<u>U-MOSIX-H 60V</u> <u>低 Vos スパイク製品</u> <u>TPH1R306P1 アプリケーションノート</u>

概要

TPH1R306P1 は、最新世代の U-MOSIX-H プロセス製品で、主なターゲット用途は DC-DC コンバータや AC-DC コンバータの 2 次側同期整流部、モータ駆動などです。当社では、先行して TPH1R306PLを 2015 年 12 月より量産し ています。2 次側同期整流部やモータ駆動で使用されることが多い SOP Advance の低 R_{DS(ON)}製品については、高効 率を追求した標準製品だけではなく、スパイク電圧を低減することのできるラインアップを準備しています。低 V_{DS} スパイク特性を有する TPH1R306P1 は内部のゲート抵抗(r_g)値を標準製品より大きくすることによりスパイク電圧低減とリンギング 期間の短縮に効果を発揮します。

本アプリケーションノートでは、TPH1R306PLとTPH1R306P1のV_{DS}スパイクレベルおよびリンギング期間を実機で比較、検証して効果を確認します。また、併せて低V_{DS}スパイクとなるメカニズムについて解説します。

<製品の主要特性>

製品名	世代	V _{DSS} (V)	R _{DS(ON)} (mΩ) @V _{GS} =10V	PKG	特長
TPH1R306P1	U-MOSIX-H	60	1.28	SOP Advance	低 V _{DS} スパイク製品
TPH1R306PL	U-MOSIX-H	60	1.34	SOP Advance	標準製品

目次

概要1
目次2
1. 世代ごとのオン抵抗遷移4
2. U-MOSVII-HとIX-H世代の損失改善と構造5
2.1. U-MOS/II-H およびIX-H 世代の構造5
2.2. TPH1R306P1 の構造5
2.3. TPH1R306P1 の特長6
3. DC-DCコンバータ 2 次側での効果
3.1. 最適化した r _s の効果7
3.2. スパイク電圧の理論計算7
3.3. t _{rr} のデバイス単体測定
3.4. 実測:実機(絶縁型 DC-DC コンバータ評価基板)による測定9
3.5. 実機評価 結論
4. DC-DCコンバータ1 次側での効果11
4.1. rg の効果11
4.2. MOSFET のスイッチング時間とゲート電流11
4.3. スイッチング時間のデバイス単体測定11
4.4. 実機(非絶縁 DC-DC コンバータ評価基板)による測定12
4.5. 実機(絶縁型 DC-DC コンバータ評価基板)による測定13
4.6. 実機評価 結論
5. 使用目的に合わせて製品選択が可能14
記載内容の留意点15
使用上のご注意およびお願い事項15
使用上の注意事項15
使用上の留意点15
製品取り扱い上のお願い16

図目次

図 1.1	30V 製品のオン抵抗の継続的改善	4
図 2.1	導通損失の低減	5
図 2.2	寄生スナバ回路	5
図 3.1	LCR 直列共振回路	7
図 3.2	t _{rr} 評価回路	8
図 3.3	t _{rr} 動作波形	9
図 3.4	500W AC-DC コンバータ評価基板	9
図 3.5	500W AC-DC 評価基板 評価結果	. 10
図 3.6	500W AC-DC コンバータ評価基板での効率比較	. 10
図 4.1	スイッチング評価回路	. 11
図 4.2	スイッチング特性比較	. 12
図 4.3	非絶縁 DC-DC コンバータ評価基板(回路図)	. 12
図 4.4	スイッチング特性比較(実機)結果	. 13
図 4.5	絶縁型 DC-DC コンバータ評価基板(フルブリッジ回路)	. 13
図 4.6	スイッチング波形の比較	. 13
図 4.7	効率比較	. 14

表目次

表 2.1	低 V _{DS} スパイク製品 TPH1R306P1 の電気的特性	6
表 2.2	標準製品 TPH1R306PL の電気的特性	6

1. 世代ごとのオン抵抗遷移

当社の低耐圧 MOSFET は、優れた微細化技術を用い、デバイス構造を最適化することで MOSFET の性能を継続的 に改善してきました。

特長は以下の通りです。

・微細化技術を活用した低オン抵抗特性

- ・オン抵抗と電荷量のトレードオフを改善した低損失性能
- ・様々な用途に応じた幅広い耐圧と豊富なパッケージによるラインアップ
- ・アバランシェ耐量に代表される高破壊耐量
- ・機器設計を容易にするスイッチングノイズを抑制したデバイス構造

※Ron・A:単位面積当たりのドレイン-ソース間オン抵抗

2. U-MOS/-HとIX-H世代の損失改善と構造

U-MOSVII-H および U-MOSIX-H 世代は、MOSFET の性能指標である「導通損失とドライブ損失」、「導通損失と スイッチング損失」「導通損失と出力チャージ損失」に優れています。特に U-MOSIX-H 世代は微細化とセル構造の最適 化を行い、電源やモータドライブ用途で重要な出力チャージ損失を U-MOSVII-H 世代から大幅に低減しています。

導通損失とスイッチング損失

導通損失と出力チャージ損失

図 2.1 導通損失の低減

※ 各パラメータについて

・R_{DS (ON)}: ドレイン・ソース間オン抵抗 [mΩ] (導通損失に関する指標)

- ・Q。 : ゲート入力電荷量 [nC] (ドライブ損失に関する指標)
- ・Qsw : ゲートスイッチ電荷量 [nC] (スイッチング損失に関する指標)
- ・Qoss : 出力電荷量 [nC] (出力チャージ損失に関する指標)

2.1. U-MOS/-H およびIX-H 世代の構造

U-MOSVII-H および U-MOSIX-H 世代は、前述の性能を実現するために、ゲートトレンチ部に新構造を採用していま す。新構造ではドレイン-ソース間に寄生容量、寄生抵抗が存在しスナバ(CR)回路が構成されるため、U-MOSVII-H お よびIX-H 世代は、従来の U-MOSVII-H 世代などと比べ、スパイク電圧を抑制することができます。

図 2.2 寄生スナバ回路

2.2. TPH1R306P1 の構造

2.1 で述べたとおり、U-MOSIX-H 世代の TPH1R306PL はトレンチ新構造を採用しており、スナバ効果を得られます。 TPH1R306P1 は、MOSFET 表面のパターンの最適化により、ゲートおよびソース配線抵抗を最適化しており、スパイク 電圧を抑制できるようによりチューニングされた製品です。

2.3. TPH1R306P1 の特長

TPH1R306P1(低 V_{DS}スパイク製品)は、TPH1R306PL(標準製品)に対して、表面パターンを最適化することで rg や rs を最適化しています。また TPH1R306P1 は、TPH1R306PL と比べ R_{DS(ON)}が低くなっています。 表 2.1、表 2.2 にそれぞれの製品特性を示します。

項目	記号	測定条件	最小	標準	最大	単位
ゲート漏れ電流	I _{GSS}	$V_{GS} = \pm 20 V, V_{DS} = 0 V$	-	-	±0.1	nA
ドレイン遮断電流	I _{DSS}	$V_{DS} = 60 V, V_{GS} = 0 V$	-	-	10	nA
ドレイン・ソース間降伏電圧	V _{(BR)DSS}	$I_D = 10$ mA, $V_{GS} = 0$ V	60	-	-	V
ドレイン・ソース間降伏電圧※	V _{(BR)DSX}	I_{D} = 10 mA, V_{GS} = -20 V	45	-	-	V
ゲートしきい値電圧	V _{th}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1.0 \text{ mA}$	1.5	-	2.5	V
ドレイン・ソース間オン抵抗	R _{DS(ON)}	$V_{GS} = 4.5 V$, $I_{D} = 42 A$	-	1.5	2.3	mΩ
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 50 \text{ A}$	-	0.96	1.28	mΩ
入力容量	C _{iss}	V _{DS} = 30 V,	-	6250	8100	pF
帰還容量	C _{rss}	$V_{GS} = 0 V,$	-	80	-	pF
出力容量	Coss	f = 1 MHz	-	1160	-	pF
ゲート抵抗	r _g	-	-	2.2	3.3	Ω
スイッチング時間(上昇時間)	t _r	V _{GS} V _{DD} = 30 V	-	8	-	ns
スイッチング時間(ターンオン時間)	t _{on}		-	20	-	ns
スイッチング時間(下降時間)	t _f	$\begin{array}{c} \mathbf{R}_{GS} \\ \mathbf{R}_{GS} \\$	-	22	-	ns
スイッチング時間(ターンオフ時間)	t _{off}	− m m o Duty ≦ 1 %, t _w = 10 μs VDD	-	92	-	ns
逆回復時間	t _{rr}	V_{R} = 30 V, I_{DR} = 25 A, V_{GS} = 0V,	-	44	-	ns
		$-dI_{DR}/dt = 100 \text{ A}/\mu\text{s}$				

表 2.1 低 V_{DS}スパイク製品 TPH1R306P1 の電気的特性

項目	記号	測定条件	最小	標準	最大	単位
ゲート漏れ電流	I _{GSS}	$V_{GS} = \pm 20 V, V_{DS} = 0 V$	-	-	±0.1	nA
ドレイン遮断電流	I _{DSS}	$V_{DS} = 60 V, V_{GS} = 0 V$	-	-	10	nA
ドレイン・ソース間降伏電圧	V _{(BR)DSS}	$I_D = 10$ mA, $V_{GS} = 0$ V	60	-	-	V
ドレイン・ソース間降伏電圧※	V _{(BR)DSX}	I_{D} = 10 mA, V_{GS} = -20 V	45	-	-	V
ゲートしきい値電圧	V_{th}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1.0 \text{ mA}$	1.5	-	2.5	V
ドレイン・ソース間オン抵抗	R _{DS(ON)}	$V_{GS} = 4.5 V$, $I_{D} = 42 A$	-	1.5	2.3	mΩ
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 50 \text{ A}$	-	1.0	1.34	mΩ
入力容量	C _{iss}	V _{DS} = 30 V,	-	6250	8100	pF
帰還容量	C _{rss}	$V_{GS} = 0 V,$	-	80	-	pF
出力容量	Coss	f = 1 MHz	-	1160	-	pF
ゲート抵抗	r _g	-	-	0.5	1.0	Ω
スイッチング時間(上昇時間)	t _r	V _{GS} V _{DD} = 30 V	-	8.3	-	ns
スイッチング時間(ターンオン時間)	t _{on}		-	20	-	ns
スイッチング時間(下降時間)	t _f	$\begin{array}{c} R_{GS} \neq R_{L} \\ R_{GS} \neq A T \Omega \\$	-	14.7	-	ns
スイッチング時間(ターンオフ時間)	t _{off}	VDD Duty = 1%, t _w - 10 µs	-	70	-	ns
逆回復時間	t _{rr}	$V_{R} = 30 V$, $I_{DR} = 25 A$, $V_{GS} = 0V$,	-	47	-	ns
		$-dI_{DR}/dt = 100 \text{ A}/\mu\text{s}$				

表 2.2 標準製品 TPH1R306PL の電気的特性

3. DC-DC コンバータ 2 次側での効果

3.1. 最適化した rsの効果

2 次側同期整流回路では、trrモード(ダイオードの逆回復モード)となるケースがあり、ドレイン-ソース間にリンギングが 発生します。TPH1R306P1、は寄生抵抗rsの最適化により、trrモード時のリンギングを抑制します。その際、電源の効率 はほとんど低下しません。

3.2. スパイク電圧の理論計算

V_{DS}スパイク低減メカニズムについて、図 3.1 のような DC-DC バックコンバータを LCR 直列共振回路に見立てて解説します。L は配線の浮遊インダクタンス Lp、C はローサイド MOSFET の Cds、R は同じくローサイド MOSFET の rs です。

- ※ 各パラメータについて
- ・L (Lp) : 配線寄生インダクタンス
- ・C (Cds): ローサイド MOSFET のドレイン-ソース間容量
- ・R (r_s) : ローサイド MOSFET の rs

図 3.1 LCR 直列共振回路

LCR 直列共振回路として取り扱うと、以下のように表せます。

LCR 直列共振回路の角周波数
$$\omega 0 = \frac{1}{\sqrt{Lp \times Cds}}$$
 -- 式(a)

LCR 直列共振回路の減衰
$$as = \frac{rs}{2Lp}$$
 -- 式(b)

LCR 直列共振回路の減衰係数
$$\zeta_s = \frac{\alpha s}{\omega_0}$$
 -- 式(c)

式(c)に式(a)および(b)を代入すると、LCR 直列共振回路の減衰係数 ζs は、

$$\zeta s = \frac{rs}{2Lp} \times \sqrt{Lp \times Cds} = \frac{rs}{2} \times \sqrt{\frac{Cds}{Lp}} \qquad -\pi t(d)$$

となり、一方、スパイク電圧となる Cds 両端の電圧 VCds は、

VCds=
$$\frac{1}{\omega 0 \times Cds} \times Is$$

となります。ここで LCR 直列共振回路の式に、 $I = \frac{V}{R}$ より $Is = \frac{Vin}{rs}$ を代入し、

 $VCds = \frac{1}{\omega 0 \times Cds} \times \frac{Vin}{rs} = \frac{Vin}{\omega 0 \times Cds \times rs} = \frac{1}{rs} \times Q \qquad -\pi t(e)$

となり、さらに、式(d)、式(e)より、減衰係数およびスパイク電圧は以下の式で表すことができます。

減衰係数 ζs = $\frac{rs}{2} \times \sqrt{\frac{Cds}{Lp}}$ --式(f) スパイク電圧 VCds = $\frac{1}{rs} \times Q$ --式(g) ここで、 Q = $\frac{Vin}{\omega0 \times Cds}$ とします。

式(f)で分子に rs があることから、rs が大きいほど減衰係数 ζs が大きくなり、減衰速度は速くなります。したがって、rs が 大きいほどリンギングが早く収束します。また、式(g)からは分母に rs があることから、rs が大きいほどスパイク電圧 Vcds が小さ いことがわかります。

TPH1R306P1とTPH1R306PL について考えた場合、その他の要素である Cds、Lp、Q は共通です。 TPH1R306P1(低 VDs スパイク製品)は TPH1R306PL(標準製品)より rsを大きく設計しているため、以下の効果を得 ることができます。

[1] スパイク電圧が小さくなります

[2] リンギングの収束が速くなります

3.3. trrのデバイス単体測定

スイッチング電源の2次側同期整流回路で最も問題となるt_{rr}モードを想定して、製品の動作波形および効果の確認を 行いました。単体で t_{rr}モード突入時の V_{DS}スパイクを図 3.2 の評価回路で再現し、t_{rr}測定を実施しました。

取得した動作波形を図3.3に示します。

図 3.3 から TPH1R306P1 は TPH1R306PL と比較して、V_{DS} スパイクが小さく、リンギング期間も減少していることがわかります。この結果から、TPH1R306P1 は低ノイズであるため 2 次側同期整流用途に適していることが分かります。

3.4. 実測:実機(絶縁型 DC-DC コンバータ評価基板)による測定

MOSFET 単体の評価では、低 V_{DS}スパイク製品の効果を確認できました。次に、セットで評価を行いました。図 3.4 の ような回路の 500W AC-DC コンバータ評価基板にて、V_{DS}スパイクおよびリンギング期間を比較し、電源効率の評価を 実施しました。

取得した MOSFET の動作波形を図 3.5 に示します。

図 3.5 500W AC-DC 評価基板 評価結果

取得した波形から、TPH1R306P1は、TPH1R306PLと比較してリンギングが650nsから100nsまで減少しました。 一方、この評価基板では V_{DS}スパイクのレベルは変わりませんでした。しかしながら、セットによっては V_{DS}スパイクの低減が 期待できます。

また、TPH1R306P1とTPH1R306PL にて効率を比較しました。結果を図 3.6 に示します。

図 3.6 500W AC-DC コンバータ評価基板での効率比較

図 3.6 に示すように、効率に大きな差はありませんが、電流領域で分けてみると、低電流領域では標準製品の方がやや効率がよく、大電流領域では低 V_{DS}スパイク製品の方がやや効率がよいという結果になりました。

低電流領域では、低 V_{DS}スパイク製品は rgの影響でスイッチング損失が大きく、大電流領域では R_{DS(ON)}の影響により 導通損失が小さいためこのような結果になったと考えられます。

3.5. 実機評価 結論

TPH1R306PLのセル配置を修正した低 V_{DS}スパイク製品 TPH1R306P1は、二次側同期整流部において、リンギン グ時間を大幅に低減できることが確認されました。

4. DC-DC コンバータ1 次側での効果

4.1. rg の効果

低 V_{DS}スパイク製品は rg が標準製品より大きいため、電源の 1 次側に使用した場合、スイッチングが遅くなり効率は若 干低下しますが、V_{DS}スパイクは抑制されます。

4.2. MOSFET のスイッチング時間とゲート電流

ゲート抵抗 rg がスイッチング時(toff)にどのような影響を起こすか、簡単に説明します。

Q=It より

$$Q_g = I_G t_{off}$$

 $↔ t_{off} = \frac{Q_g}{I_G}$ ---式(h)

また、 V = IR より、

式(h)から rgが大きくなると、IGが小さくなることが分かります。IGが小さくなると、式(f)より、Qgは変わらないため toffが大きくなることが分かります。つまり、rgが大きいほど、IGが小さくなり、toff(ターンオフ時間)が遅くなります。

- ・Qg:ゲート電荷量(nC),
- ・I_G:ゲート電流(A),
- ・toff:ターンオフ時間(nS),

- ·r_g:内部ゲート抵抗(Ω),
- ・R_G:外部ゲート抵抗(Ω)

なお、ゲート駆動の詳細説明については省略いたします。詳細は当社アプリケーションノート「MOSFET ゲート駆動回路」 をご参照下さい。

4.3. スイッチング時間のデバイス単体測定

先述したように、理論的には rg が大きくなることで VDs スパイクを低減できます。 図 4.1 の評価回路を用いて低 VDs スパイク製品と標準製品のスイッチング特性を比較しました。評価条件は VDs=30V, ID=50A, RGG=RGS=4.7Ωです。

図 4.1 スイッチング評価回路

スイッチング特性比較結果を図 4.2 に示します。スパイク電圧は TPH1R306P1 が 73.7V であったのに対し、 TPH1R306PL は 84.8V でした。この結果から、TPH1R306P1 は V_{DS} スパイクを抑制できると言えます。

図 4.2 スイッチング特性比較

4.4. 実機(非絶縁 DC-DC コンバータ評価基板)による測定

実機でも同様の評価を実施し、rgを大きくしたことによる効果を検証します。以下図 4.3 のような非絶縁 DC-DC コン バータ評価基板にて V_{DS} スパイクおよびリンギングを比較します。

図 4.3 非絶縁 DC-DC コンバータ評価基板(回路図)

検証結果は図 4.4 のようになりました。 V_{DS} スパイク電圧は 44.0V から 32.0V に、 リンギング時間は 88ns から 40ns に減少しました。 この結果から、低 V_{DS} スパイク製品 TPH1R306P1 は、1 次側でも V_{DS} スパイク低減およびリンギング期間減少に効果が期待できます。

図 4.4 スイッチング特性比較(実機)結果

4.5. 実機(絶縁型 DC-DC コンバータ評価基板)による測定

さらに、図 4.5 のような絶縁型 DC-DC コンバータ評価基板でも同様の評価を実施しました。

図 4.5 絶縁型 DC-DC コンバータ評価基板(フルブリッジ回路)

スイッチング波形を図 4.6 に示します。

図 4.6 スイッチング波形の比較

TPH1R306P1(低 V_{DS}スパイク製品)が TPH1R306PL に比べ 1 次側スイッチング動作において V_{DS}スパイク低減お よびリンギング期間減少に効果があります。

この結果から、TPH1R306P1 を絶縁型 DC-DC コンバータの 1 次側に用いると、V_{DS} スパイクやリンギングを低減できることが分かります。

一方、効率の結果は図 4.7 の通りです。

1次側で使用する場合 TPH1R306P1 はやや効率が低くなります。

4.6. 実機評価 結論

TPH1R306P1(低 V_{DS}スパイク製品)は2次側同期整流動作だけでなく、1次側スイッチング動作においても、V_{DS}スパイク低減とリンギング時間の減少に有効です。

5. 使用目的に合わせて製品選択が可能

低 V_{DS}スパイク製品 TPH1R306P1 は rgを TPH1R306PL より大きくした製品です。1 次側と2 次側の両方で V_{DS} スパイクの低減、リンギング期間の減少に有効です。特に2 次側では rs最適化による V_{DS}スパイク低減とリンギング期間減 少が期待できます。

一方で標準製品 TPH1R306PL は、低 V_{DS}スパイク製品 TPH1R306P1 と比較して 1 次側で高効率であることを 再確認できました。

当社 U-MOSIX-H 60V シリーズには低 V_{DS}スパイク製品 TPH1R306P1 と標準製品 TPH1R306PL のラインアップがあります。それぞれの特長を生かし、機器に最適な製品を選択することをお勧めしいたします。

記載内容の留意点

1. ブロック図

ブロック図内の機能ブロック/回路/定数などは、機能を説明するため、一部省略・簡略化している場合があります。

2. **等価回路**

等価回路は、回路を説明するため、一部省略・簡略化している場合があります。

使用上のご注意およびお願い事項

使用上の注意事項

- (1) 絶対最大定格は複数の定格の、どの1つの値も瞬時たりとも超えてはならない規格です。 複数の定格のいずれに対しても超えることができません。絶対最大定格を超えると破壊、損傷および劣化の原 因となり、破裂・燃焼による傷害を負うことがあります。
- (2) 過電流の発生や IC の故障の場合に大電流が流れ続けないように、適切な電源ヒューズを使用してください。 IC は絶対最大定格を超えた使い方、誤った配線、および配線や負荷から誘起される異常パルスノイズなどが原 因で破壊することがあり、この結果、IC に大電流が流れ続けることで、発煙・発火に至ることがあります。破壊に おける大電流の流出入を想定し、影響を最小限にするため、ヒューズの容量や溶断時間、挿入回路位置などの 適切な設定が必要となります。

使用上の留意点

 (1) 過電流検出回路
 過電流検出回路はどのような場合でも IC を保護するわけではありません。動作後は、速やかに過電流状態を 解除するようお願いします。
 絶対最大定格を超えた場合など、ご使用方法や状況により、過電流制限回路が正常に動作しなかったり、動 作する前に IC が破壊したりすることがあります。また、動作後、長時間過電流が流れ続けた場合、ご使用方法 や状況によっては、IC が発熱などにより破壊することがあります。

(2) 熱遮断回路

熱遮断回路 (通常: サーマルシャットダウン回路) は、どのような場合でも IC を保護するわけではありません。 動作後は、速やかに発熱状態を解除するようお願いします。 絶対最大定格を超えて使用した場合など、ご使用法や状況により、熱遮断回路が正常に動作しなかったり、動 作する前に IC が破壊したりすることがあります。

製品取り扱い上のお願い

株式会社当社およびその子会社ならびに関係会社を以下「当社」といいます。 本資料に掲載されているハードウエア、ソフトウエアおよびシステムを以下「本製品」といいます。

- 本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- ・ 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載 複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- ・当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウエア・ソフトウエア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下"特定用途"という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器(ヘルスケア除く)、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、発電関連機器などが含まれますが、本資料に個別に記載する用途は除きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口まで、または当社Webサイトのお問い合わせフォームからお問い合わせください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社及び第三者の 知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。)をしておりません。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事 用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用あ る輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品の RoHS 適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本製品のご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。

東芝デバイス&ストレージ株式会社