M4G Group (1) Application Note I²C Interface (I2C-B) MASTER/SLAVE

Outlines

This application note is a reference material for developing products using I²C interface (I2C) Master/Slave functions of M4G group (1). This document helps the user check operation of the product and develop its program.

Target sample program: I2C_MASTER_SLAVE

Table of Contents

Outlines1
Table of Contents2
1. Preface
2. Reference Document4
3. Function to Use4
4. Target Device4
5. Operation Confirmation Condition
6. Evaluation Board Setting
7. Operation of Evaluation Board
8. Outline of I ² C Function9
9. Sample Program10
9.1. Initialization
9.2. Sample Program Main Operation10
9.3. Output Example of Sample Program12
9.3.1. Setting Example of Terminal Software13
9.4. Operating Flow of Sample Program14
10. Precaution
11. Revision History
RESTRICTIONS ON PRODUCT USE

1. Preface

This sample program should be used to check the operation of the Master/Slave function in the I^2C interface.

Two evaluation boards are used. The slave board is controlled by the command which is input to the master board via terminal software on PC.

Structure diagram of Sample program

2. Reference Document

- Datasheet
 - TMPM4G group (1) datasheet Rev1.0 (Japanese edition)
- Reference manual l²C Interface (I2C-B) Rev2.1 (Japanese edition)
- Asynchronous Serial Communication Circuit (UART-C) Rev3.0 (Japanese edition)
- Application note
- M4G group (1) Application Note Startup (CMSIS System & Clock Configuration) Rev1.0
- Other reference document TMPM4G (1) Group Peripheral Driver User Manual (Doxygen)

3. Function to Use

IP	Channel	Port	Function/Operation mode
Asynchronous Serial	ch0	PE2 (UT0RXD)	UART mode
Communication Circuit		PE3 (UT0TXDA)	
I ² C Interface	ch3	PJ6 (I2C3SDA)	I ² C mode
		PJ7 (I2C3SCL)	

4. Target Device

The target devices of this application note are as follows;

TMPM4G9F15FG	TMPM4G9F10FG	TMPM4G9FEFG	TMPM4G9FDFG
TMPM4G9F15XBG	TMPM4G9F10XBG	TMPM4G9FEXBG	TMPM4G9FDXBG
TMPM4G8F15FG	TMPM4G8F10FG	TMPM4G8FEFG	TMPM4G8FDFG
TMPM4G8F15XBG	TMPM4G8F10XBG	TMPM4G8FEXBG	TMPM4G8FDXBG
	TMPM4G7F10FG	TMPM4G7FEFG	TMPM4G7FDFG
	TMPM4G6F10FG	TMPM4G6FEFG	TMPM4G6FDFG

* This sample program operates on the evaluation board of TMPM4G9F15FG.

If other function than the TMPM4G9F15 one is checked, it is necessary that CMSIS Core related files (C startup file and I/O header file) should be changed properly.

The BSP related file is dedicated to the evaluation board (TMPM4G9F15). If other function than the TMPM4G9F15 one is checked, the BSP related file should be changed properly.

5. Operation Confirmation Condition

Used microcontroller
Used board
Unified development environment
Unified development environment
Terminal software
Sample program

TMPM4G9F15FG TMPM4G9F15FG Evaluation Board by Sensyst IAR Embedded Workbench for ARM 8.11.2.13606 μ Vision MDK Version 5.24.2.0 Tera Term V4.96 V1000

Evaluation board (TMPM4G9F15FG Evaluation Board) Top view

6. Evaluation Board Setting

Two evaluation boards are necessary for this project.

Evaluation boards: Evaluation board A: TMPM4G9F15FG Evaluation Board Evaluation board B: TMPM4G9F15FG Evaluation Board

These evaluation boards should be connected as shown in the following figure.

Note1: Evaluation board A

- The program which is generated in the project for TMPM4G9 should be written.
- Details of the connection:

CN5			
Board function	Through-hole No.	Through-hole No.	
USB UART conversion	1: USB_UT_RX	2: PE2	
USB UART conversion	3: USB_UT_TX	4: PE3	

Through-hole connection on the board A:

[CN4] No. 39 on Evaluation board A and [CN5] No. 6 on Evaluation board A are connected.

[CN4] No. 41 on Evaluation board A and [CN5] No. 8 on Evaluation board A are connected.

Note) The connection to CN4 is done to use the pull-up resistor of the Port dip switch.

The Port dip switch should be set to OFF.

Note2: Evaluation board B

- The program which is generated in the project for TMPM4G9 should be written (the same program for Evaluation board A).
- Details of the connection:

CN5			
Board function	Through-hole No.	Through-hole No.	
USB UART conversion	1: USB_UT_RX	2: PE2	
USB UART conversion	3: USB_UT_TX	4: PE3	

The interconnection between the boards:

[CN5] No. 6 on Evaluation board A and [CN5] No. 6 on Evaluation board B are connected.

[CN5] No. 8 on Evaluation board A and [CN5] No. 8 on Evaluation board B are connected.

7. Operation of Evaluation Board

Prepare two evaluation boards and connect each DAP connector and USB_UART connector to the PC. When the sample program executes, both evaluation boards start up in the Master mode. "slave" command should be input to one of the boards. Then, the board enters the Slave mode. For the details of the operation of an input command, refer to the section "Sample Program Main Operation".

8. Outline of I²C Function

The I²C can operate as a transceiver circuit of 1ch (SCL, SDA) in 1 unit circuit. The list of the functions is shown below.

Function classification (Note1)	Function	A Functional Description or the range
	prescaler dividing selection	It is dividing about a prescaler clock to 1/1, 1/2, 1/3 to 1/30, 1/31 and 1/32.
I ransmission speed Control	Clock source	A selection setup of the HIGH/LOW time of SCL is possible in master mode.
	The maximum transfer rate	1Mbps (it corresponds to Fm+) (fsys = 8 to 200 MHz)
	I ² C bus format	Selection of Addressing/Data Free Format is possible. Selection of a master/slave is possible.
	Data length	1 to 8 bits
Communication	acknowledge	The existence of acknowledging can be chosen.
Format	Start/stop condition	Generating of start/stop condition is possible.
		Only a 7-bit addressing format.
	Slave address	2 sets of slave addresses can be set up. (1st/2nd Slave Address)
	General call	Detection of a general call is possible in slave mode.
		Multi-master
	Arbitration	Clock synchronization
Transmission and		Existence selection of Arbitration lost detection is possible.
Control	Repetitive start detection, generating	Detection of a repetitive start of a bus line (at the time of slave mode) and generating (at the time of master mode) are possible.
	Noise cancellation	Digital
		4 kinds
Ganged control	Interruption	(The completion interruption of transmission, Arbitration lost detection interruption, Bus free detection interruption, NACK reception detection interruption
	DMA request	A setup according to transmission and reception is possible.
	Software reset	Reset by the software of an I ² C circuit is possible.
	Bus terminal state monitor function	The level monitor of SDA and a SCL pin
	Address match Wakeup function	Slave address match detection can use the release factor for the Low power consumption mode release.

Note1: It does not support HS (High Speed) mode, 10-bit addressing, and a START byte. Note2: There is a function in which it cannot support depending on products, such as slope control, I/O correspondence at the time of the power supply OFF, an Input voltage (VIH/VIL), and an Output voltage (VOL=0.4V, VDD>2V).Please refer to the "Product Information" of the reference manual for details.

9. Sample Program

One of the evaluation boards can be set to the Slave mode by the command input on the terminal software. Then the Master board can control the Slave board.

9.1. Initialization

The following initialization is done after power is supplied. The initialization of each clock setting and the setting of the watchdog timer are done.

9.2. Sample Program Main Operation

The BSP (Board Support Package) is initialized.

As initialization of the application software, the UART initialization and the UART interrupt enable are done.

The configuration procedure of the I²C interface is done.

The transmission and reception data of master and slave are initialized.

The setting values of the l^2C interface are initialized.

The sample program waits for the input of a command to the terminal software.

The I²C master function or the I²C slave function in the microcontroller can be executed by the input of a proper character according to the command format.

The master mode can be changed to the slave mode by a corresponding command. The command can be accepted only in the master mode.

Command format

"command[_parameter]"

The parameter depends on a command.

Command	Parameter	Input example	note
write	te non write		The initial data is transmitted to the address of
			the initial value.
	address	write B0	The initial data is transmitted to the address B0.
	address+data	write B011223344	The setting data is transmitted to address B0.
read	non	read	Send the initial value from the setting address
			and receive the initial value.
	address	read B0	Send the initial value from the setting address
			and receive the initial value.
	address+data	read B05566	Send the setting value from the setting address
			and receive the initial value.
slave	non	slave	Set to slave mode.
	address	slave B0	Set slave mode and slave address.

Note: Input data is a hexadecimal number. "12" should be input for "0x12", as an example.

Other command example

"w" command

"w" is the same as the command of "write" without any arguments.

"r" command

"r" is the same as the command of "read" without any arguments.

9.3. Output Example of Sample Program

When the sample program executes, the command input and the result are displayed as shown in the following figure.

[Basic log information] "I2C3" shows the used channel in the I²C interface. "sa B0" shows the reception-wait Slave address. "tx[]" and "rx[]" show a transmission data and a reception data, respectively.

Example of Master output log	Example of Slave output log
I2C TEST - I2C3 I2C master mode command >	I2C TEST - I2C3 I2C master mode
command > write	slave
master	sa B0
sa B0	rx[0] 00
tx[0] 00	rx[1] 01
tx[1] 01	rx[2] 02
tx[2] 02	rx[3] 03
tx[3] 03	slave
command >	sa B0
command > read	slave
master	sa B0
sa B0	rx[0] 00
tx[0] 00	rx[1] 01
tx[1] 01	tx[0] 80
rx[0] 80	tx[1] 81
rx[1] 81	slave
command >	sa B0

9.3.1. Setting Example of Terminal Software

The operation of the terminal software (Tera Term) has been checked with the following settings.

Tera Term: Serial port setup		
Port: COM9 Baud rate: 11520 Data: 8 bit	 OK OK Cancel 	
Parity:noneStop:1 bitElow control:none	✓ Help ✓	
Transmit delay 0 msec/ <u>c</u> har 0 msec/ <u>l</u> ine Tera Term: Terminal setup		
Terminal size 80 X 24 Term size = win size Auto window resize Terminal ID: VT100 • Answerback:	New-line Receive: AUTO ▼ Trans <u>m</u> it: CR+LF ▼ Cancel <u>H</u> elp ✓ Local echo Auto switch (VT<->TEK)	

9.4. Operating Flow of Sample Program

The basic operating flows of the sample program are shown in the following;

M4G Group (1) Application Note

10. Precaution

When using the sample program with CPU other than TMPM4G9F15, please check operation sufficiently.

11. Revision History

Rev	Date	Page	Description
1.0	2018-12-10	—	First release

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's
 written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please
 use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without
 limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF
 NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/