIN = VIH or VIL	IOH = -6 mA	1.65	1.25	-	v
Output voltage	Low level	el Vol	VIN = VIH or VIL	IOL = 100 μA	1.65 to 2.3	-	0.2	V
				IOL = 6 mA	1.65	-	0.3	
Input leakage cu	irrent	lin	VIN = 0 to 3.6 V		1.65 to 2.3	-	±5.0	μΑ
3-state output of current	3-state output off-state current IOZ VIN = VIH or VIL VOUT = 0 to 3.6 V		1.65	-	±10.0	μΑ		
Power off leakag	ge current	IOFF	VIN, VOUT = 0 to 3.6 V		0	-	10.0	μΑ
Quiescent supply current		100	VIN = VCC or GN	VIN = VCC or GND		-	20.0	^
		ICC	VCC ≦ (VIN, VC	0UT) ≦ 3.6 V	1.65 to 2.3	-	±20.0	μΑ

3.3.1.4. (Ta = -40 to 85°C, 1.4 V \leq Vcc < 1.65 V)

Table 3.10 DC Characteristics (VCX Series, Ta = -40 to 85°C, 1.4 V \leq V_{CC} < 1.65 V)

Characteristics		Symbol	Test C	Test Condition		Min	Max	Unit
Characte	1151105	Symbol	Test Co	Shallon	VCC (V)	IVIIII	IVIAX	Unit
Input voltage	High level	Vін		-	1.4 to 1.65	$0.65 \times \text{VCC}$	-	V
Input voltage	Low level	VIL		-	1.4 to 1.65	-	0.05 imes VCC	V
		Vou	$V_{\rm INI} = V_{\rm III} + cr V_{\rm III}$	IOH = -100 μA	1.4 to 1.65	Vcc - 0.2	-	
	High level	Vон	VIN = VIH or VIL	IOH = -2 mA	1.4	1.05	-	
Output voltage	Low level	el Vol	VIN = VIH or VIL	IOL = 100 μA	1.4 to 1.65	-	0.05	V
				IOL = 2 mA	1.4	-	0.35	
Input leakage cu	irrent	lin	VIN = 0 to 3.6 V		1.4 to 1.65	-	±5.0	μA
3-state output of current	3-state output off-state current IOZ VIN = VIH or VIL VOUT = 0 to 3.6 V		V	1.4 to 1.65	-	±10.0	μA	
Power off leakag	ge current	IOFF	VIN, VOUT = 0 to 3.6 V		0	-	10.0	μA
Quiescent supply current		lee	VIN = VCC or GN	VIN = VCC or GND		-	20.0	
		ICC VCC ≦ (VIN, V		0UT) ≦ 3.6 V	1.4 to 1.65	-	±20.0	μA

3.3.1.5. (Ta = -40 to 85°C, 1.2 V \leq Vcc < 1.4 V) Table 3.11 DC Characteristics (VCX Series, Ta = -40 to 85°C, 1.2 V \leq Vcc < 1.4 V)

Characte	ristics	Symbol	Test C	ondition		Min	Max	Unit
Characte	1151105	Symbol	1631 00	Shallon	VCC (V)	IVIIII	IVIAA	Onit
Input voltaga	High level	Vih		-	1.2 to 1.4	0.8 imes VCC	-	v
Input voltage	Low level	VIL		-	1.2 to 1.4	-	$0.05\times\text{VCC}$	v
Output voltage	High level	Voh	VIN = VIH or VIL IOH = -100		1.2	VCC - 0.1 -		v
Output voltage	Low level	Vol	VIN = VIH or VIL	IOL = 100 μA	1.2	-	0.05	v
Input leakage cu	rrent	lin	VIN = 0 to 3.6 V		1.2	-	±5.0	μA
3-state output of current	f-state	loz	VIN = VIH or VIL VOUT = 0 to 3.6 V	V	1.2	-	±10.0	μΑ
Power off leakag	je current	IOFF	VIN, VOUT = 0 to	3.6 V	0	-	10.0	μA
		ICC	VIN = VCC or GN	ID	1.2	-	20.0	
Quiescent suppl	Quiescent supply current		VCC ≦ (VIN, VC	0UT) ≦ 3.6 V	1.2	-	±20.0	μA

3.3.2. VCXH Series

3.3.2.1. (Ta = -40 to 85°C, 2.7 V < Vcc \leq 3.6 V)

Table 3.12 DC Characteristics (VCXH Series, Ta = -40 to 85°C, 2.7 V < Vcc \leq 3.6 V)

Charasta	vieties	Question	Test	n n dition		Min	Мак	l la it
Characte	ristics	Symbol	Test Co	ondition	VCC (V)	IVIIN	Max	Unit
Input voltogo	H-level	VIH		-	2.7 to 3.6	2.0	-	V
Input voltage	L-level	VIL		-	2.7 to 3.6	-	0.8	v
				IOH = -100 μA	2.7 to 3.6	Vcc - 0.2	-	
	H-level	Vou		IOH = -12 mA	2.7	2.2	-	
	H-level	Vон	VIN = VIH or VIL	IOH = -18 mA	3.0	2.4	-	
				IOH = -24 mA	3.0	2.2	-	V
Output voltage				IOL = 100 μA	2.7 to 3.6	-	0.2	v
L-level	Vol	VIN = VIH or VII	IOL = 12 mA	2.7	-	0.4		
	L-level	VOL	VIN = VIH OF VIL	IOL = 18 mA	3.0	-	0.4	
				IOL = 24 mA	3.0	-	0.55	
Input leakage cu (DIR, OE)	urrent	lin	VIN = 0 to 3.6 V		2.7 to 3.6	-	±5.0	μΑ
Bushold input m	inimum drive		VIN = 0.8 V		3.0	75	-	^
hold current		II (HOLD)	VIN = 2.0 V		3.0	-75	-	μA
Bushold input ov	ver-drive		VIN = "L"→"H"		3.6	-	500	
current to chang (Note 1)	je state	li (OD)	VIN = "H"→"L"		3.6	3.6 -		μA
3-state output O current	FF state	loz	VIN = VIH or VIL VOUT = VCC or 0	GND	2.7 to 3.6	-	±10.0	μA
Quiescent suppl	y current	ICC	VIN = VCC or GN	2.7 to 3.6	-	20.0		
Increase in ICC	per input	∆ICC	VIH = VCC - 0.6 V	/ (per input)	2.7 to 3.6	-	750	μΑ

Note 1: It is a necessary electric current to change the input in "L" or "H".

3.3.2.2. (Ta = -40 to 85°C, 2.3 V \leq Vcc \leq 2.7 V) Table 3.13 DC Characteristics (VCXH Series, Ta = -40 to 85°C, 2.3 V \leq Vcc \leq 2.7 V)

Ohamaata		Ourseland	Test O			D.4im	Maria	11-14
Characte	eristics	Symbol	Test Co	ondition	VCC (V)	Min	Max	Unit
Input voltage	H-level	Vih		-	2.3 to 2.7	1.6	-	V
Input voltage	L-level	VIL		-	2.3 to 2.7	-	0.7	v
				IOH = -100 μA	2.3 to 2.7	VCC - 0.2	-	
H-level		Vон	VIN = VIH or VIL	ЮН = -6 mA	2.3	2.0	-	
	n-level	VOH	VIN = VIH or VIL	IOH = -12 mA	2.3	1.8	-	
Output voltage				IOH = -18 mA	2.3	1.7	-	V
				IOL = 100 μA	2.3 to 2.7	-	0.2	
	L-level	VOL	VIN = VIH or VIL	IOL = 12 mA	2.3	-	0.4	
				IOL = 18 mA	2.3	-	0.6	
Input leakage cu (DIR, OE)	urrent	lin	VIN = 0 to 3.6 V		2.3 to 2.7	-	±5.0	μA
Bushold input m	inimum drive		VIN = 0.7 V		2.3	45	-	
hold current		li (Hold)	VIN = 1.6 V		2.3	2.3 -45		μΑ
Bushold input o	ver-drive		VIN = "L"→"H"		2.7	-	300	
current to chang (Note)	je state	II (OD)	VIN = "H"→"L"		2.7	-	-300	μA
3-state output C current	FF state	loz	VIN = VIH or VIL VOUT = VCC or 0	GND	2.3 to 2.7	-	±10.0	μA
Quiescent supp	ly current	Icc	VIN = VCC or GN	ID	2.3 to 2.7	-	20.0	μA

Note 1: It is a necessary electric current to change the input in "L" or "H".

3.3.2.3. (Ta = -40 to 85°C, 1.8 V \leq Vcc < 2.3 V) Table 3.14 DC Characteristics (VCXH Series, Ta = -40 to 85°C, 1.8 V \leq Vcc < 2.3 V)

	J.1 + DC	enaracce		1 Series, 1a =	1010 00 0	, no t _		
Characte	eristics	Symbol	Test (Condition	V _{CC} (V)	Min	Max	Unit
	H-level	Vih		- 1.8 to 2.3 0.7 × V _{CC}		-		
Input voltage	L-level	VIL		-	1.8 to 2.3	-	$0.2 \times V_{CC}$	V
		Mari		IOH = -100 μA	1.8	Vcc - 0.2	-	
Output valtage	H-level	Vон	VIN = VIH or VIL	IOH = -6 mA	1.8	1.4	-	v
Output voltage		Max		I _{OL} = 100 μA	1.8	-	0.2	V
	L-level	Vol	VIN = VIH or VIL	I _{OL} = 6 mA	1.8	-	0.3	
Input leakage current (DIR, OE)		lın	VIN = 0 to 3.6 V		1.8	-	±5.0	μА
Bushold input mir	nimum drive		VIN = 0.36 V		1.8	25	-	
hold current		li (HOLD)	VIN = 1.26 V		1.8	-25	-	μΑ
Bushold input over	er-drive current	lu (ap)	V _{IN} = "L"→"H"		1.8	1.8 -		
to change state (Note)		lı (OD)	V _{IN} = "H"→"L"		1.8	-	-200	μΑ
3-state output OF	F state current	loz	VIN = VIH or VIL VOUT = VCC or G	ND	1.8	-	±10.0	μA
Quiescent supply	current	Icc	VIN = VCC or GNI	/IN = V _{CC} or GND 1.8			20.0	μΑ

Note 1: It is a necessary electric current to change the input in "L" or "H".

3.3.3. LCX series

Table 3.15 DC Char	acteristics (LCX	Series) (Ta = -40 to 85°C)
--------------------	------------------	-----------	-------------------

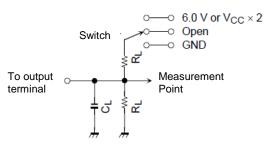
		-	e enaracteris			10 10 00 0)		
Characteristics		Symbol	Test Co	ondition		Min	Max	Unit
0.1.4.40101		0,			VCC (V)			
					1.65 to 2.3	VCC × 0.9	-	
	H-level	Vih		-	2.3 to 2.7	1.7	-	
					2.7 to 3.6	2.0	-	v
Input voltage					1.65 to 2.3	-	VCC × 0.1	- V
	L-level	VIL		-	2.3 to 2.7	-	0.7	
					2.7 to 3.6	-	0.8	
				IOH = -100 μA	1.65 to 3.6	VCC - 0.2	-	
				IOH = -4 mA	1.65	1.05	-	
		Maria		IOH = -8 mA	2.3	1.7	-	
	H-level	Vон	VIN = VIH or VIL	IOH = -12 mA	2.7	2.2	-	
				lон = -18 mA	3.0	2.4	-	-
				IOH = -24 mA	3.0	2.2	-	
Output voltage				IOL = 100 μA	1.65 to 3.6	-	0.2	V
				IOL = 4 mA	1.65	-	0.45	
			., ., .,	IOL = 8 mA	2.3	-	0.7	
	L-level	VOL	VIN = VIH or VIL	IOL = 12 mA	2.7	- 0.4		
				IOL = 16 mA	3.0	-	0.4	
				IOL = 24 mA	3.0	-	0.55	
Input leakage cu	rrent	lin	VIN = 0 to 5.5 V	•	1.65 to 3.6	-	±5.0	μA
3-state output off current	-state	loz	VIN = VIH or VIL VOUT = 0 to 5.5	V	1.65 to 3.6	-	±5.0	μA
Power off leakag	e current	IOFF	VIN/VOUT = 5.5	V	0	-	10.0	μA
Quieseent europh	0.0000000		VIN = VCC or GN	ID	1.65 to 3.6	-	10.0	
Quiescent supply	Quiescent supply current	ICC	VIN/VOUT = 3.6 t	o 5.5 V	1.65 to 3.6	-	±10.0	μA
Increase in ICC p	ncrease in ICC per input		VIH = VCC - 0.6 V	V	2.7 to 3.6	-	500	1

4. Explanation of Symbols Used in Data sheets

4.1. How to Read Truth Table

Table 4.1 Definition of Symbols Used in Truth Table

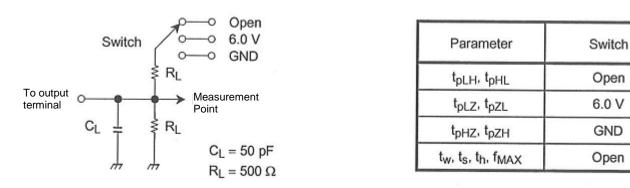
SYMBOL	DEFINITION
Н	High level (indicates stationary input or output)
L	Low level (indicates stationary input or output)
ſ	Indicates leading edge changing from L to H.
Ţ	Indicates leading edge changing from H to L.
Х	Don't care (either H or L)
Z	High-impedance state
a…h	The level of the parallel inputs A to H (either H or L).
Q0	Level of Q just before input condition indicated in truth table
Qn	Level of Q just before input active edge (f or 1)
Л	One H-level pulse
Г	One L-level pulse


4.2. AC Characteristics

The transient characteristics of the VCX/LCX series are included in the AC characteristics. Hence, if the AC characteristics are within specification, the transient characteristics will be satisfactory.

Figures 4.1 and 4.2 show measuring circuits of the VCX and LCX. Figures 4.3 and 4.4 show I/O switching waveforms.

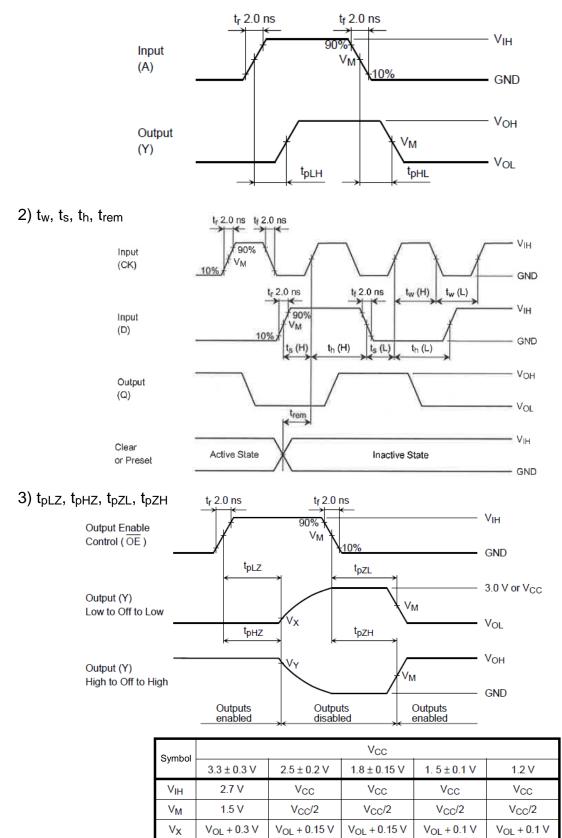
(Condition of input waveform: An amplitude range is between Vcc and GND, and rise and fall times are 2 ns in the case of the VCX series, and 2.5 ns in the case of the LCX series.)


To ensure normal functioning of the device, the following timings must be adhered to.

Parameter	Switch
t _{pLH} , t _{pHL}	Open
t _{PLZ} , t _{PZL}	
t _{pHZ} , t _{pZH}	GND

	V _{CC}								
Symbol	3.3 ± 0.3 V 2.5 ± 0.2 V 1.8 ± 0.15 V	1.5 ± 0.1 V 1.2 V							
RL	500 Ω	2 kΩ							
CL	30 pF	15 pF							

Figure 4.1 Measuring Circuit of Output (VCX Series)



Note: CL includes the probe capacitance.

Figure 4.2 Measuring Circuit of Output (LCX Series)

4.2.1. I/O Switching Waveforms of VCX Series

1) t_{pLH},t_{pHL}

Figure 4.3 I/O Switching Waveforms of VCX Seri
--

V_{OH} - 0.15 V

V_{OH} - 0.1 V

V_{OH} - 0.1 V

V_{OH} - 0.15 V

V_{OH} – 0.3 V

VY

4.2.2. I/O Switching Waveforms of LCX Series

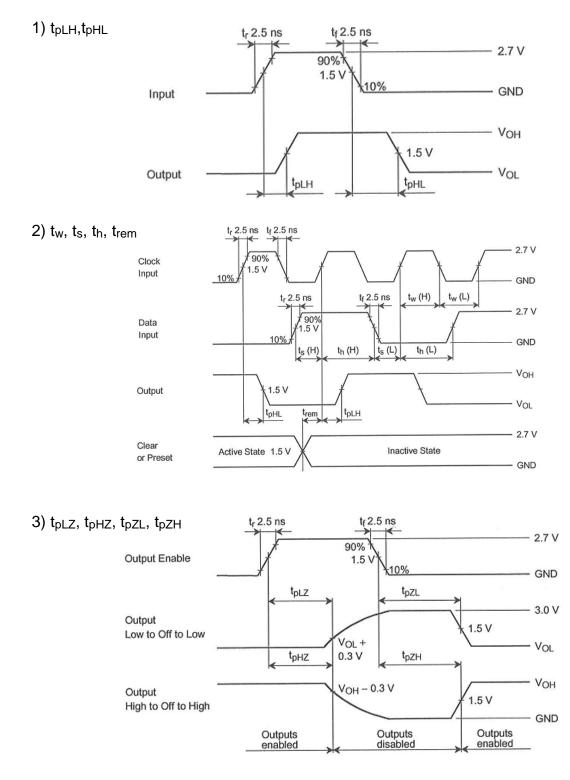


Figure 4.4 I/O Switching Waveforms of LCX Series

4.3. Standardized Test Procedure for Power Dissipation Capacitance

Measurements for all devices are under the conditions of " $V_{CC} = 3.3$ V" and "Ta = 25 deg C". And a relatively high frequency, about 10 MHz, is used for measurement of power consumption, because if a device is tested at a high enough frequency, the contribution of the DC supply current to the overall power consumption will be negligible and can be ignored. Devices with 3-state outputs are measured in the enabled state.

In the case of devices that have several circuits in the same package (e.g., LCX16244: 16-BIT BUS BUFFER, LCX04: HEX INVERTER, LCX74: DUAL D-F/F etc.), only one circuit is measured and the result is shown on the data sheet as the C_{pd} per circuit.

In the case of devices that contain several circuits in the same package operating simultaneously from the same clock signal (e.g., LCX373:OCTAL D LATCH etc.), the C_{pd} can be obtained by measuring either the C_{pd} of the device with only one output active, or the C_{pd} with all device outputs active.

The pin states for each IC are listed in the table.

C_{PD} Measuring Condition

Table 4.2 C_{PD} Measuring Condition

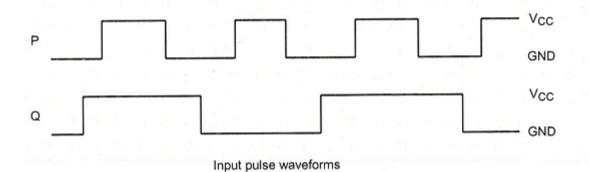
•	Table 4.2 CPD Measuring Condition																								
Туре		in																							
No.	N		0	3	4	F	6	7	0	0	10	4.4	10	10	4.4	45	10	47	10	10	20	04	20	22	04
00	_	P	2 H	0	4 X	5 X	6 0	G	8 0	9 X	10 X	<u>11</u> 0	12 X	13 X	14 V	15	16	17	18	19	20	21	22	23	24
02		2	P	L	0	X	X	G	X	X	0	X	X	0	V										
04		2 2	0	X	0	X	0	G	0	X	0	X	0	X	V										
05		>	R	X	0	X	0	G	0	X	0	X	0	X	V										
07		5	R	X	0	X	0	G	0	X	0	X	0	X	V										
08		5	H	0	X	X	0	G	0	X	X	0	X	X	V										
14		2	0	X	0	X	0	G	0	X	0	X	0	X	V										
32		5	L	0	X	X	0	G	0	X	X	0	X	X	V										
74	F	-	Q	P	H	0	0	G	0	0	X	X	X	X	V										
86		>	L	0	X	X	0	G	0	X	X	0	X	X	V	-									
125	ŀ		P	0	Х	Х	0	G	0	Х	X	0	Х	X	V										
126	ŀ		Ρ	0	Х	Х	0	G	0	Х	Х	0	Х	Х	V										
138	F	>	L	L	L	L	Н	0	G	0	0	0	0	0	0	0	V								
157 1*	k F	>	L	Н	0	L	L	0	G	0	L	L	0	L	L	L	V								
157 4*		>	L	Н	0	L	Н	0	G	0	Н	L	0	Н	L	L	V								
240	I	_	Ρ	0	Х	0	Х	0	Х	0	G	Х	0	Х	0	Х	0	Х	0	Х	V				
244	L	_	Ρ	0	Х	0	Х	0	Х	0	G	Х	0	Х	0	Х	0	Х	0	Х	V				
245	ŀ	1	Ρ	Х	Х	Х	Х	Х	Х	Х	G	0	0	0	0	0	0	0	0	L	V				
257 1*	k F	>	L	Н	0	Х	Х	0	G	0	Х	Х	0	Х	Х	L	V								
257 4*	k F	2	L	Н	0	L	Н	0	G	0	Н	L	0	Н	L	L	V								
273 1*	k F	1	0	Q	Х	0	0	Х	Х	0	G	Р	0	Х	Х	0	0	Х	Х	0	V				
273 8*	k F	1	0	Q	Q	0	0	Q	Q	0	G	Р	0	Q	Q	0	0	Q	Q	0	V				
373 1*	k [_	0	Q	Х	0	0	Х	Х	0	G	Р	0	Х	Х	0	0	Х	Х	0	V				
373 8*	* I	_	0	Q	Q	0	0	Q	Q	0	G	Р	0	Q	Q	0	0	Q	Q	0	V				
374 1*	* [_	0	Q	Х	0	0	Х	Х	0	G	Р	0	Х	Х	0	0	Х	Х	0	V				
374 8*	* I	-	0	Q	Q	0	0	Q	Q	0	G	Ρ	0	Q	Q	0	0	Q	Q	0	V				
540 1*	* I	_	Ρ	Х	Х	Х	Х	Х	Х	Х	G	0	0	0	0	0	0	0	0	L	V				
540 8*	* I	_	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	G	0	0	0	0	0	0	0	0	L	V				
541 1*	k [_	Ρ	Х	Х	Х	Х	Х	Х	Х	G	0	0	0	0	0	0	0	0	L	V				
541 8*	۲ I	_	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	G	0	0	0	0	0	0	0	0	L	V				
573 1*		_	Q	Х	Х	Х	Х	Х	Х	Х	G	Р	0	0	0	0	0	0	0	0	V				
573 8*		_	Q	Q	Q	Q	Q	Q	Q	Q	G	Р	0	0	0	0	0	0	0	0	V				
574 1*		_	Q	Х	Х	Х	Х	Х	Х	Х	G	Ρ	0	0	0	0	0	0	0	0	V				
574 8*	۴ L	_	Q	Q	Q	Q	Q	Q	Q	Q	G	Ρ	0	0	0	0	0	0	0	0	V				
2125	ŀ	Η	Ρ	0	Х	Х	0	G	0	Х	Х	0	Х	Х	V										
2244	L	_	Ρ	0	Х	0	Х	0	Х	0	G	Х	0	Х	0	Х	0	Х	0	Х	V				
2541	L	_	Ρ	Х	Х	Х	Х	Х	Х	Х	G	0	0	0	0	0	0	0	0	L	V				

*: Number of active outputs

Type	F	Pin																							
Туре	Ν	١o.																							
No.		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
16245		H	0	0	G	0	0	V	0	0	G	0	0	0	0	G	0	0	V	0	0	G	0	0	Н
162245		H	0	0	G	0	0	V	0	0	G	0	0	0	0	G	0	0	V	0	0	G	0	0	Н
163245		H	0	0	G	0	0	V	0	0	G	0	0	0	0	G	0	0	V	0	0	G	0	0	Н
164245		Н	0	0	G	0	0	V	0	0	G	0	0	0	0	G	0	0	V	0	0	G	0	0	Н
16244		L	0	0	G	0	0	V	0	0	G	0	0	0	0	G	0	0	V	0	0	G	0	0	Х

 Table 4.3
 C_{PD} Measuring Condition (48 pin)

Туро	Pin																							
Type No.	No.																							
NO.	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
16245	Н	Х	Х	G	Х	Х	V	Х	Х	G	Х	Х	Х	Х	G	Х	Х	V	Х	Х	G	Х	Ρ	L
162245	Н	Х	Х	G	Х	Х	V	Х	Х	G	Х	Х	Х	Х	G	Х	Х	V	Х	Х	G	Х	Р	L
163245	Н	Х	Х	G	Х	Х	V	Х	Х	G	Х	Х	Х	Х	G	Х	Х	V	Х	Х	G	Х	Р	L
164245	Н	Х	Х	G	Х	Х	V	Х	Х	G	Х	Х	Х	Х	G	Х	Х	V	Х	Х	G	Х	Р	L
16244	Х	Х	Х	G	Х	Х	V	Х	Х	G	Х	Х	Х	Х	G	Х	Х	V	Х	Х	G	Х	Х	Х


*: Number of active outputs

-Explanation of Symbols-

- $V = V_{CC} (+3.3 V)$
- G = GND (0 V)
- H = Logic 1 (VCC)
- L = Logic 0 (GND)

X = Don't Care i.e. VCC or GND (but not switching)

- O = Open
- $C = A 50 \cdot pF^*$ capacitor is inserted between each output pin and GND
 - *: 30-pF in the case of VCX Series devices
- $R = 1.0 \cdot k\Omega$ pull-up resistor for an additional 3.3 V supply distinct from VCC supply
- P = 50% duty cycle input pulse (shown below)
- Q = 50% duty cycle half-frequency out-of-phase input pulse (shown below)

4.4. Noise Characteristics and Measurement Circuit

Noise characteristics caused by high-speed switching are specified for the VCX/LCX series.

Noise is generated by rush current flowing through the internal V_{CC} or GND lines of a device when several outputs are switching simultaneously.

Table 4.4 shows an explanation of noise parameters.

Figure 4.5 shows the noise characteristic measurement circuit.

Parameter	Symbol	Definition					
Quiet output maximum dynamic V _{OL}	V _{OLP}	The maximum peak voltage induced into an output that is fixed at the Low level when the other outputs are switching simultaneously.					
Quiet output minimum dynamic V _{OL}	V _{OLV} V _{OLV}	The minimum peak voltage induced into an output that is fixed at the Low level when the other outputs are switching simultaneously.					
Quiet output minimum dynamic V _{OH}	V _{OHV}	The minimum peak voltage induced into an output that is fixed at the High level when the other outputs are switching simultaneously.					

Table 4.4 Explanation of Noise Parameters

Noise characteristic measurement circuit

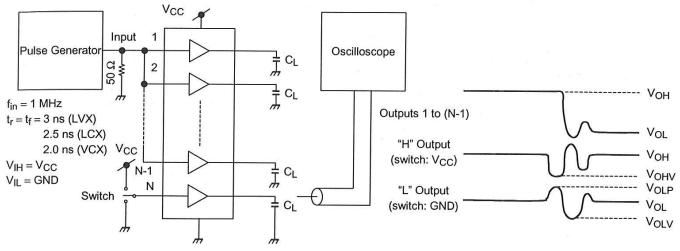


Figure 4.5 Quiet Output Dynamic VOLP and VOLV Measurement Circuit

5. Other Electrical Characteristics

5.1. Power Dissipation

The power dissipation is given by the sum of the quiescent supply current and the dynamic operating current. Therefore, it can be obtained from the following equation:

 $P_{D} = C_{PD} \cdot f_{IN} \cdot V_{CC}^{2} + C_{L} \cdot f_{OUT} \cdot V_{CC}^{2} + I_{CC} \cdot V_{CC}$

C_{PD} : Power Dissipation Capacitance

C_L : Load Capacitance

f_{IN} : Input Frequency

f_{OUT} : Output Frequency

In the case of CMOS ICs, if inputs are held at V_{CC} or GND, either the N-ch MOS or the P-ch MOS turns off. As a result, the quiescent supply current from V_{CC} to GND is just a few nA at room temperature.

Therefore, the quiescent supply current increases in direct proportion to the power supply voltage and increases exponentially with the temperature.

The dynamic power dissipation of CMOS ICs is calculated by summing the switching currents and the through currents. The switching currents are due to the charging and discharging of each gate capacitance, when the gate in the circuit that includes the output buffer inverts, and the through currents flow from V_{CC} to GND when the P-ch MOS and the N-ch MOS that constitute the gate turn on briefly at the same time during inversion time.

When the rise and fall times of the input signal are small (a few ns), the through current in the gate is negligible compared with the switching current. Thus, the dynamic supply current is determined by the internal capacitance of the IC and the charging and discharging currents of the load capacitance (C_L).

However, in specific applications such as crystal oscillators, supply current characteristics depend on the through current, and the result calculated using C_{PD} cannot be used.

5.2. Bus-Hold Input Current Characteristics

Table 5.1 lists the bus-hold input current values that are guaranteed for the VCXH16245. Figure 5.1 shows the bus-hold input current characteristics for the VCXH16245.

Characteristics		VCXH		
Characteristics	V _{CC} (V)	(Ta = -40 to 85°C)		
	1.8	V _{IN} = 0.36 V	25	
	1.0	V _{IN} = 1.26 V	-25	
Bushold input	2.3	V _{IN} = 0.7 V	45	
minimum drive hold current	2.3	V _{IN} = 1.6 V	-45	
Current	3.0	V _{IN} = 0.8 V	75	
	3.0	V _{IN} = 2.0 V	-75	
	1.8	An external driver must source at least the specified current to switch from LOW to HIGH.	200	
	1.0	An external driver must sink at least the specified current to switch from HIGH to LOW.	-200	
Bushold input over-drive current	2.7	An external driver must source at least the specified current to switch from LOW to HIGH.	300	
to change state	2.7	An external driver must sink at least the specified current to switch from HIGH to LOW.	-300	
	3.6	An external driver must source at least the specified current to switch from LOW to HIGH.	500	
	5.0	An external driver must sink at least the specified current to switch from HIGH to LOW.	-500	

Table 5.1 Guaranteed Bus-Hold Input Current Value for VCXH16245 (µA)

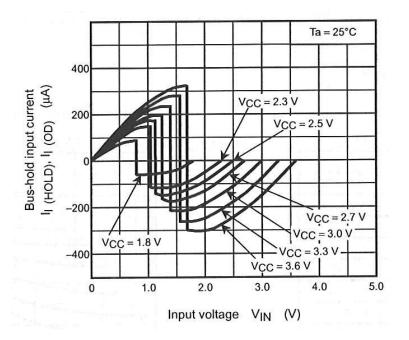


Figure 5.1 Standard Bus-Hold Input Current Characteristics for VCXH16245

5.3. **Output Current Characteristics**

Table 5.2 shows the guaranteed value of the output voltage for the VCX/LCX series. Circuit design can be facilitated by choosing a device from the series (VCX/LCX) most appropriate for the impedance that is to be connected to the device's outputs.

Figures 5.2 and 5.3 (for the VCX series) and Figure 5.4 (for the LCX series) show the respective output current characteristics.

Characteristics		vcx	LCX			
Characteristics	V _{CC} (V)	(Та	= -40 to 85°C)	VOX	LUX	
	1.8	I _{OH} = -6 mA	o: ³ > ²	1.4	-	
	2.3	I _{OH} = -6 mA		2.0		
	2.3	I _{OH} = -12 mA		1.8		
High-level output voltage	2.3	I _{OH} = -18 mA	N N	1.7		
(min)	. 2.7	I _{OH} = -12 mA	$= -12 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$		2.2	
	3.0	$I_{OH} = -4 \text{ mA}$		_		
	3.0	I _{OH} = -18 mA		2.4	2.4	
	3.0	I _{OH} = -24 mA		2.2	2.2	
	1.8	I _{OL} = 6 mA	ener d'aggree helse	0.3		
	2.3	I _{OL} = 12 mA	n and a second se	0.4	1	
	2.3	I _{OL} = 18 mA	et e en Tané els Real a s engliste a care e e e el	0.6	1 <u>00</u>	
Low-level output voltage	2.7	I _{OL} = 12 mA	V V arV	0.4	0.4	
(max)	3.0	I _{OL} = 4 mA	$V_{IN} = V_{IH} \text{ or } V_{IL}$			
	3.0	I _{OL} = 16 mA		-	0.4	
	3.0	l _{OL} = 18 mA	ur all a literatur à Ministration en la constant de Ministration de Ministration de Ministration de Ministration de Ministration de Ministration en la constant de Ministration de Ministration de Ministration de Ministration de Ministration de Ministration d	0.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	3.0	I _{OL} = 24 mA	n ann. I seann 1961 an Stàitean an Anna Anna Anna Anna Anna Anna Ann	0.55	0.55	

 Table 5.2 Guaranteed Value of Output Voltage for VCX/LCX Series

High-level output voltage Von-Vcc (V)

High-level output current IoH (mA)

50

75

100

150



Figure 5.3 Output Current Characteristics for VCXHR Series (Typ.)

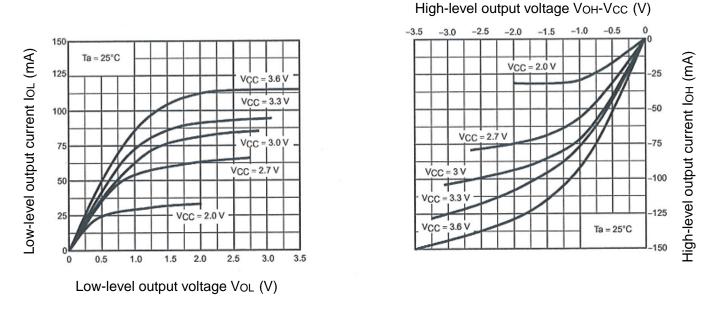


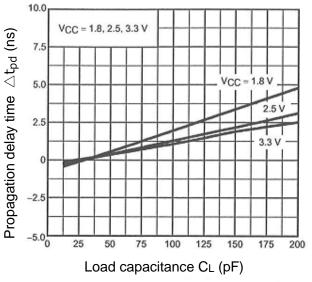
Figure 5.4 Output Current Characteristics for LCX Series

5.4. AC Electrical Characteristics

5.4.1. Capacitive Loading Effects

In the VCX/LCX series, AC characteristics are guaranteed for load capacitances of 30 pF (VCX only) and 50 pF (LCX only). The propagation delay time when using other load capacitances can be obtained using the following equation:

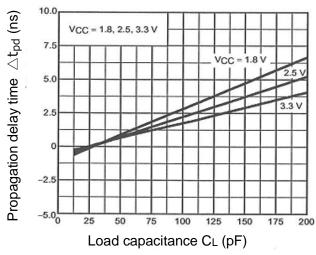
Propagation delay time for a load capacitance of X pF


 $t_{pd}(X \text{ pF})=A(X \text{ pF} - 30 \text{ pF})+t_{pd}(30 \text{ pF})$ ······VCX series

 $t_{pd}(X pF) = A(X pF - 50 pF) + t_{pd}(50 pF) \cdots LCX$ series

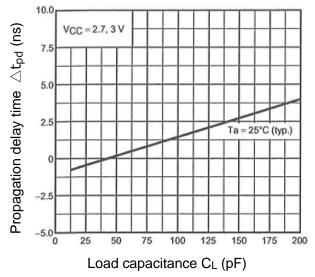
A: increase in propagation delay time per unit load capacitance (ns/pF)

Figures 5.5, 5.6, and 5.7 show $riangle t_{pd}$ for the propagation delay time.


In product-specific specification sheets, guaranteed values are only specified at $C_L = 30 \text{ pF}$ (VCX only) and $C_L = 50 \text{ pF}$ (LCX only).

Increase in propagation delay time per unit load capacitance

Ta = 25°C (typ.)	
VCC = 1.8 V	A = 0.028 (ns/pF)
VCC = 2.5 V	A = 0.019 (ns/pF)
$V_{CC} = 3.3 V$	A = 0.015 (ns/pF)


Figure 5.5 VCX Series

Increase in propagation delay time per unit load capacitance

$Ta = 25^{\circ}C$ (typ.)	
$V_{CC} = 1.8 V$	A = 0.042 (ns/pF)
VCC = 2.5 V	A = 0.033 (ns/pF)
VCC = 3.3 V	A = 0.030 (ns/pF)

Increase in propagation delay time per unit load capacitance

 $Ta = 25^{\circ}C (typ.)$ A = 0.023 (ns/pF)

Figure 5.7 LCX Series

5.4.2. Output Skew Characteristics

The output-pin-to-pin skew characteristics (t_{osLH}/t_{osHL}) for the VCX/LCX series are shown below. These values are items guaranteed by design.

 $t_{osLH} = |t_{pLH}(max) - t_{pLH}(min)|$

 $t_{osHL} = |t_{pHL}(max) - t_{pHL}(min)|$

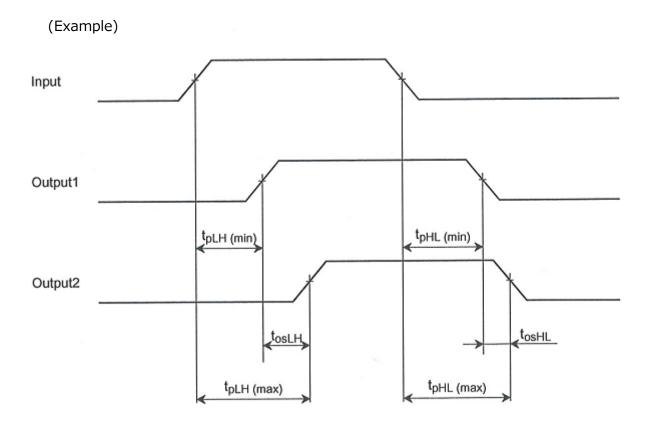


Figure 5.8 Output Skew Characteristics

6. Glossary of CMOS Logic IC Terms

6.1. Absolute Maximum Ratings

Parameter	Symbol	Definition
Supply voltage	V _{DD} - V _{SS} V _{CC}	The rated voltage of the power supply terminal at which an IC will not suffer breakdown, deterioration of characteristics, or reduced reliability.
Supply voltage	V _{DD} - V _{EE} V _{CC} - V _{EE}	The rated voltage across the V_{CC} , V_{DD} and V_{EE} terminals at which an IC will not suffer breakdown, deterioration of characteristics, or reduced reliability.
Input voltage	VIN	The rated voltage of the input terminal at which an IC will not suffer breakdown, deterioration of characteristics, or reduced reliability.
Output voltage	V _{OUT}	The rated voltage of the output terminal at which an IC will not suffer breakdown, deterioration of characteristics, or reduced reliability.
Switch I/O voltage	V _{I/O}	The rated voltage across the input and output terminals at which an IC will not suffer breakdown, deterioration of characteristics, or reduced reliability.
Input diode current	I _{IK}	The rated current of the input terminal at which an IC will not suffer breakdown due to latch-up.
Output diode current	I _{OK}	The rated current of the output terminal at which an IC will not suffer breakdown due to latch-up.
Output current	I _{OUT}	The rated current that can flow through one output terminal.
Switch through current	IT	The rated current between the input and output terminals of a switch at which an IC will not suffer breakdown, deterioration of characteristics, or reduced reliability.
V _{CC} /ground current	I _{CC} I _{CC} / I _{GND}	The rated current between the power supply and ground terminals at which an IC will not suffer breakdown, deterioration of characteristics, or reduced reliability. As V_{CC} / ground current includes output current, substantial V_{CC} / ground current can flow in an IC having multiple output terminals.
Power dissipation	PD	Power consumption that does not cause IC breakdown over the entire operating temperature range.
Storage temperature	T _{stg}	The ambient temperature range over which no deterioration of characteristics or reliability occurs when an IC is stored for a long period of time or is transported with no supply voltage present.

6.2. Operating Ranges

Parameter	Symbol	Definition
Supply voltage	V _{DD} V _{CC} V _{EE} V _{DD} - V _{EE} V _{CC} - V _{EE}	The supply voltage range over which the normal operation of an IC is guaranteed.
Input voltage	V _{IN}	The input voltage range over which the normal operation and electrical characteristics of an IC are guaranteed.
Output voltage	V _{OUT}	The output voltage range over which the normal operation and electrical characteristics of an IC are guaranteed.
Switch I/O voltage	V _S V _{I/O}	The switch I/O voltage range over which the normal operation and electrical characteristics of an IC are guaranteed.
Output current	I _{OUT} I _{OH} , I _{OL} I _{OL}	The maximum output current at which the normal operation and electrical characteristics of an IC are guaranteed.
Input rise and fall times	t _r ,t _f dt/dv	The ranges of rise and fall times of an input signal that will not cause malfunction due to oscillation of the output.
External capacitor	C _X	The external capacitance range over which the normal operation and electrical characteristics of a multivibrator IC are guaranteed.
External resistor	R _X	The external resistance range over which the normal operation and electrical characteristics of a multivibrator IC are guaranteed.
Operating temperature	T _{opr}	The operating temperature range over which the normal operation and electrical characteristics of an IC are guaranteed.

6.3. Electrical Characteristics

* 電気的特性は測定条件下において規定されます。

Parameter	Symbol	Definition
High-level input voltage	V_{IH}	The input voltage at which input of an IC is driven to the High level.
Low-level input voltage	V _{IL}	The input voltage at which the input of an IC is driven to the Low level.
Positive threshold voltage	VP	The input threshold voltage at which a Schmitt-trigger input is driven to the High level.
Negative threshold voltage	V _N	The input threshold voltage at which a Schmitt-trigger input is driven to the Low level.
Hysteresis voltage	V _H	The difference between the positive and negative threshold voltages of a Schmitt-trigger input.
High-level output voltage	V _{OH}	The voltage that appears at the output when either VIH or VIL is applied to each input terminal such that the output is set to the High level.
Low-level output voltage	V _{OL}	The voltage that appears at the output when either VIH or VIL is applied to each input terminal such that the output is set to the Low level.
Power-off leakage current	I _{OFF}	The leakage current that flows into an IC via input and output terminals when the power supply is off.
Input leakage current	I _{IN}	The leakage current that flows through the input terminal when a voltage is present at the input terminal of an IC.
Output off-state leakage current	I _{OZ}	The leakage current of an IC with an open-drain output that flows through the output terminal when it is in the high-impedance state.
Output leakage current (Power-off)	I _{OPD}	The leakage current that flows into an IC via the output terminals when V_{CC} is in the off state ($V_{CC} = 0 V$)
3-state output off-state leakage current	I _{OZ}	The leakage current of an IC with an open-drain or three-state output that flows through the output terminal when it is in the high-impedance state.

TOSHIBA Logic IC VCX/LCX (Low Voltage) Series Outline Application Note

Parameter	Symbol	Definition
Input/output leakage current (Switch off)	I _{OFF}	The leakage current that flows through an IC from the input terminals to the output terminal when the power supply is off.
Input/output leakage current (Switch on)	I _{I/O}	The leakage current that flows from the input terminal to the output terminal in the switch-on and open-output states.
Control input leakage current	I _{IN}	The leakage current that flows through the control input terminal of an IC when a voltage is applied to the terminal.
RX/CX terminal off-state current	I _{IN}	The current that flows through the RX/CX terminal of a multivibrator IC when a voltage is applied to the terminal.
T2 terminal input leakage current	I _{IN}	The current that flows through the T2 terminal of a multivibrator IC when a voltage is applied to the terminal.
Quiescent supply current	I _{CC}	The current that flows into an IC via the V_{CC} terminal when the V_{CC} or ground level is held constant without changing the input voltage.
	ΔI _{CC}	The current that flows into an IC via the V_{CC} terminal when V_{CC} - 0.6 V is applied to one input terminal.
	I _{CCT}	The current that flows into an IC with TTL-level input via the $V_{\rm CC}$ terminal when a TTL-level voltage is applied to one input terminal.
Active-state supply current (per circuit)	I _{CC(opr)}	The average current that flows in the no-load condition between the power supply and ground terminals due to an internal circuit operation.
On-resistance	R _{ON}	The resistance between the input and the output of an analog switch, multiplexer or demultiplexer IC in the switch-on state.
Difference of on-resistance between switches	ΔR _{ON}	The difference in on-resistance between different input-output pairs of an analog switch, multiplexer or demultiplexer IC.

Parameter	Symbol	Definition
Minimum pulse width	t _{w(H)} t _{w(L)}	The minimum pulse width that is accepted at a clock input, etc. as a normal pulse.
Minimum setup time	t _S	The time interval during which data must be stable before the associated input (e.g., clock) changes. For example, when data is latched on the rising edge of a clock pulse, it is necessary to apply data at least t_s before the rising edge of the clock.
Minimum hold time	t _h	The time interval during which data must be stable after the active transition of the associated input (e.g., clock).
Minimum removal time	t _{rem}	The minimum time between the release of an asynchronous input (e.g., Clear, Preset) and the application of the next input (e.g., clock).
Minimum retrigger time	t _{rr}	The minimum time necessary for a multivibrator IC to accept the next trigger signal after having received one.
Output transition time	tт∟н t _{THL}	The rise and fall times of the output voltage. t_{TLH} is the time from 10% to 90% when the output transitions from Low to High, and t_{THL} is the time from 90% to 10% when the output transitions from High to Low. Output voltage 90% 90% V_{OH} V_{OL} V_{OL} t_{THL} V_{OL} t_{THL} V_{OL} t_{THL} V_{OL} t_{THL} V_{OL} t_{TLH} t_{T

TOSHIBA Logic IC VCX/LCX (Low Voltage) Series Outline Application Note

Parameter	Symbol	Definition
Propagation delay time	t _{pLH} t _{pHL}	The delay time between the application of an input signal and an output response. t_{pLH} is defined as the time required for an output to transition from Low to High, and t_{pHL} is defined as the time required for an output to transition from High to Low.
		HC/VHC series
		Input 50% 50%
		Output 50%
		HCT series
		Input 1.3 V 1.3 V
		Output voltage 1.3 V t _{pLH} 1.3 V
		VHCT series
		Input 1.5 V 1.5 V
		Output voltage 1.5 V 1.5 V

TOSHIBA Logic IC VCX/LCX (Low Voltage) Series Outline Application Note

Parameter	Symbol	Definition
Output enable time Output disable time	tpLZ tpHZ tpZL tpZH	The output enable time is defined as the delay time required for a three-state terminal to be driven High or Low after the output control terminal is set to an inactive level. The output disable time is defined as the delay time required for an output terminal to assume the high-impedance state after the output control signal is set to an active level. HC/VHC series VCC Input voltage Utput enable HCT series VICT series VIC
		Output enable Output disable Output enable

Parameter	Symbol	Definition
Propagation delay time	Δt _{PD}	For counter ICs, the delay time defined for an IC from when the Qn output is inverted to when the next output $(Qn+1)$ is inverted.
Output pulse width	t _{wout}	For multivibrator ICs, the width of the output pulse generated when a prescribed external component is connected and a prescribed voltage is applied.
Output pulse width error between circuits (in the same package)	Δt _{wOUT}	For multivibrator ICs, a difference in output pulse width between two circuits in the same package.
Output skew	t _{osLH} t _{osHL} t _{osZL}	Differences in propagation delay time among output terminals when some outputs in the same package change from the Low level to the High level, from the High level to the Low level, or from the high-impedance state to the Low level.
Phase difference between input and output	Φι/ο	For analog switch, multiplexer and demultiplexer ICs, the delay time from the input to the output when a signal is applied to the input in the switch-on state.
Clock frequency	f	The clock frequency at which an IC operates.
Maximum clock frequency	f _{MAX}	The maximum clock frequency at which the IC operates normally.
Maximum frequency response Phase difference between input and output	f _{MAX(I/O)} f _{MAX}	For analog switch, multiplexer and demultiplexer ICs, the maximum input frequency that the signal can transmit to the output in the switch-on state.
Input capacitance	C _{IN}	The capacitance between the input and ground terminals.
Control input capacitance	C _{IN}	For analog switch, multiplexer and demultiplexer ICs, the capacitance between the control input and ground terminals.
Common terminal capacitance	C _{IS}	For analog switch, multiplexer and demultiplexer ICs, the capacitance between the common and ground terminals in the off state.
Switch terminal capacitance	C _{OS}	For analog switch, multiplexer and demultiplexer ICs, the capacitance between the switch and ground terminals in the off state.

Parameter	Symbol	Definition
Feedthrough capacitance	C _{IOS}	For analog switch, multiplexer and demultiplexer ICs, the capacitance between the switch and common terminals in the off state.
Bus I/O capacitance	C _{I/O}	The capacitance between the bus and ground terminals.
Power dissipation capacitance	C _{PD}	The equivalent internal capacitance of a device calculated by measuring the operating current in the no-load condition.
Output capacitance	C _{OUT}	The capacitance between the output and ground terminals for a three-state or open-drain output in the high-impedance state.
Sine Wave Distortion	THD	For analog switch, multiplexer and demultiplexer ICs, the distortion rate of the sine wave that is output when a sine wave is input in the on state.
Feed-through attenuation (switch off)	FTH	For analog switch, multiplexer and demultiplexer ICs, the ratio of the leakage voltage that appears at the output to the input voltage applied in the off state
Crosstalk (control input to signal output)	X _{talk}	For analog switch, multiplexer and demultiplexer ICs, the leakage voltage of a signal to the input and output that occurs when the control input changes.
Crosstalk (between any switches)	X _{talk}	For analog switch, multiplexer and demultiplexer ICs, the ratio of the voltage applied to a switch (port) in the on state to the voltage that appears at a switch (port) in the off state
Quiet output maximum dynamic V _{OL}	V _{OLP}	The maximum peak voltage induced into an output that is fixed at the Low level when the other outputs are switching simultaneously.
Quiet output minimum dynamic V _{OL}	V _{OLV} V _{OLV}	The minimum peak voltage induced into an output that is fixed at the Low level when the other outputs are switching simultaneously.
Quiet output minimum dynamic V _{OH}	V _{OHV}	The minimum peak voltage induced into an output that is fixed at the High level when the other outputs are switching simultaneously.
Minimum high-level dynamic input voltage	V _{IHD}	High-level dynamic threshold voltage when all inputs are switching simultaneously
Maximum low-level dynamic input voltage	V _{ILD}	Low-level dynamic threshold voltage when all inputs are switching simultaneously.

6.4. Built-in Function

Parameter	Definition
Input tolerant function	A function designed to prevent a current from flowing from an input to the power supply when the input voltage is higher than the power supply voltage or when $V_{CC} = 0 V$.
Output tolerant function	A function designed to prevent a current from flowing from an output to the power supply when the output is in the high-impedance state or when $V_{CC} = 0 V$.
Power-down protection	A function designed to prevent a current from flowing to the power supply terminal even if a voltage is applied to the input and output terminals when $V_{CC} = 0 V$.
Bus-hold function	A function designed to hold the input logic level using a latch circuit even when the input terminal becomes open.

7 Related LINK

Product Line Ups (Catalog)
Product Line Ups (Parametric Search)
Stock Check & Purchase
FAQ of Logic ICs
Application Note

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/