

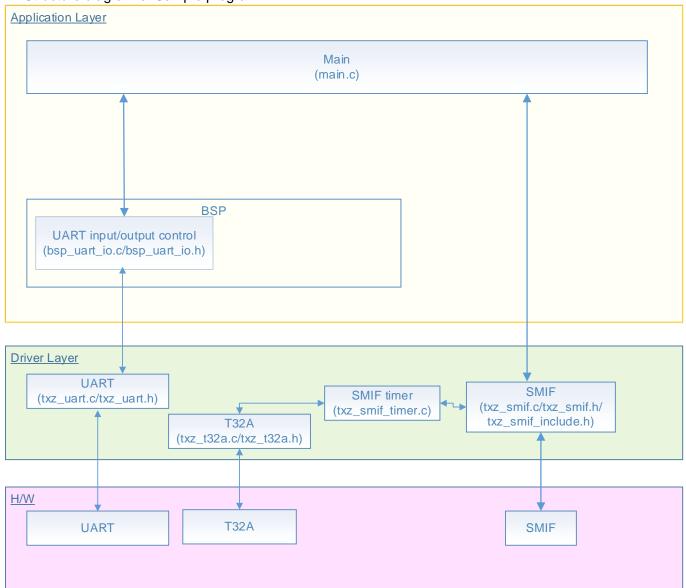
M4G Group (1) Application Note Serial Memory Interface (SMIF-A)

Outlines

This application note is a reference material for developing products using serial memory interface (SMIF) function of M4G Group (1). This document helps the user check operation of the product and develop its program.

Target sample program: SMIF_UART

Table of Contents


Outlines	1
Table of Contents	2
1. Preface	3
2. Reference Document	4
3. Function to Use	4
4. Target Device	4
5. Operation Confirmation Condition	5
6. Evaluation Board Setting	6
7. Operation of Evaluation Board	6
8. Outline of Serial Memory Interface Function	7
9. Sample Program	8
9.1. Initialization	8
9.2. Sample Program Main Operation	8
9.3. Output Example of Sample Program	10
9.3.1. Setting Example of Terminal Software	11
9.4. Operating Flow of Sample Program	12
10. Precaution	17
11. Revision History	17
RESTRICTIONS ON PRODUCT USE	18

1. Preface

This sample program should be used to check the operation of the serial memory interface function.

Structure diagram of Sample program

2. Reference Document

Datasheet

TMPM4G Group (1) datasheet Rev1.0 (Japanese edition)

Reference manual

Serial Memory Interface (SMIF-A) Rev1.0 (Japanese edition)
Asynchronous Serial Communication Circuit (UART-C) Rev3.0 (Japanese edition)

32-bit Timer Event Counter (T32A-B) Rev2.1 (Japanese edition)

Application note

M4G Group (1) Application Note Startup (CMSIS System & Clock Configuration) Rev1.0

• Other reference document

TMPM4G (1) Group Peripheral Driver User Manual (Doxygen)

3. Function to Use

IP	Channel	Port	Function/Operation mode
Serial Memory Interface	ch0	PK2 (SMI0D0)	
		PK3 (SMI0D1)	
		PK4 (SMI0D2)	Serial memory interface
		PK5 (SMI0D3)	
		PK6 (SMI0SLK)	
		PK7 (SMI0SC0_N)	
Asynchronous Serial Communication Circuit	ch0	PE2 (UT0RXD)	UART mode
Communication Circuit	CHO	PE3 (UT0TXDA)	
32-bit Timer Event Counter	Timer A ch5	-	Interval timer

4. Target Device

The target devices of this application note are as follows;

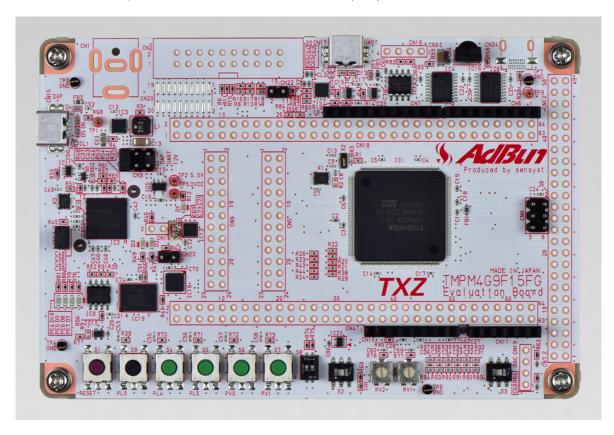
TMPM4G9F15FG	TMPM4G9F10FG	TMPM4G9FEFG	TMPM4G9FDFG
TMPM4G9F15XBG	TMPM4G9F10XBG	TMPM4G9FEXBG	TMPM4G9FDXBG
TMPM4G8F15FG	TMPM4G8F10FG	TMPM4G8FEFG	TMPM4G8FDFG
TMPM4G8F15XBG	TMPM4G8F10XBG	TMPM4G8FEXBG	TMPM4G8FDXBG
	TMPM4G7F10FG	TMPM4G7FEFG	TMPM4G7FDFG
	TMPM4G6F10FG	TMPM4G6FEFG	TMPM4G6FDFG

^{*} This sample program operates on the evaluation board of TMPM4G9F15FG.

If other function than the TMPM4G9F15 one is checked, it is necessary that CMSIS Core related files (C startup file and I/O header file) should be changed properly.

The BSP related file is dedicated to the evaluation board (TMPM4G9F15). If other function than the TMPM4G9F15 one is checked, the BSP related file should be changed properly.

2018-12-20 **4 / 18** Rev 1.0



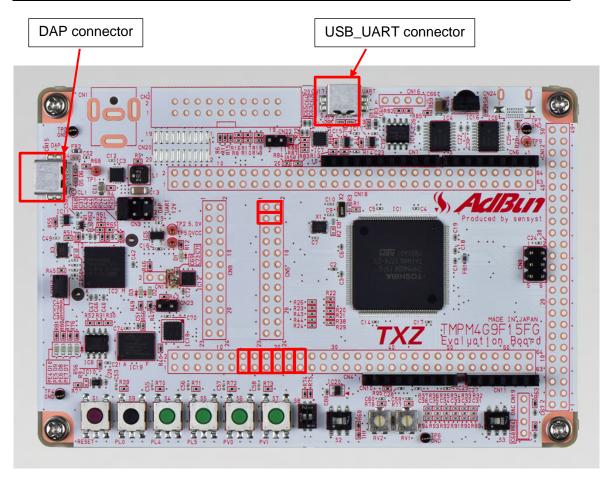
5. Operation Confirmation Condition

Used microcontroller
Used board
Unified development environment
Unified development environment
Terminal software
Sample program

TMPM4G9F15FG
TMPM4G9F15FG Evaluation Board by Sensyst
IAR Embedded Workbench for ARM 8.11.2.13606
µVision MDK Version 5.24.2.0
Tera Term V4.96
V1000

Evaluation board (TMPM4G9F15FG Evaluation Board) Top view

2018-12-20 **5 / 18** Rev 1.0



6. Evaluation Board Setting

The following pin connections should be done on the evaluation board.

CN4			
Board function	Through-hole No.	Through-hole No.	
Serial interface	13: SMI_CS0	14: PK7	
Serial interface	15: SMI_CLK	16: PK6	
Serial interface	17: SMI_D3	18: PK5	
Serial interface	19: SMI_D2	20: PK4	
Serial interface	21: SMI_D1	22: PK3	
Serial interface	23: SMI_D0	24: PK2	

CN5			
Board function	Through-hole No.	Through-hole No.	
USB UART conversion	1: USB_UT_RX	2: PE2	
USB UART conversion	3: USB_UT_TX	4: PE3	

7. Operation of Evaluation Board

PC and the USB_UART are connected for communication with the terminal software.

Starts up the terminal software (Tera Term), then executes the communication setting on the PC.

The reset button should be pushed down on the evaluation board.

The communication starts according to an input command.

For the details of the operation of the command input, refer to the section "Sample Program Main Operation".

(Note) CN23 is a jumper to switch the function between the SMIF and the SPI. It should be open when the SMIF function is evaluated.

8. Outline of Serial Memory Interface Function

The serial memory interface (SMIF) connects to the memory which has serial I/O's (SPI Flash memory and others).

The list of the functions of SMIF is shown in the following table.

Function category	Function	Description
	Connection	- 2 serial memories at maximum can be connected.
	Memory capacity	- 64 KB to 16 MB
	Transfer clock	- 20 MHz at maximum
	Communication Mode	- SPI compatible: SPI Mode 0 support. Single I/O, Dual I/O read, and Quad I/O read are supported MSB first
Connection to a serial memory	Memory mapping	- Mapping is possible to addresses: 0xA0000000 to 0xA0FFFFF.
e.ry	Access mode	- Direct access - Program register access
	Command transfer count	- 264 bytes at maximum can be transferred through a register.
	Chip select	- Selection from Serial memory 0 and Serial memory 1 Deassertion times of SMIxCS0_N and SMIxCS1_N can be set.
	Other functions	- Read after Write/Erase completion using the polling of the status of SPI Flash memory.

9. Sample Program

The sample program executes according to the command ("write" or "read") which is input to the terminal software (Tera Term). The "write" command stores an input character to the SPI Flash ROM. And the "read" command reads data from the SPI Flash ROM and displays the data on the Tera Term.

The data input or output of the serial memory is controlled in the Quad mode.

The access mode is as follows;

write: Program register access

read: Direct access

9.1. Initialization

The following initialization is done after power is supplied.

The initialization of each clock setting and the setting of the watchdog timer are done.

9.2. Sample Program Main Operation

After the initialization procedure, the "main" function executes the following procedure;

- 1. Procedure mode (proc) is initialized.
- 2. The variables are initialized.
- 3. The BSP (Board support package) is initialized.
- 4. The driver is initialized.
- 5. The application initialization is done.

After the procedure above completes, the main operation is executed.

The data clear is done. The sample program waits for a command input.

On the terminal software, the "write" command and a character should be input.

A character string including the "write" command is checked. If one or more characters are input, the characters are stored to the SPI Flash ROM (address 0x00000000).

The characters stored in the SPI Flash ROM are displayed on the Tera Term as an echo back data.

When the "read" command is input, the data stored in the SPI Flash ROM (address 0x00000000) is read and is displayed on the Tera Term.

The "damp" command displays the write address and the write data.

The "bw" command writes are specified character to the address which is specified by the command.

The "br" command reads one byte data from a specified address and displays it.

The "erase" command erases the sector (256 KB) which is specified by the command.

The "bank" command specifies a bank in the memory.

This sample program uses S25FL512SDPBHI310 as the SPI Flash memory.

```
Command format:
```

```
"write" command
```

write $_X$

X: Any character (16 characters or less)

"read" command

read

"damp" command

damp_xxxxxxx_yyyy

xxxxxx: Start address (hexadecimal: 0 to FFFFFF)

yyyy: Display byte count (hexadecimal: 0 to FFFF)

When Start address and Display byte count are omitted, "damp 0 20" should be input.

The following commands are used to do extended operations.

"bw" command

bw _ xxxxxx _ Y xxxxxx: Address (0 to FFFFF) and Y: Character (1 character)

The specified character is written to the address which is specified by the command.

"br" command

br_xxxxxx xxxxx: Address (0 to FFFFF)

One byte data is read from the address which is specified by the command and is displayed.

"erase" command

erase_xxxxxx xxxxxx: Address (0 to FFFFF)

The sector (256 KB) which is specified by the command is erased.

"bank" command

bank_x x: The bank is accessed.

If the "bank" command is input without the "x", the current bank is displayed.

9.3. Output Example of Sample Program

When the sample program executes, the command results are displayed as shown in the following figures.

"write" command to write:

```
command > write toshiba
write data > toshiba
```

"read" command to read:

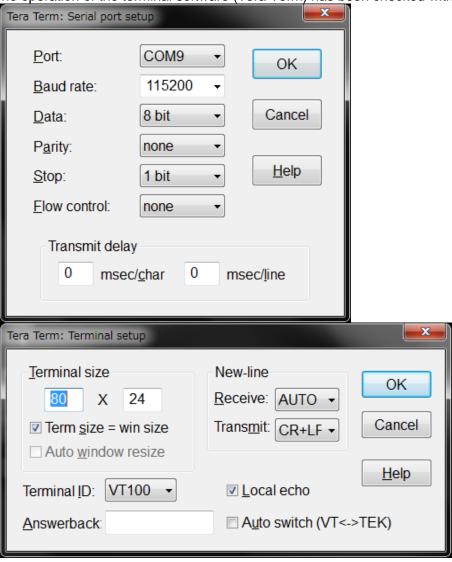
```
command > read
read data > toshiba
```

"damp" command to read:

"bw" command:

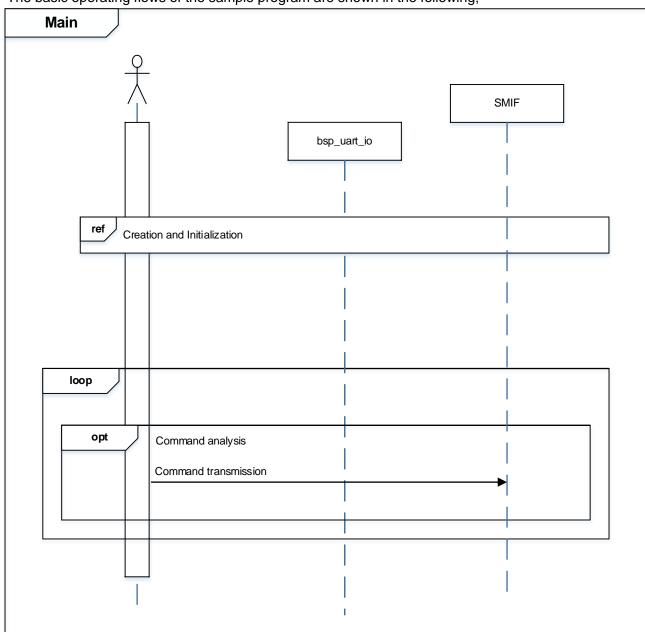
```
command > bw 1000 a
0x1000 = a(0x61)
```

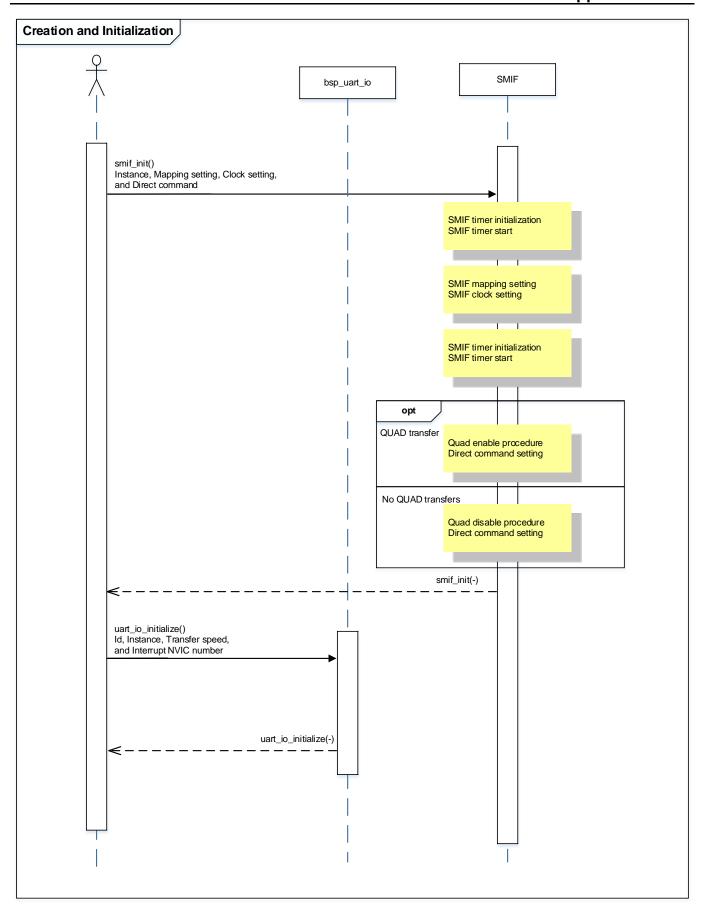
"br" command:


```
command > br 1000
byte read data >0x1000 = a(0x61)
```

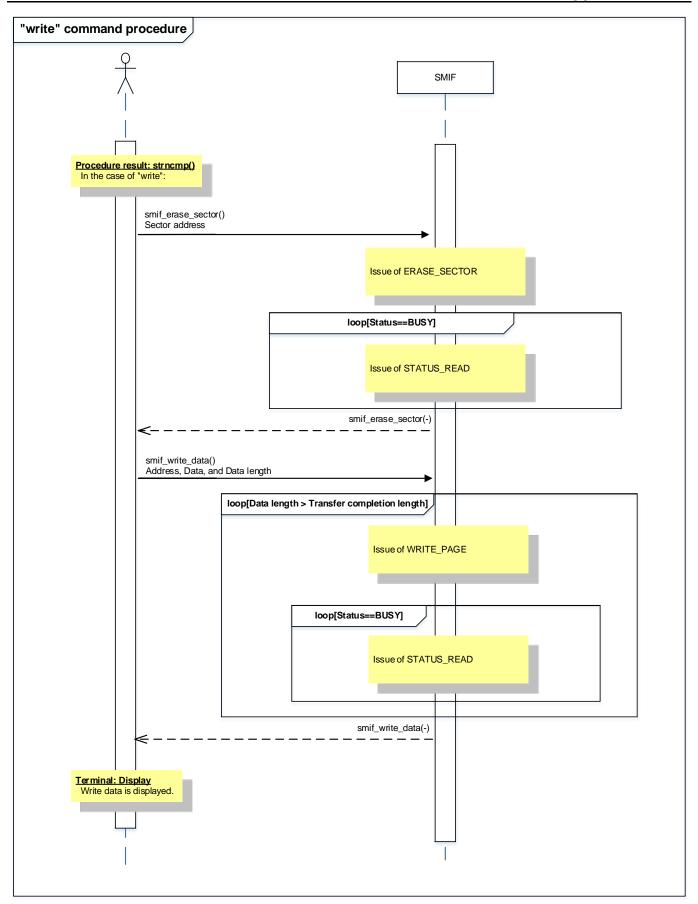
"erase" command:

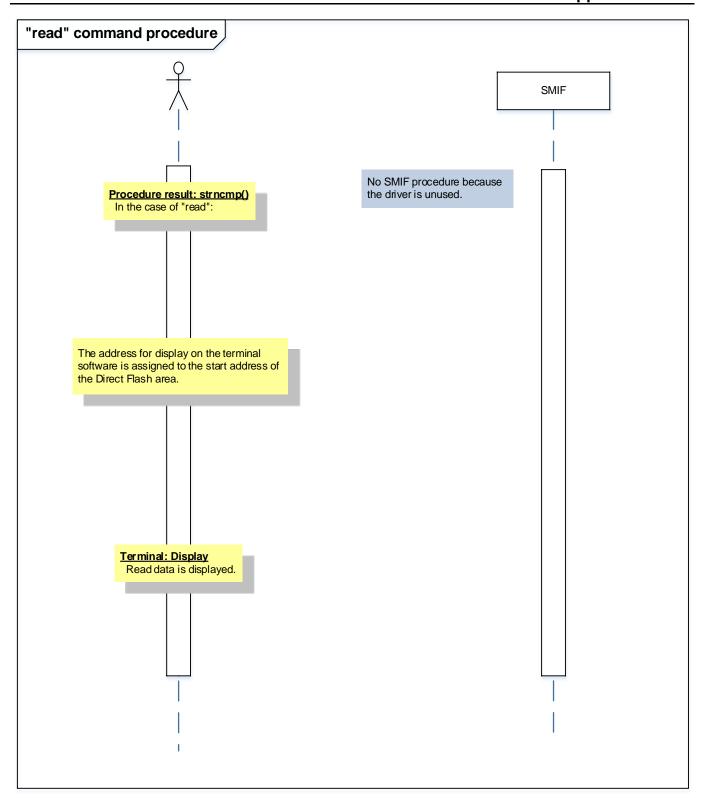
9.3.1. Setting Example of Terminal Software

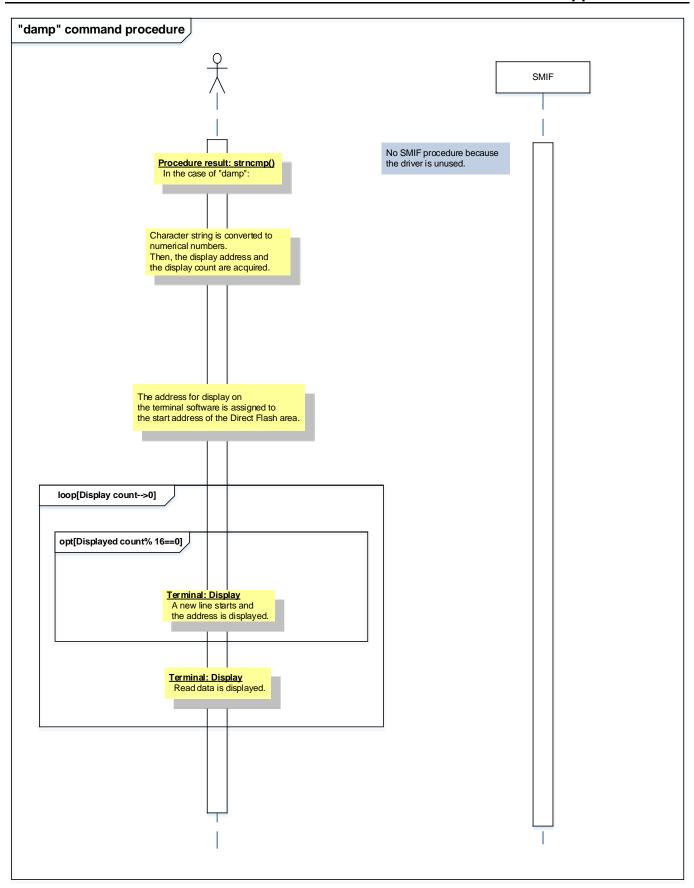

The operation of the terminal software (Tera Term) has been checked with the following settings.



9.4. Operating Flow of Sample Program


The basic operating flows of the sample program are shown in the following;





10. Precaution

When using the sample program with CPU other than TMPM4G9F15, please check operation sufficiently.

11. Revision History

Rev	Date	page	Description
1.0	2018-12-20	-	First release

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- · TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY
 HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF
 HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for
 specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities,
 equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships
 and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and
 escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR
 PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any
 infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any
 intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR
 PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER,
 INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING
 WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2)
 DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR
 INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
 ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the
 design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass
 destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations
 including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export
 and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and
 regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please
 use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without
 limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF
 NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/